ON GUPTA-BELNAP REVISION THEORIESOF TRUTH, KRIPKEAN FIXED
POINTS,AND THE NEXT STABLE SET.

PD.WELCH

Abstract. We considenariousconceptsassociatedvith the revision theoryof truth of Gupta
andBelnap.We categorizethe notionsdefinableusingtheir theoryof circular definitionsasthose
notionsuniversallydefinableover the next stableset We give asimplified(in termsof definitional
compleity) accountof varied revision sequences asa genealised algorithmic theory of truth.
This enablessomethingof a unificationwith the Kripkeantheory of truth using superaluation
schemes.

§1. Intr oduction. The purposeof this noteis to statesomerecentresults
concerningthe theory of revision sequencesnd circular definitions derived
from GuptaandBelnaps Revision Theoryof Truth.

This theoryof truth hassometimeseenregardedasan alternatve approach
to the Kripkeantheory of fixed points via monotoneinductive operators,in
that it is also a semanticalattemptto describehowv a languagemay contain
its own, necessarilypartially defined,truth predicate.Indeedthereare several
accountof semanticabpproacheso this problemandthat of the TarskianLiar
which broadlyspeakingsplit the semanticatheoriesinto thesetwo camps(for
example,[17],[16]).

Thetenorof theresultshereis threefold.

(i) Revisiontheoriesof truth are complicated Revision theoriesof truth (one
shouldspeakof theoriesasthereare a classof theoriesbasedupon vari-
oustechnicalchoicesto be made- just asin the Kripkean“theory” there
arealternatve choicesof jump evaluationschemeprecomplicated.They
resultin truth sets(definedbelav) of compleity atleastthelevel of I1} or
higherin the projectie hierarchy

(i) Definability issues:Guptaand Belnaphave producedan approachto the
theoryof circular definitions Therearesomeindicationsin the literature
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concerningwhatkind of conceptsarein generaldefinablein this way, us-
ing revisiontheoreticasemanticakchemesandsomepartialresultsabout
the scopeof suchdefinitions. We give anexplicit approachmirroring the
theory of monotoneinductive definitionsandthe theory of the “next ad-
missibleset” (cf. [2],[15]) thatyieldsareasonablyxompleteaccount.

(i) Arapprochemenwith Kripke. We proposeanapproachrealisticvariance)
to introducingvarianceinto revision sequenceshat solves mary of the
puzzlesarisingin the revision theoryof truth of certainintuitively “true”
(or stable...) setsof sentencedeing poorly classified. In so doing we
are ableto showv that the stablesetsarisingin suchsequencesre none
otherthanKripkeanfixed pointsfor the superaluationjump scheme We
believe that, in fact, one may give a revision theoreticaccountof truth
(incorporatingrealistic variance)called, somavhat awkwardly, a “gener
alisedalgorithmictheory” belaw, that prima facie is very differentfrom
the Kripkeanone,but which ultimatelyyieldsstabletruth setsthatarealso
Kripkeanfixedpoints.

Theresultshereareall of a technicalnature(althoughsomeare of a “soft”
variety)andsono proofswill begiven. Thesewill appeaelsevhere[18]. There
is alsolittle discussiorof the philosophicalssuednvolved, or proposedAgain
we hopeto discusgheramificationsof theseresultselsevhere.

For anintroductionto both the Kripkeantheoryandto revision theoriesthe
reademayreferto theaccountsof [17],[16], or [14].

§2. Revision Theoriesof Truth and Definability. BelnapandGuptain their
book develop a generaltheory of circular definitions. This aroseout of their
earliertheoryof truth, (cf. [3],[7]) which construedhe TarskianTruth Bicondi-
tionalsasbeingdefinitionalof truth.

Briefly:

Let £ be afirst orderlanguageandlet £* bethe languagewith a possibly
infinite setof new predicatesymbolsG@, (1, ...z,). For eachG, thereis a
definitionfrom the setof definitionsD of theform

Gn(x1,...2n) =ar Aa, (x1,...2n).

Thepointis that A is aformulaof £+ which may containoccurrencesf G,,,
or of ary otherof thenew symbolsG,,,. (And which certainlyneednot be posi-
tive occurrences.\ revision processs invoked to saythatthe extensionof the
predicate(s)7,, atsomemomentin time is insertedon theright side,is revised
anda new extensionis found accordingto the rulesthe definitionalequations
provide. A particularcaseof the abore is wherethe definitionalequationsare
simply thoseof the TarskianBiconditionalsfor Truth, wherea predicateletter
T alonehasbeenintroducedto £ to form £'. For sucha processto get off
the groundaninitial hypothesish = h g, is madefor the extensionsof G,.
This hypothesiss thenrevisedin discretestagesesultingin arevisionsequence
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(sala < 00), Of successie extensionsof the predicateswheresy = h, andoco
is officially atleastthe lengthof all the ordinals. The gapin this brief sketch
is whatto do at limit stageof this process.A numberof views have beenex-
presseqsummarisedn [8]), asthetheoryevolved,but in all casesomekind of
“bootstrappingpolicy” or “limit rule”, let uscall it herel’, is invoked to tell us
how how to handlelimits andto definethe sequencef extensionss) for such
limit A. (We detail someof thesebelar). We have beensomevhatvagueasto
whatformally s, actuallyis - for arithmeticalrevision operatorover N we may
considerit asa setof integers- but moregenerallyit is the sequencef current
extensionsat stagex of thedefinendas,, .

Thus:in generak, 1 = d(s,) for some‘revisionoperator”s, but herein par
ticularwetake § = dp for somesetof definitionsasabove,ands) = I'({sq | <
A)) for somelimit ruleT". GivensuchaT', Revision Theorygivesanaccountof
bothvalidity anddefinabilityfor (morethanone)semanticsystembaseconT.

DEFINITION 2.1 (Validity in S7) ([8], 5D.1) Let £ be any first order lan-
guage, M be an £-model,and £t D L contain predicateletters for new
definiendad,, usingequationsn D.

(i) An LT sentence is valid on D in M in thesystemS}. (written M =%, o)
iff, for all initial hypotheses, and all revision sequenceg basedon jp, T’
with sg = h, o is stablytruein oco. Thatis, for all suficiently large o < oo
(M, sq) = o.

(i) o is valid on D in S} (written \:EF o) iff for all modelsM of LT,
ME}o.

Actually a principal systemelaboratedn [8] is not S* (with T" = ') but a
variantof theabove. Onerequiresnotthata sentencer bein all s, from some
pointon,in everyrevision sequenceyut only thatfor everyrevision sequence,
thereshouldbe a finite numbey n dependingon s, sothatfor ary limit ordinal
A we shouldhave ¢ € s)y,. (We referthe readerto [8] for the motivating
discussioron ary of the definitionsof this section.) For all practicalpurposes
of this paperthereademwill loselittle by consideringonly the S* versionsas,
for themostpart, the proofsof the resultsgiven herefor thetwo systemsareat
mostminor variants.If we write St without any decoratiorthisis to bereadas
either S orasS¥. If T is omittedwithout qualification,let us agreeto take it
asI'p - thelimit rule of [8].

For the readers benefitwe give a formal definition of S# belav mirroring
2.1,but thereaftesshallnothave nayreasorto referto thedetail. (Thedefinition
strictly speakingijs notthatof [8] 5D.1 but is a simplerequialent(cf Theorem
5D.14)).

DEFINITION 2.2 LetL, L™, M, D, G, beasin Definition2.1.
(i) An LT sentence is valid on D in M in the systemS? (written M =7 o)
iff, for all revision sequencess, ¢ is almost stably true in co. That is,
JBVa > fIn < w sothatVp > n(p < w — (M, sq4p) = 0).
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(ii) o isvalid on D in SI# (written |=£,r o) iff for all modelsM of LT,
M IZ?; .

The concomitantnotion of revision theoetic definability (cf. [8] 5D.18)
whichwe shalldealwith in this sectionis asfollows.

DEerFINITION 2.3 (Definabilityin Sf) Let£, LT D £, T beasabove

(i) Aformulay(vg) of L1 (weakly)definesasetX C M| in S} if:

x € X iff, for all initial hypotheseg, andall revisionsequence8§ with sg =
h, ¢(x) is stablytrue in co. Thatis, for all suficientlylarge o (M, s,) = ¢[z].

(i) If additionallythefollowing holdsthenwe saythat ¢ stronglydefinesX:

x ¢ X iff, for all initial hypothesed:, and all revision sequences’ with
so = h, theny(x) is stablyfalsein co. Thatis, for all suficiently large «
(M, s0) = ~¢lz]

([8] 5D.18actuallydefinesheanalogouwersionfor SI# whichwe leave here
for thereade)

Antonelli ([1]) givesexplicit revision theoreticsetsof definitionsD for each
of thecompletex? sets,i.e. for eachlevel of the arithmetichierarchy Kremer
([12] §8) givesanargumentof Guptashaving thatthis resultcanbe extendedo
theinductive sets:

(i) Inductively definablesubsetof N areS# and.S*-definable.

[8] consideredat 5D.7 the questionof providing an axiomatisationof S#.
One candeducea negative answerto this (well at leastdirectly for S*) from
an earlierresultof Burgess[4] who shaved thatthe setof stabletruthsover N
formeda completell. set.Kremeralsosolvedthis negatively asfollows:

(i) For ary TI} setof integers X, thereis a finite setof positive definitions
D = Dy sothat X is recursvely embeddablénto =P - the setof sentences
validonD in S;, where$; is the semantidheoryassociatedo truth-at-the-first-
fixed-pointof the positive inductive definitionsD.

As heshaws that.S* and S# extend.S;, oneconcludeghatthe compleity of
IZEP asD varies,andof |:§#, arealsoatleastl1}.

We mentionthe particularrcasesof limit rulesT" of revision sequenceghat
arosefrom discussionon Revision Theoriesof truth. (We shall henceforth
simplify mattersby not making greatdistinction- unlessrequired- between
thevariantsfor the semanticaschemeS# or S#.)

Notation For § = (s, | @ < oo), we write the stability setor pair as
Scoo = (5Ta0,520) Whered € st/ if, for all suficiently large o < oo,
d € s, (respectiely d ¢ s,). Local stability pairs s aredefinedanalogously
with ary limit ordinal A replacingoo .

DEFINITION 2.4. If § = (s, | @ < o0) is a sequencethenwe saythat s
cohereswith (s, | a < A) (for anylimit A < co) if sNs_, =@ ands’, C s.
Example(1) HerzbegerLimit Rule,T'g.

HereT y is singlevaluedandreturnsas sy s¥,, the smallests coherentwith
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s<n, forall A < [h(8). In somesensethis is a “minimal” policy, only those
objectslocally “stably in” si/\ canbetakenasin s,.
Example(2) GuptaRule,I'¢
is alsosinglevalued:T'; is definedby T (5 | A) = sy = s, U (so\s,). The
ideahereis thatwe referbackto our original “hypothesis”h = sq to fill in for
theambiguousvaluesin N\ (s£, UsZ,).
Example(3) BelnapRule,I' 5.
This is an exampleof a multi-valuedlimit operator:s, may be chosemasary
s € (51 A) =4 {s | s cohereswith s.,}. TheBelnaprule thusplacesthe
leastpossiblerestrictionon the choiceat limit stagesThe motivationhereis to
“allow freeandfull play” of the TarskianBiconditionaldefinitions(cf. [4]) and
notto artificially make up somelimiting rule.

We considerfirst asa paradigmexamplethat of arithmeticandthe structure
of naturalnumbersN augmentedvith a predicatesymbol s. Let p(vy) be a
formulawith onefreevariablein thislanguagelLet §,, be definedoy

dp(s) ={n | (N,s) = @(n)}.

The questionarises(in [13]), whatkinds of setsof naturalnumbersare S} or
S# definablefor variousI” asy is allowedto vary?

We mayshaw thatthestronglydefinablesetsextendthroughoutAl regardless
of the choiceof limit ruleT's,T'¢, I's or of semanticakchemeS;}. or S#. In
thefollowing we allow ary limit ruleI” whichreturnsavalueatalimit A simply
definedfrom the sequence’ | A. We expressthis by sayingthat s, shouldbe
definablein a Al-wayin acodefor thewellorderedsequencés,|a < A). (The
setof suchcodesformsall} setof reals,seefor example,[11],540.)

THEOREM 2.1 LetS beSffé or Sf; letT beany Al-definable(in the codes)
limit rule (thisincludesanyof 'y, ', I'g).
Theclassof Sp-definablerealsis preciselythat of the I} reals;theclassof A}-
definablerealscoincideswith the classof Sr-, co-Sr-definablereals,i.e., with
thestrongly Srdefinablereals.

Theupperboundhere,that Sp-definablerealsareall T13, wasnotedby Lowe
in [13] for I' = I'g. As a corollary the proof of this yields a previous result
of Burgess[4], thatfor the languagédor arithmeticwith a partially definedT'-
predicatethe truth setof thosesentencestablytrue in all revision sequences
(usingtheTarskiarBiconditionalsto revisetheextensionof T'), (the“categorical
truths”), using Sy, form acompletell} set.

Remark: 1 The Sr-, co-Sr-definablereals (for T' € Al, againeg. for
' € {T'y,T', I'p}) arethustherealsof thefirst transitve stableset Sy, over
the structureN. In fact, by Levy-Shoenfieldthey arethe realsof the smallest
yi-correctmodelof Al-ComprehensionThe lasttheorembut moreespecially
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its proof naturallyleadsoneto the following analysisof revision theoreticde-
finability over moregeneralstructures.Indeedthe lasttheoremis thusreally a
specialcaseof the oneto follow.

Making useof an analogywith admissibility theory and the setshyperele-
mentaryover a structure we proposethe view hereof revision theoretic(RT)
definability as building up for us the domainof S, over M for somefirst
order M = (M, Ry,...,Ry) with suficient coding apparatus. Justas the
inductive/co-indutive setsoveranacceptableV/ yield thehyperelementargets
of the“next admissibleset” over M, sothe RT-/ co-RT-definablesetsyield the
domainof the“next stablesetover M”. The notionof “sufficient codingappa-
ratus”or “acceptability”is thatof Moschaakis[15].

DEFINITION 2.5, Let M = (M,R,...) be any structue. Let Sy, be
L,,,((M,R,...)) bethefirst level of the relativisedGodel L-hierarchy built
over M, usingelement®f M asurelementesothatS s <x, (V, M, R,...).

ThusS u, is correctaboutX; factstruein V', the universeof all sets,of M.
NotethatasS v is anadmissiblestructure A1 (S pq) subset®f M arein S 4.

THEOREM 2.2. LetSp beS¥ or Si; let M bea countableacceptablestruc-

ture; let T' be any AgHC’E)({M})—definablelimit rule (this includesany of
FH7 FGJ FB)

Theclassof Sr-definablesubset®f M is preciselythat of theII; (S aq) sets;the
classof A1 (S \)-definablesetscoincideswith the classof Sp-, co-Sp-definable
subset®f M, thatis, again, with the strongly Sy-definablesets.

Remark: 2 Sy hasdomainthatof L, whereo is thefirst stableordinal. (For
informationon the stableordinals,seefor example,[2].) Note thatmary first
orderstructuresM will have |S »4| thesame For exampleSy will have thesame
domainass 4 where A is the least3-model of analysis,andexactly the same
classof setsof integersarerevision theoreticallydefinableover eachstructure.
In ourterms L, is a very large set. Onemight addthe commentthatit is the
processof revision theoreticdefinitionthatconstructghesesets:theunderlying
modelplaysalmostnorole.

Remark: 3 Thereare strengthening®f the last theoremwherewe wealen
the acceptabilityrequirementto allow for structuresM over which thereis

a strongly definablecoding scheme It is unknavn whetherweakly definable
codingschemesufice. (Weaklyacceptablestructuressufiice for Moschwakis,
but we have a quantifierswitch here.)

Remark: 4 It is easyto ask questionsaboutsuchtruth setswhich arein-

dependenbf the axiomsof ZF. Theorem2.1 shaws thereis a naturalmutual
interpretationof the notion of stronglyrevision theoreticallydefinableover N,

in the senseof 2.3 (i), with that of “Al-definable”. The theory of the latter
reducibility is known to beindependentf ZF (cf. Friedmar6]).

Remark: 5 Similar considerationgo that of the theoremshaw that if, for

example, L is the languageof Arithmetic (or ary recursve languagethat has
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acceptablenodels) thenV* ( essentiallytheintersectiorof the stabletruth sets

over all modelsof signaturethat of the languagel ) andVL# (definedmutatis
mutandi$ have compleity alsopreciselythatof a completell} set. (This an-
swersProblem32 of [12]).

§3. Fully varied sequences.Strongerandaswe shallsee muchmorecom-
plex semanticalsystemsare afforded by Yaqub sequence$20] and the fully
varied (fv) sequencesuggestedy Belnap& Gupta[8], p.168)anddiscussed
in Chapuis[5]. Theauthorsareonly consideringsequencebasedon the revi-
sion function ¢, - the evaluationof sentencegontaininga T-predicate based
on the Tarskianbiconditionals. We generalisethis to arbitrary operators be-
fore specialisingt againto considerary arithmeticrevision operationd,,. Their
motivationsareto iron out certainill-classificationsor anomalousehaiour of
limit rules.(An exampleof thisis the Guptapuzzlevariantof [8] 6C.10.) They
imposea globalrestrainton the classof all revision sequences.

DEerFINITION 3.1. A revision sequencdgbasedon a revision rule §, and say
limit ruleT'g) § = (ss | @ < o0) is- fully varied(fv) if any extensiornr that
is coheentwith thewholesequenceé, hasactuallybeenappliedasa limit rule
cofinallyin oo.

Remark: 6 In generalthenfv-sequencesver countablestructureamusthave
lengthat leastc = 2%0, thatof the continuum- atleastprima facie - althoughit
is easyto seeby a L owenheim-S&lemarumentthatproperinitial segmentsof
sequencedetermineghe setof stabilities;moreaer for ary fv-sequence there
is anotheifv-sequencé with thesamesetof stabilities thatin factis determined
by a countablanitial segmentof 7.

Note: If 3'isfv, then{a < Ih(3) | s, = st} iscofinalin ih(3). (Sincest,
is coherenwith s ") Thenthefinal setof stabilitiesof afully variedsequence
is destinedo appeaircofinally in thewholesequence.

Yaaub hasadifferentdefinitionof revision sequencéo enforcefull variability
of bootstrappindimit rules. His sequenceare (atbest)memberof H ++. We
omit his somavhat baroquedefinition. But it is a resultof Chapuisand Gupta
([5] Theorent.1,provenfor the Tarskiarnrevisionrule r but whichworksin this

1We do notwish to discusstheseexamplesat ary greatlength, but to sene asmotivation for
the definitionshereandof §5, this GuptaPuzzleshavs thatthe intuitively correctclassification
failsto occurin somerevision sequencegConsidethesituationwherepersonsA and B make the
following statementsA saystwo things: S1: “It is truethateverything B saysis true”, S»: “Not
everything B saysis true”, whilst B saysonly S3 “At mostonething A saysis true”. Intuitive
reasoningmuesthatS; andS; shouldbeallocatedhetruthvaluetrue,whilst S» shouldreceve
falsehood. Without an insistanceon full varianceBelnapand Guptanote (p.228,0p.cit) that
someBelnapsequenceso not stabiliseon theseintuitively arguedvalues,becausave always
choseat limit stagesan unfortunateevaluationthat resultedcontinuallyin instability. Thisis a
simple(andfinite) exampleof asetof sentencethatmaybe called“ill-classified” undertheusual
S# scheme.



8 P.D.WELCH

moregeneraketting)thatthestabilitiesof any givenfv-sequencareexactlythe
stabilitiesof a Yaqub sequence.

We considerthe setof integersthat are stablyin all fv-sequencesor revi-
sionoperatorglerived from arithmeticdefinitionsover N. (We dropthe x or #
decorationasthedistinctionbecomesuperfluousvhencalculatingthesesets.)
They arethustheweakly definablesetsfor this notion.

Thenotionof asetbeing(weaklyor strongly) RT-definablds justthatof 2.3,
with the notionof revision sequencéeingstrengthenetb fully variedrevision
sequenceandwe shalldenotethis as St or simply 5.

It looks, againprima facie asif S is II; (H.+) definable. But it is simpler
thanthat.

THEOREM 3.1 Theclassof Sp-definablerealsis premselythat of the IT3

reals; the classof A1 definablereals coincideswith the classof Sp , co-Sp-
definablereals.

We have not botheredo list the variantsobtainedby letting I' be otherlimit
rules. However the very sameclassof definablesetswill alsoresultif we allow
functionss € A} besideghearithmeticoperatorsy,,.

THEOREM 3.2 (i) For anyopeator 6, §(5) isalli() setof integers, whee
5(6) =4 ﬂ{sioo | §= (sq | & < o0) isafvrevisionsequencdasedond}.

If we specialisethe resultto the Tarskianrule 6, for partially definedtruth
predicatesve obtain:

COROLLARY 3.3 Let Var be the truth setover the standad modelof arith-
metic, using T, the theory of truth for fully varied revision sequences(That
is

Va =[5t | §= (sa | @ < c0) isafvrevisionsequencbasedon . }.)

ThenVj, canbeconstruedasa completdll} set,andthusis Sp-definable

Again therearevariantsgiven by consideringmodelsotherthanN of arith-
metichere.

84. Categoricity. In [8] atheoryis developedof how thenotion“categorical
in alanguage’canbe treatedin a similar fashionto truth. They wish to ague
that, by doingsothey canfend off the spectreof StrongLiar Paradoxes

The authorsconsideran augmentedanguageo that (here)of arithmetic, L,
containinga new predicatesymbol K, in additionto 7" for truth, to be inter
pretedasthe currenthypothesisconcerningthe categorical sentencesthatis:
stablytrue over N usingall revision sequence$) Thebasicmodelof arithmetic

2 Actually [8] call the categorical sentencethosethatreceie the sametruth valuestablyin all
revision sequencedAs o is stablytruein all revision sequencesf —o is stablyfalsein all suchiit
maleslittle differenceto theanalysishereif we concentratgustonthosestablytrue everywhere.
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is enlagedto a modelN" =4 (N, T, K) with the displayedpredicateseing
the obviousinterpretation.They wish to considermrevisionsof a hypothesisk,
concerningnow whatwill ultimately be the setof cateyorical sentencesn ex-
actly the sameway that revisions were usedto createnev approximationgo
truth. Onethustakesa hypothesisoncerninghe cateyorical sentenceszall it
K = kg, andusesthis extensionin the expandedmodelabore, andfinds the
stablytrue sentenceselative to the new modelin the nen language.Onethus
keepstheextensionof K fixedaswe performtherevision proceson extensions
of T until we have the stablytrue sentencewith thislanguage Thelatteryields
anew setof sentenceasarevisedhypothesigor ¢y (ko) = k1.

DEFINITION 4.1 ¢n(K) = {n|n isthegnofasentencef L' thatis stably
true under the revision processS™ for T, over the expandedmodelN* with
Ky+ = K}.

They remark([8], p.231)that“in a sensethe semanticdor K is at a higher
level thanthatfor 7' It involves the whole revision processfor 7, including
the concomitantjuantificationover all startinghypothese$or 7', beingconsid-
eredasa singlesuccessostepin the revision procesgor K. It is perhapghus
unsurprisingthat the complity of the resulting stably categorical set(those
sentencesghatoccuron a final sggmentof every On lengthof revisionsunder
¥y, for every possiblechoiceof startinghypothesisk’) of sentencesyr thatof
the almoststably categorical set- that obtainedby usingthe schemeS#, with
Belnaps limit rule (the preferreddefinitionof [8] 6D.9)is considerable.

THEOREM 4.1 (i) The stably (and almoststably) categorical (over N and
usingany Al limit rule T) setof sentenceformall} set.
(ii) In Godel's constructibleuniverse L, the setobtainedusingthe semantical
schemeS#, is a completdl} set.

As remarked abore, membershiguestionsaboutsetsof integersat this level
of compleity are,in generalnot absolutebetweermodelsof settheory Note
the above calculationis basedon the original revision theory of [8]; for fully
variedrevision theory the compleity is yethigher asit will befor the stronger
notionsof “n-cateyorical”, neededo fend off strongeriar paradors. We be-
lieve that(ii) of thetheoremis alsotruefor S*, aswell asfor thesesemantical
schemesvith the Herzbegerrule, howvever usingthelatterimposesseverecon-
straints andwe leave thesemattersasopenquestionsThepointto bemadehere
is to make precise(at leastin onesituation)their remarkabove andascertairat
which higherlevel the semanticgor K is,in fact,takingplace.

§5. Realistically Varied Sequences.n this sectionwe malke someobsenra-
tions. Themotivationis thatof seekingor adefinitionof arevision procesghat
doesthreethings:

(i) reduceshemathematicatompleity of thefully variedstabletruth set;
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(i) yieldssomerepresentationf the set(of pairs)of stabletruth setsin revi-
sionsequence®r atleastgivessomestructureto the classof suchstability
sets;

(i) solves(asfaraspossible}he problemof simplesetsof sentencethatare
intuitively felt to be of a certaincateyory (alwaysstablytrue/false/unstable
etc.) but which areill-classifiedunderthe currentschemes.

Thatwe shouldaim to reducethe compleity of fully variedsequenceandthe
accompaying truth setto somethingthatis at leastZ F-absoluteshouldbe a
fair desideratumOneobsenration on (iii), is thatit is not necessaryo globally
quantify over all sequenceandensurethatall possiblecoherentimit rulesare
usedcofinally in every sequenceJustrequirethat simplefunctionshave to be
used asfollows.

Idea: we only needto enforcevariability in asimpleclassof limit rulesin or-
derfor theexamplesthathave beenproducedn theliteratureas"ill-classified”,
to “come out right”; andthatrealistic varianceensureghis. Suchanexample
of ill-classificationoccursin [C] to provide a counterexampleto arevision the-
oreticsystemof Yaqub’s, andthis would alsocomeout “right” usingour defini-
tion below; similarly for the subtlervariantsof the GuptaPuzzletype etc. (e.g.
[8] 6C.10). > Henceary exampleusedasan “objection” to this realistically
variedrevision theoryasbeingclassifiedas sometimeundesirablyunstable or
whatever, will have to consistof (at least)a non-recursie set B of sentences
(or of somenon-recursie sequencef t/ f assignment$o the sentencesf B).
It is hardto imaginesomeoneclaiming to have sufficient intuition aboutsuch
a setof sentenced3, andthe revision processefvolved to claim that B has
beenimproperlysened by this form of revision processThetestof this notion
is thento seeif therearesuchsimply defined'ill-classified” setsunderrealistic
variance.(Thisis theimportof the“ChallengeProblem”below.)

DEFINITION 5.1 A revision sequence is realisticallyvariedif for all limit
A < oo, welets.y = (siA, s_,) bethelocal pair of stability setsat A, thens
is chosenasa coheentextensionof s in thefollowing fashion:
(i) Either s, is recussivein sy or in somes, for an a < A, and s, hasnot
beenusedasa limit rule cofinallyin A;
(i) Or, if at stage A thereis no s, thatsatisfiexlause(i), thens, maybechosen
arbitrarily.

The maxim herethenis “use the simpleonesfirst” whenit comesto formu-
lating bootstrappingpolicies. So, to paraphrasea realistically varied revision
sequencés onein which we alwaysfirst try to sets, assomethingecursve in
S<), Or in someprevious s,, thatwe have not alreadyusedunboundedlyoften

3Realisticvariancearguesthatintuitive argumentswill be, at their mostsophisticatedabout
recursve, or astreatedhere,hyperarithmeticsetsof sentencesOur definitionensureshatevery
recursve choiceof coheringt/ f assignmentss usedat limit ordinalscofinally in co, andso of
coursewill thefinite assignmenheededo getthis exampleto stabilise.
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belov A. Onemay shav thatary ¢ coherentwith s, andrecursve in it, has
beenusedunboundedlyin a realisticallyvaried 5. Although the definitionis
complicatedo statein words,it doesactuallyyield aastructuralreward (i), and
amathematicasimplification(ii):

THEOREM 5.1. (i) If §is a realistically varied revision sequencethen s,
formsa Kripkeanfixedpoint for the supervaluatioroperator.
(i) Thecategorical truth set(over N) of sentencestablytrue in all realistically
variedrevisionsequencess completell}.

By the superaluation operatorwe meanthat jump operationj,» that acts
on disjoint pairsof setsof sentence$A’, A') (partial setsconsideredasthose
true or falseat a particularstage)definedas j, ; (Af, A) = (B, B/) where
Bt = N{Va|A* C AN AN Al = @} and,usingtruth andfalsehoodlefinedin
the partialstructureVa = {"o (N, ... , At AT) |= p}; Bf = N{N\Va|A! C
ANANAT =0},

At thislevel, theresultsabore on the stronglydefinablesetsover amodel M
beingthoseof the next stablesets 5, apply

As mentionedaborve onetestof this theoryis to seehow hardit is to solve the
following:

Challeng ProblemFind a setof sentence®3 thatis intuitively of a certain
catgory undersomestartinghypotheseshut, for example,thatis badly classi-
fied as“sometimesunstable”,accordingto realisticvariance.

§6. An algorithmic theory of truth: stable setsascertain Kripk eanfixed
points. Thegenerakhrustof theseresultsis thatthe machineryof revision the-
ory is complicated|t resultsin truth setsthatareeitherTl} or yetmorecomplex.
The notion of stablecatagoricity (even assuminga notion of stabletruth thatis
notbasedon full variance)is alsoIl. An approactsuggestedby realisticvari-
anceis thatif we focusattentionon a single revision processstartingfrom a
given hypothesisthenwe arrive at a superaluationfixed point. In particular
we canregardsucharevision theoryasbeinga generalisatiorof the Kripkean
supenraluationfixed point approach.In the Kripkeantheorywe may focus at-
tention on certainfixed points (the minimal fixed point, certainintrinsic fixed
points,notablythe maximaloneetc.) ratherthantry and“take anaverage”over
all suchprocessesWe attribute meaningto a “stable Kripkeanset” thatis, to
afixed point. Similarly we hereattribute meaningto eachstability setof each
suitablerevision sequence.Under the Belnapand Guptaapproachno partic-
ular meaningis assignedo the setof stabilitiesoccurringin ary onerevision
sequenceit is onemoresetto feedinto the averagingprocess.We hereadopt

4Indeedthis latter sentencdwith hyperarithmetiaeplacingrecursve), could sene asan al-
ternative definingrequiremenfor realisticvariancein whatfollows. It may be that the formal
definition abore may be too restrictive for somepurposesThe point of statingit in this fashion
is to emphasiséts nonglobalarity
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theview thattherevision processs seekingnformationbasecdbn ourinitial hy-
pothesish. Theinformationwe seekis itself the setof stabilitiesof our revision
process.

We maythusregardeachrevision proces@asaprocessllustratinganapproach
to solving the problemof the extent of a languages ability to expresstruth in
itself (asonewould the Kripkeanapproach)In thatcaset would seementirely
reasonableo restrictthe limit rule to resourcesio more complicatedthanthe
processhasproducedso far. In particularwe do not wish to import into the
processnformationwhich is “remote from” our startinghypothesis,or more
complicatedhanwhatwe aredoing(this beingoneof thesource®f compleity
of thetheoryof standardevision theory).

Let us supposethat in the theory of realistic variance(Definition 5.1) the
choicesof limit extensionss, have beendonein somefashionthat shavs that
sy hasbeenchosenin somereasonablyuniform mannerin A from the preced-
ing sequence.Several examplesspringto mind. Let us say being generous,
that s, is A1(58 | \) definableuniformly in A in someweak settheory say
K P, (Kripke-Platekwhich we take to includethe Axiom of Infinity). (Surely
primitive recussive will morethansufice for ary reasonable¢heory? The '
andI'y bothconformto this, but we areaddingto thesethe requiremenbf re-
alistic variance.) Call sucha sequence (geneanlised) algorithmically varied
sequenceGivenahypothesigh = sg to theextensionof thetruth predicateone
thenhas

THEOREM 6.1. If §isalgorithmicallyvariedwith startinghypothesig = s,
then:
(i) Thestability sets = (s, s2oo) is a Kripkeanfixedpointunderj, ;
(i) s is recusivelyisomorphicto the completesventuallywritable infinite time
Turing madine setof integers relativeto h, h ([19] Def. 2.7); equivalentlyto
thecompletearithmeticalquasi-inductivesetrelativeto i (cf [4] 13.1).

As the function . — h is A} we keepwithin the boundsof absoluteness
betweenZ F-models.Onemay shawv thatalgorithmicallyvariedsequenceare
“fully varied” in the senseof Section3, but wherewe ensureonly thatary r
thatcohereswith thewhole sequencé@ andis suchthatr is recursve in ary s,
hasbeenusedcofinally. For suchsequencewe may calculatethe lengthof the
“stabilizationordinal” o () - the ordinal by which the revision processstartsto
cycle repeatedly

DEFINITION 6.1 Lets = (sq|a < co) beanalgorithmically variedrevision
sequencel etthestabilizationordinal ¢(5s), betheleastos sothatVa > ¢33 >
Qa Sq = S3.

Thelist of equivalencesn thetheorenbelow illustratesaninterestingconver-
genceof avariety of ideasandconcepts.Theidentity of the ordinalsdefinedin
(i) and(iv) is therelatvisedresult[4], 14.1,dueto Burgess.
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THEOREM 6.2 Under the hypothese®f the last theoem o(3) is equiva-
lently:
(i) Theleastordinal ¢ = ¢" sothat L¢[h] hasa transitiveX, endextension;
(i) Thesupemumof theinfinite time Turing madiine“e ventuallywritable” or-
dinalsusingasoracleh;
(iii) Thestarting point of the “Herzberger Grand Loop” ([9]) basedoninitial
hypothesis..
(iv) Theclosue ordinal of arithmetical-ins quasi-inductivadefinitions.

Of course from theviewpoint we areadoptingit makesno sensdo “average
out” suchtruth setsby taking an intersectionover all startinghypotheseswe
shouldjust arrive back at the samelevel of compleity: a ITJ completecate-
gorical truth set(albeitwith now improved classificatorypropertiesfor setsof
sentences).

Note: One canstill work the theory of “circular” definitionsusingthis ap-
proach:the point againis that the extensionof a definition is calculatedanav
from eachstartinghypothesisasto its extension.Again we do not take aninter
sectionover all startinghypothesesWith this approach:

THEOREM 6.3. a) Thealgorithmicallyvariedstrongly definablesetsof natu-
ral numbes froman hypothesis are then,equivalently:(i) the setsof integers
in Len[h]; (i) thesetof realseventuallywritable by an infinite time Turing ma-
chinefrominput h.

b) h is a completealgorithmically varied weaklydefinableset.

To eachcountablemodel M with, say aninductive codingschemepf alan-
guage herethe “companionmodel” would be ananalogousstructurez ,, - the
“next ¥o-extendible”-setover M. Againthereis ananalogouslefinability the-
oremto thatof Theorem2.2, with definablesubsetf |M|. If onewantedone
could even construetheseas “eventually writable” for somegeneraliseccom-
putationover the structureM (muchascanbe donefor ordinarycomputations
over suitablestructures seefor exampleHinmans articlein [10].)

In a senseo namethis (or therealisticallyvariedtheoryof the previous sec-
tion) a “generalisation”of the Kripkeansuperaluationtheoryis a misnomer
sincenot all j, 7 fixed pointsoccurasalgorithmicallyvariedstability sets:the
classof suchstability setsis a propersubsetof the classof suchfixed points.
But we mayview algorithmicrevision processeas"stretchedout” or elongated
processesf attemptingo reachcertainsuperaluationfixed points.

If onedesiredto adoptthe GuptaandBelnaptacticfor dealingwith Strength-
enedLiar paradogsin this contet, one could alsodefinethe notion of stable
catgoricity here justasin Section3, by addinga predicateto thelanguageand
finding repeatedlystability setsrelative to sucha “hypothesis”in this extended
notion,andcycle thesestability setsasthe successie hypotheses.
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THEOREM 6.4. Thestably cateyorical setover N, relativeto a starting hy-
pothesish, andusingalgorithmically variedrevisionsequencess (1-1) equiv-
alentto thecompleteX; theoryof L ,»[h] wherethelatter is the smallestransi-
tive modelcontainingh, closedunderarithmeticalquasi-inductivedefinitions,
with a transitiveX,-endextension.

If thereis ary point in statingthis rathertechnicalsoundingtheorem,it is
thatstablecatagoricity - whaterer thatmeans now is nolongera non-absolute
notion.

Perhapanore germanehowever, is that the whole theoryis simplerin this
sense: the Kripkean theory of fixed points, (using either superaluationsor
Kleene 3 valued schemesyusessay K P+“there exists a transitve model of
K P” in themetatheoryo find atleastonefixed point. However the Belnapand
Guptatheoryrequiresa very substantiapartof ZF in the metatheoryto define
the setof stabletruthsof arithmetic. By way of contrastthe generalisedilgo-
rithmic theoryof truth outlinedabove, including the notion of (finite ordersof)
catgyoricity canall be developedwithin K P + ¥,-Separation.
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