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Abstract

We outline an extension of Martin’s view of a conceptual realism, to
a Cantorian realm of absolute infinities. We then formulate a strong re-
flection principle within this framework to obtain extra-constructible large
cardinals.

1 Introduction

This paper aims to address the topic of the foundations of mathematics1 by con-
sidering a question in the foundations of set theory. I shall take it as a starting
point that ZFC set theory is a foundation for mathematics, even if there are al-
ternative foundational systems with probable benefits in terms of application,
such as category theory for algebraic concepts etc. or the emergent homotopy
type theory for a constructivist interpretation of mathematics. In general my
viewpoint is that any such system can receive its interpretation in terms of set
theory or, with some exceptions, variants thereof.

This paper, like Martin’s [?] on which it is based, focusses on conceptual is-
sues, rather than ontology. To continue stating my personal viewpoint: the Be-
nacerrafian argument ([?]) concerning our putative causal relations with math-
ematical objects is quite decisive. However we have no need to interact, or per-
ceive in some fashion those objects, in a way that is often famously attributed to
Gödel due to several of his remarks.

What we do need, and have, are mathematical concepts. We have no need
to locate the object ℵ1, whatever that might be, in order to formulate the Con-
tinuum Problem. Gödel’s emphasising the role of perception of mathematical

1A paper given at the “Foundations of Mathematics: what are thay and what they for?” confer-
ence, Cambridge July 2012
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objects (v. [?] p.128), and the similarity to a kind of quasi-empirical research
about ‘objects’ does not seem to advance us further.

My view today I think is closest to what Martin has identified in [?] when
discussing Gödel’s Conceptual Realism. The main tenor of [?] is that much, but
not all, of Gödel’s realism can be construed as being about concepts rather than
objects. (For Gödel both concepts and objects have some real existence in some
form.) Much of Martin’s paper is taken up with discussing various aspects of
Gödel’s writings on this at various periods, in particular the two versions of the “
What is Cantor’s Continuum Problem?” ([?] and [?]), and the unpublished 1951
Gibb’s Lecture, that we shall not repeat in full here. Briefly put his conclusions
are that although Gödel made some oft quoted comments that support a view
of robust realism, in any particular instance where, for example, Gödel is talking
about using large cardinals to solve certain questions, in fact the realism of the
objects in fact turns out to not play any substantial role.

Probably there are other (hitherto unknown) axioms of set theory
which a more profound understanding of the concepts underlying
logic and mathematics would enable us to recognize as implied by
these concepts (Gödel, [?], p182).

According to Martin this is all to do with understanding the concept of set,
(perhaps with other concepts) rather than depending on there being an instance
of the concept of set. He suggests that the only “perception ... of the objects
of set theory” that plays a role in Gödel’s account of actual and hoped-for set-
theoretical knowledge is “perception” of an indirect concept of set that he adopts,
and we outline below. One is tempted to dub this viewpoint “conceptual struc-
turalism” except that that term has already been appropriated by Feferman ([?]),
for a rather different purpose.

The structure of the paper is as follows: in the next section we look at Martin’s
indirect notion of “concept of set of x’s” from [?]. This is interwoven with his
extension of these ideas in [?], in particular we describe his route from “concept
of natural number” to the analogous analysis of “concept of set.” In Section 3 we
outline how we wish to embrace an extension of Martin for a concept of universe
together with its classes, naively thought of as Cantorian absolute infinities, C .
In Section 4 we discuss the nature of the collection C . Our longer term aim is to
provide some underpinning for reflection principles that are extra-constructible,
that is that provide large cardinals sufficient to deliver Woodin’s absoluteness
results, and his program forΩ-logic. Such a Global Reflection Principle we have
defined elsewhere ([?]), but extend some of this discussion in Section 5.
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2 The concept of ‘set of’

Martin distinguishes the two senses of ‘concept of set’ ([?] p.212), the latter he
calls an "indirect sense" but to avoid a clash with Frege, says simply "my sense":

My sense differs from the straightforward sense in that instances
of a concept of set in the straightforward sense - the objects that
fall under the concept - are sets (or, at least, what the concepts are
count as sets). The instances of a concept of set in my sense are
not sets. There are two versions of my sense. In one version the
instances are concepts: straightforward-sense concepts of set. In
the other version the instances might be described as set structures
or universes of sets.

It is this final ‘other version’ that I shall want to mostly take here. We aim
ultimately to extend Martin’s notion of ‘concept of set’ in this second sense to a
similarly indirect sense of ‘concept of absolute infinity’ (which I may abbreviate
to ‘concept of (proper) class’ or perhaps to be more neutral to ‘concept of a part
(of V )’).

However first (p.213, ib.) he would like to disabuse us of the notion that ax-
ioms compel an identification of sets:

A concept of set expressed by axioms such as comprehension ax-
ioms cannot put any constraint on which objects count as sets and
which do not. Such axioms put constraints on the isomorphism
type of set theoretic structure . . . a concept of set could count as con-
cept of set in my [indirect] sense even if it determined completely
what objects count as sets and what counts as the membership re-
lation. A concept of this sort would have at most one instance: it
would allow at most one structure to count as a set-theoretic uni-
verse . . .

What is ultimately at play here is the point Martin wishes to make that in-
stantiation of a concept for mathematics (or set theory) is not needed: what we
require is uniqueness (up to isomorphism) in order to make sense and under-
stand concepts. He reads Gödel as primarily not needing instantiation in many
crucial places: for example, he notes that neither it nor perception of objects
plays any significant role in Gödel’s justifications of strong axioms of infinity,

His primary point is perhaps plainly put ([?] p.215). Consider the Axiom of
Extensionality: this axiom does not say what a set is, it only prescribes what
it means for any two sets to be equal. The concept of set does not determine
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what it is for an object to be a set (as he states in [?]). The concept is sufficiently
objective (or perhaps better, ‘intersubjectively objective’): we understand it, talk
about it, as no doubt they do on some other planet with discretely individuated
intelligences. (It is not purely a sentimental impulse that has us engrave on steel
plates pictures of Pythagoras’ theorem and place them on the moon, or send
them out on Voyager 23.)

In short we understand the concept ‘set of’ without having to perceive it in
some Gödelian manner. Hence:

• Instantiation is not needed either in mathematics or in set theory; thus
• This is closer to a structuralist viewpoint. But to what kind of structuralist

viewpoint? Martin says nothing further on this, and we shall return to this at a
later stage.

2.1 The concept of ‘natural number’

In his paper for the Exploring the Frontiers of the Infinite Series [?] he considers
two basic concepts, that of ‘natural numbers’ ( or rather ‘ω-sequence’), and ‘set
of’. He analyses successively these two cases, applying the same analysis in turn
to each. He identifies three properties a basic concept may have:

(i) First order completeness: the concept is sufficiently clear and precise to
determine truth values for all sentences expressible in the appropriate first order
language associated with the concept. (Such truth values may be determined,
but without our necessarily being able to know those truth values.)

(ii) Full determinateness: the concept fully determines what any instantia-
tion would be like.

(iii) Categoricity.

A fourth item that might be added here, is whether the concept is a genuine
mathematical one. A concept may be a genuine mathematical one, (such as the
concept of an ω-sequence), but it may be that it is not fully determinate or first
order complete (as he says may hold of the concept of set.)

As a first approach to a discussion of a concept of set, he addresses that of
the concept of natural number. This concept yields IPA: Informal Peano Axioms,
(not in the usual first or second order sense) which in turn yields categoricity of
N. However categoricity alone does not imply first order completeness: there
may be no structure instantiating IPA. However he believes in full determinate-
ness forN and ([?], p10):
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I believe that full determinateness of the concept is the only legiti-
mate justification for the assertion that the concept is instantiate or
that natural numbers exist.

Whilst neither endorsing or denying the last quotation, I’ll go along with it
for the present purposes. I shall cut short in any case discussion of the natural
numbers for this paper.

2.2 The concept of set of x’ s

He then applies a similar sequence of considerations for the concept of sets. For
him the modern, iterative concept has four important components:

(1) the concept of natural number
(2) the concept of ‘set of x’s’
(3) the concept of transfinite iteration
(4) the concept of absolute infinity.

He remarks that (1) can be subsumed under (2) and (3). My remark is that (4)
is perhaps not on everyone’s list of components. He is thinking of the concept
of sets as a concept akin to that of a ‘structuralist’s structure’ and thus does not
have to add anything as to what kind of things sets are. We adopt this view here.
(Martin remains silent as to which flavour of structuralism’s structure might be
at play here, and we comment on this at the end of the section.) A set structure
is then what is obtained by iterating the concept ‘set of x’s’ absolutely infinitely
many times letting ‘x’s’ vary that part of the set structure formed by that stage of
the induction.

We have only glimmerings of what goes on when considering subsets of
Vω+1: is the Continuum Hypothesis true? Is every definable subset of the plane
definably uniformisable? So we are hopelessly far from first order completeness.
However, when considering subsets of Vω we are, somewhat recently, in a better
position. We now know that adding the assumption of Projective Determinacy
to analysis, or to the theory of hereditarily countable sets give us as complete a
picture of HC as PA does for Vω = HF. Martin asks:

Question: Which informal axioms are implied by the concept of set?

He lists two (p.14).
(I) If a and b have the same members, then a = b.
(II) For any property P , there is a set whose members are those x’s that have

P .
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The first is Extensionality, and the second is an Informal Comprehension
Scheme: informal since “property” is not specified in generality. However any
worries about too much informality here can be dispelled, since it will be clear
that the few instances we shall use of the Scheme will use clear examples of
properties. It is plausible, Martin says, that these axioms fully axiomatise the
concept of set of x’s.

Martin seeks to further soothe any worries that we need to specify what ob-
jects sets are in order to ‘fully understand’ the concept. He will ignore what-
ever structural constraints one may put on what sets actually are, other than the
structural constraints of (I) and (II), and continues as follows:

Theorem 1 (Essentially Zermelo) Axioms (I) and (II) are categorical: if (V1,∈1)
and (V2,∈2) are two structures satisfying (I) and (II) with the same x’s, then with
each set b ∈1 V1 of x’s, we associate a set of x’s, π(b) ∈2 V2.

Proof: Let P be the property of being an x such that x ∈1 b. By the Informal
Comprehension Scheme there is a c ∈2 V2 such that

∀x[x ∈2 c ↔ P (x)].

Q.E.D.

Thus axioms (I) and (II) deliver categoricity, and the above is the basis of
Zermelo’s proof that any two models of ZFC (without urelemente) of the same
ordinal height are isomorphic.

The notion (3) of transfinite iteration is just that of ordinals or even wellorder-
ings. Martin points out that this makes one have confidence in the full determi-
nateness of small transfinite ordinals or the levels of the Lα-hiearchy associated
with them, and he further remarks that an Informal Wellfoundedness Axiom
would play the role of Informal Comprehension Axiom here.

Indeed the same argument shows that if the α → Vα operation is iterated
along the absolute infinity of all the ordinals, the universes obtained are cate-
gorical, and so unique up to isomorphism. As Martin has remarked elsewhere
[?] the isomorphism argument following Zermelo works here too.

In short, what is unfolded from the iterative concept of set for Martin is the
above categoricity fact. We did not need instantiation for the above argument,
or indeed to know what objects {∅}, or ℵ23 are.

Gödel’s concept of set (as an object) seems (following the quotations of Gödel
that Martin considers) to be built out of a combination of Martin’s sense of con-
cept of set plus instantiation. Moreover he seems to believe in instantiation of
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the iterative concept of set as coming about through soundness of the primitive
terms of set theory:

For if the meanings of the primitive terms of set theory as explained
on page 262 and in footnote 14 are accepted as sound, it follows that
the set-theoretical concepts and theorems describe some welldeter-
mined reality, in which Cantor’s conjecture must be either true or
false.(Gödel,[?] p260.)

Martin ([?] p220) doubts both the fact of instantiation of mathematical ob-
jects in general, and its importance for mathematics. For him a concept can
be consistent and coherent without being instantiated. He gives the example
of nominalists being right and there being only finitely many concrete objects,
would have us being finitists about the natural numbers. But does that mean
the concept of an ω-sequence was inconsistent or incoherent?

Nor do we, I take it to mean, actually need to assert that any structure such
as (V,∈) actually exists. Again this latter instantiation need not follow from the
concept alone. Burgess in [?] analyses potential kinds of structuralism into three
sorts, of which the first two, the ‘eliminating objects’ or in re, and ‘natureless ob-
jects’ or ante rem, (he calls them “hard-headed” and “mystical”) are the most
prevalent. He also identifies a third possible meaning, the ‘arbitrary structure’
(picked out by a use of the Hilbertian ∈-symbol). His discussion centers around
the idea introduced by Pettigrew [?] and also Shapiro [?] of using “an introduced
parameter” as means of referring to mathematical concepts not only such as i
or

p
2 but also the “the (algebraic) structure of the natural numbers” or the “real

closed field” etc. The difficulties of extending structuralism to set theory to deal
with all of V he says are well-known. Of the two (or three) kinds the ‘mysti-
cal’ option seems closest to what one might want (I hesitate to claim anything
for Martin here) in that we are talking about a special model whose distinctive
metaproperty is to have no distinctive properties in Burgess’s words. Well, I said
‘closest’, but perhaps for many set theorists, this does not ring very close. Set the-
orists are probably either more ‘formalist’, and think of ‘constructing’ formally
very distinctive models (probably by forcing), or else more ‘realist’ in attempt-
ing to ascertain the one true ‘V ’ ’s distinctive features. The latters’ use of ‘V ’ (as
being the ‘set of’/structure concept obtained by iterating power set along the
ordinals) might be thought to set up ‘V ’ as one of Pettigrew’s ‘distinctive free
variables’. However this would not be within a strictly mathematical discussion,
since we wish to restrict the domain of mathematics to sets, and not to include
proper class entities such as V . A set theorist of the latter kind may well say "let
‘V ’ be the universe of sets" and mean the one obtained by iterating power set
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along the ordinals, just as in the phrase “Let N be the natural number system":
hereN is then an example of one of Pettigrew’s dedicated free variable.

However one overarching difficulty with using a structuralist approach to the
universe of sets, is that usually in the structuralist analysis one has a multitude of
potential “natural number structures” or ω-sequences, for example, to indicate
one’s intentions. But where are these when it comes to set theory? Where are all
the V -structures? What is common-or-garden in mathematical activity, namely
"taking a copy of the Klein 4-group” and manipulating it, becomes a different
matter when “taking a copy of V”; this is not a standard mathematical activ-
ity. The difference being that V is the domain of mathematical discourse, but is
perhaps not subject to all of the usual mathematical manipulations. Hence the
Pettigrew/Shapiro analysis which I read as taking place within a realm where an
“introduced parameter” is taken to denote a structural type within a mathemat-
ical domain of discourse, cannot really be applied to the universe V itself, if that
universe is not an element of any such domain.

However Burgess has other reasons for doubting that this form of structural-
ism can be deployed in the case of set theory. He continues (his emphasis):

But if that is how set theory is conceived, then there seems to be
no room for the activity, important to many set theorists, of going
back to an intuitive notion of set motivating the axioms in order to
motivate more axioms to settle questions not settled by the exist-
ing axioms. Structuralism here ties set theory to a particular axiom
system in a way that seems to block the road of inquiry.

The difficulty about there being ‘no room’ seems to be alleviated if one allows
for the fact that we are currently at a stage of enquiry where we have no definite
knowledge about this ‘special model’ (or the equivalence class up to isomor-
phism of this special model). Structuralists’ arguments as applied to the natural
number structure or the real continuum structure are being applied to concepts
that are well-trodden and enjoy virtual unanimity of conception amongst math-
ematicians. These are structures that appear to mathematicians to be plenitudi-
nously instantiate with all their multiple isomorphic copies. Set Theory, and V ,
does not have the same status. We have instead an intuitive notion of ordinal,
and of informal recursion along On. If we allow ourselves to apply the latter to
the power set operation then this gives us our ‘set-of’ concept, our ‘structure’.
With that pre-formal perspective, we then formalise the subject and then after-
wards our view of V evolves, as we continue to discover more about its proper-
ties and potential embedding spectra (a.k.a. potentially new axioms of infinity.)

In conclusion the Martinian concept of set-structure does not seem to fit
squarely with the structuralists’ notion of structure, and thus Burgess’s com-

8



ments, directed against structuralists, that the latters’ activity works against the
set theorist seems to miss the target, if that set theorist is of the Martinian per-
suasion.

3 Stepping up to other absolute infinities.

To set the record straight Martin states that he is dubious about the notion of
absolute infinities (p19, [?]). This is precisely the point where we want to step
up and beyond. Yet it would seem that he might accept the following argument
concerning mappings between the ordinal classes without difficulty.

Just as the argument that for any two V1 = (V1,∈1), V2 = (V2,∈2) obtained
by iterating the Vα function throughout all the absolute infinity of ordinals, we
have an isomorphism π : (V1,∈1) → (V2,∈2) (Thm ??), then we see that π �OnV1 :
OnV1 ∼= OnV2 where OnVi is the absolute infinity of von Neumann ordinals in
the model Vi .

We want to take a Cantorian view, perhaps even a naive view, about absolute
infinities. We recognise the logical necessity of such: the Russell, Burali-Forti,
Cantor arguments force these upon us. If we wish to see what follows as a logical
necessity from the concept of set (1)-(4) then a consequence of this is acknowl-
edging these arguments. Purloining some terminology from mereology, we may
view absolute infinities as the parts of V , or rather what is left after we have iden-
tified the ‘set-sized’ parts of V with the corresponding set of V . We continue to
use the word ‘part’ or ‘(class-sized) part’ or ‘absolute infinity’ but these would
seem little different from ‘proper class’, if the latter are distinguished from prop-
erties.

We should like to take a view-point that sees the universe V of sets identi-
fied as the realm of all mathematical discourse. Like Cantor we could restrict
mathematics to the world of sets, and so elements of V . We don’t regard the
absolute infinities, such as V itself for example, as strictly mathematical objects
or even structures within mathematics. (Very little of mathematics seems to be
restricted with this view pace a few ‘large categories’.)

However, of the parts of V the ordinals occupy a special place. 2 Cantor one
assumes would have thought so, and we too see the ordinals as the quintessen-
tially transfinite objects that give set theory (beyond the hereditarily finite sets)
its character. Without ω and at least the countable ordinals there is little set
theory. We should like to list the concept of ordinal number amongst the ‘fun-
damental concepts’ that Martin mentions as named by Feferman [?], and that
he himself calls ’basic.’ This might seem controversial, since Martin only wants

2The centrality of the ordinals to Cantor, and to modern set theory is emphasised in [?].
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to allow concepts that are to some extent atomic, that is not built out of other
concepts, and for this he mentions only natural number and the set concept,
but would not, presumably, include the concept of von Neumann ordinal which
requires the notion of ‘transitive set.’ However I note that when Martin comes
to consider the concept of ω-sequence (as opposed to just simply natural num-
bers), he remarks that although one can define such from sets, he will take the
concept ofω-sequence as basic and that consists of some objects coming equipped
with a successor function etc. or alternatively a successor relation. For us we
should have to take an ordinal as some objects, together with a predecessor re-
lation, with the additional well ordering requirement.

Whether much turns on our selecting the ordinal concept as basic, I am not
sure, but from the ordinals much can be derived3 when we consider the ad-
dition of power set operations and replacement: the Vα hierarchy itself is ob-
tained by iterating the power set operation along the ordinals. In our Cantorian,
pre-theoretic thinking, the ordinals, like the natural numbers, are determinate.
Before Cantor the natural numbers would have constituted an ‘absolute infin-
ity’ - he showed us otherwise. Later we come to formalise our set theory and
eventually contemplate strong axioms of infinity within the language of that
theory, but these do not affect ordinals - they are not ‘longer’ because we dis-
cover/posit/assert that there are inaccessible or measurable cardinals (which
are in any case cardinal-theoretic properties, not ordinal-theoretic ones) any
more than the natural numbers are ‘longer than we thought’ because of the
Skewes number.

One additional caveat in the above discussion is that our phrasing “the ordi-
nals are determinate”, cannot be meant in the strong sense of Martin: “a concept
is fully determinate if it is determined, in full detail, what a structure instantiat-
ing it would be like.([?],p5) since he only seems to accept the determinateness
of small countable ordinals. Martin does not mind if someone takes full deter-
minateness of a concept to imply instantiations of it exist. His objection is that
the concept of set, and presumably the concept of ordinal in generality is so fully
determinate.

We take in this paper the view that we do have sufficient determinateness of
von Neumann ordinals: these are the transitive sets wellordered by ∈. The fact
that we use the concept of set to state this definition, should not mean that we do
not fully understand this. There may be uncountable ordinals, inaccessible ini-
tial ordinals, etc. and these varying ‘details’ beyond the purely ordinal-theoretic,
may be what Martin views as insufficiently determining the concept. However
the base concept of the von Neumann ordinal as just defined allows one given

3again see Jensen [?]
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any putative instantiation of it, to tell, figuratively speaking, whether it is, or
is not, an ordinal. 4 There is a world of difference between asserting this suffi-
cient determinateness of the von Neumann ordinal concept, and, say, that of the
concept of power set of Vω+1. We are perhaps cutting the division between in-
stantiations and determinateness in a different way to Martin: whereas he does
not mind if determinateness is taken to imply instantiation, we are not saying
this for the sufficient determinateness, or whatever amount of determinateness
one wants to call it, that determines our description of von Neumann ordinal
(again modulo understanding the ‘set of’ concept). Thus again: sufficient deter-
minateness should not in general imply instantiation.

We therefore let C denote the collection of the parts of the domain of the
universe V. When talking about a structure with its parts as a predicate such as
V = (V ,C ,∈) we are thinking of a two sorted language with variables x, y , z, . . .
for sets in V , and X ,Y , Z , . . . for the parts in C .

Theorem 2 If we have two structures of sets Vi = (Vi ,∈i ) (i = 1,2)satisfying Mar-
tin’s (1) and (2) above, with collections of parts Ci , we may define an isomorphism
π : (V1,∈1) → (V2,∈2) as before. π then extends to an isomorphism:

π : (V1,C1,∈1) ∼= (V2,C2,∈2).

Proof: Let (V1)α denote the set of V1-sets of rank α in the sense of V1

(and similarly (V2)β etc). It suffices to show for every part X ⊆ V1 (thus X is
in C1) there is a Y ⊆ V2 (and so in C2) with π(X ∩ (V1)α) = Y ∩ (V2)β where
α ∈1 OnV1 and β ∈2 OnV2 with π(α1) = β; and conversely - since then we may
define π(X ) =⋃

α ∈1 OnV1 π(X ∩ (V1)α). etc., thereby yielding π(X ) is in C2. Q.E.D.

Here we are taking the ‘informal union’ of the sets of the form π(X ∩ (V1)α).
However we are not declaring this union to be a ‘set’ or any such, so no formal
axiom is needed. This is unproblematic as it is simply taking a union (or fusion
if you will) of the parts π(X ∩ (V1)α) and thus is a part of V2. A point to be men-
tioned is that we obtain the map π from Martin’s argument at Theorem ?? above
which turned on a use of his Informal Comprehension Scheme: nothing further
is needed to extend the map to the parts of each universe (the ‘informal union’
being only an instance of Informal Comprehension). We thus have an extended
categoricity theorem for the concept of ‘set-structure with its parts.’

4We might even argue this as in a set theory class: the notion of "ordinal" is simple; it is a ∆0
concept in Z F and hence is absolute. Whereas a major part of the indeterminacy of the power set
operation is its highly non-absolute nature, which figures in its, necessarily,Π1 definition.
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Much of the above could be given a simple, and natural, explanation in a
formal second order logical framework in which the relations ∈1 and ∈2 are ex-
pressed predicates, but we are intentionally restricting our appeal to second or-
der formal methods, and giving an account of informal reasoning that leads to
the formalisations that we currently now have.

4 What is the character of C ?

I shall write from now on (V,C ,∈) since we have argued that this is a conceptual
structure unique up to isomorphism. We think of elements of C as the abso-
lutely infinite parts of V . Prima facie there may seem not much that can be
said. But there is more to the unfolding of the concept set of/part of.

As we adopted a non-instantiative approach to V we need not feel queasy
that we are positing new, instantiated (and large) entities: just as we have adopted
a view of (V ,∈) as a structure unique up to isomorphism, and seen how we can
extend that to a view of V together with its parts, we do not have to say any-
thing further about ontological committment beyond what we have discussed
here: we have just taken Martin’s concept of set as a set-structure, and consid-
ered as parts of V the absolute infinities that perforce must be associated with it.

Question: Which informal axioms follow from the concepts of ‘set of/part of ’
or ‘set of/absolute infinity of ’?

We ask this question deliberately to mirror the same question of Martin’s
above concerning the concept of ‘set of’ alone. Should we be adopting some
kind of Informal Comprehension Scheme involving a properties scheme with
both sets and parts of V ? Well we could, but we have stated that we should
like to hold back from too much overtly informal second order reasoning. Thus
we might make the following observations about sets and absolute infinities di-
rectly: clearly

{(x, x) | x ∈V } and {(y , x) | y ∈ x ∈V }

are both absolute infinities (here “(y , x)” denotes the usual ordered pair of y and
x and later (z, y , x) for ordered triple). Continuing with this idea, and allowing
sets to reappear also as parts of V we might be tempted to argue that if X and
Y are absolute infinities, then there is some part of V that is their intersection:
some Z so that Z = X ∩Y . This is informal reasoning, rather than a formalised
axiom. Similarly one could claim that a finite number of instances of informal
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arguments establishes the following informal, but more, or less, intuitive, prin-
ciples:

(i) For any two parts X ,Y ∈ C there is a part of the universe Z ∈ C which is
the collection of all those t which are both in X and in Y .

We have expressed this in English to emphasise the informal nature of the
reasoning leading to this conclusion. Similarly:

(ii) For any X ,Y ∈C the collection of those t in X but not Y forms a part of V .

Still intending informality, but less ponderously expressed:

(iii) ∀X∃Y (Y =V \X )
(iv)∀X ,Y ∃Z (Z = X ×Y )
(v) ∀X∃Y (Y = dom(X ))
(vi) ∀X∃Y ∀x y z((x, y , z) ∈ X ↔ (z, x, y) ∈ Y )
(vii) ∀X∃Y ∀x y z((x, y , z) ∈ X ↔ (x, z, y) ∈ Y ).

Just as Martin would invoke a small number of instances of the informal no-
tion of ‘Property’ in his Informal Comprehension Scheme (and those properties
that he does invoke are defined from the structures involved, which he claims
legitimates their use, ib. p.16), so we are using a small number of instances of
rudimentary reasoning about parts. What we have done is to show that whatever
the collection of parts C is, a small number of instances of informal reasoning
leads from simply given parts to other parts, and in particular from absolute in-
finities to parts (that in some cases are also absolute infinities - but may not be).
Of course whatever C is, if we accept the above we have shown:

Proposition 1
V= (V ,C ,∈) satisfies the formal von Neumann-Bernays-Gödel axioms.

since (i)-(vi) capture Bernays’ finite axiomatisation of N BG .5

If the reader does not wish to accept this last move, then this will not harm
what follows.

5Bernays was giving an alternative treatment to von Neumann’s presentation [?]. von Neu-
mann embraced outright a view of sets and classes - expressed in functional terms, where a do-
main of functions (‘I Dinge’)and a domain of arguments (‘II Dinge’) are postulated, with both in-
tersecting in a domain of argument-functions (‘I.II Dinge’). An argument-function, that is essen-
tially a characteristic function, is called a set. By distinguishing between functions and argument-
functions we avoid the usual Russell and Burali-Forti paradoxes.
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5 Global reflection principles

On its own the iterative concept of set says nothing about Reflection, but it is
perhaps remarkable that first order reflection is a theorem of Z F due indepen-
dently to Montague and Levy.

Gödel again:

“All the principles for setting up the axioms of set theory should
be reducible to Ackermann’s principle: The Absolute is unknow-
able. The strength of this principle increases as we get stronger and
stronger systems of set theory. The other principles are only heuris-
tic principles. Hence, the central principle is the reflection princi-
ple, which presumably will be understood better as our experience
increases. Meanwhile, it helps to separate out more specific prin-
ciples which either give some additional information or are not yet
seen clearly to be derivable from the reflection principle as we un-
derstand it now.” (Wang [?].)

Peter Koellner in [?] suggests that intrinsic reflection theorems are those that
derive from the iterative concept of set and moreover these are bound in strength
by that of an ω-Erdős cardinal. Such cardinals are consistent with V = L and
hence are intra-constructible (our term, not his). Koellner in this paper seeks to
analyse some suggestions for reflection principles of Tait [?] who proposed some
as giving large cardinal strength that of measurable cardinals. However Koellner
shows that Tait’s principles are either inconsistent or intra-constructible. Koell-
ner gives a heuristic argument as to why all intrinsic reflection theorems are
intra-constructible.

I find it difficult to see how higher order reflection principles such as those
of Bernays which deal with Π1

n or even Πm
n reflection schemes, follow from the

iterative concept of set. If one takes a Zermelian approach [?] which involves a
never-ending tower of normal domains indexed by inaccessible cardinals then
this potentialist never-to-be-completed universe of sets and domains hardly leaves
scope for higher type quantification over ‘everything’. Hence it is better to adopt,
as Koellner does, an ‘actualist’ stance where the universe of V is built by iterat-
ing the rank function along the absolute infinity of On and that is it: we have
the concept of a set structure, that is a universe, and over this we may con-
sider higher type quantifications leading to the satisfaction of some higher type
sentence Ψ say. However it is hard to see how we can properly formulate the
truth conditions for such a formula Ψ with the tools at hand. The second (or
higher) quantifiers have to range over something. One can perhaps do some-
thing with the iterative concept plus plural quantification plus reflection thereof,
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but the higher order reflection needed to get Πm
n reflection and thence Πm

n -
indescribable cardinals (still intra-constructible) needs further concepts.

Reflection from the iterative concept of sets with classes.

We consider V= (V ,C ,∈) together with its parts. We make no assumptions
concerning it being or not being an N BG-model. We let L + be the usual first
order language of set theory, augmented with second order variables X1, X2, . . .
but without second order quantification. The interpretation of the second order
variables from a formula ϕ in L + is that the Xi range over the parts in C .

Formula-by-formula reflection now is unexceptional: fix an i ≤ ω, then for
any ϕ ∈Σ1:

∀α∃β>α : ∀~xi ∈Vβ∀−→X j ∈C :ϕ(~xi ,~X j )(V ,C ,∈) ↔ϕ(~xi ,
−−−−−→
X j ∩Vβ))(Vβ,Vβ+1,∈).

Here we have identified the parts of Vβ with P (Vβ) = Vβ+1. This is consonant
with what we have done: Vβ+1 = {X ∩Vβ | X ∈ C }. Here the strength is rather
weak, we have something less than Π1

1-indescribability, and so are firmly intra-
constructible.

However now let us express the ineffability of V together with its parts C by
asking that we have a rich form of reflection that mirrors the whole of (V ,C ,∈)
down to some (Vβ,D,∈ ) in some very uniform way. We express this by asserting
the explicit existence of a connection, or reflecting map j as follows:

∃ j : (Vβ,D,∈ ) −→Σ1 (V ,C ,∈) (∗)

where j �Vβ = id �Vβ, and the elementarity is Σ1 in the language L +.

1) Just as On is a class in C we have that β is a ‘part’ of Vβ and so is naturally
in D. Notice that j (β) = On. (This is because

∀τ(τ is an ordinal ↔ τ ∈β)(Vβ,D,∈)

is aΠ1 formula about the classβ and and so goes up to (V ,C ,∈) about j (β) which
must then equal On.)

2) More generally for X ∈D j (X )∩Vβ = X .
3) The assumed elementarity (and Z FC holding in (V ,∈)) ensures that β is

a strongly inaccessible cardinal, however as yet nothing has been posited that
goes beyond reflection principles obtained by other approaches: D may be a
thin collection of parts of Vβ: we may have nothing much more than strong
elementarily between (Vβ,∈) and (V ,∈) than is commonplace and still intra-
constructible. However now allow D to contain P (β)∩L, and then we shall be
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able to deduce the existence of an embedding π : L −→ L. Such is already an
extra-constructible principle. We may if we wish think of allowing β and so D

to vary in (∗): whenever D contains P (γ)∩M and ∃k : (Vγ,D,∈ ) −→Σ1 (V ,C ,∈)
with k �Vγ = id etc. for M some canonical inner model like L then we shall typi-
cally have some principle as: π : M −→ M . The ‘fatter’ the model M the stronger
the principle. For L and other models, such embeddings in fact engender very
canonical embeddings derived from iterated ultrapowers. We make no attempt
here to require that our embeddings j ,k, . . . be canonical in any way; indeed this
would go against our view of asserting downwards reflection or resemblance be-
tween (V ,C ,∈) and some initial segment. Our Global Reflection Principle GRP0

is simply the limiting principle of the above spectrum, namely take D as large as
possible:

∃ j : (Vβ,Vβ+1,∈ ) −→Σ1 (V ,C ,∈) (GRP0)

GRP0 then asserts that there is some strong resemblance between the uni-
verse and its parts with this Vβ and its parts - at least as far as existential state-
ments about sets are concerned. Whilst the assertion of j ’s existence is an as-
sertion that there is a P (Vβ)-sized collection of ordered pairs (X , j (X )) of classes
these can be thought of as a single Z = {(y , X ) | y ∈ j (X )}. We may thus view j
either (I) as a plurality of a small number of parts of V of a particular kind6, or
else (II) the result of a single Σ1

1-assertion about the existence of such a Z .
Which of these two viewpoints should we take? In the former viewpoint, if

we were to replace the plural viewpoint by some standard quantification over
classes we prima facie should have the assertion of j ’s existence as a third or-
der expression. As it stands it is either a superplural of pluralities of sets from
V , which we may wish to reason away as being no more than a plural; or else
if we adopt a mereological view of the classes of V as the parts of V , then we
have the assertion of such a j as being of the type that could be expressed as the
existence of a plurality of parts. One concern that might be nagging is that we
might by reflecting on pluralities of parts of V , be motivating ourselves into in-
consistency by having what is tantamount to allowing third order principles to
reflect upon: as Reinhardt pointed out, (v. [?]) third order principles with third
order parameters allowed quickly becomes inconsistent. However this is not the
case, even with this talk of pluralities of parts, the GRP0 is not reflecting on third
order parameters.

However our view is that pluralities do not really earn a place in this discus-
sion: the attempt to circumvent class talk by grafting on this linguistically de-
rived convention goes completely against the grain of our previous arguments:

6Both these views are discussed further in[?]
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the coded second version (II) seems more preferable. Here this becomes more
simply a single second order assertion about a number of relations between all
elements of Vκ+1 and some corresponding elements of the collection of absolute
infinities C . Moreover it does not require that membership in C be determinate
in any way: it asserts only that between the parts of Vκ (namely the elements of
Vκ+1) and a small set of absolute infinities that there is such a relational link that
allows the first order Σ1 elementarity to hold. We do not have to quantify over all
of C or even know that we have a “completed” domain C to potentially quan-
tify over (as we would if we wished to speak about higher order reflection above
that even at the level Π1

2). We may have such a reflection principle without even
knowing all of C , or that falling under the concept of ‘part of V ’ is determinate.

Proposition 2 ([?]) GRP0 =⇒ There is an absolute infinity of measurable
Woodin cardinals.

We thus have a strongly extra-constructible principle, but moreover one which
delivers the proper class of large cardinals needed for Woodin’s work. To state
only some consequences of this, by the work of Martin & Steel [?], and of Woodin
(see [?]), the above proves the following:

Corollary 1 GRP0 implies (i) ProjectiveDeterminacy, moreover (ii) ADL(R), and
(iii) no statement of analysis can be forced to change its truth value by Cohen style
set forcing.

We finally remark that GRP0 does not imply further large cardinals beyond
the following: the principles are consistent relative to that of Z FC and the as-
sertion of the existence of ‘weakly sub-compact cardinals’ (from which they are
derived) but they do not imply any form of sub- or supercompact cardinal. They
thus seem to sit at a watershed between those weaker large cardinals and those
that imply there are L -elementary embeddings j : V −→ M with critical point
some κ so that j (κ+) > sup j “κ+. (All weaker large cardinals have equality here.)
This may look like an arcane technicality, but this ‘jump’ discontinuity is at the
base of many arguments involving, for example, supercompact cardinals and in
particular forcing arguments. It is in some sense a natural threshold, but it is
somewhat hard to assess exactly its significance.

Thus GRP0 is strong: it implies the existence of large cardinals needed for
Woodin’s program, (but some that cannot as yet be incorporated inside canoni-
cal inner models as built by the inner model program) but it is not extravagantly
strong.
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6 Conclusions

We have argued that the natural extension of the concept ‘set of’ (in the Mar-
tinian fashion) to include the logically necessary ‘absolute infinities’ following
on from a Cantorian viewpoint, yields a conceptual framework which in turn
entails, it can be argued, an informal axiom scheme of comprehension in the
form of the Bernays finite axiomatisation of NBG. We have done this in order to
avoid requiring the existence of either sets or of classes as instantiated mathe-
matical objects.

A strong reflection principle, the Global Reflection Principle is then intro-
duced. This can be viewed as the limiting principle of a spectrum of weaker
principles starting from the intra-constructible and passing through ‘small’ large
cardinals embedding properties of L 7 Such principles do require the assertion
of the existence of a connection or map exemplifying the reflection of simple
existential assertions between the universe V together with its absolutely infi-
nite parts, and those of some one Vβ together with its collection of parts which
we have identified in the strongest case of GRP0 with Vβ+1. GRP0 then yields
proper classes of sufficiently large cardinals to use Martin & Steel’s result that
Projective determinacy holds, Woodin’s results that ADL(R), and that both these
statements as well as any other statements of analysis cannot be changed by Co-
hen style set-forcing techniques.
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many discussions concerning GRP. There is a paper with him [?] on relations of
GRP with Cantor. There is a further paper discussing the mathematical relation-
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in particular [?] deriving from the EFI Workshop. I’d like to thank John Burgess,
Juliette Kennedy and Leon Horsten for their comments on an earlier draft of this
paper.
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