
Non-deterministic halting times for

Hamkins-Lewis Turing machines.

P.D.Welch∗

March 6, 2006

In this talk we consider some issues related to the Infinite Time Turing Ma-
chine (ITTM) model of Hamkins & Lewis [3]. There a standard Turing machine
(with some inessential minor modifications) is allowed to run transfinitely in
ordinal time. The machine’s behaviour at limit stages of time λ is completely
specified by requiring that (i) the machine enter a special limit state qL; (ii) the
read/write head return to the initial starting cell at the leftmost end of the tape;
(iii) the cells values - which we shall assume are taken from the alphabet of {0, 1}
- are the limsup of their previous values: that is if cell i on the tape has contents
Ci(γ) ∈ {0, 1} at time γ, then for any i < ω Ci(λ) = lim supγ−→λ〈Ci(γ)|γ < λ〉.
The original machine specified three infinite tapes: input, scratch, and output,
with a read/write head positioned over one cell from each tape simultaneously.
The machine’s actions at successor stages is determined by its (finite) program
in the ordinary way.

A number of intriguing questions immediately spring to mind. The question
of the identity of the “decidable” reals (for which x ∈ 2N is there a program Pe

so that on input x Pe halts on input x (“Pe(x)↓”) ?), and of the semi-decidable
reals, is answered in Welch[5]. (Hamkins and Lewis [3] had previously showed,
inter alia, that Π1

1 predicates of reals are decidable, and that the decidable,
(and semi-decidable) pointclasses of reals are strictly between Π1

1 and ∆1
2 in the

projective hierarchy.)
We shall be concerned here rather with the question of halting times, or how

long such a computation takes, if it is going to halt.

Definition 1 Pe(x) ↓α will denote that program Pe(x) ↓ in exactly α steps.
Pe(x)↓≤α, Pe(x)↓<αare defined analogously.

To clarify the above: Pe(x)↓α means that at ordinal time α the read/write
head is in particular state qs and is reading a triple of cells (one from each of
the three tapes) so that it’s program determines that it go into a halting state
qh. Thus a machine may halt exactly at some limit stage of time α where then
qs = qL.

∗Email: p.welch@bristol.ac.uk

1



Suppose x is simple: perhaps it is an integer (i.e. it is a binary code for
n ∈ N followed by an infinite string of 0’s), perhaps it is 0 (in the above sense)
itself. What possible halting times as e varies are there for Pe(x)? [3] calls an
ordinal clockable if it is the halting time of a computation with input 0.

Further, let us define:

Definition 2 “Pe(x)↓ y” will denote that Pe(x)↓ and that y ∈ 2N is the contents
of the output tape on halting. (Again Pe(x)↓α y etc. are defined analogously).

Then we say that y is writable if it is the output of some program: Pe(0)↓ y.
An ordinal β is writable if some y ∈WO is writable, and y codes a wellordering
of rank β. What possible ordinals are writable? It is easy to readjust a program
that demonstrates that β is writable to one that shows β′ < β is writable for
some β′. Thus the writable ordinals are an initial segment, λ, of all ordinals.
Hamkins and Lewis [3] showed that there are gaps in the clockable ordinals and
the following:

Theorem 1 Hamkins and Lewis [3] If β is admissible then it is not clockable.

(For notions of admissible ordinal and admissible set see [1].) Welch [6]
shows that λ, the suprema of the writable ordinals, is also the supremum of the
clockable ordinals.

One may generalise these questions to those involving arbitrary input x. The
following is Definition 24 of Deolalikar, Hamkins & Schindler [2]:

Definition 3 An ordinal α is nondeterministically clockable if there is an al-
gorithm Pe which halts in time at most α for all input and in time exactly α
for some input. More generally, α is nondeterministically clockable before β if
there is an algorithm that halts before β on all input and in time exactly α for
some input.

Symbolically: α is nondeterministically clockable iff

∃e ∈ N[∀x ∈ 2NPe(x)↓≤α ∧∃x ∈ 2NPe(x)↓α].

This notion arises in the paper [2], which was concerned with various com-
plexity pointclasses defined using halting times of computations on these ma-
chines, with or without existential ‘non-determinacy’ witnesses.

We show the following

Theorem 2 If β is admissible then it is not nondeterministically clockable.

This is in fact a corollary of a more general Bounding Lemma (where we
identify R with 2N):

Proposition 1 (Bounding Lemma) Suppose β be admissible. Let F : R −→ R
be an ITTM-computable total function, so that ∀xPe(x)↓≤β where Pe computes
F . Then ∃γ < β ∀xPe(x)↓<γ .

2



Let x ∈ 2N. Then, as is usual, we let ωx
1 ck denote the supremum of all

ordinals that are recursive in x (that is, those ordinals α with a corresponding
y ∈WO with rank of y equalling α, and the characteristic function of y is Turing
recursive (in the ordinary sense of recursive) in x.

They pose the following question in [2]:
Question 6 Suppose an algorithm halts on each input x in fewer than ωx

1 ck

steps. Then does it halt uniformly before ω1 ck?
As they say an affirmative answer explains some of the phenomena observed

in their paper. Perhaps somewhat remarkably this is the case (we drop the
subscript ck and write ωx

1 for the first ordinal not recursive in x etc.). We prove
that we have Uniform Bounding :

Proposition 2 Let F : R −→ R be ITTM-computable and total as witnessed
by the program Pe. If ∀xPe(x)↓<ωx

1 then ∃γ < ω1 ck ∀xPe(x)↓<γ .

We consider some further queries arising from the paper [2]. These concerned
various complexity pointclasses defined using halting times of computations on
Infinite Time Turing machines, with or without existential ‘non-determinacy’
witnesses. These classes were first explicitly introduced by Schindler in [4].

Definition 4 Let f : R −→ On. (i) A ∈ P f if there is an infinite time Turing
machine deciding each x ∈ A in fewer than f(x) many steps.

(ii) A ∈ NPf when there is an infinite time Turing machine T such that
x ∈ A if and only if there is y ∈ R such that T accepts (x, y), and T halts on
any input (x, y) in fewer than f(x) many steps.

We thus think of f as a bounding function on the number of steps needed
to determine whether x is, or is not, in some pointclass A, by using some total
(so always either accepting or rejecting) ITTM program. f may be a constant
function, and in the case that it is with value ωω [2] call the pointclasses P and
NP . They analyse these classes for a variety of f and show, for example:

Theorem 3 [2] P 6= NP ∩ co-NP .

Concomitant with the classes P f are the following pointclasses definable in
a simple way over the f(x) level of the constructible hierarchy over x :

Definition 5 Γf = {A ⊆ R : ∃Σ1ϕ∀x[x ∈ A←→ Lf(x)[x] |= ϕ[x]]}.

So let f be suitable such that for any x ∈ R Lf(x)[x] is an admissible set
that is a union of such. Then:

Proposition 3 NP f = Γf ;P f = Γf∩co-Γf = NP f∩co NP f . Thus in general
NP f does not equal the dual class Γf ∩ co-Γf .

This answers another of the queries of [2].

3



References

[1] K.J. Barwise. Admissible Sets and Structures. Perspectives in Mathematical
Logic. Springer Verlag, 1975.

[2] V. Deolalikar, J.D. Hamkins, and R-D. Schindler. P 6= NP ∩ coNP for
Infinite Time Turing machines. Journal of Logic and Computation, 15:577–
592, Oct 2005.

[3] J. D. Hamkins and A. Lewis. Infinite time Turing machines. Journal of
Symbolic Logic, 65(2):567–604, 2000.

[4] R-D. Schindler. P 6= NP for infinite time Turing machines. Monatsheft für
Mathematik, 139(4):335–340, 2003.

[5] P. D. Welch. Eventually infinite time Turing degrees: infinite time decidable
reals. Journal for Symbolic Logic, 65(3):1193–1203, 2000.

[6] P. D. Welch. The length of infinite time Turing machine computations.
Bulletin of the London Mathematical Society, 32:129–136, 2000.

4


