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Abstract. We considervariousconceptsassociatedwith therevision theoryof truth of Gupta
andBelnap.Wecategorizethenotionsdefinableusingtheir theoryof circular definitionsasthose
notionsuniversallydefinableover thenext stableset. Wegiveasimplified(in termsof definitional
complexity) accountof varied revision sequences- asa generalisedalgorithmic theoryof truth.
This enablessomethingof a unificationwith the Kripkeantheoryof truth usingsupervaluation
schemes.

�
1. Intr oduction. The purposeof this note is to statesomerecentresults

concerningthe theory of revision sequencesand circular definitions derived
from GuptaandBelnap’s RevisionTheoryof Truth.

This theoryof truth hassometimesbeenregardedasanalternative approach
to the Kripkean theory of fixed points via monotoneinductive operators,in
that it is also a semanticalattemptto describehow a languagemay contain
its own, necessarilypartially defined,truth predicate.Indeedthereareseveral
accountsof semanticalapproachesto thisproblemandthatof theTarskianLiar
which broadlyspeakingsplit thesemanticaltheoriesinto thesetwo camps(for
example,[17],[16]).

Thetenorof theresultshereis threefold.

(i) Revisiontheoriesof truth are complicated.Revision theoriesof truth (one
shouldspeakof theoriesastherearea classof theoriesbaseduponvari-
oustechnicalchoicesto be made- just asin theKripkean“theory” there
arealternative choicesof jump evaluationscheme)arecomplicated.They
resultin truthsets(definedbelow) of complexity at leastthelevel of ���� or
higherin theprojective hierarchy.

(ii) Definability issues:GuptaandBelnaphave producedan approachto the
theoryof circular definitions. Therearesomeindicationsin the literature
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2 P.D.WELCH

concerningwhatkind of conceptsarein generaldefinablein this way, us-
ing revisiontheoreticalsemanticalschemes,andsomepartialresultsabout
thescopeof suchdefinitions.We give anexplicit approach,mirroring the
theoryof monotoneinductive definitionsandthe theoryof the “next ad-
missibleset” (cf. [2],[15]) thatyieldsa reasonablycompleteaccount.

(iii) A rapprochementwith Kripke. Weproposeanapproach(realisticvariance)
to introducingvariance into revision sequencesthat solves many of the
puzzlesarisingin the revision theoryof truth of certainintuitively “true”
(or stable...) setsof sentencesbeingpoorly classified. In so doing we
are able to show that the stablesetsarising in suchsequencesare none
otherthanKripkeanfixedpointsfor thesupervaluationjump scheme.We
believe that, in fact, one may give a revision theoreticaccountof truth
(incorporatingrealisticvariance)called,somewhat awkwardly, a “gener-
alisedalgorithmic theory” below, that prima facie is very different from
theKripkeanone,but whichultimatelyyieldsstabletruthsetsthatarealso
Kripkeanfixedpoints.

The resultshereareall of a technicalnature(althoughsomeareof a “soft”
variety)andsonoproofswill begiven.Thesewill appearelsewhere[18]. There
is alsolittle discussionof thephilosophicalissuesinvolved,or proposed.Again
we hopeto discusstheramificationsof theseresultselsewhere.

For an introductionto both the Kripkeantheoryandto revision theoriesthe
readermayreferto theaccountsof [17],[16], or [14].

�
2. Revision Theoriesof Truth and Definability. BelnapandGuptain their

book develop a generaltheoryof circular definitions. This aroseout of their
earliertheoryof truth,(cf. [3],[7]) whichconstruedtheTarskianTruthBicondi-
tionalsasbeingdefinitionalof truth.

Briefly:
Let � be a first orderlanguage,andlet ��� be the languagewith a possibly

infinite set of new predicatesymbols �	�
��� ��������� ��
�� . For each �	�
 thereis a
definitionfrom thesetof definitions� of theform

�	�
���� ��������� ��
�������� ��!�"���� ��������� �#
#� �
Thepoint is that

� !
is a formulaof ��� whichmaycontainoccurrencesof �	 
 ,

or of any otherof thenew symbols �	�$ . (And whichcertainlyneednotbeposi-
tive occurrences.)A revision processis invokedto saythat theextensionof the
predicate(s)

	 

at somemomentin time is insertedon theright side,is revised

anda new extensionis found accordingto the rulesthe definitionalequations
provide. A particularcaseof theabove is wherethedefinitionalequationsare
simply thoseof the TarskianBiconditionalsfor Truth, wherea predicateletter�% alonehasbeenintroducedto � to form �'& . For sucha processto get off
the groundan initial hypothesis( � () !�"+* is madefor the extensionsof

	�

.

Thishypothesisis thenrevisedin discretestagesresultingin a revisionsequence
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, of successive extensionsof thepredicates,where

-0: � ( , and
6

is officially at leastthe lengthof all the ordinals. The gapin this brief sketch
is what to do at limit stagesof this process.A numberof views have beenex-
pressed(summarisedin [8]), asthetheoryevolved,but in all casessomekind of
“bootstrappingpolicy” or “limit rule”, let uscall it here ; , is invoked to tell us
how how to handlelimits andto definethesequenceof extensions

-=<
for such

limit > . (We detailsomeof thesebelow). We have beensomewhatvagueasto
whatformally

-?/
actuallyis - for arithmeticalrevisionoperatorsover @ wemay

considerit asa setof integers- but moregenerallyit is thesequenceof current
extensionsatstage

3
of thedefinenda

	�

.

Thus:in general
-0/ � � �BAC� -0/ � for some“revisionoperator”

A
, but herein par-

ticularwetake
A �BAED

for somesetof definitionsasabove,and
-=< � ; � ,.-0/21 3F4> 8 � for somelimit rule ; . Givensucha ; , RevisionTheorygivesanaccountof

bothvalidity anddefinabilityfor (morethanone)semanticsystembasedon ; .

DEFINITION 2.1. (Validity in GIHJ ) ([8], 5D.1) Let � be any first order lan-
guage, K be an � -model, and � �ML � contain predicateletters for new
definienda

	 

usingequationsin � .

(i) An � � sentenceN is valid on � in K in thesystemGIHJ (written K 1 � HD N )
iff, for all initial hypotheses( , and all revision sequencesO- basedon

A D
, ;

with
-0: � ( , N is stablytrue in

6
. That is, for all sufficiently large

3P4Q6, K � - / 8R1 � N .
(ii) N is valid on � in GIHJ (written

1 � D HTS J N ) iff for all models K of � � ,K 1 � HD N .

Actually a principalsystemelaboratedin [8] is not GIH (with ; � ;�U ) but a
variantof theabove. Onerequiresnot thata sentenceN bein all

- /
from some

pointon,in everyrevisionsequence,but only thatfor everyrevisionsequenceO- ,
thereshouldbea finite number, V dependingon O- , sothat for any limit ordinal> we shouldhave NXW -=< � 
 . (We refer the readerto [8] for the motivating
discussionon any of thedefinitionsof this section.)For all practicalpurposes
of this paper, thereaderwill loselittle by consideringonly the GIH versions,as,
for themostpart,theproofsof theresultsgivenherefor thetwo systemsareat
mostminor variants.If we write G J without any decorationthis is to bereadas
either G HJ or as GZYJ . If ; is omittedwithout qualification,let usagreeto take it
as ;[U - thelimit rule of [8].

For the reader’s benefitwe give a formal definition of G Y below mirroring
2.1,but thereaftershallnothavenayreasonto referto thedetail. (Thedefinition
strictly speaking,is not thatof [8] 5D.1but is a simplerequivalent(cf Theorem
5D.14)).

DEFINITION 2.2. Let � � � � � K � � � 	�
 beasin Definition2.1.
(i) An � � sentenceN is valid on � in K in thesystemG YJ (written K 1 � YD N )
iff, for all revision sequencesO- , N is almost stably true in

6
. That is,\^]�_ 3a` ][\ V 4cb sothat

_ed ` V � d 4cb9f#gh, K � -0/ �^i 8j1 � N ).
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(ii) N is valid on � in G YJ (written
1 � D
Y S J N ) iff for all models K of � � ,

K 1 � YD N .

The concomitantnotion of revision theoretic definability (cf. [8] 5D.18)
whichwe shalldealwith in this sectionis asfollows.

DEFINITION 2.3. (Definability in GIHJ ) Let � , � �FL � , ; beasabove.
(i) A formula k �ml : � of � � (weakly)definesaset npo 1 K 1 in GZHJ if:� Wqn iff, for all initial hypotheses( , andall revisionsequencesO- with

-0: �
( , k ���2� is stablytrue in

6
. Thatis, for all sufficientlylarge

3r, K � -0/#8R1 � k�s ��t .
(ii) If additionallythefollowingholdsthenwesaythat k stronglydefinesn :�puWXn iff, for all initial hypotheses( , and all revision sequencesO- with-0: � ( , then k ���2� is stably false in

6
. That is, for all sufficiently large

3, K � -?/#8R1 �7v k�s ��t
([8] 5D.18actuallydefinestheanalogousversionfor G YJ whichweleavehere

for thereader.)
Antonelli ([1]) givesexplicit revision theoreticsetsof definitions � for each

of thecompletew :
 sets,i.e. for eachlevel of thearithmetichierarchy. Kremer
([12]

�
8) givesanargumentof Guptashowing thatthis resultcanbeextendedto

theinductive sets:
(i) Inductively definablesubsetsof @ are G Y and GZH -definable.
[8] consideredat 5D.7 the questionof providing an axiomatisationof G Y .

Onecandeducea negative answerto this (well at leastdirectly for GIH ) from
anearlierresultof Burgess[4] who showed that thesetof stabletruthsover @
formedacomplete�x�� set.Kremeralsosolvedthisnegatively asfollows:

(ii) For any ���� setof integers n , thereis a finite setof positive definitions� � ��y so that n is recursively embeddableinto
1 � Dz

- the setof sentences
valid on � in G z , whereG z is thesemantictheoryassociatedto truth-at-the-first-
fixed-pointof thepositive inductive definitions� .

As heshows that GIH and G Y extend G z , oneconcludesthatthecomplexity of1 � D {}|~ as � varies,andof
1 � D {e�~ , arealsoat least� �� .

We mentionthe particularcasesof limit rules ; of revision sequencesthat
arosefrom discussionson Revision Theoriesof truth. (We shall henceforth
simplify mattersby not making greatdistinction - unlessrequired- between
thevariantsfor thesemanticalschemeG Y or G Y .)

Notation For O- � ,.-0/�1�3�4�698
, we write the stability set or pair as-���� ��� - � ��� � -����� � where ��W - �� ���� if, for all sufficiently large

3�4�6
,��W -?/ � respectively � uW -?/ � . Localstabilitypairs

- � <
aredefinedanalogously

with any limit ordinal > replacing
6

.

DEFINITION 2.4. If O- � ,.-0/�1I3�4�658
is a sequence, thenwe saythat

-
cohereswith

,.-0/q1+3�4 > 8 (for anylimit >q� 6 ) if
-���- �� < ���

and
- � � < o - .

Example(1) HerzbergerLimit Rule, ;�� .
Here ; � is singlevaluedandreturnsas

-0<�- � � < , the smallest
-

coherentwith
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, for all > 4Q� ( � O- � . In somesensethis is a “minimal” policy, only those

objectslocally “stably in”
- � � < canbetakenasin

-0<
.

Example(2) GuptaRule, ; !
is alsosinglevalued: ; ! is definedby ; ! � O-�� > ��� -0< � - � � <R� � -0:��+-��� < � . The
ideahereis thatwe referbackto our original “hypothesis” ( � -?: to fill in for
theambiguousvaluesin @ � � - � � < � - �� < � �
Example(3) BelnapRule, ;�U .
This is an exampleof a multi-valuedlimit operator:

-=<
may be chosenasany- Wa;�U � O-r� > �j����� � -¡1#- cohereswith

- � <C¢
. TheBelnaprule thusplacesthe

leastpossiblerestrictionon thechoiceat limit stages.Themotivationhereis to
“allow freeandfull play” of theTarskianBiconditionaldefinitions(cf. [4]) and
not to artificially make up somelimiting rule.

We considerfirst asa paradigmexamplethatof arithmeticandthestructure
of naturalnumbers@ augmentedwith a predicatesymbol �- . Let k �ml : � be a
formulawith onefreevariablein this language.Let

A�£
bedefinedby

A £ � - ����� V 1^,m¤ � -=8¥1 � k � �V � ¢ �
The questionarises(in [13]), what kinds of setsof naturalnumbersare G HJ orGIYJ definablefor various; as k is allowedto vary?

Wemayshow thatthestronglydefinablesetsextendthroughout¦§�� regardless
of the choiceof limit rule ;�� � ; ! � ; U or of semanticalschemeGIHJ or G YJ . In
thefollowing weallow any limit rule ; whichreturnsavalueata limit > simply
definedfrom thesequenceO-�� > . We expressthis by sayingthat

-0<
shouldbe

definablein a ¦ �� -way in acodefor thewellorderedsequence
,.-0/¨1 3F4 > 8 . (The

setof suchcodesformsa �x�� setof reals,seefor example,[11],
�
40.)

THEOREM 2.1. Let G be GIYJ or G HJ ; let ; beany ¦ �� -definable(in thecodes)
limit rule (this includesanyof ; � � ; ! � ;�U ).
Theclassof G J -definablerealsis preciselythatof the �x�� reals;theclassof ¦§�� -
definablerealscoincideswith theclassof G J -, co-G J -definablereals,i.e., with
thestrongly G J definablereals.

Theupperboundhere,that G J -definablerealsareall �x�� , wasnotedby Löwe
in [13] for ; � ; U . As a corollary, the proof of this yields a previous result
of Burgess[4], that for the languagefor arithmeticwith a partially defined

%
-

predicatethe truth setof thosesentencesstably true in all revision sequences
(usingtheTarskianBiconditionalsto revisetheextensionof

%
), (the“categorical

truths”),using GIHJ�© form acomplete�x�� set.
Remark: 1 The G J -, co-G J -definablereals (for ;ªW�¦ �� , againe.g. for;BW � ; � � ; ! � ;[U ¢ ) arethusthe realsof thefirst transitive stableset, «¬ , over
the structure@ . In fact, by Levy-Shoenfield,they arethe realsof the smallestw �� -correctmodelof ¦ �� -Comprehension.Thelasttheorembut moreespecially
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its proof naturallyleadsoneto the following analysisof revision theoreticde-
finability over moregeneralstructures.Indeedthe last theoremis thusreally a
specialcaseof theoneto follow.

Making useof an analogywith admissibility theory and the setshyperele-
mentaryover a structure,we proposetheview hereof revision theoretic( ® % )
definability as building up for us the domain of «¯ over K for somefirst
order ° � , K � ® � �������2� ®�± 8 with sufficient coding apparatus. Justas the
inductive/co-inductive setsoveranacceptableK yield thehyperelementarysets
of the“next admissibleset”over K , sothe ® % -/ co-® % -definablesetsyield the
domainof the“next stablesetover K ”. Thenotionof “sufficient codingappa-
ratus”or “acceptability”is thatof Moschovakis[15].

DEFINITION 2.5. Let ° � , K � ® ������� 8 be any structure. Let «¯ be²'³�´ � , K � ® ������� 8 � be the first level of the relativisedGödel
²

-hierarchy built
over K , usingelementsof K asurelemente, sothat « ¯ªµ·¶¹¸ ,»º � K � ® ������� 8 .

Thus «�¯ is correctabout w � factstrue in
º

, the universeof all sets,of K .
Notethatas «#¯ is anadmissiblestructure,¦ � � «�¯ � subsetsof K arein «�¯ .

THEOREM 2.2. Let G J be GIYJ or G HJ ; let ° bea countableacceptablestruc-

ture; let ; be any ¦§¼ ��½ S¿¾�À� �Á� ° ¢ �
-definablelimit rule (this includesany of; � � ; ! � ;�U ).

Theclassof G J -definablesubsetsof K is preciselythatof the � � � « ¯ � sets;the
classof ¦ � � «�¯ � -definablesetscoincideswith theclassof G J -, co-G J -definable
subsetsof K , that is, again,with thestrongly G J -definablesets.

Remark: 2 «�¬ hasdomainthatof
²'³

where N is thefirst stableordinal. (For
informationon the stableordinals,seefor example,[2].) Note that many first
orderstructures° will have

1 «¯ 1 thesame.For example«¬ will have thesame
domainas «#Â where Ã is the least

]
-modelof analysis,andexactly the same

classof setsof integersarerevision theoreticallydefinableover eachstructure.
In our terms

²Ä³
is a very large set. Onemight addthe commentthat it is the

processof revision theoreticdefinitionthatconstructsthesesets:theunderlying
modelplaysalmostno role.
Remark: 3 Therearestrengtheningsof the last theoremwherewe weaken
the acceptabilityrequirement,to allow for structures° over which there is
a stronglydefinablecodingscheme. It is unknown whetherweakly definable
codingschemessuffice. (Weaklyacceptablestructuressuffice for Moschovakis,
but wehave a quantifierswitchhere.)
Remark: 4 It is easyto ask questionsaboutsuchtruth setswhich are in-
dependentof the axiomsof ZF. Theorem2.1 shows thereis a naturalmutual
interpretationof the notion of stronglyrevision theoreticallydefinableover @ ,
in the senseof 2.3 (ii), with that of “ ¦ �� -definable”. The theoryof the latter
reducibility is known to beindependentof ZF (cf. Friedman[6]).
Remark: 5 Similar considerationsto that of the theoremshow that if, for
example,

²
is the languageof Arithmetic (or any recursive languagethat has
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acceptablemodels),then
º HÅ ( essentiallytheintersectionof thestabletruthsets

over all modelsof signaturethat of the language
²

) and
º YÅ (definedmutatis

mutandis) have complexity alsopreciselythatof a complete�x�� set. (This an-
swersProblem32 of [12]).

�
3. Fully varied sequences.Stronger, andasweshallsee,muchmorecom-

plex semanticalsystemsare afforded by Yaq̄ub sequences[20] and the fully
varied (fv) sequencessuggestedby Belnap& Gupta[8], p.168)anddiscussed
in Chapuis[5]. Theauthorsareonly consideringsequencesbasedon therevi-
sion function

AEÆ
- the evaluationof sentencescontaininga

%
-predicate,based

on the Tarskianbiconditionals. We generalisethis to arbitraryoperators,be-
forespecialisingit againto considerany arithmeticrevisionoperation

A�£
. Their

motivationsareto iron out certainill-classificationsor anomalousbehaviour of
limit rules.(An exampleof this is theGuptapuzzlevariantof [8] 6C.10� .) They
imposeaglobalrestrainton theclassof all revision sequences.

DEFINITION 3.1. A revision sequence(basedon a revision rule
A
, and say

limit rule ;�U ) O- � ,.- ³ 1[3Ç4�658
is- fully varied(fv) if any extensionÈ that

is coherentwith thewholesequenceO- , hasactuallybeenappliedasa limit rule
cofinallyin

6
.

Remark: 6 In generalthenfv-sequencesover countablestructuresmusthave
lengthat least É ��Ê�Ë?Ì , thatof thecontinuum- at leastprima facie- althoughit
is easyto seeby aLöwenheim-Skolemargument,thatproperinitial segmentsof
sequencesdeterminethesetof stabilities;moreover for any fv-sequenceO- there
is anotherfv-sequenceOÈ with thesamesetof stabilities,thatin factis determined
by acountableinitial segmentof OÈ .

Note: If O- is fv, then
� 3Í49� ( � O- � 1�-0/ � - � ��� ¢ is cofinalin

� ( � O- � . (Since
- � ���

is coherentwith
-����

!) Thenthefinal setof stabilitiesof afully variedsequence
is destinedto appearcofinally in thewholesequence.

Yaq̄ubhasadifferentdefinitionof revisionsequenceto enforcefull variability
of bootstrappinglimit rules.His sequencesare(at best)membersof Î ÏÑÐeÐ . We
omit his somewhat baroquedefinition. But it is a resultof ChapuisandGupta
([5] Theorem3.1,provenfor theTarskianrevisionrule Ò but whichworksin this

¸
We do not wish to discusstheseexamplesat any greatlength,but to serve asmotivation for

thedefinitionshereandof Ó 5, this GuptaPuzzleshows that the intuitively correctclassification
fails to occurin somerevisionsequences.ConsiderthesituationwherepersonsÔ and Õ makethe
following statements:Ô saystwo things: Ö ¸ : “It is truethateverything Õ saysis true”, Öe× : “Not
everything Õ saysis true”, whilst Õ saysonly Ö�Ø “At mostonething Ô saysis true”. Intuitive
reasoningarguesthat Ö ¸ and Ö�Ø shouldbeallocatedthetruthvaluetrue,whilst Ö × shouldreceive
falsehood.Without an insistanceon full varianceBelnapandGuptanote(p.228,op.cit.) that
someBelnapsequencesdo not stabiliseon theseintuitively arguedvalues,becausewe always
choseat limit stagesan unfortunateevaluationthat resultedcontinuallyin instability. This is a
simple(andfinite) exampleof asetof sentencesthatmaybecalled“ill-classified” undertheusualÖ
�

scheme.
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moregeneralsetting)thatthestabilitiesof any givenfv-sequenceareexactly the
stabilitiesof aYaq̄ub sequence.

We considerthe set of integersthat arestably in all fv-sequencesfor revi-
sionoperatorsderivedfrom arithmeticdefinitionsover @ . (We dropthe Ù or Ú
decoration,asthedistinctionbecomessuperfluouswhencalculatingthesesets.)
They arethustheweaklydefinablesetsfor this notion.

Thenotionof asetbeing(weaklyor strongly) ® % -definableis just thatof 2.3,
with thenotionof revision sequencebeingstrengthenedto fully variedrevision
sequence,andwe shalldenotethisas ÛG J or simply ÛG .

It looks, againprima facie, as if ÜG is � � � Î Ï Ð � definable. But it is simpler
thanthat.

THEOREM 3.1. The classof ÜG J -definablereals is preciselythat of the �x�Ý
reals; the classof ¦§�Ý -definablerealscoincideswith the classof ÜG J -, co- ÜG J -
definablereals.

We have not botheredto list thevariantsobtainedby letting ; beotherlimit
rules.However thevery sameclassof definablesetswill alsoresultif we allow
functions

A W¡¦§�� besidesthearithmeticoperators
A £

.

THEOREM 3.2. (i) For anyoperator
A
, ÜG �.A�� is a �x�Ý �.A�� setof integers, where

ÜG �.A��Þ� �ß�áàâ� - � ��� 1 O- � ,.-0/q1+3F4ã698 is a fv revisionsequencebasedon
A ¢ �

If we specialisethe result to the Tarskianrule
A Æ

for partially definedtruth
predicatesweobtain:

COROLLARY 3.3. Let Üº ¬ be the truth setover the standard modelof arith-
metic,using Üä , the theoryof truth for fully varied revision sequences.(That
is

Üº ¬ �7àâ� - � ��� 1 O- � ,.- / 1+3F4ã698 is a fv revisionsequencebasedon
AEÆ ¢ � �

Then Üº ¬ canbeconstruedasa complete� �Ý set,andthusis ÜG J -definable.

Again therearevariantsgiven by consideringmodelsotherthan @ of arith-
metichere.

�
4. Categoricity. In [8] a theoryis developedof how thenotion“categorical

in a language”canbe treatedin a similar fashionto truth. They wish to argue
that,by doingsothey canfendoff thespectreof StrongLiar Paradoxes.

Theauthorsconsideranaugmentedlanguageto that(here)of arithmetic, � & ,
containinga new predicatesymbol �å , in addition to �% for truth, to be inter-
pretedasthe currenthypothesisconcerningthe categorical sentences(that is:
stablytrueover @ usingall revisionsequences)

�
. Thebasicmodelof arithmetic× Actually [8] call thecategoricalsentencesthosethatreceive thesametruthvaluestablyin all

revisionsequences.As æ is stablytruein all revisionsequencesiff ç^æ is stablyfalsein all such,it
makeslittle differenceto theanalysishereif weconcentratejuston thosestablytrueeverywhere.
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is enlarged to a model @� ����� , @ � % � å 8 with the displayedpredicatesbeing
theobvious interpretation.They wish to considerrevisionsof a hypothesis

å
,

concerningnow whatwill ultimatelybethesetof categorical sentences,in ex-
actly the sameway that revisions wereusedto createnew approximationsto
truth. Onethustakesa hypothesisconcerningthecategorical sentences,call itå �éè :

, andusesthis extensionin the expandedmodelabove, andfinds the
stablytruesentencesrelative to thenew modelin thenew language.Onethus
keepstheextensionof �å fixedasweperformtherevisionprocessonextensions
of �% until wehave thestablytruesentenceswith this language.Thelatteryields
a new setof sentencesasa revisedhypothesisfor ê2¬ �.è : ���Bè � .

DEFINITION 4.1. ê2¬ � å ���ë� V 1 V is thegn of a sentenceof �Ä& that is stably
true under the revision processGIH for �% , over the expandedmodel @ � with�å ¬ Ð � å ¢ .

They remark([8], p.231)that “in a sensethesemanticsfor �å is at a higher
level than that for �% .” It involves the whole revision processfor �% , including
theconcomitantquantificationover all startinghypothesesfor �% , beingconsid-
eredasa singlesuccessorstepin therevision processfor �å . It is perhapsthus
unsurprisingthat the complexity of the resultingstablycategorical set (those
sentencesthat occuron a final segmentof every ì V lengthof revisionsunderê[¬ , for every possiblechoiceof startinghypothesis

å
) of sentences,or thatof

thealmoststablycategorical set- thatobtainedby usingtheschemeG Y , with
Belnap’s limit rule (thepreferreddefinitionof [8] 6D.9) is considerable.

THEOREM 4.1. (i) The stably (and almoststably) categorical (over @ and
usingany ¦§�� limit rule ; ) setof sentencesforma �x�Ý set.
(ii) In Gödel’s constructibleuniverse

²
, the setobtainedusingthe semantical

schemeG Y , is a complete� �Ý set.

As remarkedabove, membershipquestionsaboutsetsof integersat this level
of complexity are,in general,not absolutebetweenmodelsof settheory. Note
the above calculationis basedon the original revision theoryof [8]; for fully
variedrevision theory, thecomplexity is yet higher, asit will befor thestronger
notionsof “ V -categorical”, neededto fendoff strongerliar paradoxes. We be-
lieve that (ii) of the theoremis alsotruefor G H , aswell asfor thesesemantical
schemeswith theHerzbergerrule,howeverusingthelatterimposesseverecon-
straints,andweleavethesemattersasopenquestions.Thepointto bemadehere
is to make precise(at leastin onesituation)their remarkabove andascertainat
whichhigherlevel thesemanticsfor �å is, in fact,takingplace.

�
5. Realistically Varied Sequences.In this sectionwe makesomeobserva-

tions.Themotivationis thatof seekingfor adefinitionof arevisionprocessthat
doesthreethings:

(i) reducesthemathematicalcomplexity of thefully variedstabletruth set;
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(ii) yieldssomerepresentationof theset(of pairs)of stabletruth setsin revi-
sionsequences,or at leastgivessomestructureto theclassof suchstability
sets;

(iii) solves(asfar aspossible)theproblemof simplesetsof sentencesthatare
intuitively felt to beof acertaincategory (alwaysstablytrue/false/unstable
etc.) but whichareill-classifiedunderthecurrentschemes.

Thatwe shouldaim to reducethecomplexity of fully variedsequencesandthe
accompanying truth set to somethingthat is at least í·î -absoluteshouldbe a
fair desideratum.Oneobservationon (iii), is that it is not necessaryto globally
quantifyover all sequencesandensurethatall possiblecoherentlimit rulesare
usedcofinally in every sequence.Justrequirethat simplefunctionshave to be
used,asfollows.

Idea:we only needto enforcevariability in asimpleclassof limit rulesin or-
derfor theexamplesthathavebeenproducedin theliteratureas“ill-classified”,
to “comeout right”; andthat realistic varianceensuresthis. Suchanexample
of ill-classificationoccursin [C] to provide acounter-exampleto arevision the-
oreticsystemof Yaq̄ub’s,andthiswouldalsocomeout “right” usingourdefini-
tion below; similarly for thesubtlervariantsof theGuptaPuzzletypeetc. (e.g.
[8] 6C.10).

Ý
Henceany exampleusedasan “objection” to this realistically

variedrevision theoryasbeingclassifiedassometimeundesirablyunstable,or
whatever, will have to consistof (at least)a non-recursive set ï of sentences
(or of somenon-recursive sequenceof ðòñ+ó assignmentsto thesentencesof ï ).
It is hardto imaginesomeoneclaiming to have sufficient intuition aboutsuch
a setof sentencesï , andthe revision processesinvolved to claim that ï has
beenimproperlyservedby this form of revision process.Thetestof thisnotion
is thento seeif therearesuchsimply defined“ill-classified” setsunderrealistic
variance.(This is theimportof the“ChallengeProblem”below.)

DEFINITION 5.1. A revisionsequenceO- is realisticallyvaried if for all limit> 4ô6 , welet
- � < �P� - � � < � - �� < � bethelocal pair of stability setsat > , then

-=<
is chosenasa coherentextensionof

- � <
in thefollowing fashion:

(i) Either
-0<

is recursive in
- � <

or in some
-?/

for an
3P4 > , and

-=<
hasnot

beenusedasa limit rule cofinallyin > ;
(ii) Or, if at stage > there is no

-=<
thatsatisfiesclause(i), then

-=<
maybechosen

arbitrarily.

Themaximherethenis “use thesimpleonesfirst” whenit comesto formu-
lating bootstrappingpolicies. So, to paraphrase,a realisticallyvariedrevision
sequenceis onein which we alwaysfirst try to set

-=<
assomethingrecursive in- � <

, or in someprevious
- /

, thatwe have not alreadyusedunboundedlyoften

Ø Realisticvariancearguesthat intuitive argumentswill be,at their mostsophisticated,about
recursive, or astreatedhere,hyperarithmeticsetsof sentences.Our definitionensuresthatevery
recursive choiceof coheringõ.öE÷ assignmentsis usedat limit ordinalscofinally in ø , andsoof
coursewill thefinite assignmentneededto getthis exampleto stabilise.
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below > . Onemayshow thatany ð coherentwith
-����

and recursive in it, has
beenusedunboundedlyin a realisticallyvaried ù§O- . Although thedefinition is
complicatedto statein words,it doesactuallyyield aastructuralreward(i), and
a mathematicalsimplification(ii):

THEOREM 5.1. (i) If O- is a realistically varied revisionsequence, then
-����

formsa Kripkeanfixedpoint for thesupervaluationoperator.
(ii) Thecategorical truth set(over @ ) of sentencesstablytrue in all realistically
variedrevisionsequences,is complete� �� .

By the supervaluationoperatorwe meanthat jump operationú�ûýü that acts
on disjoint pairsof setsof sentences(

�·þ � �
�
) (partial setsconsideredasthose

true or falseat a particularstage)definedas ú û �#�m�·þ � �
� ���ÿ� ï þ � ï

� �
whereï þ[����� º���1 �·þ o ���§� � � � ��� ¢

and,usingtruthandfalsehooddefinedin
thepartialstructure,

º�� ����� k	� 1ß, @ �����?�Z� �¥þ � �
� 8·1 � k ¢ ; ï � �
� � @ ��º�� 1 �¥þ o��� � � � � ��� ¢

.
At this level, theresultsabove on thestronglydefinablesetsover a model K

beingthoseof thenext stableset «� apply.
As mentionedaboveonetestof this theoryis to seehow hardit is to solve the

following:
Challenge ProblemFind a setof sentencesï that is intuitively of a certain

category undersomestartinghypotheses,but, for example,that is badlyclassi-
fied as“sometimesunstable”,accordingto realisticvariance.

�
6. An algorithmic theory of truth: stablesetsascertain Kripk eanfixed

points. Thegeneralthrustof theseresultsis thatthemachineryof revision the-
ory is complicated.It resultsin truthsetsthatareeither �x�� or yetmorecomplex.
Thenotionof stablecategoricity (evenassuminga notionof stabletruth that is
not basedon full variance)is also ���Ý . An approachsuggestedby realisticvari-
anceis that if we focusattentionon a single revision processstartingfrom a
given hypothesis,thenwe arrive at a supervaluationfixed point. In particular
we canregardsucha revision theoryasbeinga generalisationof theKripkean
supervaluationfixedpoint approach.In theKripkeantheorywe may focusat-
tentionon certainfixed points(the minimal fixed point, certainintrinsic fixed
points,notablythemaximaloneetc.) ratherthantry and“take anaverage”over
all suchprocesses.We attribute meaningto a “stableKripkeanset” that is, to
a fixedpoint. Similarly we hereattribute meaningto eachstability setof each
suitablerevision sequence.Under the BelnapandGuptaapproachno partic-
ular meaningis assignedto the setof stabilitiesoccurringin any onerevision
sequence:it is onemoresetto feedinto theaveragingprocess.We hereadopt

�
Indeedthis latter sentence(with hyperarithmeticreplacingrecursive), could serve asan al-

ternative definingrequirementfor realisticvariancein what follows. It may be that the formal
definitionabove maybetoo restrictive for somepurposes.Thepoint of statingit in this fashion
is to emphasiseits non-globalarity.
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theview thattherevisionprocessis seekinginformationbasedonour initial hy-
pothesis( . Theinformationweseekis itself thesetof stabilitiesof our revision
process.

Wemaythusregardeachrevisionprocessasaprocessillustratinganapproach
to solving the problemof the extent of a language’s ability to expresstruth in
itself (asonewould theKripkeanapproach).In thatcaseit wouldseementirely
reasonableto restrict the limit rule to resourcesno morecomplicatedthanthe
processhasproducedso far. In particularwe do not wish to import into the
processinformationwhich is “remote from” our startinghypothesis,or more
complicatedthanwhatwearedoing(thisbeingoneof thesourcesof complexity
of thetheoryof standardrevision theory.).

Let us supposethat in the theory of realistic variance(Definition 5.1) the
choicesof limit extensions

-=<
have beendonein somefashionthat shows that-=<

hasbeenchosenin somereasonablyuniform mannerin > from thepreced-
ing sequence.Several examplesspring to mind. Let us say, beinggenerous,
that

-=<
is ¦ � � O-P� > � definableuniformly in > in someweak set theory, sayå��

, (Kripke-Platekwhich we take to includetheAxiom of Infinity). (Surely
primitive recursive, will morethansuffice for any reasonabletheory? The ; !
and ; � bothconformto this, but we areaddingto thesetherequirementof re-
alistic variance.) Call sucha sequencea (generalised) algorithmically varied
sequence.Givenahypothesis( � -?: to theextensionof thetruthpredicateone
thenhas

THEOREM 6.1. If O- is algorithmicallyvariedwith startinghypothesis( � -0: ,
then:
(i) Thestability set

- �Ç� - � ��� � -����� � is a Kripkeanfixedpointunder ú�ûTü ;
(ii)
-

is recursivelyisomorphicto thecompleteeventuallywritable infinite time
Turing machinesetof integers relativeto ( , Û( ([19] Def. 2.7); equivalentlyto
thecompletearithmeticalquasi-inductivesetrelativeto ( (cf [4] 13.1).

As the function ( g Û( is ¦§�� we keepwithin the boundsof absoluteness
betweení·î -models.Onemayshow thatalgorithmicallyvariedsequencesare
“fully varied” in the senseof Section3, but wherewe ensureonly that any È
thatcohereswith thewholesequenceO- andis suchthat È is recursive in any

-0/
,

hasbeenusedcofinally. For suchsequenceswe maycalculatethelengthof the
“stabilizationordinal” N � O- � - theordinalby which therevision processstartsto
cycle repeatedly.

DEFINITION 6.1. Let O- � ,.- / 1 3�4ô698 beanalgorithmicallyvariedrevision
sequence. Let thestabilizationordinal, N � O- � , betheleast N sothat

_ 3F` N \]��3Í- / � -��
.

Thelist of equivalencesin thetheorembelow illustratesaninterestingconver-
genceof a varietyof ideasandconcepts.Theidentity of theordinalsdefinedin
(i) and(iv) is therelativisedresult[4], 14.1,dueto Burgess.
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THEOREM 6.2. Under the hypothesesof the last theorem N � O- � is equiva-
lently:
(i) Theleastordinal � � ��� sothat

²�� s¿( t hasa transitive w � endextension;
(ii) Thesupremumof theinfinite timeTuring machine“eventuallywritable” or-
dinalsusingasoracle ( ;
(iii) Thestartingpoint of the “Herzberger GrandLoop” ([9]) basedon initial
hypothesis( .
(iv) Theclosure ordinal of arithmetical-in-( quasi-inductivedefinitions.

Of course,from theviewpoint we areadoptingit makesno senseto “average
out” suchtruth setsby taking an intersectionover all startinghypotheses:we
shouldjust arrive backat the samelevel of complexity: a � �� completecate-
gorical truth set(albeitwith now improved classificatorypropertiesfor setsof
sentences).

Note: Onecanstill work the theoryof “circular” definitionsusing this ap-
proach: the point againis that theextensionof a definition is calculatedanew
from eachstartinghypothesisasto its extension.Againwedonot take aninter-
sectionoverall startinghypotheses.With thisapproach:

THEOREM 6.3. a) Thealgorithmicallyvariedstronglydefinablesetsof natu-
ral numbers froman hypothesis( are then,equivalently:(i) thesetsof integers
in
² ��� s¿( t ; (ii) thesetof realseventuallywritable by an infinite timeTuring ma-

chinefrominput ( .
b) Û( is a completealgorithmicallyvariedweaklydefinableset.

To eachcountablemodel K with, say, aninductive codingscheme,of a lan-
guage,herethe“companionmodel” would beananalogousstructure�� - the
“next w � -extendible”-setover K . Again thereis ananalogousdefinability the-
oremto thatof Theorem2.2,with definablesubsetsof

1 K 1 . If onewantedone
could even construetheseas“eventuallywritable” for somegeneralisedcom-
putationover thestructureK (muchascanbedonefor ordinarycomputations
over suitablestructures- see,for exampleHinman’s articlein [10].)

In a senseto namethis (or therealisticallyvariedtheoryof theprevioussec-
tion) a “generalisation”of the Kripkeansupervaluationtheory is a misnomer,
sincenot all ú�ûýü fixedpointsoccurasalgorithmicallyvariedstability sets:the
classof suchstability setsis a propersubsetof the classof suchfixed points.
But wemayview algorithmicrevisionprocessesas“stretchedout” or elongated
processesof attemptingto reachcertainsupervaluationfixedpoints.

If onedesiredto adopttheGuptaandBelnaptacticfor dealingwith Strength-
enedLiar paradoxes in this context, onecould alsodefinethe notion of stable
categoricity here,justasin Section3, by addingapredicateto thelanguageand
finding repeatedlystability setsrelative to sucha “hypothesis”in this extended
notion,andcycle thesestability setsasthesuccessive hypotheses.
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THEOREM 6.4. Thestablycategorical setover @ , relativeto a starting hy-
pothesis( , andusingalgorithmicallyvariedrevisionsequences,is

� �
-
�=�

equiv-
alentto thecompletew � theoryof

²"! � s¿( t wherethelatter is thesmallesttransi-
tive modelcontaining ( , closedunderarithmeticalquasi-inductivedefinitions,
with a transitive w � -endextension.

If thereis any point in statingthis rathertechnicalsoundingtheorem,it is
thatstablecategoricity - whatever thatmeans- now is no longera non-absolute
notion.

Perhapsmoregermanehowever, is that the whole theory is simpler in this
sense: the Kripkean theory of fixed points, (using either supervaluationsor
Kleene3 valuedschemes)usessay

å��$#
“there exists a transitive model ofå��

” in themetatheoryto find at leastonefixedpoint. However theBelnapand
Guptatheoryrequiresa very substantialpartof ZF in themetatheoryto define
thesetof stabletruthsof arithmetic.By way of contrast,thegeneralisedalgo-
rithmic theoryof truth outlinedabove, includingthenotionof (finite ordersof)
categoricity canall bedevelopedwithin

å��%# w � -Separation.
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