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Chapter 1

Axioms and Formal Systems

1.1 Introduction

The great Germanmathematician DavidHilbert (1862-1943) in his address to the second International1

Congress of Mathematicians in Paris 1900 placed before the audience a list of the 23mathematical prob-2

lems he considered the most relevant, the most urgent, for the new century to solve. Hilbert had been a3

defender of Cantor’s seminal work on on infinite sets, and listed the Continuum Hypothesis as one of the4

great unsolved questions of the day. He accordingly placed this question at the head of his list. The hy-5

pothesis is easy to state, and understandable to anyone with themost modest of mathematical education:6

if A is a subset of the real line continuum , then there is a bijection of A either with the set of natural7

numbers, or with all of . Phrased in the terminology that Cantor introduced following his discovery8

of the uncountability of the reals and his subsequent work on cardinality the hypothesis becomes: for9

any such A, if A is not countable then it has the cardinality of itself. CH thus asserts that there is no10

cardinality that is intermediate between that of and that of . If the cardinality of is designated11

(or ℵ) and that of the first uncountable cardinal as (or ℵ) then CH is often written as “  = ”12

(or ℵ = ℵ) the point being here is that the real continuum can be identified with the class of infinite13

binary sequences  and the latter’s cardinality is   .14

Sometimes called the Continuum Problem, Cantor wrestled with this question for the rest of his ca-15

reer, without finding a solution. However, in this quest he also founded the subject of Descriptive Set16

Theory that seeks to prove results about sets of reals, or functions thereon, according to the complexity17

of their description. Such hierarchical bodies of sets were to become very influential in the Russian school18

of analysts (Suslin, Lusin, Novikoff) and the French (Lebesgue, Borel, Baire). The notion of a hi-19

erarchy built up by considering complexity of definition of course also invites methods of mathematical20

logic. Descriptive SetTheory has figured greatly in modern set theory, and there is a substantial body of21

results on the definable continuum where one tries to establish CH type results not for the whole contin-22

uum but just for “definable parts” thereof. Cantor was able to show that closed subsets of satisfied CH:23

they were either countable or could be seen to contain a subset which was of cardinality the continuum.24

This allows one to say that then countable unions of closed sets also satisfied the CH. Cantor hoped to25

be able to prove CH for increasingly complicated sets of real numbers, and somehow exhaust all subsets26

in this way. The analysts listed above made great strides in this new field and were able to show that any27
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2 Axioms and Formal Systems

analytic set satisfied CH. (At the same time they were producing results indicating that such sets were28

very “regular”: they were all Lebesgue measurable, had a categorical property defined by Baire andmany29

other such properties. Borel in particular defined a hierarchy of sets now named after him, which gave30

very real substance to Cantor’s efforts to build up a hiearchy of increasing complexity from simple sets.)31

However it was clear that although the study of such sets was rewarded with a regular picture of their32

properties, this was far from proving anything about all sets. We now know that Cantor was trying to33

prove the impossible: the mathematical tools available to him at his day would later be seen to be for-34

malisable in Zermelo-Fraenkel set theory with the Axiom of Choice , AC (an axiom system abbreviated35

as ZFC). Within this theory it was shown (by (Cohen (1934-2007)) that CH is strictly unprovable. If he36

had taken the opposite tack and had thought the CH false, and had attempted to produce a set Aneither37

of cardinality that of nor of he would have been equally stuck: by a result of Gödel within ZFC it38

turns out that ¬CH is strictly unprovable.39

It is the aim of this course to give a proof of this latter result of Gödel. The method he used was40

to look at the cumulative hierarchy V (which we may take to be the universe of sets of mathematical41

discourse) in which all the ZF axioms are seen to be true, and to carve out a special transitive subclass42

- the class of constructible sets, abbreviated by the letter L. This L was a proper transitive class of sets (it43

contains all ordinals) and it was shown by Gödel (i) That any axiom from ZF was seen to hold in L;44

moreover (ii) Both AC and CH held in L. This establishes the unprovability of ¬CH from the ZF axioms:45

L is a structure in which any axioms of ZF used in a purported proof of ¬CH were true, and in which46

CH was true. However a proof of ¬CH from that axiom set would contradict the fact that rules of first47

order logic are sound, that is truth preserving.48

In modern terms we should say that Gödel constructed the first inner model of set theory: that is,49

a transitive class W containing all ordinals, and in which each axiom of ZFC can be shown to be true.50

Such models generalising Gödel’s construction are much studied by contemporary set theorists, so we51

are in fact as interested in the construction as much as (or even more so now) than the actual result.52

It is a perhaps a curious fact that such inner models invariably validate the CH but most set theorists53

do not see that fact alone as giving much evidence for a solution to the problem: the inner model L and54

those generalising it are built very carefully with much attention to detail as to how sets appear in their55

construction. Set theorists on the whole tend to feel that there is no reason that these procedures exhaust56

all the sets of mathematical discourse: we are building a very smooth, detailed object, but why should57

that imply that V is L? Or indeed any other of the later generations of models generalising it?58

However it is one of facts we shall have to show about L that in one sense it is “self-constructing”: the59

construction of L is a mathematical one; it therefore is done within the axiom system of ZF; but (we shall60

assert) L itself satisfies all such axioms; ergo we may run the construction of the constructible hierarchy61

within themodel L itself (after all it is a universe satisfying all ZF axioms). It will be seen that this process62

activated in L picks up all of L itself: in short, the statement “V = L” is valid in L. The conclusion to be63

drawn from this is that from the axioms of ZF we cannot prove that there are sets that lie outside L. It64

is thus consistent with ZF that V = L is true! If V = L is true, then there are many consequences for65

mathematics: the study of L is nowhighly developed andmany consequences for analysis, algebra,... have66

been shown to hold in L whose proof either remains elusive, or else is downright unprovable without67

assuming some additional axioms. It is a corollary to the consistency of V = L with ZF, that we cannot68

use this method of constructing an inner model to find one in which ¬CH holds: if it is consistent that69



Preliminaries: axioms and formal systems. 3

V = L then it is consistent that L is the only inner model there is, so no construction using the axioms70

of ZF alone can possibly produce an inner model of ¬CH.71

We are thus left still in the state of ignorance that Hilbert protested was not the lot of mathematicians72

as regards theCH.1 Cohen’s proof thatCH is not provable from theZFC axioms does not proceed by using73

inner models (we have mentioned reasons why it cannot) but by constructing models of the axioms in74

a boolean valued logic: statements there do not have straightforward true/false truth values. In Cohen’s75

models, when constructed aright, all axioms of ZF (and sentences provable from them in first order76

logic) receive the topmost truth value “1”, and contradictions¬ ∧ , receive the bottom value “0”. Cohen77

constructed such a model in which ¬CH received a “non-0” truth value in the Boolean algebra, value p78

say. Consequently CH is not provable from ZF, else the Boolean model would have to assign the non-79

zero p to the inconsistent statement CH ∧ ¬CH and such is not possible in these models. This literally80

taken, says absolutely nothing about sets in the universe V since the model is a sub-universe of V with a81

non-classical interpretation. It speaks only about what can or cannot be proven in first order logic from82

the axioms of ZFC. 283

There are many results in set theory, in particular in axiomatic systems that enhance ZFC with some84

“strong axiom of infinity” that indicate that the CH is actually false (that ℵ = ℵ often occurs in such85

cases). At present this can only be taken as some kind of quasi-empirical evidence and so is a source of86

much discussion.87

Prerequisites: Cohen’s proof is beyond the scope of this course, but we shall do Gödel’s construction88

of L in detail. This will involve extending the basic results on ordinal and cardinal numbers and their89

arithmetic; we shall have recourse to schemes of ordinal and P-recursion. The reader is assumed familiar90

with a development of these topics, as well as with the notion and basic properties of transitive sets.91

Although Gödel gave a presentation of the constructible hierarchy using a functional hierarchy, with92

almost all logic eliminated, (mainly as a way of presenting his results to “straight” mathematicians) we93

shall be going the traditional route of defining a “Definability” operator using all the syntactic resources94

of a formal language L and the methods of modern logic. Formal derivability T ⊢ will always mean95

that is derivable from the axioms T in one, or any, system of classical first order calculus familiar to96

the reader.97

Acknowledgements: these notes are heavily indebted to a number of sources: in particular to Ronald98

B. Jensen : Modelle der Mengenlehre (Springer Lecture Notes in Maths, vol 37,1967), and his subsequent99

lecture notes.100

101

1.2 Preliminaries: axioms and formal systems.102

We introduce the formal first order language L, and see how we can use class terms expressed in it. We103

then give a formulation of the Zermelo-Fraenkel axioms themselves.104

1Or any mathematical problem “You can find [the solution to any mathematical problem] by pure reason, for in mathematics
there is no ignorabimus” Hilbert, Lecture delivered to the 2nd International Congress of Mathematicians, Paris 1900.

2This is only one way of interpreting Cohen’s forcing technique. See Kunen [4] SetTheory: An Introduction to Independence
Proofs



4 Axioms and Formal Systems

Hilbert in 1900

1.2.1 The formal language of ZF set theory; terms105

ZF set theory is formulated in a formal first order language of predicate logic with axioms for equality.106

The components of that language L = LṖ are:107

(i) set variables; v, v, . . . , vn , . . . (for n P )108

(ii) two binary predicate symbols: =̇, Ṗ109

(iii) logical connectives: ∨,¬110

(iv) brackets: (, )111

(v) an existential quantifier: D.112

The formulae of L are defined inductively in a way familiar for any first order language. We assume113

the reader has seen this done for his or herself and do not repeat this here. We assume also that the notion114

of free variable (FVbl( )) and subformula of a formula as inductively defined over the collection of115

all formulae is also familiar. We shall use the notation (y/x) for the formulae with the free variable116

occurrences of the variable x replaced by the variable y. A formula with no free variables is called a117

closed formula or a sentence. It is sometimes convenient to augment the language L with other predicate118

symbols A⃗ = A,A, . . .; if this is done we denote the appropriate language by LA⃗.119

We use the binary predicate symbol P as a relation to be interpreted as membership: “v P v” will120

be interpreted as “v is a member of v” etc. We often use other letters also to stand in for variables vk :121

typically x , y, z, and recalling the convention from ST: , , for ordinals etc. etc. 3 . It is so convenient122

to adopt these conventions that we do so immediately even when we write out our basic axioms. Note123

that in our statement of the Extensionality Axiom Ax we also abbreviate “¬Dvk¬ ” as usual by “@vk ”.124

Ax0 (Extensionality)125

@x@y(@z(z P x ↔ z P y)↔ x = y).126

3Formally speaking the symbols x , y, , , . . . are not part ofL: they have the status ofmetavariables in themetalanguage; the
latter is the languagewe use to talk aboutL.Themetalanguage consists of Englishwith a liberal admixture of suchmetavariables
and other symbols as and when we require them. Some of our metatheoretical arguments require some simple arithmetic, as
when we prove something about formulae or terms by induction. These arguments can all be done with primitive recursive
arithmetic.
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This single axiom expresses the fact that identity of sets is based solely on membership questions127

about the two sets.128

We have seen that collections, or “classes” based on unguarded specifications within the language L129

can lead to trouble; recall Russell’s Paradox: R =df {x ∣ x R x} was a class that could not be considered130

to be a set. Likewise V =df {x ∣ x = x} is not a set. Such collections we called “proper classes”. It131

might be thought that this mode of introducing collections or classes is fraught with potential danger,132

and although we successfully used these ideas in ST perhaps it would be safer to do without them? In fact133

such methods of specifying collections is so useful that instead of being wary of them, we shall embrace134

them full heartedly whilst keeping them at a safe distance from our formal language L.135

Definition 1.1 (i) A class term is a symbol string of the form {x ∣ } where x is one of the variables vk136

and is a formula of our language.137

(ii) A term t is either a variable or a class term.138

(iii)The free variables of a term t are given by:139

FVbl(t) =df FVbl( )/{x} if t = {x ∣ }; FVbl(x) = {x} if x is a variable.140

We allow terms to be substituted for variables in atomic formulae x = y and x P y, and for free141

variables in general in formulae of L. We thus may write (t/x) for the formula with instances of x142

replaced by t. Just as for substitutions of variables in ordinary formulae in first order predicate logic, we143

only allow substitutions of terms t into formulae where free variables of t do not become unintention-144

ally bound by quantifiers of . Substitutions can always be effected after a suitable change of the bound145

variables of . A term t with FVbl(t) = ∅ is called a closed term.146

A term of the form {x ∣ } is not part of our language L: it is to be understood purely as an abbrevi-
ation. Likewise (t/x) is not part of our language if t is a class term. We understand these abbreviations
as follows:

y P {x ∣ } is (y/x);{x ∣ } = {z ∣ } is @y( (y/x)←→ (y/z))
z = {x ∣ } is @y(y P z ←→ y P {x ∣ }){x ∣ } P {z ∣ } is Dy(y = {x ∣ } ∧ (y/z)){x ∣ } P z is Dy(y P z ∧ y = {x ∣ })

Although class terms appear on both sides of the above, this in fact gives a precise recursive way147

of translating a “generalised formula” containing class terms into one that does not. Note that a simple148

consequence of the above is that for any x we have x = {y ∣ y P x}. Note in particular that the fourth149

line ensures that if we write “s P t” for terms s, t then s must be a set.150

We now name certain terms and define some operations on terms. Again these are metatheoretical151

operations: we are talking about our languageL, and talking about, ormanipulating terms, is part of that152

meta-talk.153

Definition 1.2 (i) V =df {x ∣ x = x}; ∅ =df {x ∣ x ≠ x} ;154

(ii) s Ď t =df @x(x P s %→ x P t)155

(iii) s ∪ t =df {x ∣ x P s ∨ x P t} ; s ∩ t =df {x ∣ x P s ∧ x P t};156 ¬s =df {x ∣ x R s}; s/t =df {x ∣ x P s ∧ x R t}157
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(iv) ⋃ s =df {x ∣ Dy(y P s ∧ x P y)}; ⋂ s =df {x ∣ @y(y P s %→ x P y)}158

(v) {t, . . . , tn} =df {x ∣ x = t ∨ x = t ∨⋯∨ x = tn}159

(vi) ⟨x , y⟩ =df {{x}, {x , y}} (the ordered pair set)160

(vii) ⟨x, x, . . . , xn⟩ =df ⟨⟨x, . . . , xn−⟩, xn⟩ (the ordered n-tuple)161

(viii) x ˆ z =df {⟨u, v⟩ ∣ u P x ∧ v P z} (the Cartesian product of x , z)162

t =df t ˆ t; tn+ = tn ˆ t;163

(ix) P(x) =df {y ∣ y Ď x} (the “power class” of x.164

At the moment the above objects just have the status of syntactic names of certain terms, but we are165

going to adopt axioms that will assert that the classes defined are in fact sets. Indeed we shall say “x is a166

set”⇐⇒df “x P V”. In (viii) we have introduced a useful syntactic device: instead of writing167

x ˆ z = {y ∣ DuDv(u P x ∧ v P z ∧ y = ⟨u, v⟩)}168

we have placed the constructed term ⟨u, v⟩ to the left of the ∣. In general we introduce this abbreviation:169

we let {t ∣ } =df {z ∣ Du⃗(z = t ∧ )} (whose notation is probably more easily understood through the170

example above, here u⃗ is a list of variables containing all those free in t and ).171

172

Ax1 (Empty Set Axiom) ∅ P V .173

Ax2 (Pairing Axiom) {x , y} P V .174

Ax3 (Union Axiom) ⋃ x P V .175

Lemma 1.3 t P V ←→ Dy(y = t).176

Proof: (Actually 1.3 is a theorem scheme: for each term there is a lemma corresponding to the definition177

of the term t.) By our rules on translation 1.2, t P V ↔ Dy(y = t ∧ (x = x)(y/x)) ↔ Dy(y = t ∧ (y =178

y))↔ Dy(y = t). Q.E.D.179

Lemma 1.4 Ax0-3 prove: x ∪ y P V ;{x, . . . , xn} P V .180

Proof: By Ax2 {x , y} P V and then by Ax3 ⋃{x , y} P V . And ⋃{x , y} = x ∪ y (by Ax0). Repeated181

application of Ax0-3 shows {x, . . . , xn} P V (Exercise). Q.E.D.182

There now follow a sequence of definitions of basic notions which we have already seen in ST.183

Definition 1.5 Let r be a term. (i) r is a relation⇐⇒df r Ď V ˆ V184

(ii) r is an n-ary relation⇐⇒df r Ď Vn.185

We write in (i) xry or rx y instead of ⟨x , y⟩ P r and in (ii) rx⋯xn instead of ⟨x, . . . , xn⟩ P r.186

Definition 1.6 If r, s are relations and u a term we set:187

(i) dom(r) =df {x ∣ Dy(xry)}; ran(r) =df {y ∣ Dx(xry)}; field(r) =df dom(r) ∪ ran(r).188

(ii) r ↾ u =df {⟨x , y⟩ ∣ xry ∧ x P u}.189

(iii) r“u =df {y ∣ Dx(x P u ∧ xry}.190

(iv) r− =df {⟨y, x⟩ ∣ xry}.191

(v) r ○ s =df {⟨x , z⟩ ∣ Dy(xry ∧ ysz)}.192

Wemay define the unicity quantifier:193
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Definition 1.7 D!x ⇐⇒df Dz({z} = {x ∣ }).194

We now define familiar functional concepts.195

Definition 1.8 Let f be a relation.196

(i) f is a function (Fun( f ))⇐⇒df @x , y, z( f x y ∧ f xz %→ y = z) (we write f(x)=y).197

(ii) f is an n-ary function⇐⇒df f is a function ∧dom( f ) Ď Vn
198

(we write f (x, . . . , xn) = y instead of f (⟨x, . . . , xn⟩) = y).199

(iii) f ∶ a %→ b⇐⇒df Fun( f ) ∧ dom( f ) = a ∧ ran( f ) Ď b.200

(iv) f ∶ a %→(−) b⇐⇒df f ∶ a %→ b ∧ Fun( f −) (“ f is an injection or (1-1)”).201

(v) f ∶ a %→onto b⇐⇒df f ∶ a %→ b ∧ ran( f ) = b (“ f is onto”).202

(vi) f ∶ a ←→ b⇐⇒df f ∶ a %→(−) b∧ f ∶ a %→onto b (“ f is a bijection”).203

Definition 1.9 (i) ab =df { f ∣ f ∶ a %→ b} the class of all functions from a to b.204

(ii) Let f be a function such that ∅ R ran( f ). Then the generalised cartesian product is

∏ f =df {h ∣ Fun(h) ∧ dom(h) = dom( f ) ∧ @x P dom( f )(h(x) P f (x))}.
Note that∏ f consists of choice functions for ran( f ): each h “chooses” an element from each appropriate205

set.206

1.2.2 The Zermelo-Fraenkel Axioms207

The axioms of ZFC (Zermelo-Fraenkel with Choice) then are the following:208

Ax0 (Extensionality) @x@y(@z(z P x ↔ z P y)↔ x = y)209

Ax1 (Empty Set) ∅ P V210

Ax2 (Pairing Axiom) {x , y} P V211

Ax3 (Union Axiom) ⋃ x P V212

Ax4 (Foundation Scheme) For every term a: a ≠ ∅%→ Dx(x P a ∧ x ∩ a = ∅)213

Ax5 (Separation Scheme) For every term a: x ∩ a P V214

Ax6 (Replacement Scheme) For every term f : Fun( f )%→ f “x P V .215

Ax7 (Infinity Axiom) Dx(∅ P x ∧ @y(y P x %→ y ∪ {y} P x)216

Ax8 (PowerSet Axiom) P(x) P V217

Ax9 (Axiom of Choice) Fun( f ) ∧ dom( f ) P V ∧∅ R ran( f )%→∏ f ≠ ∅.218

Note 1.10 (i) ZF comprises Ax0-8; Sometimes Ax6 is replaced by:219

Ax6’ (Collection Scheme) For every term r: @xr“x ≠ ∅%→ @wDt(@u P wDv P t(⟨u, v⟩ P r).220

The Axiom of Choice is equivalent over ZF to the Wellordering Principle:221

Ax9’(Wellordering Principle) @xDr(Rel(r) ∧ ⟨x , r⟩ is a wellordering).222

There are two useful subsystems. ZF with Replacement dropped is called Z for Zermelo. ZF− is223

Ax0-5,6’,7; ZFC− is ZF− with Ax9’.224

(ii) ZF is an infinite list of axioms: Ax4,5,6, (and 6’) are schemes: there is one axiom for each formula225

defining the mentioned terms a and f (or r in 6’). We shall later prove that it cannot be replaced by a226

finite list with the same consequences.227
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(iii)The statements differ in their formulation from ST: Foundation was there stated just for sets, and228

was a single axiom; Separation was given its synonym “Comprehension”: and was stated as follows:229

(The set of elements of a set z satisfying some formula, form a set.)230

For each formula (v, . . . vn+) (with free variables amongst those shown),

@z@w . . .@wnDy@x(x P y↔ x P z ∧ [z, x ,w, . . . ,wn]).
The formulation above shows how powerful and succinct a formulation we have if we allow ourselves231

to use terms. Likewise Replacement there had a much longer (but equivalent) formulation.232

(iv)The axioms are of different kinds: one group asserts that simple operations on sets leads to further233

sets (such as Union, Pairing). Another group consists of set existence axioms (Empty Set, Separation).234

Others are of “delimiting size” nature: the power class P(x) may be thought to be a large incoherent235

collection of all subsets of x. The power set axiom claims that this is not a large collection but merely236

another set. The Replacement Scheme assures us that functions however defined cannot create a non-set237

from a set. It thus also in effect delimits size. This axiom is due to Fraenkel. The term ‘Replacement’238

comes from the idea that if one has a set, and a method (or function) for replacing each member of that239

set by a different set, then the resulting object is also a set. Zermelo’s achievement was to recognize (a)240

the utlility, if not the necessity, of formulating a formal set of axioms for the new subject of set theory241

- which he then enunciated; (b) that the Separation scheme was a method to avoid paradoxes of the242

Russell/Burali-Forti kind. Zermelo essentially wrote down the system Z although Separation was given243

a second order formulation. Later Skolem gave the familiar first order formulation equivalent to the244

above. Again the Axiom of Choice asserts the existence of a rather specialised set: a choice function for a245

collection of sets. In STwe adopted the axiom that “Every set can bewellordered” for AC (on pedagogical246

grounds). We saw there that this principle was equivalent to the existence of choice functions.247

(v) One may ask simply: Are these right axioms? There are indeed other formulations of set theory,248

some involving class terms more directly as further objects. Our point of view is that the V hierarchy249

comprises all that is needed for mathematics, further we have a somewhat less developed intuition about250

what such “objects” these free-standing class terms could possible be: if they are attempts to continue251

the V-hierarchy even further, by using the power class operation “just one more time” this would seem252

to miss the point. Since we have no need for classes as some other kind of separate entities of a different253

sort, we avoid them.254

One formulation of set theory (which Gödel used - and is named von Neumann-Gödel-Bernays)255

does however include class variables in the object language but disallows quantification over classes: it256

can be shown that this system is conservative over ZFC: that is, it proves no more theorems about sets257

than ZFC itself, and so is treated by set theorists virtually as a harmless variant of ZFC.258

We use a first order formulation of set theory (meaning that quantifiers Dx ,@x quantify only over259

our objects of interest, namely sets. A second order formulation ZF is possible, where, as in any second260

order language, we are allowed quantifiers such as DP, @P that range over predicates P of sets. There are261

two points that could be made here. Firstly, as a predicate P is extensionally a collection of sets itself,262

even to understand the meaning of a second order sentence involving say a quantifier @P is to already263

claim an understanding about the universe V . And it is V itself that we are trying to understand in the264

first place. As in all areas of mathematics, first order formulations of theories are the most successful: we265

may not know of a first order sentence whether it is true or not, but we do know precisely what it means266
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for it to be true. Secondly the tools of mathematical logic are the most useful in the setting of first order267

logic. The deductive system associated to ZF lacks a CompletenessTheorem, and hence Compactness268

and Löwenheim-SkolemTheorems fail. In ZF it is possible to argue that since the only possible models269

of ZF are V itself and possible initial segments of V of the form V (as Zermelo demonstrated), then270

ZF shows that, e.g. CH has a definite truth value: namely that obtained by inspecting that level of the271

V-hierarchy where all subsets of live: V +. However as to what that truth value is, we have no idea.272

Hence we are no further forward! Indeed second order logic and ZF seems not to give us any tangible273

information about the universe of sets that we do not obtain from the first order formulations of ZFC274

and its extensions.275

(vi) Some formulations or viewpoints concerning the mathematical hierarchy of sets take as the base276

of that hierarchy not the empty set (“V = ∅”) but rather a collection of “atoms” or base objects: thus277

instead we take V[U] = U where U is this collection of Urelemente and we build our hierarchy by278

iterating the power set operation from this point onwards. This may be of presentational benefit, but, at279

least if U is a set (meaning that it has a cardinality), then this is of limited foundational interest to the280

pure set theorist.4 The reason being, that, if ∣U ∣ = say, then we may build an isomorphic copy of V[U]281

inside V , by starting with some sized set or structure which is an appropriate copy of U . Hence again282

to study V is to study all such universes V[U], and we may limit our discussion to universes of “pure283

sets” without additional atomic elements.284

1.3 Transfinite Recursion285

We recall the definitions of transitive set.286

Definition 1.11 x is transitive (Trans(x)) if @z P x(z Ď x).287

We have the following scheme of P-induction:288

Lemma 1.12 (scheme of P-induction) For any formula :

@x[@y P x (y)→ (x)]→ @x (x).
This principle was used in the proof of:289

Theorem 1.13 (Transfinite Recursion along P)290

If G is a term and G ∶ V ˆ V → V then there is a term F giving F ∶ V → V

(˚) @xF(x) = G(x , F ↾ x).
Moreover the termdefines a unique function, in that if F′ is any other term satisfying (˚) then,@xF(x) =291

F′(x).292

4This is not to say that models with atoms are without utility: formulations of ZF with atoms, “ZFA”, are of great use for
studying universes in which the Axiom of Choice fails. The point being made is that we cannot get any additional knowledge
about foundational questions by using them.
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Note: (i) Usually one speaks instead of G , F being defined by formulae G , F etc., but we have293

replaced that with talk about terms. In the proof ofTheorem 1.13 we, in effect, saw how to build up from294

the formula G the formula F . This is in essence aTheorem Scheme: it is one theorem for each term G.295

The ‘canonical’ procedure for building the formula F given G now becomes a method for building a296

canonical term defining F from one defining G.297

(ii) Often one first proves a transfinite recursion theorem along On: as the ordering relation amongst298

ordinals is the P-relation, we can view the latter theorem as simply a special case ofTheorem 1.13. From299

these we proved the existence of functions giving the arithmetical operations on ordinals, and their basic300

properties. It is often useful to have the notion of a wellfounded relation in general:301

Definition 1.14 If R is relation on a class A then we say R is wellfounded iff for any z, if z ∩ A ≠ ∅ then302

there is y P z ∩ Awhich is R-minimal (that is @x P z ∩ A(¬xRy)).303

An important example of a definition by transfinite recursion along P is that of the transitive closure304

operation TC.305

Definition 1.15 TC is that class term given byTheorem 1.13 satisfying

@x TC(x) = x ∪⋃{TC(y) ∣ y P x}
Exercise 1.1 In ST TCwas given an alternative (but equivalent) definition, and was shown to satisfy the definition306

of TC above. Rework this by showing, using the above definition, that: (i) x P y %→ TC(x) Ď TC(y). (ii) Show307

that TC(x) is the smallest transitive set t satisfying x Ď t. [Hint: Use P-recursion.] (Thus if Trans(t) ∧ x Ď308

t %→ TC(x) Ď t.) Moreover Trans(x) ←→ TC(x) = x. (iii) Define by recursion on : ⋃ x = x;⋃n+ x =309 ⋃(⋃n x); tc(x) = ⋃{⋃n(x) ∣ n < }. Show that tc(x) = TC(x).310

Definition 1.16 For x Ď On, x P V, sup(x) =d f the least ordinal so that P x → ≤ .311

In particular if x has no largest element, then sup(x) = ⋃ x.312

Definition 1.17 (The rank function ) The rank function is defined by transfinite recursion on P:313

(x) = sup{ (y) +  ∣ y P x}.
Exercise 1.2 Show that: (i) the relation xRy ←→ x P TC(y) is wellfounded; (ii) @x( (x) = (TC(x))) ;314

(iii) Trans(x)%→ “x P On .315

Definition 1.18 (The Cumulative Hierarchy)The V function is defined by transfinite recursion onOn316

as : V = {x ∣ (x) < }.317

In ST we defined the V hierarchy by iterating the power set operation. The previous definition318

does not use AxPower and together with the next exercise shows that we can define the latter hierarchy319

without it.320

Exercise 1.3 Define by recursion R = ∅, R + = P(R ) and for Lim( ), R = ⋃ < R . Show by transfinite321

induction that for any P On that R = V .322
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1.4 Relativisation of terms and formulae323

Wemay classify concepts according to the syntactic complexity of their definitions. Accordingly we then324

first classify formulae of our language L as follows.325

Bounded quantifiers: @vi P v j , Dvi P v j abbreviate: @vi(vi P v j → ) and Dvi(vi P v j ∧ )326

respectively. We allow terms for v j here: @x P a is @x(x P a %→ ) etc.327

The Levy hierarchy: We stratify formulae according to their complexity by counting alternations of328

quantifiers. We first define the ∆-formulae of L inductively:329

(i) vi P v j and vi = v j are ∆. )330

(ii) If , are ∆, then so are ¬ and ( ∨ ).331

(iii) If is ∆ so is Dvi P v j .332

Having defined ∆ as those without unbounded quantifiers, we then proceed, first setting Σ = Π =333

∆:334

(i) If is Πn− then Dvi⋯Dvin is Σn .335

(ii) If is Σn then ¬ is Πn .336

One should note that if a formula is classified as Σn then it is logically equivalent to a Σm formula337

(or to a Πm-formula) for any m ≥ n, by the trivial process of adding dummy quantifiers at the front.338

Of particular interest are existential formulae: those that are Σ: Dx with ∆. Such assert a simple339

set existence statement, and universal formulae: these are Π: @x whose truth requires, prima facie,340

an inspection over all sets (although in practice we shall see that by the Downward Lowenheim Skolem341

Theorem, we may sometimes restrict that apparent unbounded search). Occasionally, for T a finite set342

of formulae, we write ⋀⋀T for the single formula that is their conjunction.343

Some terms will be seen to be definite in that they define the same object in whatever world the344

definition takes place.Thismay sound obscure at themoment, but one can perhaps see that the definition345

of the empty set provides a definite object∅which is “constant” across possible universes where it might346

be defined; likewise given any structure U with sets x , y as members and in which the Pairing Axiom347

holds, then the term t = {u ∣ u = x ∨ u = y} defines the same object in U as in any other structure348

satisfying these conditions. This is in contradistinction to a term such as t = {y ∣ y Ď x} which defines349

the power set of a set x: although the defining formula “v Ď v” is extremely simple, which subsets of x350

get picked up when we apply the definition, depends on which structure U we apply the definition in. It351

is thus not a definite term. We shall need investigate this and give a criterion for when terms are definite.352

This leads on to the important notion of absoluteness.353

We shall be interested in looking at models ⟨M , E⟩ of ZFC+Φ for various statements Φ. For this to354

be really meaningful we shall want that certain terms and notions defined by certain formulae that are355

interpreted in the model ⟨M , E⟩mean the same thing as when that term or formula is applied in ⟨V , P⟩:356

this is the notion of “absoluteness”. Certain (simple) objects, such as∅, and the like, are defined by the357

same syntactic terms evaluated inV or inM. It is possible to think aboutmodels where the interpretation358

of the Psymbol is something other than the usual set membership relation. Such models are called non-359

standard models, and do not feature highly in this course (or in the wider development of set theory).360

We shall be most interested in transitive sets or classes W and where E is taken to be the genuine set361

membership relation P. Such an ⟨W , P⟩ is called a transitive P-model. However terms can have different362

interpretations even when considered in V and in a standard transitive model ⟨W , P⟩. We first have to363
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say what it means for an axiom or sentence to “hold” or “to be interpreted” in such a structure. We364

build up a definition by recursion on the structure of by straightforwardly restricting quantifiers to the365

new putative “universe”W .366

Definition 1.19 Let W be a term. We define by recursion on complexity of formulae of L the relativi-367

sation of to W, W:368

(i) (x P y)W =df (x P y) ; (x = y)W =df (x = y) ;369

(ii) (¬ )W =df ¬( W) ;370

(iii) ( ∨ )W =df ( W ∨ W) ;371

(iv) (Dx )W =df Dx P W W if x is not in FVbl(W) ; otherwise this is undefined.372

Notice that we can always ensure that ( )W is defined by replacing the bound variables in by others373

different from those ofW . We tacitly that this has always been done when discussing relativising formu-374

lae. It is immediate that, e.g. (@x )W ←→ @x P W W . We shall be thinking of class termsW as being375

potential P- structures - meaning that we shall be thinking of them potentially as models ⟨W , P⟩. We376

shall read ( )W as “ holds in W” or “ holds relativised to W”. The following theorem (with Γ = ∅)377

says the theorems of predicate calculus in L are valid in non-empty P-structures ⟨W , P⟩. We use the378

shorthand that if Γ is a finite set of formulae, then ⋀⋀ Γ is the single formula that is the conjunction of379

those in Γ.380

Theorem 1.20 Let Γ ∪ { } be a finite set of sentences in L and W a transitive non-empty term; assume381

that if x⃗ is a list of all the variables occurring in Γ ∪ { } then x⃗ ∩ FVbl(W) = ∅.382

If Γ ⊢ then (⋀⋀ Γ)W %→ W.383

Proof: By induction on the length of the derivation of from Γ. Q.E.D.384

385

This is just as it should be: roughly, it is a form of Soundness: if we can prove that is derivable from386

a set of axioms true in a structure, then should be true in that structure.387

Lemma 1.21 Let W be a transitive class term,Then (AxExt)W.388

Proof: The Axiom of Extensionality relativised toW is:389 (@x@y(@z(z P x ↔ z P y)→ x = y))W390 ↔ @x P W@y P W(@z(z P x ↔ z P y)→ x = y)W391 ↔ @x P W@y P W(@z P W(z P x ↔ z P y)W → (x = y)W)392 ↔ @x P W@y P W(@z P W(z P x ↔ z P y)→ x = y)393

SinceW is transitive, if x , y P W then x , y Ď W . Hence if Dz(z P x/y∪y/x) then Dz P W(z P x/y ∪ y/x).394

Hence the→ of the last equivalence is true! Q.E.D.395

396

The next concern is how to relativise a formula that contains class terms. It should turn out that if we397

have such a formula we should be able to first relativise the terms it contains to W (Def.1.22) and then398

substitute the results into the relativised formula of L.399

Definition 1.22 Let t = {x ∣ } be a class term; the relativisation of t toW, is: tW =df {x P W ∣ W}.400
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Example (i) VW = {x ∣ x = x}W = {x P W ∣ (x = x)W}. Since (x = x)W is just x = x, this renders401

VW = V ∩W =W .402

Example (ii) (⋃ x)W = ({z ∣ Dy(z P y P x)})W = {z P W ∣ (Dy(z P y P x))W} = {z P W ∣ Dy P403

W(z P y P x)W} = {z P W ∣ Dy P W(z P y P x)}.404

Notice that if additionallyW is a transitive term, (i.e. defines a transitive class) then x P W %→ x Ď405

W ; moreover @y(y P x %→ y Ď W). Hence {z P W ∣ Dy P W(z P y P x)} = {z ∣ Dy(z P y P x)}406

and so in this case (⋃ x)W = ⋃ x. This demonstrates that ⋃ is an absolute operation for transitive classes407

and the process of relativisation yields the same set. We shall be particularly interested in such absolute408

operators and similarly absolute properties for transitive classes.409

Lemma 1.23 Let t, . . . , tn and W be terms, with W transitive, let (x, . . . , xn) be in L; then assuming
y⃗ Ě FVbl( (t, . . . , tn)):

@ y⃗ P W( (t, . . . , tn)W ←→ W(tW , . . . , tWn )).
Remark: The lemma is about syntax, formulae and terms. The xi ’s are (meta-)variables (“meta” because410

they are standing in for some official variables vi , . . . vin ). In this context the notation is supposed411

to mean that each of the terms t, . . . , tn is then substituted for the corresponding variable x, . . . xn.412

Above we said that we should more properly indicate this by: “ (t/x, . . . , tn/xn)” but this becomes413

too cumbersome, and too tedious to do all the time, so we just leave it for the reader to do depending on414

the context.415

416

Proof: By induction on the complexity of . Q.E.D.417

Exercise 1.4 Convince yourself of the truth of the last lemma. [Hint: At least set out the base cases of the induc-418

tion: suppose is v P v and let t = x, t = {z ∣ }. Then (x P t)W ↔ (x P {z ∣ })W ↔ (x/z)W ↔ x P {z ∣419

z P W ∧ W}↔ xW P (t)W . The other base cases are relatively straightforward, but a little lengthy to write out.420

The inductive step for non-atomic formulae is easy by comparison.]421

Lemma 1.24 Let W be a transitive term and suppose for any x , y P W, {x , y} P W, then (AxPair)W.422

Proof: We need to show ({x , y} P V)W . First just note that by Def. 1.22:

{x , y}W = {z P W ∣ (z = x ∨ z = y)W} = {z P W ∣ z = x ∨ z = y} = {x , y}.
By supposition we have that: @x , y P W({x , y} P W)↔423 ↔ @x , y P W({x , y}W P VW)↔ (@x , y({x , y} P V)W .424

(The last↔ uses implicitly an atomic formula clause from 1.23) Q.E.D.425

Lemma 1.25 Let W be a transitive term.426

(i) If for any x P W , ⋃ x P W then (AxUnion)W;427

(ii) If P W then (Ax . Infinity)W.428

(iii) If for any x P W and any term a x ∩ aW P W then (AxSeparation)W;429

(iv) If for any x P W , and term f with f W being a function, f W“x P W holds, then (AxReplacement)W.430
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Proof: (i) By Example (ii) above, becauseW is assumed transitive, (⋃ x)W = ⋃ x. MoreoverVW = {z P431

W ∣ z = z} =W . By assumption @x P W ⋃ x P W . Hence432

@x P W(⋃ x)W P W ↔ @x P W(⋃ x P V)W ↔ (@x⋃ x P V)W ; the latter is (AxUnion)W .433

(iii) We need to show (@x a ∩ x P V)W . Suppose y⃗ = FVbl(a). This is equivalent (by Lemma 1.23)434

to, @ y⃗ P W :435

@x P W((a ∩ x)W P VW)W ↔ @x P W((a ∩ x)W P W).436

But, for any x P W , ∶437 (a ∩ x)W = {z P W ∣ (z P a ∧ z P x)W} = {z P W ∣ z P aW ∧ z P x}.438

As Trans(W), x Ď W , so this is aW ∩ x. By assumption this is indeed inW . Q.E.D.439

Exercise 1.5 Show (ii) and (iv) of the last Lemma.440

Lemma 1.26 LetW be a non-empty transitive term satisfying all the hypotheses of Lemmata 1.24, 1.25.Then441 (ZF−)W that is, each axiom of ZF− holds inW.442

Proof: We are only left with the Axioms of the Empty Set and Foundation. But ∅W = ∅ (Check!), and443 ∅ is a member of any non-empty transitive class (why?). For Foundation let a be a term, and suppose444

that (a ≠ ∅)W . Suppose x P aW ∩W . Now, by Axiom of Foundation (applied in V ) as aW ≠ ∅, let x445

be an element of aWwith x ∩ aW = ∅. Hence (a ≠ ∅→ Dz(z ∩ a = ∅))W . Q.E.D.446

447

Lemma 1.26 is again a theorem scheme: given a class term for which we can prove the assumptions448

hold for it, (which itself is an infinite list of proofs in ZF if all the assumptions of Lemma 1.25 are verified)449

then the lemma states that for any axiom of ZF− then ZF ⊢ W . (This can be trivially extended to a450

finite list of axioms ⃗ by taking a simple conjunction - but it cannot be extended to an infinite list!) The451

next lemma gives a sufficient (but not necessary) condition for AxPower to hold in a transitive class term.452

The proof is similar to those above.453

Lemma 1.27 Let W be a transitive term satisfying for any x P W, that P(x) P W; then (AxPower)W.454

Consequently if W satisfies this in addition to the hypothesis of the last lemma then (ZF)W, that is all of455

ZF holds in W.456

We shall see later that we can prove the existence of transitive P-models ⟨W , P⟩, with W a set, for457

which (ZF−)W , by establishing the existence of transitive sets satisfying precisely the above closure con-458

ditions. We thus shall show for such a W that, assuming ZF, we can show (ZF−)W . However in ZF we459

cannot prove the existence of sets (transitive or otherwise)W for which (ZF)W . (We shall see that this460

leads to a contradiction with Gödel’s Second IncompletenessTheorem.)461

Exercise 1.6 Let (v , . . . , vn) be any formula. Let g ( y⃗) ≈ the least such that Dx (x , y⃗)→ Dx P V (x , y⃗) if462

such an x exists; let it be  otherwise. Show that @ g “V P V . Deduce that f ( ) =d f sup(g “V ) is a welldefined463

function.464

Exercise 1.7 Let W be the class term {∅}. Which axioms of ZFC hold in ⟨W , P⟩? Consider the class term On.465

Which axioms of ZFC hold in ⟨On, P⟩? (NB For the latter ⟨On, P⟩ just is ⟨On, <⟩.)466

Exercise 1.8 Which axioms of ZFC hold in V ?467
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Exercise 1.9 Check, or recheck, the following basic properties of the V using the Definitions 1.17, 1.18 of and468

V : (i) Trans(V ); in particular show if x P V then @y P x(y P V ∧ (y) < (x));469

(ii) < %→ V Ď V ;470

(iii) V + = P(V );471

(iv) If x P V, then (x) = least so that x Ď V = least such that x P V +.472

(v) ( ) = ;473

(vi) On∩V = .474

Exercise 1.10 There are a number of definable wellorders on nOn: here is one: for ⃗ = ⟨  , . . . , n−⟩, ⃗ =475 ⟨  , . . . , n−⟩ set ⃗ <n ⃗ iff max(⃗) < max(⃗) or (max(⃗) = max(⃗)) ∧ ( if i is least so that i ≠ i then476

i < i). <n is then ∆ expressible. Check that this is a wellorder.477

Exercise 1.11 Prove that following is a wellorder of On< where the latter is the class of finite sets of ordinals: for478

p, q P [On]< define p <∗ q iff max{p △ q} P q. That is, p <∗ q iff the largest element of p/q ∪ q/p is in q.479

[Hint: it is perhaps to easier to observe first that this ordering is just the lexicographic ordering on the sequences480

p⃗, q⃗ P < On of the sets p, q when written out as sequences in descending order.]481
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Chapter 2482

Initial segments of the Universe483

In this chapter we look at some properties of initial segments of the universeV : typically local properties484

of singular and regular cardinals, and the classes of sets hereditarily of cardinality less than some . These485

do not depend on the whole universe of sets. We shall see that when studying wellfounded models of486

our theory, it suffices to concentrate our efforts on models ⟨M , P⟩whereM is a transitive set, rather than487

more general ⟨N , E⟩. An important application of the Axiom of Replacement is the Montague-Levy488

Reflection Theorem: this says that for any given finite set of formulae, we can prove in our theory that489

there are arbitrarily large V that correctly ‘reflect the truth’ as regards what those formulae say about490

the sets in V . Cardinals that are simultaneously both fixed points of certain functions and regular are491

called strongly inaccessible. If such exist then we can find models, indeed of the form ⟨V , P⟩, of all the492

ZFC axioms. We discuss these in the last section.493

2.1 Singular ordinals: cofinality494

We first do some basic work on notions of regularity, singularity and cofinality. This then leads into the495

concepts of normal functions and closed and unbounded sets, and stationary sets. From these further large496

cardinals can be defined, and although we give the briefest of illustrative examples, it is not the intention497

of the course to go down this route, rich as it is.498

2.1.1 Cofinality499

Definition 2.1 A function f ∶ %→ is a cofinalmap, if sup(ran( f )) = .500

In other words the range of f is unbounded in .501

Example (i) f ∶ %→ + given by f (n) = + n ;502

(ii) f ∶ %→ given by f (n) = n;503

(iii) g ∶  %→  given by g( ) = are all cofinal maps.504

(iv) Define the sequence f () = ; f (n + ) = f (n). Let = sup( f “ ). Then f ∶ %→ is cofinal505

- by construction.506

(v). Let E Ď be any subset. Suppose its order type is . We use the notation fE for the function that507

enumerates E in strictly increasing order. Thus dom( fE) will be which will necessarily be no greater508

17



18 Initial segments of the Universe

than . If E is now unbounded in - that is @ < D P ( , ) then fE ∶ → will be a cofinal map,509

that is moreover (1-1) and strictly increasing.510

Definition 2.2 If A is a set of ordinals, and Lim( ), then we say that A is unbounded below (or in) iff511

@ < D < ( < P A).512

Definition 2.3 The cofinality of a limit ordinal is the least so that there is a cofinal map f ∶ %→ .513

It is denoted cf( ).514

Taking f as the identity map, shows immediately that cf( ) ≤ .515

Definition 2.4 (i) A limit ordinal is singular←→ cf( ) < . Otherwise it is called regular.516

(ii) We set:517

Reg =df { ∣ is regular} ; Card =df { ∣ a cardinal} ;518

Sing =df { P Card ∣ a singular} ; LimCard =df { P On ∣ a limit cardinal }.519

Example (i) cf( + ) = . The above example shows that cf( + ) ≤ ; but it cannot be strictly less520

since no function with finite domain can have unbounded range in + . The same holds for (ii) above521

cf( ) = . and ℵ = is an example of a cardinal with a smaller cofinality. It will follow from below522

that cf( ) = .523

Exercise 2.1 If Lim( ) show that for any > , cf( ⋅ ) = cf( + ) = cf( ).524

One could define cofinality for successor , but then it comes out always as 1, and this has little utility!525

Lemma 2.5 cf( ) ≤ ∣ ∣ ≤ . Thus, a regular ordinal must be a cardinal; to rephrase:

cf( ) = ←→ is regular←→ is regular and a cardinal.

Examples: =  = ℵ P Reg (Hausdorff 1908);  = ℵ P Reg, indeed:526

Lemma 2.6 (Hausdorff 1914) Any + P Reg.527

Proof: Suppose this failed then note that if f ∶ %→ + with ran( f ) unbounded in +, but < +,528

we would have that + = ⋃ < f ( ) - in other words, the union of ∣ ∣ < + many sets of size < +.529

Assuming AC this is impossible - this union could have size at most ! Q.E.D.530

531

Thus any ℵ + = ℵ+ is regular. (These are called successor cardinals.) The first singular cardinal is ℵ ,532

the next is ℵ + ; also ℵ  ,ℵ P Sing. By Hausdorff ’s observation above, a singular cardinal is always a533

limit cardinal: it occurs as a limit point of the cardinal enumeration function: ↣ ℵ . We shall consider534

the question of whether the converse fails, that is whether there are cardinals that are simultaneously535

limit cardinals and regular later.536

Lemma 2.7 For any limit ordinal :537

(i) cf( ) is the least ordinal so that there is a (1-1) strictly increasing cofinal map f ∶ %→ ;538

(ii) cf(cf( )) = cf( ); hence (Hausdorff 1908) cf( ) is regular;539

(iii) If f ∶ %→ is cofinal and strictly increasing, then cf( ) = cf( ).540
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Proof: (i) Let f ∶ cf( )%→ be any cofinal map. We define a g ∶ cf( )%→ of the desired kind from
f by recursion on < cf( ):

g() = f (); g( + ) =max{g( ) + , f ( )} and Lim( )→ g( ) = sup{g( ) ∣ < }.
Note that a) for g( ) < implies g( + ) < and b) for any Lim( ), < c f ( ), g( ) is properly541

defined simply because < c f ( ). Thus we have dom(g) = cf( ). By definition g is strictly increasing542

(and moreover is continuous at limit ordinals - see Def. 2.11(ii) below). As it dominates f it is cofinal543

into .544

(ii) Let = cf(cf( )). Then ≤ cf( ). However if < cf( ) and f , g are chosen so that f ∶ %→545

cf( ), g ∶ cf( ) %→ are both strictly increasing and cofinal, then their composition g ○ f ∶ %→546

cofinally, contradicting the definition of cf( ). Hence = cf( ).547

(iii) Exercise. Q.E.D.548

Corollary 2.8 If Lim( ) then cf( ) = cf( ).549

Exercise 2.2 Prove (iii) of lemma 2.7 and the corollary following.550

The following gives an alternative characterisation of cofinality for cardinals.551

Lemma 2.9 For any infinite cardinal cf( ) is the least ordinal so that there is a sequence ⟨X ∣ < ⟩552

with each X Ď ∧ ∣X ∣ < and ⋃ < X = .553

Proof: Let be the least such ordinal defined in the lemma. If cf( ) = then for some cofinal function554

h ∶ → , we have = ⋃ < h( ). So ≤ cf( ). So suppose for a contradiction that < cf( ), and we555

have ⋃ < X = , with each X Ď ∧ ∣X ∣ < . Define f ( ) = ∣X ∣ < . As < cf( ) we have ran( f )556

is bounded by some < . Let g ∶ X ↔ ∣X ∣ be a bijection. Define G( ) = ⟨ , g ( )⟩ where is least557

so that P X . Then G ∶ → ˆ is (1-1). But then ∣ ∣ ≤ ∣ ˆ ∣ =max{∣ ∣, ∣ ∣} < . Contradiction!558

Q.E.D.559

Exercise 2.3 (E) (This exercise uses the definition of h( ) from Exercise 2.39.) Suppose is a singular cardinal.560

Show that ∣h( )∣ = ∣P( )∣. Calculate (h( )).561

2.1.2 Normal Functions and closed and unbounded classes562

For the rest of this section we let Ω denote a regular, uncountable cardinal.563

Definition 2.10 Let A be a term and suppose A Ď Ω. (i)Then A is closed if @ < Ω (A∩ is unbounded564

in %→ P A).565

(ii) We say A is c.u.b. in Ω if it is both closed and unbounded in Ω.566

Note: In clause (i) we deliberately do not require Ω to be in A if the latter is unbounded in Ω. Closure567

is equivalent to requiring that (ii)′: for any x P V if x Ď A then sup x P A ∪ {Ω}. (Exercise: Check this568

equivalence.)569
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Examples (i) The cofinal maps from the Examples of the last subsection are all closed and cofinal,570

although the first three which were maps just from cofinally into their range are rather trivially closed.571

The function g in the proof of (iii) of Lemma . was deliberately constructed to have range closed and572

unbounded in - closure was obtained by taking for limit ordinals , g( ) to be the supremum of g“ .573

(ii)The class terms Lim =df { P On ∣ a limit ordinal}, Card, LimCard, are all c.u.b. in On.574

Definition 2.11 (Normal Function). Let f ∶ Ω %→ Ω . Then f is normal if575

(i) < %→ f ( ) < f ( ) ;576

(ii) (continuity) Lim( )%→ f ( ) = sup{ f ( ) ∣ < }.577

Property (ii) says that f is continuous. Normal functions are quite common: all the ordinal arithmetic578

operations yield normal functions: A ( ) = + ;M ( ) = . , E ( ) = are all normal functions.579

The ℵ-function which enumerates the cardinals is normal by design.580

Exercise 2.4 Let ≤ P Reg. Define by induction on < a function f ∶ %→ , by f () = ; f ( + ) =581

f ( )+ and Lim( )→ f ( ) = sup{ f ( ∣ < }. Then check that f is indeed defined for all < and that f is582

normal. Use f to define a partition of into many disjoint sets of cardinality by settingD = { f ( )+ ∣ > }.583

Check that D ∩ D ′ = ∅ for ≠ ′ < ; and that ⋃ < D = .584

Enumerating functions of sets of ordinals are usually taken as monotonic on their domains, where,585

if A Ď On we say fA enumerates monotonically A if fA ∶ dom( fA) ←→ A is a bijection enumerating the586

elements of A in increasing order; to spell it out: fA() = min(A); f ( ) = min(A/ f “ ) if the latter is587

non-empty; otherwise f ( ) is undefined, and so dom( f ) = for the least such undefined f ( ).588

Lemma 2.12 (Veblen 1908)589

(i) Let A Ď Ω. Then A is c.u.b. in Ω iff the enumerating function for A, fA, is normal with dom( fA) =590

Ω;591

(ii) let f ∶ Ω %→ Ω be increasing. Then f is normal iff ran( f ) is c.u.b. in Ω.592

Proof: (i) Let f = fA. (⇐) As dom( f ) = Ω, and f is (1-1), ran( f ) cannot be bounded in the cardinal593

Ω. So A is unbounded in Ω. The continuity of f translates directly into the closure of A: if < Ω and594

suppose A ∩ is unbounded in . Let < Ω be such that f ↾ enumerates A ∩ ; then we have that595

Lim( ) and by continuity of f , f ( ) = sup f “ = and so must be in A.596 (⇒) Clearly f is a monotone increasing function: < < Ω %→ f ( ) < f ( ). As A is closed, then597

fA will be also continuous: if P Ω is a limit then A ∩ f “ is unbounded in sup f “ . So by closure the598

latter is in A and is then f ( ). Note now that dom( f )must be Ω since otherwise it is some < Ω and599

f would witness that c f (Ω) ≤ . However Ω was assumed regular.600

(ii) Similar. See the Exercise below. Q.E.D.601

Exercise 2.5 Let f ∶ Ω %→ Ω be strictly increasing. Then f is normal iff ran( f ) is c.u.b. in Ω.602

Lemma 2.13 Let C Ď Ω be c.u.b. in Ω. Let fC be the enumerating function of C. Then the class of fixed603

points of fC ∶ D =df { < Ω ∣ fC( ) = } is c.u.b. in Ω. Hence for any normal function f ∶ Ω → Ω there604

is a c.u.b. class of points < Ω that are fixed points for f : f ( ) = .605
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Proof: Again let f = fC . Let P Ω be arbitrary. We find a member of D above (this shows that D is606

unbounded inΩ). Define:  = ; n+ = f ( n); = sup({ n ∣ n < }). Note that ≠ Ω. This is clear607

by the assumption of Ω’s regularity. We claim that P D. Let < . Then for some n < n < .608

Hence f ( ) < f ( n) = n+ < . Hence f “ Ď . As f is continuous, f ( ) = P D. We are609

left only with showing that D is closed. Let < Ω with D ∩ unbounded in . Similar to showing the610

closure of under f above we have that f “ Ď (as any < is less than some fixed point < ),611

and again by continuity f ( ) = . The last sentence is immediate as ran( f ) is c.u.b. in Ω. Q.E.D.612

Definition 2.14 For any E Ď On define E˚ to be the class of limit points of E: namely those limit ordinals613

such that ∩ E is unbounded in .614

Exercise 2.6 For any E Ď On, show that E˚ is a closed class, and if E P V with cf(sup(E)) > , then E˚ is c.u.b.615

below sup(E).616

Exercise 2.7 (i) Suppose Ω P Reg Let C ,D Ď Ω be c.u.b.inΩ. Show that C∩D is c.u.b. inΩ. (ii) Now generalise617

this argument: suppose Ω is a regular cardinal. Let < Ω. Let ⟨C ∣ < ⟩ be a sequence of c.u.b.in Ω classes.618

Show that ⋂ < C is c.u.b. in Ω.619

Remark 2.15 Weused the letterΩ isn this subsection rather than a generic mid-alphabet letter such as620

for a cardinal (our usual convention) since it is possible to construe the results here as also holding when621

Ω is interpreted as the class term On. To this extent On behaves like a ‘regular cardinal’, and we can622

interpret many results here as holding about terms a Ď On which are not necessarily sets. One should623

be a little more careful than we have, when talking about sequences of classes if we allow Ω = On. In624

this case to define a sequence of classes ⟨C ∣ < ⟩ with C Ď On, we should speak about a single class625

term c of ordered pairs ⟨ , ⟩ with C Ď On being defined as the class { ∣ ⟨ , ⟩ P c}. With care this is626

unambiguous and proper. We could do the same in the following exercise, but have chosen not to, and627

have returned to our assumption that Ω as a regular cardinal.628

Exercise 2.8 (Diagonal Intersections) Let Ω P Reg. Let ⟨E ∣ < Ω⟩ be a sequence of subsets of Ω. Define629

the diagonal intersection of the sequence to be the set D = ∆ <Ω⟨E ∣ < Ω⟩ =df { < Ω ∣ @ < ( P E )}.630

Now suppose that the E are all c.u.b. in Ω. (i) Show that the diagonal intersection D is c.u.b. in Ω. (ii) Show that631

D = ⋂ <Ω(E ∪ ( + )).632

Definition 2.16 The ℶ (beth) function is defined by:633 ℶ = ; ℶ + = ℶ ; ℶ = sup{ℶ ∣ < } if Lim( ).634

This normal function has a range which as always is c.u.b. in On. By the last lemma it has a c.u.b. in635

Ω class of fixed points so that = ℶ .636

Exercise 2.9 Show that @ (∣V + ∣ = ℶ ).637

Exercise 2.10 (i) Check that the GCH (Generalised Continuum Hypothesis: that @ (ℵ = ℵ +)) implies that638

@ (ℵ = ℶ ). (ii) Show that the first fixed point of the ℶ function has cofinality . (iii) Show that for any regular639

cardinal there is , a fixed point of the ℶ function, with cf( ) = . [Hint: this is simple, just consider an640

enumeration of the fixed points.]641
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Definition 2.17 (The c.u.b. filter on , F ) Let > be regular; let642

X P F ←→ DC Ď (C is c.u.b. ∧C Ď X).643

Exercise 2.11 Show that F has the following properties:644

(i) X P F ∧ Y Ě X %→ Y P F645

(ii) X ,Y P F %→ X ∩ Y P F646

(iii) @ < { } R F647

(iv) @ < @⟨X ∣ < ⟩[@ (X P F)%→ ⋂ < X P F]648

(v) @⟨X ∣ < ⟩[@ (X P F)%→ ∆ < X P F].649

A non-empty collection F of subsets of satisfying (i) and (ii) is called a filter on ; property (iii)650

states that the filter is non-principal; (iv) states that the filter is -complete; a filter closed under diagonal651

intersections (see Exercise 2.8) in (v) is called normal. Not listed is the obvious fact about F that it is652

non-trivial: ∅ R F. A filter is called an ultrafilter if for every X Ď either X or /X is in F. The existence653

of ultrafilters on > satisfying additionally (iii) and (iv) cannot be proven in ZFC, (they can for = )654

but is crucial for studying many consistency results in forcing theory, and for considering elementary655

embeddings of the universe V to transitive subclasses of V . A class of subsets of on which there is656

an ultrafilter satisfying (i)-(iv) is often said, in an equivalent terminology, to have a -valued measure,657

in which case property (iv) is called “ -additivity”. Sets have value / depending on whether they are658

out/in the ultrafilter. (iii) then translates as “points have measure 0”.659

2.1.3 Stationary Sets660

Definition 2.18 Let E Ď Ω. Then E is called stationary in Ω if for every C Ď Ω which is c.u.b., then661

E ∩ C ≠ ∅.662

If we were to talk about a class term S Ď Ω being stationary where Ω is allowed to be the class of all663

the ordinals, we should declare more precisely what this means: it means that for any class term c such664

that we can prove in ZFC that c is a closed and unbounded class of ordinals, then we can also prove that665

c ∩ S ≠ ∅.666

Stationary subsets of regular cardinals (or subclasses of On) exist: any c.u.b. subset of with667

regular is stationary, by Exercise 2.7 (i). (Similarly for subclasses of On). But there are other stationary668

subsets of regular cardinals.669

Exercise 2.12 Let S Ď Ω be stationary and C Ď Ω be c.u.b. Then S ∩ C is stationary.670

Exercise 2.13 Let S Ď Ω be stationary. Show that S ∩ S˚ is stationary.671

Example 1 Let = . Then S =df { <  ∣ cf( ) = } and S  =df { <  ∣ cf( ) = } are two672

disjoint stationary subsets of : letC Ď  be any c.u.b. subset. Let f ∶  %→ C be its strictly increasing673

enumerating function. Then f ( ) P C ∩ S and f ( ) P C ∩ S  .674

Exercise 2.14 Can you generalise this example to larger regular cardinals, e.g. n for n < , or any regular > ?675

Exercise 2.15 Find Sn Ď ℵ + stationary, for n < , with Sn+ Ď Sn but with ⋂n Sn = ∅.676

The reason for the nomenclature comes from (ii) of the following Lemma.677
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Lemma 2.19 (Fodor’s Lemma 1956) Let > be a regular cardinal. The following are equivalent.678

(i) S is stationary in ;679

(ii) For every function f ∶ S %→ On which is regressive (that is @ P S( > %→ f ( ) < ) ), there680

is a stationary set S Ď S and a fixed  so that @ P S( f ( ) = )681

Proof: Assume (i). If (ii) failed for some regressive function f then we should be able to define for682

every < a c.u.b. C with P C ∩ S %→ f ( ) ≠ . Let D = { ∣ @ < ( P C )} be the diagonal683

intersection of ⟨C ∣ < ⟩. Then D is c.u.b. in and for any P D ∩ S , f ( ) ≮ . But if P D ∩ S we684

must have f ( ) < , which is a contradiction. (ii) implies (i) is trivial. Q.E.D.685

Remark: AC was used heavily in picking the C in the above; if one attempts the proof without using686

AC one obtains in (ii) only the conclusion that for some  < that f −“  is unbounded in . Because687

one cannot in general pick class terms, if one attempts to prove the Lemma by considering regressive688

functions on all of On, rather than just , one again weakens the conclusion (see the next Exercise).689

Exercise 2.16 (E) Let f be a function class term with dom( f ) = On and f regressive. Show that for some 690

f −“{ } is unbounded in On. [Hint: Suppose the conclusion fails; then define g( ) = sup f −“{ }; now find 691

closed under g: g“  Ď .]692

We could have defined stationary subsets of ordinals with cf( ) > . This is possible, but notice693

that it would make no sense to define the notion of a stationary subset if cf( ) = . For, if f ∶ %→694

is a strictly increasing function cofinal in then ran( f ) is c.u.b. in ; but it is easy to define another c.u.b.695

in set C (of order type ) with ran( f ) ∩ C = ∅ so it makes little sense to even try to define stationary696

in this way.697

We saw above that  contained two disjoint stationary subsets. In fact far more is true. (The proof698

of this theorem is omitted.)699

Theorem 2.20 (Bloch (1953), Fodor (1966), Solovay (1971)) Let > be regular, and let S Ď be station-700

ary. Then there is a sequence of many disjoint stationary sets S Ď S for < (i.e. for < < S ∩S =701 ∅) with S = ⋃ < S .702

Exercise 2.17 (˚)(E) (H.Friedman) Let S Ď  be stationary. Then for any <  there is a closed subset C Ď S703

with ot(C ) = + . [Hint: Do this by induction on for any stationary S. This is trivial for = +  assuming it704

is true for (just add on more point P S above sup(C ) to C to get C + of order type + ). Assume Lim( )705

and for < we can find such C . Note that for any we can find such C with min(C ) ≥ - by considering706

the stationary S/ . Let ⟨ n ∣ n < ⟩ be chosen with supn n = ; for any then pick closed subsets C n Ď S of707

order type n +  and with min(C n+) > sup(C n).Then⋃n C n Ď S and is closed in S with the exception of the708

point sup(⋃n C n). Call a point arrived at as a sup of such a sequence of sets C n an “exceptional” point. We have709

just shown that the exceptional points are unbounded in . But now just note that a limit of exceptional points710

is also exceptional. That is, they form closed subset of . As S is stationary there is an exceptional point P S.711

This can be added to the top of the sequence of points from the sets C′
n
witnessing the exceptionality of ; this712

sequence then has order type +  and is contained in S.713

Remark: This is not the case at higher cardinals, e.g. . Let (⋆) be the statement “for any X Ď  and any714 <  either X or /X contains a closed set C with ot(C) = ”. Then ZFC /⊢ (⋆).715
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2.2 Some further cardinal arithmetic716

We give some further results on cardinal arithmetic.717

Definition 2.21 Let ⟨ ∣ < ⟩ be a sequence of cardinal numbers. Let ⟨X ∣ < ⟩ be a sequence of
disjoint sets, with = ∣X ∣. (i)Then we define the cardinal sum

∑< = ∣ ⋃< X ∣.
(ii) the cardinal product is defined as∏ < = ∣∏ < X ∣718

Note: (i) as usual these values are independent of the choices of the X . For the product the require-719

ment that the sets X be disjoint may be dropped.720

(ii) If all the = ≥ for some fixed , and P Card, then∑ < = ⊗ and∏ < = .721

Exercise 2.18 Show that∏ < = (∏ < ) and∏ < = Σ < .722

Exercise 2.19 Show that if ≥  for < , then∑ < ≤∏ < .723

Exercise 2.20 Show that∏ distributes over∑, i.e. that∏ < ∑ < , = ∑ fP ∏ , f ( ).724

Lemma 2.22 If ≤ P Card and ⟨ ∣ < ⟩ is a non-decreasing sequence of non-zero cardinals, then725 ∏ < = (sup < ) .726

Proof: We partition into many disjoint pieces each of size (by using some bijection ∶ ˆ ↔ ).
Let us say then that = ⋃ < X . Because the sequence of the is non-decreasing, and each X is
unbounded in , we still have sup PX = sup < = say, for each < . Now note that we may
reorganise the product

∏< as ∏<
⎛
⎝ ∏PX

⎞
⎠ .

But∏ PX ≥ sup PX = , hence we have that∏ < ≥∏ < = .727

Conversely∏ < ≤∏ < = . Hence we have equality as desired. Q.E.D.728

Exercise 2.21 ∏n< n  = 
 ;∏n< 

n = ( )  ;729

Theorem 2.23 (König’sTheorem) If < for < then

∑< <∏< .

Proof: Pick X for < with ∣X ∣ = . We shall show that if Y Ď ∏ < X for < are730

such that ∣Y ∣ ≤ , that then ⋃ < Y ≠ ∏ < X . Hence we cannot have ∑ < ≥ ∏ < . Let731

P = { f ( ) ∣ f P Y } be the projection of Y on to the ’th coordinate. As ∣Y ∣ < ∣X ∣, ∣P ∣ < ∣X ∣ but732

P Ă X . So let f P ∏ < X be any function so that for any < f ( ) R P . Then f cannot be in733

any Y . Thus ⋃ < Y ≠∏ < X as we sought. Q.E.D.734
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Exercise 2.22 Deduce Cantor’sTheorem that <  from König’sTheorem.735

Corollary 2.24 For all , and for all cf( ) > . Hence in particular cf( ) > for any cardinal736

.737

Proof: Let be a sequence of cardinals for < with < . It suffices to show that∑ < <
. Let be the fixed sequence with all = . By König’s Lemma then

∑< <∏< = ( ) = .

Q.E.D.738

Corollary 2.25 cf( ) > for any cardinal ≥ .739

Proof: For < cf( ) let be less than so that = ∑ <cf( ) . Then740

= ∑ <cf( ) <∏ <cf( ) = cf( ). Q.E.D.741

742

We may put some of these facts to gether to get some more information about the exponentiation743

function under GCH. First:744

Exercise 2.23 If < cf( ) then = ⋃ < = ⋃cf( )< < .745

Theorem 2.26 Suppose GCH holds and , ≥ . Then takes the following values:746

(i) + if ≤ ;747

(ii) + if cf( ) ≤ < ;748

(iii) if < cf( ).749

Proof: (i) follows from =  = +. (ii) < cf( ) ≤ ≤ =  = +; (iii) We use Ex.2.23.750 = ∣⋃ < ∣. But ∣ ∣ ≤ ∣ ∣ = ∣ ∣ = ∣ ∣+ < . So ≤ ≤ ⊗ sup < ∣ ∣+ = . Q.E.D.751

752

Without GCH the only known constraints on the exponentiation function for regular cardinals are753

(a) <  and (b) < →  ≤  . For singular the situation is more subtle and a discussion of this754

involves large cardinals.755

Exercise 2.24 Prove that ℶℵ = Πnℶn = ℶ +. [Hint: Every subset of ℶ can be coded as a function → ℶ .]756

Exercise 2.25 Assume CH but not GCH. Show that (ℵn)ℵ = ℵn for  ≤ n < .757

2.3 TransitiveModels758

We have seen how certain assumptions about a transitive set or class term allows us to conclude that a759

number of the ZF axioms hold, by relativisation to that set or term. When thinking of a term W as a760

structure, which we more properly write ⟨W , P⟩, we say that ⟨W , P⟩ is a transitive model, or transitive761

P model if we wish to emphasise the standard interpretation. We saw that in 1.24 and 1.25 that closure762
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under those lists of conditions ensured that (ZF−)W . The following Lemma allows us to create transitive763

isomorphic copies ⟨M , P⟩ of possibly non-transitive structures ⟨H, P⟩. It is known as the “Collapsing764

Lemma” since it collapses any “P-holes” out of the structure ⟨H, P⟩. The Lemma is much more general765

and in fact a structure ⟨H, R⟩ will be isomorphic to a transitive model ⟨M , P⟩ provided that R satisfies766

two necessary conditions: that it be wellfounded, and that it be “extensional”. The latter simply requires767

it to be P-like. Clearly these conditions are necessary, since P is itself wellfounded, and for transitive M768

we always have that (AxExt)M .769

Definition 2.27 Given a term t and a relation R on t we say that R is extensional on t iff for any u, v P770

t, u ≠ v there is z P t with zRu ←→ ¬zRv (i.e. {z P t ∣ zRu} ≠ {z P t ∣ zRv}).771

Note that P is extensional on x if Trans(x) but need not be in general.772

Lemma 2.28 (Mostowski (1949)-Shepherdson (1951)The Collapsing Lemma)773

Let H P V.774

(i) Suppose that R is wellfounded and extensional on H.Then there is a unique transitive term M and775

a unique collapsing isomorphism ∶ ⟨H, R⟩%→ ⟨M , P⟩.776

(ii) Additionally if R ↾ x =P↾ x, x Ď H, and Trans(x), then ↾ x = id ↾ x.777

Proof: (i) (1) If exists, then it is is unique.778

Proof: Suppose , M = ran( ) are as supposed. Let u, v P H. Note if uRv then (u) P (v) as779

preserves the order relations. Thus for v P H: { (u) ∣ u P H ∧ uRv} Ď (v).780

However if z P (v), then z P M, as M is transitive. Hence z = (u) for some u P H with uRv.781

Hence { (u) ∣ u P H ∧ uRv} Ě (v). Thus (v) = { (u) ∣ u P H ∧ uRv}.Thus the isomorphism, if it782

existsmust take this form.783

(2) exists.784

We thus define by R-recursion: (v) = { (u) ∣ u P H ∧ uRv} (˚)785

And take M = ran( ). Trivially Trans(M) by (˚). (3)-(5) will show that is an isomorphism.786

(3) is (1-1).787

Proof: If not pick t P-minimal in M so that there exist u ≠ v with t = (u) = (v). As u ≠ v, and R788

is extensional, there is some w with wRu↔ ¬wRv. Without loss of generality we assume wRu ∧ ¬wRv.789

(The argument in the other case is identical.) Then (w) P (u) = t = (v) . So we must have that for790

some xRv: (x) = (w) (as (v) is the set of all such (x)’s). But now if we set s = (x), we have s P t791

and (x) = (w) = s and, as ¬wRv, x ≠ w. However this s contradicts the P-minimality in the choice792

of t.793

(4) is onto.794

This is trivial as M is defined to be ran( ).795

(5) is an order preserving isomorphism.796

We have already that is a bijection. This then follows from the definition at (˚): uRv → (u) P797 (v).798

This finishes (i). For (ii) we now assume that R ↾ x =P↾ x, Trans(x) and x Ď H.799

(6) ↾ x = id ↾ x.800
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Then for v P x we have v Ď x Ď H. Thus (˚) becomes, for v P x: (v) = { (u) ∣ u P v}. Now, by801

P-induction on P↾ x ˆ x we have @v P x[(@u P v → (u) = u)→ (v) = v]→ @v P x( (v) = v).802

Q.E.D.803

804

The resulting structureM is called the ‘collapse’, or better, the ‘transitive collapse’ of ⟨H, R⟩. To illus-805

trate how the Collapsing Lemma works note the following exercise:806

Exercise 2.26 Let ⟨H, R⟩ P WO. Apply the Collapsing Lemma. What is the outcome?807

Note the use in the above of a recursion along the wellfounded relation R rather than P. More gen-808

eralised forms of this argument are possible. We may take any class term t in place of the set H and809

provided the wellfounded extensional relation R is set-like - meaning for any u P t {v ∣ vRu} P V , then810

the same argument may be used, and a class term M defined in the same way.811

Lemma 2.29 (GeneralMostowski-Shepherdson Collapsing Lemma) Let A be a class term.812

(i) If R Ď Aˆ A be a wellfounded extensional relation which is set-like in the above sense. Then there813

is a unique term M, and unique collapsing isomorphism ∶ ⟨A, R⟩%→ ⟨M , P⟩.814

(ii) If R =P then if s is a transitive term with s Ď A, then ↾ s = id ↾ s.815

Exercise 2.27 Show that V can be ‘coded’ as a subset of : that is there is E Ď so that ⟨ , E⟩ ≅ ⟨V , P⟩. [Hint:816

Define nEm ←→df the “n” column in the binary expansion of m contains a 1; (thus {n ∣ nE} = {, , }); check817

there is u satisfying ⟨ , E⟩ ≅ ⟨u, P⟩ with Trans(u). Show u = V .]818

Exercise 2.28 Show if ⟨A, P⟩, ⟨B, P⟩ are transitive sets, and f ∶ ⟨A, P⟩ ≅ ⟨B, P⟩ is an isomorphism, then f = id ↾ A.819

Exercise 2.29 Suppose Trans(x) and f ∶ ↔ x is a bijection. Define E Ď ˆ by: ⟨ , ⟩ P E ←→ f ( ) P f ( ).820

Show that ⟨ , E⟩ ≅ ⟨x , P⟩ and that the isomorphism is theMostowski-Shepherdson collapsemap. Let g ∶ ˆ ↔821

be a further bijection. Then if Ẽ = g−“E, we can then think of x as coded by a subset of , namely by Ẽ. Note that822

x will have  -many such different codes depending on the function f .823

Exercise 2.30 Find an example of an ⟨x , P⟩ which is not extensional. If we nevertheless apply the Mostowski-824

Shepherdson Collapse function to it, what happens?825

2.4 The H sets826

The following collects together sets whose transitive closure is of a certain maximal size. The phrase827

“hereditarily of [property ]”means that not onlymust an x have property , but somust all itsmembers,828

and their members, and .. and so on.829

Definition 2.30 Let be an infinite cardinal. H =df {x ∣ ∣TC(x)∣ < } is the class of sets hereditarily830

of cardinality less than .831

We summarise the properties of these classes.832
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Lemma 2.31 Let be an infinite cardinal.833

(i) On∩H = ; Trans(H );834

(ii) H Ď V and hence H P V +, (H ) = ;835

(iii) y P H ∧ x Ď y %→ x P H ;836

(iv) x , y P H %→ ⋃ x , {x , y} P H ;837

(v) (AC) regular%→ @x(x P H ↔ x Ď H ∧ ∣x∣ < ).838

Proof: (i) Exercise; (ii): if x P H we have ∣TC(x)∣ < ; we use Ex.1.2: let = “TC(x), and as839

P Card, we cannot have ≤ ; hence (x) = (TC(x)) ≤ < and thus x P V +. Thus H Ď V ,840

thence H P V +; as Ď H , we have (H ) ≥ . (ii) is completed.841

Exercise 2.31 Prove (i), (iii)-(iv) here. Give an example to show that (v) fails if is singular.842

(v) (→) Assume x P H . As Trans(H ) ∧ x Ď TC(x) this follows from the definition of H . (←)843

As TC(x) = x ∪⋃{TC(y) ∣ y P x}, it is the union of less than many sets all of cardinality less than .844

By AC such a union has itself cardinality less than so we are done. Q.E.D.845

Lemma 2.32 (AC) > ∧ regular%→ (ZFC−)H . More formally: let%→ be a finite list of axioms from846

ZFC− .Then ZFC ⊢“ > ∧ regular%→ (⋀⋀%→)H .”847

Proof: We appeal to Lemma 1.26 once we have observed that Separation, Replacement, and Choice848

axioms hold relativised to H , the others follow from Lemma 2.31. (AxSeparation)H holds since if aH849

is any term, and x P H then y= aH ∩x is a subset of x and hence it satisfies ∣TC(y)∣ < also. Similarly,850

for the Axiom of Collection, if (r is a relation ∧@xr“x ≠ ∅)H then let s be the function (defined in V )851

given by sx = y ↔ (r(x , y) ∧ x , y P H ∧ @z ă y¬r(x , z)) ∨ (x R H ∧ y = ∅) where ⟨H ,ă⟩ P WO852

for some wellorder ă. Then letting w P H be arbitrary, and applying Replacement (again in V ) we853

deduce that s“w P V . However s“w Ď H and has at most ∣w∣ < many elements. Hence setting854

t = s“w we have t P H as required. For (AC)H let f P H . In particular dom( f ) P H . Assume855

@x P dom( f ) f (x) ≠ ∅. By AC we have g P ∏ f . It is an exercise to check that any such g satisfies856

TC(g) Ď TC( f ) hence g P H . Q.E.D.857

We remark also that the last lemma is false for singular cardinals .858

859

2.4.1 H - the hereditarily finite sets860

For = then H is known as the class of the hereditarily finite sets - and is so also more usually861

abbreviated as HF.862

Exercise 2.32 Show that V = HF. [Hint: For (Ď) use induction on n to show Vn Ď HF. For (Ě) use P-863

induction].864

Lemma 2.33 (ZFC−Ax . Inf +¬Ax . Inf)HF
865

Proof: See Exercise. Q.E.D.866
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Exercise 2.33 Check that HF is closed under all the assumptions of Lemmata 1.24 and 1.25 (except 1.24 (ii)) and867

even the power set operation. Hence (ZFC−Ax . Inf)HF.868

Exercise 2.34 (Ackermann 1937) Investigate the following function f ∶ HF→ : f (x) = ΣyPx f (y).869

2.4.2 H - the hereditarily countable sets870

The class H  is also known as the class of sets hereditarily of countable cardinality, and so also is given871

the abbreviation of HC. P( ) Ď HC and hence we regard the real continuum as a subclass of HC. At872

least in one crude sense, HC “is” P( ), see the following Exercise.873

Exercise 2.35 If x P HC then we have ∣TC(x)∣ ≤ . Define a wellfounded extensional relation E on so that874 ⟨ , E⟩ ≅ ⟨TC(x), P⟩. [Hint: We have a bijection f ∶ N ←→ TC(x) for some N ≤ ; define nEm↔ f (n) P f (m).875

] If we use a recursive pairing bijection p ∶ ←→ ˆ (for example p−(⟨k, l⟩) = k .(l + )− ) we may further876

code E as a subset E Ď . We thus have effectively coded up TC(x) as a subset of .] (By using further such877

coding devices we may take any countable structure with domain in HC and code it up as a subset of . In this878

sense to study all countable structures is to study all of P( ).)879

However unlike the case of and HF, we cannot identify HC with any V : V + Ě P( ) but V +880

does not contain any countable ordinal > + . But  Ď HC as can be easily determined from its881

definition. On the other hand ∣V +∣ = ∣PP( )∣ =  >  = ∣HC ∣ so V + /Ď HC. Clearly then HC is882

not closed under the power set operation but we do have that all other ZF axioms hold there:883

Lemma 2.34 (ZF−)HC.884

Proof: As HC = H  this is just a case of Lemma 2.32. Q.E.D.885
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Exercise 2.36 Which axioms of ZF hold in V if Lim( )? Find a wellordering ⟨A, R⟩ P V + but for which there886

is no ordinal P V + with ⟨A, R⟩ ≅ ⟨ , <⟩; hence find an instance of the Ax.Replacement that fails in V + .887

[The latter is a model of Z, the axiom system of Zermelo which is ZF with Replacement removed. For almost all888

regions of mathematical discourse, V + is a sufficiently large “universe” - mathematicians never, or rarely, need889

sets outside of this set.]890

How large is H ? This depends again on the power set operation on sets of ordinals. Every element891

of H + can be coded as a subset of . See the next exercise which just mirrors the argument of Ex.2.35.892

Exercise 2.37 ˚1 Extend Ex. 2.35 to any H + . [Hint: let p now be any pairing bijection p ∶ ←→ ˆ . Assume893

f ∶ ←→ TC(x) and put E if f ( ) P f ( ). Then by the Collapsing Lemma ⟨ , E⟩ ≅ ⟨TC(x), P⟩. Let E =894

p−“E. Then any structure with domain in H + can be coded by a subset of E Ď .] Deduce that ∣H + ∣ = ∣P( )∣.895

We adopt the notation: For , P Card, < =df sup{ ∣ P Card∧ < }.896

Exercise 2.38 Let P Card . Show that ∣H ∣ = < . [Hint: for a successor cardinal, this is the last Exercise.]897

Exercise 2.39 (Levy) Let h( ) be the class of sets x with (i) @y P TC(x)(∣y∣ < ), (ii) ∣x∣ < . Show that if898

P Reg, then H = h( ); find an example where this fails if is singular.899

2.5 TheMontague-Levy Reflection theorem900

This section proves a Reflection Theorem, so called because it shows that in ZF we can prove that the901

fact of any sentence holding in V is reflected by an initial portion of the universe: we shall see that902 ↔ V for some . However these arguments are of more interest than just as a means to solving this903

problem.904

We shall be able to prove from this theorem that any finite collection S of the ZF (or ZFC) axioms can905

be shown to hold in a transitive set; indeed we shall see that we can always find a level of the cumulative906

hierarchy, a V , in which S is true: ZF ⊢ D (S)V . Of course we have just seen that all of ZF− is true907

in any H + . If our finite list contains the Ax.Power then Reflection arguments provide a solution. From908

this we shall be able to see later that ZFC is not finitely axiomatisable: there is no finite set of axioms S909

that have the same deductive consequences as those of ZFC.910

2.5.1 Absoluteness911

Definition 2.35 Let W Ď Z be class terms. Let P LP with FVbl{ } Ď {x⃗}.912

(i) is upward absolute for W, Z iff @x⃗ P W( W %→ Z) ;913

(ii) is downward absolute for W, Z iff @x⃗ P W( W ←% Z) ;914

(iii) is absolute for W, Z if both (i) and (ii) hold: @x⃗ P W( W ←→ Z)915

If Z = V then we omit it, and simply say “ is upward absolute for W” etc. If%→ = , . . . , n is a finite list916

of formulae then we say that%→ = , . . . , n are upward absolute (etc. ) if their conjunction  ∧⋯ ∧ n917

is.918

1An Exercise annotated with a ˚ indicates that is perhaps harder than usual. An (E) indicates that it is Extra to the course.
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Definition 2.36 Given classes W Ď Z and a term t we say t is absolute for W , Z iff919

@x⃗ P W(t(x⃗)W P W ↔ t(x⃗)Z P Z ∧ t(x⃗)Z = t(x⃗)W)920

(Recall that asserting t(x⃗)Z P Z is to assert that t(x⃗)Z is a set of Z. Note we could have defined921

‘upwards’ and ‘downwards’ absoluteness for terms t as well.) A standard example of a term that is not922

absolute is given by “the first uncountable cardinal” (t = { P On ∣ is countable }). SupposeW Ď V .923

Certainly tV = t is defined: it is . It may be that tW is defined, and is a cardinal in W . But V may924

simply have more onto functions f with dom( f ) = and ran( f ) Ď On, thanW has. We may thus have925

tW < tV . Another example is given by t = P( ).926

Definition 2.37 A list of formulae%→ = , . . . , n is subformula closed iff every subformula of a formula927

is on the list.928

The following establishes a criterion for when a formula’s truth value is identical in different class929

terms.930

Lemma 2.38 Let%→ be a subformula closed list. Let W Ď Z be terms. The following are equivalent:931

(i)%→ are absolute for W , Z. ;932

(ii) whenever i is of the form Dx j(x , y⃗) (with FVbl( i) Ď { y⃗} ) it satisfies the Tarski-Vaught933

criterion between W and Z:934

@ y⃗ P W[Dx P Z j(x , y⃗)Z %→ Dx P W j(x , y⃗)Z].935

Proof: (i)⇒ (ii): Fix y⃗ P W and assume i( y⃗)Z ≡ Dx P Z j(x , y⃗)Z . By absoluteness of i , i( y⃗)W ,936

so Dx P W j(x , y⃗)W and by absoluteness j, j(x , y⃗)Z , so Dx P W j(x , y⃗)Z .937 (ii)⇒ (i): By induction on the length of i : we thus assume absoluteness checked for all j on the938

list for shorter length, in particular for any subformula of i .939

i atomic: absolute by definition.940

i ≡ j ∨ k : then i is absolute since both j and k are by inductive hypothesis.941

i ≡ ¬ j: similar;942

i ≡ Dx j(x , y⃗). So fix y⃗ P W .943

i( y⃗)W ↔ Dx P W j(x , y⃗)W ↔ Dx P Z j(x , y⃗)Z ↔ i( y⃗)Z
Where : the first and last equivalence is just the definition of relativisation; the second equivalence944

- from left to right uses the absoluteness of j from the Ind.Hyp., and the fact that W Ď Z; and from945

right to left uses Assumption (ii) and again the absoluteness of j from the Ind. Hyp.; and the last is946

relativisation again. Q.E.D.947

Lemma 2.39 Let W be a transitive class term. Then any ∆-formula is absolute for W.948

Proof: Let be ∆ and apply the last argument (with%→ the list of together with all it subformulae).949

The point here is that Trans(W) soW knows the full P-relationship on its members. As any ∆-formula950

only contains bounded quantifiers, this is enough to satisfy the criterion of 2.38 when one comes to the951

induction step ≡ Dx P y where is ∆ itself, in the induction at the end of the last proof.952
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Exercise 2.40 Fill in the details. [Hint: by what has just been said, only the ≡ Dx P y step and the last chain953

of equivalences needs to be argued.]954

Exercise 2.41 Let W be a transitive class term. Then (i) any Σ-formula is upwards absolute for W ; (ii) any955

Π-formula is downwards absolute forW .956

2.5.2 Reflection Theorems957

We use the last criterion of absoluteness in our ReflectionTheorems. the first lemma really contains the958

essence of the argument.959

Lemma 2.40 Let Z be a class term, and suppose we have a function FZ with FZ( ) = Z so that @ (Z P960

V). Assume (i) < %→ Z Ď Z ;961

(ii) Lim( )%→ Z = ⋃ P Z ;962

(iii) Z = ⋃ POn Z . Then for any%→ = , . . . , n :963 (˚) ZF ⊢ @ D > (%→ are absolute for Z , Z).964

Note: Formally here we are saying that if we have a term for Z and a term for the function FZ , and965

we can prove in ZF that FZ has properties (i) - (iii), then for any%→, there is a proof in ZF of (˚). We are966

not saying that in ZF ⊢“@%→((˚)) holds”. (Assertions such as the latter we shall see later are false.)967

Proof: We apply Lemma 2.38 and try and find some W = Z such that (ii) of the lemma applies. This968

will suffice. By lengthening the list if need be we shall assume that%→ is subformula closed. For i ≤ n we969

define functions Fi ∶ On%→ On. If i ≡ Dx j(x , y⃗) set:970

Gi( y⃗) =  if ¬Dx P Z j(x , y⃗)971 = where is least so that Dx P Z j(x , y⃗).972

Fi( ) = sup{Gi( y⃗) ∣ y⃗ P Z }.973

Note that Gi is a well defined function, and consequently so is Fi : Gi“Z P V by AxReplacement;974

hence Fi( ) = supGi“Z is then a well defined term. Note also that each Fi is monotonic: < %→975

Fi( ) ≤ Fi( ). If i is not of the above form, set Fi( ) =  everywhere.976

Claim: @ D > (Lim( ) ∧ @ < @i ≤ nFi( ) < ).977

Proof of Claim: Define by recursion on :  = ;978

k+ =max{ k + , F( k), . . . , Fn( k)}; = supk k .979

Then k < k+ implies that Lim( ). Hence if < then < k for some k P . Hence Fi( ) ≤980

Fi( k) ≤ k+ < . Q.E.D.(Claim)981

Now that the Claim is proven, then we may verify the Lemma with such a for Z and Z.982

Q.E.D.983

Exercise 2.42 Carry out this final verification.984

Wemay immediately set Z to be V and Z to be V and obtain the immediate corollary:985

Theorem 2.41 (Montague-Levy) The Reflection Theorem. Let %→ be any finite list of formulae of L.986

Then987

ZF ⊢ @ D > (%→ are absolute for V ). Q.E.D.988
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As cautioned above, this is a theorem scheme again: it is one theorem of ZF for each choice of %→.989

Notice that if in particular%→ are sentences, we may write the conclusion as:990

ZF ⊢ @ D > (%→←→ (%→)V ).991

Moreover if the %→ are axioms of ZF we have that they are true in V . In this case we may write:992

ZF ⊢ @ D > ( (⋀⋀%→)V ).993

In other words: for any finite list of ZF we can find arbitrarily large so that those axioms hold in994

V . We can state something stronger:995

Corollary 2.42 Let T be any set of axioms inL extending ZF, and%→ a finite list of axioms from T. Then996

T ⊢ @ D > ( (⋀⋀%→)V ).997

Proof: Since T extends ZF T proves the existence of the V hierarchy, and T ⊢ i for each i from%→.998

Hence T ⊢ ⋀⋀%→ trivially. And T ⊢ @ D > (⋀⋀%→←→ (⋀⋀%→)V ) Q.E.D.999

At first blush it might look as if the restriction to finite lists of %→ is unnecessary. Why could we1000

not look at a recursive enumeration i of all axioms of ZF say, and find some V in which they were all1001

true? We know from the Gödel Second Incompleteness Theorem that there is no way to formalise that1002

argument within ZF, since it would be tantamount to proving the existence of amodel of the ZF axioms,1003

and hence the consistency of ZF. So what goes wrong? Lemma 2.40 can only work for finite lists%→: the1004

statement “%→ are absolute for Z , Z” involves a conjunction of the formulae from the list: we cannot1005

write an infinitely long formula in L, so we have no way of even expressing the absoluteness of such an1006

infinite list. Another paraphrase on this is in the following Exercise.1007

Exercise 2.43 Show that for every formula of L ∶1008

ZF ⊢“There is a c.u.b. class C Ď On so that @ P C@x⃗ P V ( (x⃗)↔ ( (x⃗))V )”1009

[Hint: The reasoning of Lemma 2.40 pretty much gives the relevant cub class as the closure points of the Fi .]1010

Remark: One might think that one could enumerate all the axioms of ZF  ,  , . . ., find the appropriate classes1011

C n and take D = ⋂n C n . This appears then to be an intersection of only countable many c.u.b. classes and so1012

must be c.u.b. in On? But for any element P D we’d have (ZF)V , and we appear to have proven the existence1013

of models of ZF - contradicting Gödel. What is wrong with this reasoning?1014

Exercise 2.44 Find a sentence so that if is absolute for V then is a limit ordinal. Repeat the exercise and1015

find so that if is absolute for V then = (the ’th infinite cardinal). [Hint: consider the statement: “For1016

every exists”.]1017

As the last exercise shows, if we insist on finding a V which is absolute for any particular sentence,1018

then we may need to find a very large for this to happen. If we are content to merely find a set for1019

which a formula is absolute, we can find a countable such set. More generally:1020

Lemma 2.43 Let Z be a term, and%→ be any finite list of formulae of L. Then1021

ZFC ⊢ @x Ď ZDy[x Ď y Ď Z ∧%→ are absolute for y, Z ∧∣y∣ ≤max{ , ∣x∣}].1022

Proof: We define from the term Z the term giving the function F( ) = Z ∩ V which we shall call1023

Z . Again assume that %→ is subformula closed. As x is a set, by the AxReplacement G“x P V where1024

G(u) =df the least such that u P Z . Then supG“x = ⋃G“x P V . Call this ordinal . By Lemma1025

2.40 find >  with%→ absolute for Z , Z. By AC fix a wellorder ⊲ of Z . Without loss of generality we1026
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assume ∅ P Z . If i is of the form Dx j(x , y, . . . , yk j) (with FVbl( i) = { y⃗}) we define a function1027

Gi ∶ k j Z %→ Z by the following clauses:1028

hi( y⃗) = the ⊲-least x P Z so that j(x , y, . . . , yk j)Z if such exists1029 = ∅ otherwise.1030

We also set hi to be the constant ∅-function in the cases that i is not of the above form, or that1031

i has no free variables. With hi now defined in every case, we look for the least set y closed under1032

the hi . We can find such a y by repeatedly closing under the finitary functions hi , and obtain a y with1033

cardinality no greater than max{ , ∣X∣} (see Exercise). We can then appeal to the criterion in Lemma1034

2.38, which asserts in this case that %→ is absolute for y, Z . But %→ is absolute for Z , Z, and thus the1035

Lemma is proven. Q.E.D.1036

Exercise 2.45 Let x be any set, and fi ∶ ni V %→ V for i < be any collection of finitary functions (meaning1037

that ni < ); show that there is a y Ě x which is closed under each of the fi (thus fi“ niy Ď y for each i) and1038 ∣y∣ ≤ max{ , ∣x∣}. [Hint: no need for a formal argument here: build up a y in many stages yk Ď yk+ at each1039

step applying all the fi .]1040

The last lemma then says that, e.g. , if were a finite list of axioms of ZFC, and x = ∅, then ⟨y, P⟩1041

would be a countable structure in which those axioms were true.1042

Returning to our reflection results, we may apply the above to obtain corollaries to Lemma 2.43.1043

Corollary 2.44 Let Z be a term, and%→ be any finite list of formulae of L. Then

ZFC ⊢ @x Ď Z[Trans(x)%→ Dw[x Ď w ∧%→ are absolute for w , Z ∧ ∣w∣ ≤max{ , ∣x∣}]
Proof: We directly apply the Mostowski-Shepherdson Collapsing Lemma to the set y appearing in the1044

statement of Lemma 2.43, thereby collapsing it to the transitive w here. As ⟨w , P⟩ ≅ ⟨y, P⟩ we have1045 (v⃗)y ↔ ( (v⃗))w . Hence%→ are absolute for w , Z. Obviously ∣y∣ = ∣w∣. Q.E.D.1046

In the special case that Z = V and x = in the above we may get:1047

Corollary 2.45 Let T be any set of axioms in L extending ZFC, and%→ a finite list from T, then

T ⊢ Dy[Trans(y) ∧ ∣y∣ = ∧⋀⋀(%→)y].
Thus we can find for any finite set of ZFC axioms a countable transitive set model in which all those1048

axioms come out true. Again the finiteness of%→ is necessary.1049

2.6 Inaccessible Cardinals1050

We shall encounter in this section an example of a ‘large cardinal’: this is a cardinal whose existence does1051

not follow from the axioms of ZFC. In general this is because such cardinals allow one to conclude that1052

there are structures (typically V where is the cardinal number under consideration) in which all the1053

ZFC axioms are true. If ZFC could prove the existence of such a then this would contradict the Gödel1054

Second Incompleteness Theorem. From these further large cardinals can be defined, and although we1055

give the briefest of illustrative examples, it is not the intention of the course to go down this route, rich1056

as it is.1057
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2.6.1 Inaccessible cardinals1058

Definition 2.46 A cardinal > is a strong limit cardinal, if for any < %→ ∣ ∣ < .1059

Definition 2.47 A regular cardinal > is1060

(i) weakly inaccessible if it is a limit cardinal (Hausdorff 1908);1061

(ii) (Sierpinski-Tarski (1930); Zermelo (1930)) strongly inaccessible if in addition it is a strong limit1062

cardinal.1063

The idea behind the nomenclature is that an accessible cardinal is one that can be reached from1064

below by either the successor cardinal operation, or else the power set operation, as per Note (1) that1065

follows.1066

Notes (1) Another way of putting this is to say that a cardinal is weakly inaccessible if it is (a) regular1067

and (b) < %→ + < . It is (strongly) inaccessible if it is both (a) regular and (c) < %→ ∣P( )∣ <1068

.1069

(2)The word ‘strongly’ is often omitted.1070

(3) If the GCH holds then the two notions coincide (for the simple reason that GCH %→ ∣ ∣ =1071 ∣P( )∣ = + < !).1072

(4)The least strong limit cardinal is singular of cofinality (Check!) In particular if GCH holds then1073 ℵ is the least strong limit cardinal.1074

Lemma 2.48 (AC) Let < P Reg. The following are equivalent:1075

(i) is strongly inaccessible;1076

(ii) V = H ;1077

(iii) (ZFC)H ;1078

(iv) = ℶ .1079

Proof: (i)⇒ (ii). Since P Card, we have H Ď V (Lemma 2.31(ii)). But x P V ⇒ D < (x P V ).1080

By induction on < one shows that ∣V ∣ < : suppose true for < : then V = P(V ) if = + ,1081

and as ∣V ∣ < , then ∣P(V )∣ = ∣∣V ∣∣ < as is strongly inaccessible; if Lim( ) then V is the union1082

of less than many sets of size less than , and hence has cardinality less than . Hence, in either case1083

V is a transitive set of size less than . Hence it is in H .1084 (ii) ⇒ (iii). We have already that (ZFC−)H (by Lemma 2.32). Only Ax.Power is missing. But1085 (Ax . Power)V for any limit ordinal , and hence in particular for = .1086 (iii) ⇒ (iv). We prove by induction that < %→ ℶ < . This suffices. Assume true for1087 < . If = +  then ℶ = ℶ . But (AxPower+AC)H , hence (D P On( ≈ P(ℶ ))H . So1088

ℶ = ∣P(ℶ )∣ ≤ < . If Lim( ) then ℶ < by the inductive hypothesis and the regularity of .1089 (iv)⇒ (i). Recall that ∣V + ∣ = ℶ (Ex. 2.9). Our assumption yields that

 ≤ < %→ ∣ ∣ =df ∣P( )∣ ≤ ∣V +∣ = ℶ + <
as required for strong inaccessibility. Q.E.D.1090

Exercise 2.46 Verify that is weakly inaccessible iff is regular and = ℵ .1091
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Exercise 2.47 Does > ∧ V = H imply that is strongly inaccessible?1092

Definition 2.49 (Mahlo 1911) A regular limit cardinal is called aweaklyMahlo cardinal in case Reg∩1093

is stationary below . is called (strongly) Mahlo if it is both weakly Mahlo and strongly inaccessible.1094

Lemma 2.50 If is weakly Mahlo then in fact is the ’th weakly inaccessible cardinal, and the class1095

of weakly inaccessible cardinals below is stationary below . The same sentence is true with ‘strongly’1096

replacing ‘weakly’ throughout.1097

Proof: As Reg∩ is unbounded in , (Reg∩ )˚ is c.u.b. below . But such are all limit cardinals. As1098

Reg∩ is moreover stationary below , D =df (Reg∩ )∩ (Reg∩ )˚ is stationary below (see Ex.2.13).1099

But all members of D are then weakly inaccessible cardinals. Q.E.D.1100

Exercise 2.48 Let be the least weakly inaccessible cardinal which is itself a limit of weakly inaccessible cardinals1101

(meaning the weakly inaccessibles below are unbounded in ). Show that is not weakly Mahlo. The same1102

sentence is true with ‘strongly’ replacing ‘weakly’ throughout.1103

2.6.2 A menagerie of other large cardinals1104

We briefly consider some other notions of “large cardinal” stronger than Mahlo. (For a full account see1105

Drake [2], Devlin [1], Jech [3].) We do this to give some flavour to the rich structure of even the so-called1106

small large cardinals. They are called ‘small’ because, if they are consistent, then they are consistent with1107

the statement that “V = L” - they can thus potentially be exemplified in L. Several depend upon the1108

notion of a homogeneous set for a certain kind of function.1109

Definition 2.51 (i) [ ]n denotes the set of all n element subsets of .1110

(ii) [ ]< denotes the set of all finite subsets of1111

Definition 2.52 H Ď is homogeneous for f ∶ [ ]n %→ ⇐⇒df ∣ f “[H]n∣ = .1112

A homogeneous set is one therefore that every n-tuple there from gets sent by f to the same ordinal1113 < . Often in applications =  = {, } so we can think of f as partition of [ ]n into two colours. If1114

H is homogeneous, then this means that all n-tuples from H are assigned the same colour. For colours1115

the same applies. If a longer order type is specified on H then the harder it is to find such homogeneous1116

sets. Large cardinals can then be specified by putting requirements on H and so forth as in the next two1117

definitions.1118

Definition 2.53 A cardinal isweakly compact if for every f ∶ [ ] %→  there is a homogeneous subset1119

H Ď with H unbounded in .1120

Definition 2.54 (Jensen) A cardinal is ineffable if for every f ∶ [ ] %→  there is a homogeneous1121

subset H Ď with H stationary in .1122

By themselves the bare definitions may not mean too much. We give some equivalent formulations.1123
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Definition 2.55 (i) A tree ⟨T , <T⟩ is a wellfounded partial ordering so that for any s P T, {s P T ∣ s <T1124

s} is linearly ordered.1125

(ii) A branch through a tree T is a maximal linearly ordered set;1126

(iii) T =df {s P T ∣ rankT(s) = } is the set of elements of the tree of tree-rank or ‘level’ .1127

A tree thus looks how it sounds.1128

Definition 2.56 Let us say that a cardinal has the tree property iff for every tree T = ⟨ , <T⟩ with1129

@ < (∣T ∣ < ) has a branch of order type .1130

There is no reason for a cardinal in general to satisfy the tree property. For example on  it may be1131

the case that there is an uncountable tree T = ⟨ , <T⟩, with field , with all levels T countable, yet1132

without any branch of cardinality . (Such trees are called Aronszajn trees.) However the König Tree1133

Lemma shows that  has the tree property.1134

Lemma 2.57 For a cardinal the following are equivalent:1135

(i) is strongly inaccessible and satisfies the tree property;1136

(ii) is weakly compact;1137

(iii) for every A Ď there is a transitive M, and a B, j with j ∶ ⟨V , P,A⟩%→ ⟨M , P, B⟩ an elementary1138

embedding with j ↾ = id ↾ and j( ) > .1139

There are many further characterisations of weakly compact. See Jech, Drake. One property of1140

weakly compact cardinals is that every stationary subset of reflects this property below , as in the1141

following Exercise.1142

Exercise 2.49 (˚) Let be weakly compact. Show that for any stationary subset S Ď , there is < so that1143

S ∩ is stationary in . [Hint: Use (iii) of the last lemma: suppose the conclusion fails; then there is C Ď with1144

C ∩ S ∩ = ∅ for every cardinal < . Let A = {⟨ , ⟩ ∣ P C } ∪ S ˆ {}. Let j,M , B be as in (iii) above.1145

Let C = { ∣ ⟨ , ⟩ P B}. By elementarity of the embedding j the following holds in M ∶ “C is c.u.b.in , whilst1146

C ∩ S ∩ = ∅”. But (S ∩ )M = S - so this is a contradiction.]1147

Definition 2.58 (Jensen) A cardinal is subtle iff1148

For any sequence ⟨A ∣ < ⟩ with all A Ď and any c.u.b. C Ď , there is a pair of , P C with1149 < ∧ A ∩ = A ).1150

Lemma 2.59 (Jensen) For a cardinal the following are equivalent:1151

(i) is ineffable ;1152

(ii) for any sequence ⟨A ∣ < ⟩ with all A Ď there is a set E Ď , so that

{ < ∣ A = E ∩ } is stationary.
Definition 2.60 A cardinal satisfies the partition relation %→ ( )< ⇐⇒df for any f ∶ [ ]< %→ 1153

there is an H Ď , ot(H) ≥ , which is homogeneous for f ∶ [ ]< %→ , namely for all n < —1154

f “[H]n∣ = .1155
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The extra strength here is that f must assign the same colour to each n-tuple from H (although for1156

a different m ≠ n a different colour may be chosen for all m-tuples from H). Such cardinals become1157

rapidly stronger than those considered above, and quickly enter the realm of ‘medium large cardinals’.1158

This happens as soon as crosses the threshold from countable to uncountable. The cardinals here1159

defined are in increasing strength, when measured in terms of where they are first exemplified in On: if1160

is the least satisfying %→ ( )< then is the ’th ineffable cardinal. Similar if is the first ineffable,1161

it is the ’th subtle cardinal, and also the ’th weakly compact cardinal. If is the first weakly compact1162

cardinal, then it is the ’th Mahlo cardinal. All the above are consistent with ‘V = L’; not however the1163

existence of a cardinal satisfying %→ ( )< : if such a cardinal exists we may prove that V ≠ L.1164



Chapter 31165

Formalising semantics within ZF1166

The study of first order structures and the languages appropriate to them is the branch of mathematics1167

calledmodel theory. Like other parts ofmathematics it can be formalisedwithin set theory, anddeveloped1168

from the ZF axioms. Whereas most mathematicians would not be seeing any great advantage in having1169

their area of mathematics in doing this, as set theorists we shall see that formalising that part of model1170

theory that handles structures of the form ⟨X , P⟩, (or of ⟨X , P,A, . . . ,An⟩ where Ai Ď X), will be of1171

immense utility. Amongst other results it is at the heart of Gödel’s construction of the constructible1172

hierarchy, L.1173

Wehave defined the notion of absoluteness of formulae between structures or terms rather generally.1174

However we have not been very specific about what kinds of concepts are actually absolute. We alluded1175

to this problem at the end of Section 1.2, and in particular we noted the possible non-absoluteness of the1176

power set operation. In general objects that have very simple definitions tend to be absolute for transitive1177

sets and classes (thus ∅, {x , y}, , “ f is a function”, “x an ordinal”) whilst more complex ones are not1178 (y = P(x), “x is a cardinal”).1179

3.1 Definite terms and formulae1180

The definite terms and formulae are amongst those that we are interested in being absolute between1181

transitive ZF− models. We address the question of which terms and formulae defining concepts can be1182

so absolute. We shall define “definite term (and formula)” first and later show that such have this degree1183

of being “absolutely definite”.1184

Definition 3.1 (Definite terms and formulae)1185

(A) We define the definite terms and formulae by a simultaneous induction on the complexity of formulae1186

and of the terms’ definition.1187

(i) Any atomic formula x = y, x P y is definite ;1188

if , are definite, then so are: ¬ ; ( ∨ ); Dy P x1189

(ii) Any variable x is a definite term. If s, t are definite terms, so are:1190

⋃ s, {s, t}, s/t.1191

39
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(iii) Suppose t(x, . . . , xn) and t, . . . , tn are definite terms. Then t(t/x, . . . , tn/xn) is a definite1192

term. If (x, . . . , xn) is a definite formula then so is (t/x, . . . , tn/xn).1193

(iv) If (x, x, . . . , xn) and t, . . . , tn are definite, then so are the terms:

y ∩ {x ∣ (x , t/x, . . . , tn/xn)} and {t(y, x) ∣ y P z}.
(v) .1194

(vi) If t is definite, and Fun(t), then the canonical function term f given by the recursion1195

f (y, x⃗) = t(y, x⃗ , { f (z, x⃗) ∣ z P y}) is definite.1196

Note (1): By (i) any ∆ formula of L is definite. (iv) gives a form of “definite separation” axiom, in the1197

first part, and a kind of “definite replacement” in the second part. Note also that if s is a definite term1198

then in particular “x P s” , “Dy P s ” are definite formulae.1199

Lemma 3.2 (ZF−) If t is a definite term then: @x⃗(t(x⃗) P V).1200

Proof: Formally this would be a proof by induction on the complexity of t; informally notice that the1201

way we have defined definite terms uses methods, such as at (ii) where the ZF− axioms yield these classes1202

directly as sets, or in the case of (iii) and (iv) an appeal to Ax.Subsets would yield them as sets. In (vi)1203

we appeal to the principle of recursion (which does not use Ax.Power) to ensure that f as defined there1204

is a function of Vn to V (for some n). Q.E.D.1205

1206

We shall be interested in terms and formulae that are absolute between any two transitive ZF−models1207

M ,N . Such we shall call absolutely definite, a.d. for short. We shall be particularly interested in when1208

they are so absolute between such anM and V . We shall readily be able to identify a whole host of terms1209

and defining formulae as definite. We shall also be showing that any definite term or formula is a.d., and1210

thus in one fell swoop be able to conclude they are absolute for such classes. As might be expected the1211

proof proceeds by induction on the complexity of the term or formula.1212

Theorem 3.3 Let t(x⃗) be a definite term, and (x⃗) a definite formula. Then (a) t and (b) are a.d., that1213

is they are absolute between any two transitive ZF− models M ,N.1214

Proof: We shall first prove (a) and (b) by a simultaneous induction on the complexity of definite terms
and formulae. We do this by referring to the construction clauses (i)-(vi) Def. 3.1 in turn. It suffices
to prove this absoluteness between V and any transitive class term model of ZF− W (note V is also a
transitive ZF− term). So let W be a transitive class term with (ZF−)W . The atomic formulae of (i) are
trivially so absolute, and the inductive steps in the more complex formulae are trivial except for the
bounded existential quantifier; assume y P W and is absolute forW :

((Dx P y) )W ↔ (Dx(x P y ∧ ))W ↔ Dx P W(x P y ∧ W)↔ Dx(x P y ∧ W)↔ (Dx P y)
where we use the transitivity ofW and hence that y Ď W , in the← direction of the third equivalence.1215

We remark that we have shown:1216

Corollary 3.4 Let be a ∆ formula. Then is a.d.1217
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For (ii) suppose s, t are definite:1218 (⋃ s)W = {z ∣ Dy P s(z P y)}W = {z ∣ z P W ∧ Dy P sW(z P y)} = {z ∣ Dy P sW(z P y)} = ⋃ s1219

since sW Ď W . {s, t} and s/t are similar.1220

For (iii) suppose t, . . . , tn are definite. Let z⃗ Ě Fvbl{t, . . . , tn}. Let {x, . . . , xn} Ě Fvbl(t).Then1221

we make the inductive assumptions that for any z⃗ P W ∶ ti(z⃗)W = ti(z⃗), and for any x⃗ P W that1222

t(x⃗)W = t(x⃗). By Lemma 3.2, if ti(z⃗)is defined for z⃗ P W then we know that ti(z⃗) P W .1223

(t(t(z⃗)/x, . . . , tn(z⃗)/xn))W = tW (tW (z⃗)/x, . . . , tWn (z⃗)/xn)= tW (t(z⃗)/x, . . . , tn(z⃗)/xn)= t(t(z⃗)/x, . . . , tn(z⃗)/xn)
The first equality is just the definition of relativisation to W and the next two are the inductive hy-1224

potheses outlined.1225

Entirely similarly,

( (t/x, . . . , tn/xn))W ↔ W(tW /x, . . . , tWn /xn)↔ W(t/x, . . . , tn/xn)↔ (t/x, . . . , tn/xn)
where the new inductive hypothesis is now that (x⃗)↔ (x⃗)W for any x⃗ P W , and is used in the final1226

equivalence. The first equivalence is Lemma 1.22.1227

For (iv): suppose (x, x, . . . , xn) and t, . . . , tn are definite, then:1228 (y ∩ {x ∣ (x/x, t/x, . . . , tn/xn)})W1229 = y ∩W ∩ ({x ∣ (x , t/x, . . . , tn/xn)})W1230 = y ∩W ∩ {x P W ∣ ( (x , t/x, . . . , tn/xn))W}1231 = y ∩W ∩ {x P W ∣ (x , t/x, . . . , tn/xn)} (by (iii))1232 = y ∩ {x ∣ (x , t/x, . . . , tn/xn)} since y Ď W as Trans(W).1233

Assume z P W and t is definite. We make the inductive assumption that we have shown that1234

t(u, v)W = t(u, v) P W for any u, v P W . Then1235 {t(y, x)∣y P z}W = {t(y, x)W ∣(y P z)W} = {t(y, x)∣y P z}1236

using that z Ď W in the first equality.1237

For (v) we consider . We note that the following are expressible in a ∆ way and hence are absolute1238

forW ∶1239

(a) x = ∅↔ @z P x(z ≠ z)1240

(b) Trans(x)↔ @y P x@z P y(z P x);1241

(c) x P On↔ (Trans(x) ∧ @y, z P x(y P z ∨ z P y ∨ z = y));1242

(d) Lim(x)↔ x P On∧x ≠ ∅∧ @y P xDz P x(y P z);1243

(e) x P ↔ x P On∧¬Lim(x) ∧ @y P x¬Lim(y).1244

(f) x = ↔ x P On∧Lim(x) ∧ @y P x¬Lim(y)1245

By (e) we have seen that x P is given by a ∆ formula and hence is absolute forW . Now note that1246

Ď W : suppose n P is least for which n R W . Then  = ∅ P W so n = m +  =df m ∪ {m}. However1247

if mW = m then by Ax.Pair and Union (m ∪ {m})W P W where1248

(m ∪ {m})W = {x P W ∣(x P m ∨ x = m)W} = {x P W ∣(x P m ∨ x = m)} = {x∣(x P m ∨ x = m)} =1249

m ∪ {m}.1250
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Hence Ď W . But then W = {x P W ∣(x P )W} = {x P W ∣(x P )} (by (e)1251

= {x∣(x P )} (since Ď W).1252

= .1253

Finally for (vi): we assume t is definite, and Fun(t), and f is the canonical function term given by:1254

f (y, x⃗) = t(y, x⃗ , { f (z, x⃗) ∣ z P y}).1255

We thus have the inductive hypothesis that t(y, x⃗ , u)W = t(y, x⃗ , u) for any y, x⃗ , u P W . Let y, x⃗ P1256

W . We prove the result by P-induction, hence we also assume we have proven for any z P y that1257

f (z, x⃗)W = f (z, x⃗) P W . Then by (iv) we have: { f (z, x⃗) ∣ z P y}W = { f (z, x⃗) ∣ z P y} P W . Then:1258

f (y, x⃗)W = (t(y, x⃗ , { f (z, x⃗) ∣ z P y})W1259

= t(y, x⃗ , { f (z, x⃗) ∣ z P y}W)1260

= t(y, x⃗ , { f (z, x⃗) ∣ z P y}) (by the above comment)1261 = f (y, x⃗) as required. Q.E.D.(Thm.3.3)1262

1263

We now have a very powerful method for showing that all sorts of concepts and definitions are ab-1264

solute for transitive structures in which ZF− holds. For example all the ordinal arithmetic operations are1265

defined by recursive clauses from definite terms. We can formally justify this as follows.1266

Lemma 3.5 Suppose we define:

f (y, x⃗) = t(y, x⃗) if (y, x⃗)= ⋮= tn(y, x⃗) if n(y, x⃗)= ∅ otherwise.

for some definite t, . . . , tn, and mutually exclusive (meaning at most one of (y, x⃗), . . . , n(y, x⃗) holds)1267

but definite , . . . , n, then f (y, x⃗) is definite.1268

Proof: Note that u ∪⋯∪ un = ⋃{u, . . . , un} so this is definite.1269

Then: f (y, x⃗) = {t(y, x⃗)∣ (y, x⃗)} ∪⋯∪ {tn(y, x⃗)∣ n(y, x⃗)}. Q.E.D.1270

Corollary 3.6 All the arithmetical functions A ( ) = + ; M ( ) = . ; E ( ) = are definite1271

and hence a.d.1272

Proof: For example:

A (x) = if x = ∅;
A (x) = A (y) +  if x P On∧ Succ(x);
A (x) = sup{A (y)∣y P x} if x P On∧Lim(x).

The first and third conditions on the right we have already seen are definite at (a), (c), (d) above. But1273

Succ(x) ↔ Dy(x = y ∪ {y}) ↔ Dy P x(x = y ∪ {y}). We note that y ∪ {y} is definite, and so by the1274

Theorem 3.3 Succ(x) is definite. The three conditions are mutually exclusive we can appeal to the last1275

lemma once we note that the three terms ∅, y ∪ {y}, and⋃ z where z is a definite set by 3.1 (iv) in place1276

of t, t,and t are definite. The other functions are exactly the same. Q.E.D.1277

1278



Definite terms and formulae 43

Note (1): P(x) is not definite: if it were we could conclude fromTheorem 3.3 that for any transitive1279

set satisfying (ZF−)W that P(x) P W which is not true in general.1280

“x is countable” cannot be expressed by a definite formula (x): again if it were, we should have that1281

the concept is absolute for transitiveW satisfying (ZF−)W . We list some definite concepts.1282

Lemma 3.7 For any n: (i) ⋃n x, (ii) {x, . . . xn}, (iii) ⟨x , y⟩; (u), (u) where u = ⟨(u), (u)⟩; (iv)1283 ⟨x, . . . , xn⟩, (v) x ˆ y,(vi) ran(z), (vii) dom(z), (viii) z“x, (ix) z ↾ x, (x) z− are all definite terms.1284

The following relations are definable by definite formulae:1285

(xi) x Ď y; (xii) Trans(y); (xiii) Rel(z); Fun(z); (xiv) z(x) = y; (xv) “z is a (1-1) function”; z is an onto1286

function; (xvi)“x is unbounded in ”; “z ∶ %→ is a cofinal function”; “x Ď is a closed and unbounded1287

set”;1288

(xvii) the terms TC(x), (xviii) (x) are definite terms.1289

Thus all the above are a.d.1290

Proof: The first two are simply repeated applications of operations defined to be definite. Similarly1291

(iii) ⟨x , y⟩ = {{x}, {x , y}} ; (iv) ⟨x, . . . , xn⟩ was defined by repeated application of ⟨−,−⟩ and hence is1292

definite; (v) x ˆ y = ⋃{x ˆ {z}∣z P y} = ⋃{{⟨w , z⟩∣w P x}∣z P y}.1293

(vi): ran(z) = {u P ⋃ z∣Dw P zDv P ⋃ z(w = ⟨v , u⟩};1294

(vii): dom(r) = {u P ⋃ z∣Dw P zDv P ⋃ z(w = ⟨u, v⟩};1295

(viii): z“x = {v P ⋃ z ∣ Du P xDw P z(w = ⟨u, v⟩)};1296

(ix), (x) Exercise.1297

(xi): x Ď y↔ @z P x(z P y), it is thus ∆ and so definite;1298

(xii) Trans(y)↔ @z P y(z Ď y)1299

(xiii) Rel(z)↔ z Ď dom(z)ˆ ran(z);1300

Fun(z)↔ Rel(z) ∧ @x P dom(z)@u, v P ran(z)(v ≠ u %→ (⟨x , u⟩ P z↔ ⟨x , v⟩ R z));1301

(xv) z(x) = y↔ Fun(z) ∧ ⟨x , y⟩ P z;1302

(xvi) Exercise.1303

(xvii) TC(x) = t(x , {TC(y)∣y P x}) for a definite t using the definite recursion scheme.1304

(xviii): s(z) = z ∪ {z} is definite; then {s(v) ∣ v P u} is definite as then is t(u) = ⋃{s(v) ∣ v P u} (by1305

(iv) and (ii) resp. in Def.3.1. Using the definite recursion scheme (vi) we get (x) = t({ (y) ∣ y P x}).1306

(Here we are just expressing that (x) = sup{ (y) +  ∣ y P x}.) Q.E.D.1307

Exercise 3.1 (i) Show that “z is a total order of y” can be expressed in a ∆ fashion.1308

(ii) Complete (ix),(x), (xvi), (xvii) of Lemma 3.7.1309

Lemma 3.8 The following are definite: nx (for any n); < x =df ⋃{nx∣n P }; “x is finite”. Hence1310 P< (z) =df {x Ď z∣x is finite} is definite.1311

Proof: By induction on n ∶ we define F(n, x) = nx:1312

F(, x) = x = ∅.1313

F(n + , x) = n+x = { f ∪ {⟨n, y⟩}∣ f P F(n, x) ∧ y P x};1314

F( , x) = < x = ⋃{F(n, x)∣n P }.1315

This is given by definite recursion clauses, and so F(n, x) is definite for n ≤ .1316
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“x is finite”↔ D f P < x( f is onto). And then:1317 {x Ď z∣ x is finite} = {x∣D f P < z(x = ran( f ))} Q.E.D.1318

1319

Note: the absoluteness of finiteness implies that if Trans(W) ∧ (ZF−)W then any finite subset ofW1320

is inW . This need not be true of course for infinite subsets ofW .1321

Exercise 3.2 Suppose Trans(W)∧(ZF−)W . Show (V )W = V ∩W . [Hint: use that the rank function is definite.]1322

Note: “cf( )” along with “x is a cardinal” or “ ” are not definite, and so not absolute for such W in1323

general (but see the next exercise). Neither then is “x is a regular/singular cardinal.” However being a1324

wellorder is so absolute as the next lemma shows.1325

Exercise 3.3 Let be a limit ordinal; show that the following are absolute for V : (i) P(x) (ii) “ is a cardinal”1326

(and hence (Card)V = Card ∩ ); (iii) cf( ) (iv) “ is (strongly) inaccessible” (v) y = V (vi) ℵ (vii) ℶ .1327

Lemma 3.9 (i) “z is a wellorder of y” ; (ii) “z is a wellfounded relation on y” are absolutely definite.1328

Proof: Suppose Trans(W) ∧ (ZF−)W , z, y P W . For (i) “z is a total order of y” can be expressed in a1329

∆ way (Exercise). Suppose (“z is a wellorder of y”)W . Since we have Ax . Replacement holding inW we1330

have that “⟨y, z⟩ is isomorphic to an ordinal” holds inW . If ( P On)W and ( f ∶ ⟨y, z⟩ ≅ ⟨ , <⟩)W then1331

dom( f ) = y, ran( f ) = , “ f is a bijection”, etc., are all absolute forW . Hence f ∶ ⟨y, z⟩ ≅ ⟨ , <⟩ holds in1332

V . Consequently ⟨y, z⟩ is truly a wellorder.1333

Conversely if “z is a wellorder of y” with z, y P W , then as for any w P V with w Ď y we have w has1334

a z-minimal elementw say, thenw P W (as Trans(W)) and no u P W satisfies uzw. So if alsow P W1335

then (“w is an z-minimal element of w”)W .1336

(ii) is only an amplification of (i), effected by defining an absolute rank function z of thewellfounded1337

relation z. We leave this to the reader. Q.E.D.1338

1339

The example of wellorder shows that being expressible by a ∆ formula is not a necessary condition1340

for absoluteness: wellorder in general is a Π-concept when literally written out. However if (ZF−)W1341

holds then we have Ax.Replacement available to turn this Π concept into an existential statement and1342

hence have that it isU-absolute forW . Wemay say that it is thus “∆ZF−
 ”. IfW is not a model of sufficient1343

Replacement then this argument can fail.1344

3.1.1 The non-finite axiomatisability of ZF1345

We use the Reflection Theorem together with our absoluteness results to prove the non-finite axioma-1346

tisability of ZF. (We say a set of axioms T axiomatises S if T ⊢ for every from S. A set S is finitely1347

axiomatisable if there is a finite set T that axiomatises S .)1348

Theorem 3.10 (The non-finite axiomatisability of ZF) Let T be any set of axioms in L, extending ZF,1349

and T be any finite subset of T ; if from T we can prove every axiom of T then T is inconsistent.1350

In particular, with T as ZF, no finite subset of ZF axioms will axiomatise all of ZF, unless ZF is incon-1351

sistent.1352
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Proof: Suppose T Ě T were such sets of axioms, with all of T provable from T, for a contradiction.1353

We have the assertion: ZF ⊢ @ D > ((⋀⋀T)V ↔ ⋀⋀T). Then as T proves every axiom of ZF, it1354

proves the following instance of the ReflectionTheorem:1355

T ⊢ @ D > ((⋀⋀T)V ↔ ⋀⋀T).1356

However trivially T ⊢ @ D > ((⋀⋀T)V )1357

since T ⊢ ⋀⋀T. Then, by the principle of ordinal induction:1358

T ⊢ D [(⋀⋀T)V  ∧ @ < (¬(⋀⋀T)V ]. (˚)1359

We are assuming that T proves all of ZF, so by the Soundness of first order predicate logic, Theorem1360

1.20, in the form that if T ⊢ and (⋀⋀T)V , then ( )V , we may deduce, T ⊢ (ZF)V  .1361

Then all our absoluteness results about transitive models hold for V  for such a  as in (˚). Also1362

in particular :1363

T ⊢ <  → (V )V  = V ∩ V  = V (Exercise 3.2)1364

Again using Soundness, since T ⊢ D (⋀⋀T)V , we have1365

T ⊢ (D (⋀⋀T)V )V  .1366

However, then we have1367

T ⊢ D < (⋀⋀T)V which contradicts (˚). So T and hence T is inconsistent. Q.E.D.1368

3.2 Formalising syntax1369

We shall consider the language L = LṖ,=̇ that we have been using to date, that can be interpreted in1370

P-structures, that is any structure ⟨X , E⟩ with a domain a class of sets X and an interpretation E for the1371

Ṗ symbol. In what follows, we shall almost always be considering the standard interpretation of the Ṗ1372

symbol, where it is interpreted as the true set membership relation. The equality symbol =̇ will without1373

exception be interpreted as true equality =. Up to now the object language of our ZF theory has been1374

floating free from our universe of sets, but we shall see how this language (indeed any reasonably given1375

language) can be represented by using sets, just as we can represent the natural numbers , , , . . . by the1376

sets ∅, {∅}, {∅, {∅}}, . . . We make therefore a choice of coding of the language L by sets in V . The1377

method of coding itself is not terribly important, there are many ways of doing this, but the essential1378

feature is that we want a mapping of the language into a class of sets, where the latter is ZF (in fact ZF−1379

or even much more simply) definable). As we are mainly interested in the first order language L we give1380

the definitions in detail just for that. In principle we could do this for any language, for any structures.1381

Definition 3.11 (Gödel code sets) We define by (a meta-theoretic) recursion on the structure of formulae1382

of L the code set x y P V .1383

(i) xvi =̇v jy is i+ ⋅  j+; xvi Ṗv jy is i+ ⋅  j+ ;1384

(ii) x ∨ y is {x y, x y, {x y}} ;1385

(iii) x¬ y is {, x y} ;1386

(iv) xDvi y is {i+, x y} .1387

Note (a) atomic formulae are the only ones coded by integers, (b) in each case, that if is non-atomic1388

then the code set contains immediate subformula(e) codes as direct members; (c) Note the device in (iii)1389
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for ensuring which is the first disjunct: we have w = x ∨ y↔ ∣w∣ =  ∧ Du, v , s P w(u = x y ∧ v =1390

x y ∧ s = {u}). This is thus ∆.1391

Clearly given a code set uwemay decode from it in a unique fashion, making use of the primes and1392

the prime power coding. We give the formal counterpart of the above definition using finite functions1393

from V , a definite formula defining the characteristic function of the class of code sets of formulae of1394 L:1395

Definition 3.12 Fml(u, f , n) = ↔ f P < V ∧ dom( f ) = n +  ∧ f (n) = u∧1396 ∧@k P dom( f )[Di , j P ( f (k) = i+ ⋅  j+ ∨ f (k) = i+ ⋅  j+ ∨1397

Dm, l < k[ f (k) = { f (m), f (l), { f (m)}} ∨ f (k) = {, f (m)} ∨ Di P ( f (k) = {i+, f (m)}]] ) ;1398

Fml(u, f , n) =  otherwise.1399

We thus may think of the formula as represented by, or coded by, f (n), where f is the function1400

that describes its construction according to the last definition, with dom( f ) = n + .1401

Definition 3.13 Fmla(u) = ↔ Dn P D f P < V Fml(u, f , n) = ; Fmla(u) =  otherwise.1402

It should be noted that both the last two definitions are built up using definite terms, and so are1403

defined by definite formulae and thus a.d.1404

3.3 Formalising the satisfaction relation1405

We now formalise the (first order) satisfaction relation due to Tarski, familiar from model theory.1406

Definition 3.14 (i) Qx =df {h∣Fun(h)∧dom(h) = ∧ran(h) Ď x∧Dn P Dy P x(@m ≥ nh(m) = y)}.1407

(ii) If h P Qx, and y P x, then h(y/i) is the function defined by:1408

@ j P ( j ≠ i %→ h(y/i)( j) = h( j)) ∧ h(y/i)(i)=y.1409

Again Qx is definite: we may write1410

h P Qx ↔ Dh P < xDy P x(h = h ∪ {⟨n, y⟩∣n P ∧ dom(h) ≤ n}).1411

Thus although Qx does not contain finite functions, any h P Qx is essentially a finite function with1412

a constant tail - and this makes it definite. (Again: x, like P(x), is not definite.) (ii) also specifies a1413

definite relation between i , x , y, and h.1414

We next specify what it means for a finite function h to be an assignment of variables potentially1415

occurring in a formula u to objects in x that makes u come out true in the structure ⟨x , P⟩.1416

Definition 3.15 (i) We define by recursion the term Sat(u, x);1417

Sat(xvi =̇v jy, x) = {h P Qx ∣h(i) = h( j)};
Sat(xvi Ṗv jy, x) = {h P Qx ∣h(i) P h( j)};
Sat(x ∨ y, x) = Sat(x y, x) ∪ Sat(x y, x)};

Sat(x¬ y, x) = Qx/ Sat(x y, x)};
Sat(xDvi y, x) = {h P Qx ∣Dy P x(h(y/i) P Sat(x y, x))]};

Sat(u, x) = ∅ if Fmla(u) = .
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(ii) We write ⟨x , P⟩ ⊧ u[h] iff h P Sat(u, x).1418

Note: By design then we have ⟨x , P⟩ ⊧ x¬ y[h] iff it is not the case that ⟨x , P⟩ ⊧ x y[h] etc. (We write1419

the latter as ⟨x , P⟩ /⊧ x y[h].) If, uninterestingly, x = ∅ then also Sat(u, x) = ∅.1420

Lemma 3.16 Sat(u, x) is defined by a definite recursion. Hence “⟨x , P⟩ ⊧ x y[h]” is definite.1421

Proof: This should be pretty clear, but we give an explicit recursive term t for Sat:1422

Sat(u, x) = {h P Qx ∣1423

Fmla(u) = ∧1424

Di , j P [(u = i+ ⋅  j+ ∧ h(i) = h( j)) ∨ (u = i+ ⋅  j+ ∧ h(i) P h( j))]]∨1425 ∨[∣u∣ =  ∧ Dv ,w P u[w = {v} ∧ h P ⋃{Sat(v , x)∣v P u}]]∨1426 ∨[ P u ∧ h R ⋃{Sat(v , x)∣v P u}]1427 ∨[Di P (i+ P u ∧ Dy P x(h(y/i) P ⋃{Sat(v , x) ∣ v P u}) ]}.1428

The specification here yields a definite term Sat(u, x)= t(x , u, {Sat(v , x)∣v P u})noting that we have1429

already established that all the concepts appearing here, such as “Qx”,“Fmla(u)”, “ ”, etc. are definite1430

Q.E.D.1431

By our work so far then then we may say that “the assignment h makes the formula true in the1432

structure ⟨x , P⟩” if ⟨x , P⟩ ⊧ x y[h]. Otherwise we say it is similarly “false”.1433

If is a formula of L with free variables amongst v j , . . . , v jn and y, . . . , yn P x then we abbreviate:1434 ⟨x , P⟩ ⊧ x y[y, . . . , yn]←→ ⟨x , P⟩ ⊧ x y[h] for any h P Qx with h( ji) = yi all i ≤ n.1435

This makes perfect sense, since the intepretation of the formula in the structure only depends on the1436

assignment to the free variables of . If has no free variables at all, then it is deemed a sentence and1437

either Sat(x y, x) = Qx , in which we case we say the sentence is true in ⟨x , P⟩ or else Sat(x y, x) = ∅1438

in which case it is false. In each case we simply write ⟨x , P⟩ ⊧ x y or ⟨x , P⟩ /⊧ x y accordingly, as then1439

assignment functions h are superfluous.1440

3.4 Formalising definability: the function Def.1441

The following is the crucial function used to build up definable sets.1442

Definition 3.17 Def(x) =df {{w P x ∣ ⟨x , P⟩ ⊧ u[h(w/)]}; Fmla(u) =  ∧ h P Qx} .1443

Lemma 3.18 “Def(x)” is a definite term.1444

Proof: First note that we have shown that “⟨x , P⟩ ⊧ u[h(w/)]” is definite. Hence so is
(x , u, h) =df {w P x∣⟨x , P⟩ ⊧ u[h(w/)]}.

Hence { (x , u, h)∣Fmla(u) =  ∧ h P Qx} is definite. Q.E.D.1445

1446

The class Def(x) we think of as the “definable power set of x”: it consists of those subsets y Ď x so
thatmembership in y is given by a formula (v, v, . . . , vm) all of whose free variables are amongst those
shown, together with a fixed assignment of some y, . . . , ym, and the members y P y are determined
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by allowing v to range over all of x. Those y that when added to the fixed assigment y, . . . , ym, cause[y, y, . . . , ym] to come out true in ⟨x , P⟩ are then added to y. We may write slightly more informally:

Def(x) = {z ∣ z = {w∣⟨x , P⟩ ⊧ [w , y, . . . , ym]}, Fmla( ) = , y⃗ P < x}
where it is implicitly understood that we should have written x y for and it is left unsaid that the free1447

variables of have all been assigned some value in x by the assignment displayed.1448

Lemma 3.19 (i) x P Def(x); (ii) Trans(x)%→ x Ď Def(x);1449

(iii) @z Ď x(∣z∣ < → z P Def(x));1450

(iv) (AC) ∣x∣ ≥ %→ ∣Def(x)∣ = ∣x∣.1451

Proof: (i) x = {w ∣ ⟨x , P⟩ ⊧ xv = vy[w]} and so x P Def(x).1452

(iv) Assume x is infinite. Then Qx has the same cardinality as < x, namely ∣x∣. Also, F =df {u ∣1453

Fmla(u) = } is a countable set. Since Def(x) is the class of subsets of x given by a definition in-1454

volving a formula u P Fmla together with a finite parameter string y, . . . , yn we see that: ∣Def(x)∣ ≤1455 ∣F∣.∣Qx ∣ = .∣x∣ = ∣x∣. That ∣x∣ ≤ ∣Def(x)∣ follows from (iii). (ii) and (iii) are left as an exercise. Q.E.D.1456

Exercise 3.4 Finish (ii) and (iii) of Lemma 3.9.1457

Exercise 3.5 Let ⟨x , P⟩ be a transitive P-model. Show that Trans(Def(x)). If y, z P x then is ⟨y, z⟩ P Def(x)? Is1458 {x}? [Hint (for the last question): If (x) = , compute (Def(x)) and compare this with the given sets.]1459

Exercise 3.6 Let us say that w is outright definable in the set ⟨x , P⟩ if for some formula with only free variable
v then w is the unique element in x so that ⟨x , P⟩ ⊧ [w]. We may thus define a variant on the Def function by:

Def (x) = {z ∣{z} = {w P x∣⟨x , P⟩ ⊧ [w]}, Fmla( ) = , FVbl( ) = {v} ,w P x}
of the sets outright definable in ⟨x , P⟩, definable without use of parameters. Show that ∣Def (x)∣ ≤ for any x.1460

Definition 3.20 We say that a set z is ordinal definable˚ (“z P OD˚”) if for some , z P Def(V ).1461

(This definition is just a placeholder for the official - but equivalent - definition of ordinal definability1462

to come.)1463

Exercise 3.7 (i) Show that: (a) On Ď OD˚; (b) @ V P OD˚; (c) @x(x P OD˚ → {x} P OD˚). (ii)(˚) Show1464

that there is a (countable) set X so that for unboundedly many ordinals X P Def (V ). [Hint: consider the1465

theory of each V : the set of all codes of sentences so that ⟨V , P⟩ ⊧ x y. This is a subset of V .]1466

3.5 More on correctness and consistency1467

The next theorem illustrates that our definitions are ‘correct’: we have formulated two ways of talking1468

about a statement being ‘true in a structure’ W , firstly we considered relativised formulae and spoke1469

from an exterior perspective of ‘ holds or is true in W ’ by asserting ‘ W ’. The formula from L we1470

consider to be in our language in which we wish to state our axioms about the structure consisting of our1471

intuitive universe of sets. We have now a second interior method through the formalised version of the1472



More on correctness and consistency 49

language which consists of sets coding formulae as for x y above together with the satisfaction relation.1473

This relation was between (codes of) formulae and structures or ‘models’. The next theorem asserts that1474

these two methods are in harmony.1475

Theorem 3.21 (Correctness Theorem) Suppose is a formula of L with free variables v⃗ = v j , . . . , v jm1476

then:1477

ZF− ⊢ @x@ y⃗ P mx[(⟨x , P⟩ ⊧ x y[ y⃗/v⃗])←→ ( ( y⃗/v⃗))⟨x ,P⟩].1478

● This would be a proof by induction on the complexity of (we shall omit the details). It is again1479

a theorem scheme, being one theorem for each .1480

The ZF and ZFC axiom collections themselves have formal counterparts as sets: just as each formula1481

is mapped to its code set x y as above, we can also find sets that collect together the code sets of those1482

sentences that are axioms of ZF (or ZFC). Namely, there is an algorithm for listing the axioms of ZF1483

as , , . . . , n , . . .1484

Definition 3.22 xZFy =df {u∣Fmla(u) =  ∧ (Ax (u) ∨Ax (u) ∨⋯∨Ax (u))}.1485

xZFCy is defined similarly by adding “∨Ax (u)”.1486

In the above by ‘Axj(u)’ we mean that u is a code set for an axiom of the type Axj. Thus Ax01487

is the Ax.Extensionality. If this latter axiom is written out using only ¬, ∨, D etc. as then we have1488

Ax (u) ←→ u = x y. The other axioms similarly must be written out in the formal language, and then1489

coded according to our prescription. Some axioms are in fact axiom schemata: infinite sets of axioms.1490

So for Ax (u) (for Ax.Replacement) we should demand that u conforms to the right shape of formula1491

that is an instance of the axiom of replacement when written out in this correct manner. Ax (u) will1492

then be an infinite set, as will be xZFy .1493

Lemma 3.23 (i) “u P xZFy”, “u P xZFCy” are definite. (ii) If is an axiom of ZF then

ZF− ⊢ x y P xZFy.

Similarly if is an axiom of ZFC then ZF− ⊢ x y P xZFCy .1494

This would again be a proof by induction on the structure of .The intuitivemeaning that it captures1495

is that “ZF Ď xZFy”. The point again is that the definitions of xZFy and xZFCy are again definite. These1496

details are uninteresting and somewhat tedious, but the idea that this can be done is very interesting. (ii)1497

is again a theorem scheme, one for each axiom .1498

Definition 3.24 “⟨x , P⟩ ⊧ xZFy”⇐⇒df @u P xZFy ⟨x , P⟩ ⊧ u. (“⟨x , P⟩ ⊧ xZFCy” similarly.)1499

We have that, e.g. “⟨x , P⟩ ⊧ xZFy” and “⟨x , P⟩ ⊧ xZFCy” are definite, and so a.d. Then in this case we1500

say that ⟨x , P⟩ “is a model of ZF(C)”.1501

Corollary 3.25 (to the CorrectnessTheorem) For any axiom of ZF− (or ZFC) then
ZF− ⊢ (⟨x , P⟩ ⊧ xZF−y%→ ⟨x ,P⟩);
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similarly
ZF− ⊢ (⟨x , P⟩ ⊧ xZFCy%→ ⟨x ,P⟩).

Exercise 3.8 Suppose is strongly inaccessible. Verify that ⟨V , P⟩ ⊧ xZFCy.1502

Exercise 3.9 (˚) (E) Let A,B be structures. We write A ă B if for every formula u, every h P QA if B ⊧ u[h]1503

thenA ⊧ u[h]. Suppose that , are such that ⟨V , P⟩ ă ⟨V , P⟩. Show that is a strong limit cardinal and that1504

both ⟨V , P⟩, ⟨V , P⟩ are models of ZFC.1505

Exercise 3.10 (˚) (E) Suppose there is which is strongly inaccessible. Show that there is with ⟨V , P⟩ amodel1506

of ZFC, and with cf( ) = . [Hint: Use the ReflectionTheorem proof on V , which we now have assumed to be1507

a ZFC model, to show that every formula of ZFC now “reflects” down to a cub C Ď set of ordinals. Now1508

intersect over all . This method shows that in fact there is a cub set of points < with ⟨V , P⟩ not only a model1509

of ZFC, but also ⟨V , P⟩ ă ⟨V , P⟩ ]1510

Exercise 3.11 (˚)(E). Let xSny denote the codes of Σn formulae of L in the Levy hierarchy. Let n P N. Show that1511

there is a term cn Ď On for a closed unbounded class of ordinals, so that ZF ⊢ @ P cn@u P xSny@x⃗ P V ( (x⃗)↔1512 ⟨V , P⟩ ⊧ u[x⃗]). This we should naturally, but informally, abbreviate as ‘⟨V , P⟩ ăΣn ⟨V , P⟩’.1513

Exercise 3.12 Suppose ⟨X , P⟩ ⊧ T for some set of sentencesT including Ax.Ext. Show that there is a countable1514

transitive x with ⟨x , P⟩ ⊧ T . [Hint: The Downward-Löwenheim Skolem Theorem says for any cardinal with1515 ≤ ≤ ∣X∣ there is a Y with ⟨Y , P⟩ ă ⟨X , P⟩ and ∣Y ∣ = . Then use the Mostowski-Shepherdson Collapsing1516

Lemma.] In particular if there is an P-structure which is a model of ZFC then there is a countable transitive one.1517

3.5.1 Incompleteness and Consistency Arguments1518

In general whenwe say that a theory T is consistent wemean that for no sentence dowe have T ⊢ and1519

T ⊢ ¬ . We abbreviate this as “Con(T)”. Of course if T is inconsistent thenwemay prove anything at all1520

from T and we can then say (assuming that T is in a language in which we formulate arithmetic axioms)1521

that “T ⊢  = ” encapsulates the notion that T is inconsistent. The heart of Gödel’s argument is that it is1522

possible to formulate the concept of a formal proof from an algorithmically or recursively given axiom1523

set T extending PA, in such a way that “v codes a proof from xTy of v”, abbreviated PfT(v, v), can be1524

represented in the theory T . Then we may use “¬Dv PfT(v, x = y)”, abbreviated as “ConT”, to capture1525

the formal assertion that T is consistent. He then showed that T /⊢ ConT . In short we thus formalise the1526

notions of “proof ”, “contradiction”, “axiom” etc. within the theory T , starting with the formalisation of1527

syntax that we have already effected. We are not going here to go down the route of investigating Gödel’s1528

proof in its entirety, howeverwe can rather easily obtain aweak version ofGödel’s Second Incompleteness1529

Theorem which suffices for our purposes. (Compare the proof ofTheorem 3.10)1530
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Theorem 3.26 (Gödel) Con(ZF)⇒ ZF /⊢ Dx(Trans(x) ∧ ⟨x , P⟩ ⊧ xZFy).1531

Proof: Suppose abbreviates the sentence Dx(Trans(x) ∧ ⟨x , P⟩ ⊧ xZFy). Suppose that ZF ⊢ . Then:1532

ZF ⊢ Dz(Trans(z) ∧ ⟨z, P⟩ ⊧ xZFy ∧“ @w(Trans(w) ∧ (w) < (z)→ ⟨w , P⟩ /⊧ xZFy)” (˚)1533

Let z satisfy the last formula. By the last Corollary for any axiom of ZF we have ⟨z,P⟩. That is1534 (ZF)⟨z,P⟩. As ZF ⊢ we shall have that ( )⟨z,P⟩. In other words (Dx(Trans(x) ∧ ⟨x , P⟩ ⊧ xZFy))⟨z,P⟩.1535

So let y P z satisfy this, namely1536 (Trans(y) ∧ ⟨y, P⟩ ⊧ xZFy)⟨z,P⟩.1537

But this is a definite formula and so is absolute for the transitive structure ⟨z, P⟩ as (ZF−)⟨z,P⟩. Hence we1538

really do have:1539

y P z ∧ Trans(y) ∧ ⟨y, P⟩ ⊧ xZFy.1540

But (y) < (z). This contradicts (˚). Hence ZF is inconsistent. Q.E.D.1541

1542

However, providing we have done our formalisation of xZFy and PfT(v, v) etc. sensibly, we shall1543

have that in ZF we can prove the Gödel Completeness Theorem: that any consistent set of sentences in1544

any first order theory whatsoever has a model, and thus shall have:1545

ZF ⊢“ConZF %→ DX , E[∣X∣ = ∧ ⟨X , E⟩ ⊧ xZFy] ” (˚˚)1546

But there is no indication that E should be the natural set membership relation on the countable set X,1547

or that Trans(X). X , E arise simply from the proof of the CompletenessTheorem. In general E will not1548

be wellfounded, and will be completely artificial.1549

Taking this line further: if there is a set which is a transitive model of ZF, let us assume ⟨x , P⟩ P V is1550

such. We additionally assume such an x is chosen of least rank. The assumed existence of ⟨x , P⟩ implies1551

ConZF, and as this latter assertion is expressed as a definite sentence, and ⟨x , P⟩ is a transitive ZF−model,1552

we have (ConZF)⟨x ,P⟩. By (˚˚) (DX , E[∣X∣ = ∧ ⟨X , E⟩ ⊧ xZFy)⟨x ,P⟩. Then the model ⟨X , E⟩ P x can-1553

not be amodel with E wellfounded (it is an exercise to check this using (X) < (x) - cf. Ex. 3.16 below).1554

1555

What we shall attempt with Gödel’s construction of L is to show:1556

(+) Con(ZF)⇒ Con(ZF+Φ)1557

where Φ will be various statements, such as AC or the GCH.1558

A statement such as the above (+) should be considered as a statement about the two axioms sets1559

displayed: if the former derives no contradiction neither will the latter. The import is that if we regard1560

ZF as “safe”, as a theory, then so will be ZF+Φ. (One usually claims that these arguments about the1561

relative consistency of recursively given axiom sets are theorems of a particular kind in NumberTheory1562

and themselves can be formalised in PA - but we ignore that aspect.)1563

Exercise 3.13 (˚) (E)We say that a set x is outright definable in amodel ⟨M , E⟩ of ZFC if there is a formula (v)1564

with the only free variable shown, so that x is the unique set so that ( [x])M holds. Suppose Con(ZFC). Show1565

that there is a model ⟨M , E⟩ of ZFC in which every set is outright definable.1566

Exercise 3.14 (˚) (E) Show that there is no formula (v) with just the free variable v so that {y ∣ (y)} is the1567

class of outright definable (in (V , P)) sets. [Hint: use a form of Richard’s Paradox. Suppose there is such a . The1568

least ordinal not outright definable is a countable ordinal, but now let (v) be “v is an ordinal”∧@v < v (v).1569

Then = { ∣ ( )}.]1570
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Exercise 3.15 (˚˚) (E) Suppose ⟨M , E⟩ is a model of ZF. Show that there is a ⟨N , E′⟩E M with ⟨N , E′⟩ a model1571

of ZF.1572

Exercise 3.16 (˚˚) (E) Suppose that there are transitive models of ZF. Let ⟨x , P⟩ be such, chosen with (x)1573

least. Then (by Ex.3.15 ) if ⟨X , E⟩ P x is such that ⟨X , E⟩ ⊧ xZFy, show that ⟨X , E⟩ cannot be an ‘ -model’, that1574

is ⟨X ,E⟩ ≠ . (Thus ⟨X , E⟩ contains non-standard integers, and in particular codes for non-standard formulae.1575

More particularly still, (xZFy)⟨X ,E⟩ will contain non-standard axioms besides the standard ones.)1576

Exercise 3.17 (˚˚) (E) Suppose the language L ˙ is the standard language of set theory augmented by a single1577

constant symbol ˙. Suppose we consider the following scheme of axioms Γ stated in L ˙: for each axiom of1578

ZFC we adopt the axiom ˙: @x⃗(Fr( ) Ď x⃗ %→ ( [x⃗])V ˙ ←→ [x⃗])). (Thus is declared absolute for V˙.) Γ1579

consists of all the axioms ˙. Informally, taken together then, Γ says that V ă V where interprets ˙. However1580

the existence of a satisfying the latter relation is not provable in ZFC (by the Gödel Incompleteness Theorem).1581

Nevertheless show that Con(ZFC)⇒ CON(ZFC+Γ). Why does this not contradict Gödel?1582



Chapter 41583

The ConstructibleHierarchy1584

In this chapter we define the constructible hierarchy due to Gödel, and prove its basic properties. Besides1585

its original purpose used by Gödel to prove the relative consistency of AC and GCH to the other axioms1586

of ZF, we can exploit properties of L to prove other theorems in algebra, analysis, and combinatorics. In1587

set theory itself, properties of L can tell us a lot about V even if V ≠ L.1588

1589

Kurt Gödel (1906 Brno - 1983 Princeton, USA)

4.1 The L -hierarchy1590

We use the Def function to define a cumulative hierarchy based on the notion of definable power set1591

operation: the Def function.1592

Definition 4.1 (Gödel) (i) L = ∅ ; L + = Def(⟨L , P⟩;1593

Lim( )%→ L = ⋃{L ∣ < }.1594

(ii) L = ⋃{L ∣ < On}.1595

53
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Lemma 4.2 The term L is definite, and hence absolute for transitive W satisfying (ZF−)W.1596

Proof: The Def function is definite and the ↣ L function is defined by definite recursion from it.1597

Q.E.D.1598

1599

We thus have defined a class term function F( ) = L by a transfinite recursion on On, and so also1600

the term L itself. It is natural to define the notion of “constructible rank” or L-rank, by analogy with1601

ordinary V-rank.1602

Definition 4.3 For x P L we define the L-rank of x, L(x) =df the least so that x P L +.1603

We give some of the basic properties of the L -hierarchy. Many are familiar properties commonwith1604

the V -hierarchy: all of the following are true with L replaced by V .1605

Lemma 4.4 (i) < %→ L Ď L ;1606

(ii) < %→ L P L ;1607

(iii) Trans(L );1608

(iv) = (L ) ;1609

(v) = On∩L .1610

Hence Trans(L) and On Ď L.1611

Proof: We prove this by a simultaneous induction for (i)-(v). These are trivial for = . Suppose1612

proven for and we show they hold for + .1613

(i): It suffices to prove that L Ď L + since by the inductive hypothesis, for < we already know
L Ď L . (Actually this is just an instance of Lemma 3.19(ii), noting that Trans(L ) by (iii), but we prove
it again.) Let x P L . By (iii) for , Trans(L ) and hence x Ď L .

x = {y P L ∣⟨L , P⟩ ⊧ xvṖvy[y, x]} P Def(⟨L , P⟩) = L +.
(ii) Again it suffices to show that L P L +. However L P Def(⟨L , P⟩) by Lemma 3.19 (i).1614

(iii) L + Ď P(L ) hence x P L + %→ x Ď L Ď L + by (i).1615

(iv) By the inductive hypothesis (L ) = . By (ii) L P L +, hence = (L ) < (L +). Hence1616 +  ≤ (L +). For the reverse inequality note that: x P L + %→ x Ď L , and so (x) ≤ (L ) = .1617

This means that1618 (L +) =df sup{ (x) +  ∣ x P L +} ≤ + .1619

(v) By the inductive hypothesis and (i) Ď L Ď L +, so it suffices to show that P L + in order to
show that +  Ď L +. Thus:

= { P L ∣ P On} = { P L ∣ ⟨L , P⟩ ⊧ xvṖOny[ ]} P Def(⟨L , P⟩) = L +.
That On∩L + Ď + : On∩L + Ď { P On ∣ ( ) < + } by (iv). But the latter is just + .1620

We now assume Lim( ) and (i)-(v) hold for < . Then (i)-(iii) and (v) are immediate. For (iv) :1621 (L ) = sup{ (x) +  ∣ x P L } ≤ sup{ ∣ P } = . Conversely Ď L %→ (L ) ≥ . Q.E.D.1622
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Lemma 4.5 (i) For all P On, L( ) = ( ) = .1623

(ii) For n ≤ Ln = Vn.1624

(iii) For all ≥ ∣L ∣ = ∣ ∣.1625

Proof: (i) and (ii): Exercise. For (iii) we prove this by induction on . For = this follows from (ii)1626

and ∣V ∣ = . Suppose proven for . ∣L +∣ = ∣Def(⟨L , P⟩)∣ = ∣L ∣ = ∣ ∣ = ∣ + ∣ by lemma 3.19 (iv).1627

For Lim( ): ∣L ∣ = ∣⋃ < L ∣ ≤ ∣ ∣ ⋅ ∣ ∣ = ∣ ∣ as by the inductive hypothesis ∣L ∣ = ∣ ∣ ≤ ∣ ∣ for < .1628

Q.E.D.1629

Exercise 4.1 (i) Verify that for all P On, L( ) = ( ) = (ii) Prove that for n ≤ Ln = Vn .1630

Remark: (i) shows that as far as ordinals go, they appear at the same stage in the L-hierarchy as in1631

the V-hierarchy. However it is important to note that this is not the case for all constructible sets: there1632

are constructible subsets of that are not in L +.1633

Definition 4.6 (i) Let T be a set of axioms in L. Let W be a class term. Then W is an inner model of T,1634

if (a) Trans(W); (b) On Ď W ; (c) (T)W , that is, for each in T, ( )W.1635

(ii) If (i) holds we write IM(W , T) and if T is ZF then simply IM(W).1636

Theorem 4.7 (Gödel) L is an inner model of ZF, IM(L). In particular (ZF)L .1637

Remark: again this is to be read as saying: for each axiom of ZF, ZF ⊢ ( )L.1638

Proof: We already have (a) and (b) by Lemma 4.4, so it remains to show (ZF)L. We justify this by1639

considering each axiom (or axiom schema) in turn. We use all the time, without comment the fact that1640

each L is transitive.1641

Ax  Empty is trivial as ∅ = ∅L P L.1642

Ax1: Extensionality: This is Lemma 1.21, since we have Trans(L).1643

Ax2: Pairing Axiom Let x , y P L . Then1644 {x , y} = {z P L ∣ ⟨L , P⟩ ⊧ xv=̇v ∨ v=̇vy[z/, x/, y/]} P Def(L ) = L + Ď L.1645

By Lemma 1.24 then Ax2 holds in L.1646

Ax3 Union Axion Let x P L . This follows from Lemma 1.25 once we show:1647 ⋃ x = {z P L ∣ ⟨L , P⟩ ⊧ xDv(vṖv ∧ vṖvy[z/, x/]} P Def(L ).1648

Ax4 Foundation Scheme Let a be a term. Then:1649 (a ≠ ∅ %→ (Dx P a(x ∩ a = ∅)))L ↔ (aL ≠ ∅ %→ Dx P aL(x ∩ aL = ∅)). But the right hand side1650

of the equivalence here is simply an instance of the Foundation scheme in V and thus is true.1651

Ax5 Separation Scheme Again let a be a class term. Suppose

a = {z∣ (z/, y/, . . . , yn/n)}.
Suppose x , y⃗ P L . We apply Lemma 2.40 to the hierarchy Z = L , Z = L to obtain a > so that1652

ZF ⊢ @z P L ( ( (z, y, . . . , yn))L ↔ ( (z, y, . . . , yn))L ) ).1653

By the CorrectnessTheorem 3.21

( (z, y, . . . , yn))L ↔ ⟨L , P⟩ ⊧ x y[z, y, . . . , yn].
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Hence, putting it all together:1654 {z P x ∣ (z, y, . . . , yn)}L = {z P x ∣ (z, y, . . . , yn)L } =1655 = {z P L ∣ ⟨L , P⟩ ⊧ x ∧ vṖvn+y[z, y, . . . , yn , x]} P Def(L ).1656

Ax6 Replacement Scheme Suppose f is a term, x P L, and Fun( f )L. Let L be the constructible1657

rank function. Then by the Replacement Scheme (in V) ( L ○ f L)“x P V . Let be its supremum. Then1658

f L“x Ď L . Let ≥ be sufficiently large so that by the ReflectionTheorem1659

ZF ⊢ @y, z P L ( ( f (z) = y)L ↔ ( f (z) = y)L ) ).1660

Then again using the Correctness theorem we have that1661

f L“x = {y P L ∣⟨L , P⟩ ⊧ xDvṖv( f (v) = v)y[y/, x/]} P Def(L ).1662

Ax7 Infinity Axiom Just note that P L +.1663

Since we have shown the requisite sets are all in L we apply the appropriate cases of Lemma 1.25 and1664

conclude Ax3,5,6,7 hold in L. We are thus left with:1665

Ax8 PowerSet Axiom (@xDy(y = P(x)))L ↔ (@xDy@z(z Ď x ↔ z P y))L ↔1666 ↔ @x P LDy P L@z P L(z Ď x ↔ z P y)1667 ↔ @x P LDy P L(y = P(x) ∩ L).1668

So we verify the latter: let x P L be arbitrary. P(x)∩ L P V by Axiom of Power and Separation in V . By1669

Ax.Replacement L“P(x) ∩ L P V . Let be its supremum. Then, as required:1670 P(x) ∩ L = {z P L ∣⟨L , P⟩ ⊧ xvĎ̇vy[z, x]} P Def(L ). Q.E.D.1671

1672

Suppose we define IM(W) to be the variant on IM(W) that, keeping (a) and (b), replaces (c) by1673

the statement that “@x Ď WDy P V(x Ď y ∧ Trans(y) ∧Def(⟨y, P⟩ Ď W)” then a close reading of the1674

last proof reveals that we in fact may show:1675

Theorem 4.8 Suppose W is a class term and IM(W). then IM(W).1676

Exercise 4.2 (˚) (E) Prove this last theorem.1677

Exercise 4.3 Show that “x is a cardinal” and “x is regular” are downward absolute from V to L. Deduce that if1678

is a (regular) limit cardinal then ( is a (regular) limit cardinal)L .1679

4.2 The Axiom of Choice in L1680

The very regular construction of the L -hierarchy ensures that the Axiom of Choice will hold in the con-1681

structible universe L. Indeed, it holds in a very strong form: whereas the Axiom of Choice is equivalent1682

to the statement that any set can be wellordered, for L there is a class term that wellorders the whole1683

universe of L in one stroke. Essentially what is at the heart of the matter is that we may wellorder the1684

countably many formulae of the language L, and then inductively define a wellorder < + for L + using1685

a wellorder < for L . This latter wellorder < gives us a way of ordering all finite k-tuples of elements1686

of L , and thus, putting these together, we get a wellorder of all possible definitions that go into making1687

up new objects in L +. We shall additionally have that the ordering < + end-extends that of < . This1688

means that if y P L +/L then for no x P L do we have that y < + x. Taking <L= ⋃ POn < gives us1689

the term for a global wellordering of all of L. We now proceed to fill out this sketch.1690
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Let x P V and suppose we are given a wellorder <x of x. We define from this a wellorder <Qx . For1691

f P Qx we let lh( f ) =df the least n so that @m ≥ n( f (m) = f (n)). We then define for f , g P Qx :1692

1693

f <Qx g ←→df lh( f ) < lh(g)∨ (lh( f ) = lh(g)∧ Dk ≤ lh( f )(@n < k f (n) = g(n)∧ f (k) <x g(k))).1694

Exercise 4.4 Check that if <xP WO then <Qx P WO. Moreover <Qx is definite.1695

We now suppose we also have fixed an ordering , , . . . , n , . . . of the countably many elements1696

of Fml which have at least v amongst their free variables (we may define such a listing from any map1697

g ∶ ←→ Fml). We assume that the function f given by f (n) = x ny is a definite term.1698

Definition 4.9 We define by recursion the ordering < of L . <= ∅; let x , y P L +:1699

x < + y↔df1700 (x P L ∧ y R L ) ∨ (x , y P L ∧ x < y) ∨ (x , y R L ∧ Dn P D f P QL (x = (L , n , f )∧1701

@m P @g P QL (y = (L , m , g)%→ n < m ∨ (m = n ∧ f <QL g)))).1702

Lim( )%→< = ⋃ < < ; <L=df ⋃ POn < .1703

Lemma 4.10 (i) < is definite; (ii) the ordering < is a wellordering and end-extends < if ≤ ; (iii) if1704

is an infinite cardinal then < has order type ; <L has order type On. Thus (AC)L.1705

Proof: (i) f ( ) =df< is defined by a definite recursion. (ii) By an obvious induction on . (iii)1706

Exercise. Q.E.D.1707

Exercise 4.5 Show that ot(L , < ) = for an infinite cardinal; deduce that ot(L, <L) = On.1708

4.3 The Axiom of Constructibility1709

Definition 4.11 The Axiom of Constructibility is the assertion “V = L” which abbreviates “@xD x P L .”1710

The Axiom of Constructibility thus says that every set appears somewhere in this hierarchy. Since the1711

model L is defined by a restricted use of the power set operation, many set theorists feel that theDef func-1712

tion is too restricted a method of building all sets. Nevertheless, the inner model L of the constructible1713

sets, possesses a very rich structure.1714

Lemma 4.12 (i) Let W be a transitive class term, and suppose (ZF−)W. Then

(L)W = L if On∩W = On= L if On∩W = .

(ii)There is a finite conjunction  ofZF− axioms, so that in (i) the requirement that (ZF−)W can be replaced1715

by ( )W and the conclusion is unaltered.1716
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Proof: (i) The function term L is definite. Hence is absolute for such a W . Note that in the case that
On∩W = P On then indeed Lim( ). But in either case for any P W (L )W = L . Hence

(L)W = (⋃{L ∣ P On})W =⋃{L ∣ P On∩W}
which yields the above result.1717

(ii)  is simply the conjunction of sufficiently many axioms needed for the proof that the function1718

term L is definite, plus “there is no largest ordinal”. Q.E.D.1719

Corollary 4.13 (ZF) (V = L)L.1720

Proof: Trans(L) and (ZF−)L. But (V = L)L ↔ VL = LL. As VL = L and by Lemma 4.12 (L)L = L we1721

are done. Q.E.D.1722

Theorem 4.14 Con(ZF)⇒ Con(ZF+V = L).1723

Proof: Suppose ZF+V = L is inconsistent. Suppose ZF+V = L ⊢ ( ∧ ¬ ).1724

ZF ⊢ (ZF+V = L)L by the last Corollary andTheorem 4.7, then:1725

ZF ⊢ ( ∧ ¬ )L , and hence:1726

ZF ⊢ L ∧ (¬ )L. Hence:1727

ZF ⊢ L ∧ ¬( L). Hence ZF is inconsistent. Q.E.D.1728

Remark 4.15 P. Cohen (1962) showed Con(ZF) ⇒ Con(ZF+V ≠ L) by an entirely different method,1729

that of “forcing”.Thismethod can be construed as either constructingmodels in a Boolean valued (rather1730

than a 2-valued) logic; or else akin to some kind of syntactic method of construction. (An entirely dif-1731

ferent method was needed - see Exercise 4.7.) He further showed that Con(ZF) ⇒ Con(ZF+¬AC)1732

and Con(ZF)⇒ Con(ZF+¬CH). His methods are now much elaborated to prove a wealth of “relative1733

consistency” statements such as these.1734

Theorem 4.16 (Gödel 1939) Con(ZF)⇒ Con(ZF+AC)1735

Proof: We have shown ZF ⊢ (AC)L, but also ZF ⊢ (ZF)L, and thus ZF ⊢ (ZF+AC)L, Hence if1736

ZF+AC ⊢ ∧ ¬ for some then we should have ZF ⊢ ( ∧ ¬ )L as in the last proof, and hence1737

not Con(ZF). Q.E.D.1738

Exercise 4.6 Suppose there is a transitive set model of ZFC. Show that there is a minimal (transitive) model of1739

ZFC, that is for some countable ordinal , L  ⊧ xZFCy and that L  is a subclass of any other such transitive set1740

model of ZF .1741

4.4 The Generalised ContinuumHypothesis in L.1742

We first prove a simple lemma, but one of great utility.1743

Lemma 4.17 (The Condensation Lemma) Suppose ⟨x , P⟩ ă ⟨L , P⟩ where (ZF−)L (or just ( )L where1744

 is the finite conjunction of axioms from Lemma 4.12). Then there is ≤ with ⟨x , P⟩ ≅ ⟨L , P⟩.1745
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Proof: By assumption on we have ( )L , and so by the Correctness Lemma, we have that ⟨L , P⟩ ⊧1746

xV = Ly. Hence ⟨x , P⟩ ⊧ xV = Ly. Let ∶ ⟨x , P⟩ %→ ⟨y, P⟩ be the Mostowski Shepherdson Collapse1747

with Trans(y). Then ⟨y, P⟩ ⊧ x y ∧ xV = Ly (as is an isomorphism). By the first conjunct, Correctness1748

again, and Lemma 4.12, Ly = L ∩ y = LOn∩y. But by the second, this equals y itself. So we may take1749 = On∩y. Q.E.D.1750

1751

Note: It can be shown that the assumption that (ZF−)L can be verymuch reduced: all that is needed1752

for the conclusion of the lemma is that Lim( ), and with a lot more fiddling around even this condition1753

can be dropped, and we have Condensation holding for every L .1754

Theorem 4.18 ZF ⊢ ( ≤ P Card%→ H = L )L. Hence ZF ⊢ (GCH)L and thus ZF+V = L ⊢ GCH .1755

Proof: We have that L = V = H already and hence the conclusion for = . Assume ( < P1756

Card)L. If < then by Lemma 4.5(iii) (∣L ∣ = ∣ ∣ < )L. Hence (L P H )L. Thus (L Ď H )L.1757

Now for the reverse inclusion suppose (z P H )L. Find an sufficiently large with {z}, TC(z) P L1758

and by the Reflection Theorem ( )L . As z P H %→ TC(z) P H , we may apply the Downward1759

Löwenheim-Skolem theorem in L and find ⟨x , P⟩ ă ⟨L , P⟩ with TC({z}) = TC(z) ∪ {z} Ď x, and1760 (∣x∣ =max{∣TC({z})∣,ℵ} < )L .1761

As the transitive part of x contains all of TC({z}), we have that (z) = z where is the transitive1762

collapse map mentioned in the Condensation Lemma, taking ∶ ⟨x , P⟩ %→ ⟨y, P⟩ = ⟨L , P⟩ for some1763 ≤ . However we know that (∣x∣ = ∣L ∣ = ∣ ∣ < )L by design. Hence z P L P L .1764

As z P (H )L was arbitrary we conclude that (L Ě H )L. We thus have shown (H = L )L. To1765

show (GCH)L it suffices to show that for all infinite cardinals that ( = +)L. However  ≈ P( ) and1766 (P( ) Ď H + = L +)L. Hence (∣P( )∣ ≤ ∣L + ∣ = +)L. By Cantor’s Theorem we conclude (∣P( )∣ =1767 +)L.1768

This argument establishes that ZF ⊢ (GCH)L. If we additionally assume V = L we have the conclu-1769

sion of theTheorem. Q.E.D.1770

1771

The proof of the next is identical to that of Cor. 4.16:1772

Corollary 4.19 (Gödel 1939) Con(ZF)⇒ Con(ZF+GCH).1773

Exercise 4.7 (E) (Shepherdson) Show that there is no class termW so that ZFC ⊢ IM(W) and ZFC ⊢(¬CH)W .1774

[This Exercise shows that Gödel’s argument was essentially a “one-off”: there is no way one can define in ZFC alone1775

an inner model and hope that it is a model of all of ZF plus, e.g. , ¬CH.]1776

Exercise 4.8 Show that if there is a weakly inaccessible cardinal then (ZFC)L . Hence ZFC /⊢ D ( a weakly1777

inaccessible cardinal.) [Hint: Use the fact that (GCH)L .]1778

Exercise 4.9 Show that if is weakly inaccessible then @ < D < ( > ∧ L ⊧ xZFCy). [Hint: use the1779

Condensation Lemma and Downward Löwenheim-SkolemTheorem.]1780

Exercise 4.10 Assume V = L. When does L = V ?1781
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Exercise 4.11 (E)(˚) Show that if <  is any limit ordinal, which is countable in L, then there is , countable in1782

L, so thatP( )∩L = P( )∩L + . [This shows that there are arbitrarily long countable ‘gaps’ in the constructible1783

hierarchy, where no new real numbers appear, although by theGCHproof all constructible reals will have appeared1784

by stage ( )L . Hint: Suppose V = L, and look at the countable set X = { ∣ < }. Let A = ⟨L + , P⟩ and, by the1785

Downward Löwenheim-SkolemTheorem, let Y Ě X ∪ +  be a countable elementary substructure ofA: Y ă A.1786

Let ∶ Y %→ M be the transitive collapse of Y and as in the GCH proof,M = L for some . Consider = ( ).]1787

Exercise 4.12 Show that (i) if is a weakly inaccessible cardinal, then ( is strongly inaccessible)L ; (ii) if is a1788

weakly Mahlo cardinal, then ( is strongly Mahlo)L .[Hint: See Exercises 4.3 & 4.8. For (ii) show that the property1789

of being cub in is preserved upwards from L to V .]1790

Exercise 4.13 (i) Let ⟨x , P⟩ ă L  where  = ( )L . Show that already Trans(x) and so x = L for some ≤ .1791

[Hint: For <  note that (∣ ∣ = ∣L ∣ = )L  . Hence for P x, in L  , and thus in x, there is an onto map1792

f ∶ %→ L . Thus, as Ď x ∧ f P x we deduce that ran( f ) = L Ď x. Deduce that Trans(x).]1793

(ii) (˚) Now let ⟨x , P⟩ ă L  where  = ( )L . Show that Trans(x ∩ L ) and so x ∩ L  = L for some .1794

Exercise 4.14 (˚)AssumeV = L. N. Schweber defined a countable ordinal to bememorable if for all sufficiently1795

large < , P Def (⟨L , P⟩). Show:1796

(i)The memorable ordinals form a countable, so proper, initial segment of (  , P).1797

(ii) Let be the least non-memorable ordinal. Show that is also the least ordinal so that for arbitrarily large1798 < , L ă L .1799

4.5 Ordinal Definable sets and HOD1800

Gödel’s method of defining the inner model L of constructible sets was not the only way to obtain the1801

consistency of theAxiomof Choice with the other axioms of ZF. Anothermodel can be defined, the inner1802

model of the hereditarily ordinal definable sets or “HOD” in which the AC can be shown to hold. (The1803

GCH is not provably true there, and the absoluteness of the construction of L - which allowed us to show1804

that LL = L is not available: it is consistent thatHODHOD ≠ HOD.) We investigate the basics here. There1805

is some evidence that Gödel was aware of this approach, as he suggested looking at the ordinal definable1806

sets for a model of AC. However the construction requires essential use of the ReflectionTheorem that1807

was not proven until the end of the 1950’s by Levy and Montague. Some see these remarks of Gödel as1808

indicating that he was aware of the Reflection Principle, even if he did not publish a proof.1809

Definition 4.20 We say that a set z is ordinal definable (z P OD) if and only if for some formula1810 (v, v, . . . , vm) with free variables shown, for some ordinals , . . . , m then z is the unique set so that1811 [z, , . . . , m].1812

We next need to show that the expression z P OD is definable within ZF. (At the moment the last1813

definition has loosely talked about “definability (in ⟨V , P⟩)” - which is not definable in ⟨V , P⟩.) We do1814

this by showing it is equivalent to the alternative definition given in Def.3.20, which involved only the1815

definable sets V and the definable function Def(x).1816

Exercise 4.15 (Richard’s Paradox) Let T be the set of those z so that for some closed term {x ∣ t} (that is one1817

without free variables) z = {x ∣ t}. Show that there is no formula (v) (with just the one free variable shown), so1818

that T = {z ∣ [z]}, and thus T is not definable by such a formula. [Hint: as there are only countably many closed1819

terms, there will only be countably many ordinals in T . Suppose for a contradiction that (v) does define the set1820

of elements of T (meaning that it is true of just the elements of T). Consider the term { ∣ @ ≤ ( [ ])}.]1821
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Exercise 4.16 Let ⃗ =  , . . . , n− P nOn for some n. Then there is so that ⃗ P Def (V ). [Hint: Let <n be the1822

wellorder of nOn as above at Ex. 1.10. Let (⃗) express “⃗ is the <n-least sequence so that @ (⃗ R Def (V ))”.1823

But if (⃗) were true, it would reflect to some . But then ⃗ P Def (V ).]1824

Exercise 4.17 (Scott) For any formula (v , . . . , vm−) with free variables v , . . . , vm−,
ZF ⊢ @  , . . . , n−D (  , . . . , n− P Def (V ) ∧ @x , . . . , xm− (x , . . . , xm−)↔ ( (x , . . . , xm−))V ).

[Hint: Another use of the Richard Paradox argument. Expand Ex.4.16 using the formula  there: suppose the1825

displayed formula is false for some <n-least  , . . . , n−. Let be any sufficiently large ordinal that reflects ∧ .1826

As in Ex.4.16,  , . . . , n− P Def (V ) and V reflects too.]1827

Theorem 4.21 z P OD is expressible by the single formula in ZF: OD(z): “D (z P Def(V ))”.1828

Proof: Let OD˚ denote the class of sets z satisfying the Definition 3.20, that is the formula OD(z)1829

above. It suffices to show thenOD˚ = OD. (Ď) is clear. Suppose x is the unique set satisfying [x , , . . . , n−].1830

ByEx. 4.17 there is with , . . . , n− P Def(V ) andV reflects with x P V .Then [x , , . . . , n−]1831

defines x in V . But amalgamating the definitions of the sequence ⃗ with that given by we have a def-1832

inition ′[x] in V without the use of ordinal parameters. Thus x P Def(V ). Q.E.D.1833

Theorem 4.22 OD has a definable wellordering.1834

Proof: We use a definable wellorder <HF of HF to impose a wellordering on the Gödel code sets of1835

formulae with one free variable. As OD = {z ∣ D (z P Def(V ))} for any z P OD we can set (z) =d f1836

the least so that z P Def(V ). Let z be the least, in the ordering <HF , formula with the single free1837

variable v, that defines z in V (z).1838

Now define

x <OD z⇔ x , z P OD ∧ ( (x) < (z) ∨ ( (x) = (z) ∧ x <HF
z)).

One can check this is a wellorder of OD. Q.E.D.1839

Lemma 4.23 Let A be any class that has a definable set-like wellorder given by some (v, v) (“set-like”1840

meaning for any z P A, {z P A ∣ (z, z)} is a set). Then A Ď OD.1841

Proof: By assumptionwe can define by recursion a rank function r(z) = sup{r(y)+ ∣ y P A∧ (y, z)}.1842

Then ran(r) Ď On. But now for each z P A for some we have r(z) = and we may define z as “that1843

unique z with r(z) = ”. Q.E.D.1844

Corollary 4.24 L Ď OD1845

Proof: By Ex. 4.5 the ordering <L of L is both definable and a wellorder in order type On. It is thus1846

“set-like” as described above. Hence L Ď OD. Q.E.D.1847

Corollary 4.25 Con(ZF)⇒ Con(ZF + V = OD).1848
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Proof: V = L implies V = OD by the last corollary. So this follows fromTheorem 4.14. Q.E.D.1849

1850

On the other hand it is not provable in ZF that V = OD (or that OD is transitive; even (AxExt)OD
1851

may fail, see Ex.4.20 below). Indeed we cannot prove that OD is an inner model of ZFC. Then we need1852

to consider the closely related subclass of hereditarily ordinal definable sets.1853

Definition 4.26 (The hereditarily ordinal definable sets - HOD)

z P HOD⇔ z P OD ∧ TC(z) Ď OD.

We thus require not only that z be in OD but this fact propagates down through the P-relation below1854

z. By definition HOD is a transitive class of sets containing all ordinals.1855

Exercise 4.18 Show z P HOD↔ z P OD ∧ @y P z(y P HOD). Show that P( ) ∩ OD = P( ) ∩HOD.1856

Theorem 4.27 (ZFC)HOD, that is for each axiom of ZFC, we have HOD.1857

Proof: By transitivity of HOD we have ∅ P HOD and AxExtensionality holds in HOD. It is easy to1858

check that x , y P HOD → {x , y},⋃ x P HOD. Likewise as any ordinal is in HOD (e.g. , by induction1859

using the last exercise), so is P HOD. For AxPower: suppose x P HOD. It suffices to show that1860 P(x)HOD = P(x) ∩HOD P OD. (Again see the last exercise. The first equality is obvious as “y Ď x” is1861

∆.) But notice that P(x) ∩ HOD = P(x) ∩ OD. (If y Ď x ∧ y P OD then y P HOD by the exercise.)1862

So it suffices to show P(x) ∩ OD P OD. Let  = (x); then P(x) ∩ OD Ď V  . Let OD be as above.1863

As x P OD there are , , . . . , n with {x} = {x ∣ (x , ⃗)}. By the ReflectionTheorem on OD and1864

we can find  > , ⃗with z = P(x) ∩ OD⇔ V  ⊧ Dx( (x , ⃗) ∧ z = {y ∣ OD(y) ∧ y Ď x}).1865

ForAxSeparation: let a be a class term, and let x P HOD. We require that aHOD∩x P HOD. Suppose
a = {z ∣ (z, y⃗)} for some , some y⃗ P HOD. By the ReflectionTheorem we can find a sufficiently large
which is reflecting for and the defining formula for HOD, and with aHOD ∩ x P V . Then we have:

u = aHOD ∩ x⇔ V ⊧ u = {z P x ∣ (z, y⃗)HOD}.
From the right hand side here, we see that u is definable over V but using the parameters x and y⃗.1866

However these are all in OD and so we may replace them by their (finitely many) definitions using just1867

ordinal parameters, thereby rendering the right hand side a term purely with ordinal parameters. Hence1868

u is in OD and thence in HOD (as u Ď x Ď HOD).1869

AxReplacement is similar: let F be a function given by a term, and let x P HOD. We require1870

FHOD“x P HOD. In V , by AxReplacement, let FHOD“x Ď V , but then also is a subset of V ∩ HOD.1871

It thus suffices to show V ∩HOD P HOD, as then the AxSeparation will separate out from HOD ∩V1872

exactly the set FHOD“x. This is the next Exercise.1873

Finally for AxChoice, we show that the Wellordering Principle holds in HOD: byTheorem 4.22 we1874

already have an OD-definable wellordering of OD Ě HOD, <OD. If x P HOD, then {⟨u, v⟩ ∣ u, v P1875

x , u <OD v} is in HOD and wellorders x. Q.E.D.1876

Exercise 4.19 Show that for any , V ∩HOD P HOD.1877



Criteria for Inner Models 63

Exercise 4.20 Show that the following are equivalent: (i)V = OD, (ii)V = HOD, (iii)Trans(OD), (iv) (AxExt)OD .1878

[Hint: Use that for any V P OD ∧ V ∩ OD P OD.]1879

Exercise 4.21 Show thatHOD∩P( ) is the largest subset ofP( )with a definable wellorder. [Hint: Use Lemma1880

4.23 and Ex. 4.18.]1881

Exercise 4.22 Suppose thatW is a term defining an inner model of ZF and there is a definable global wellorder1882

of W (that, as in L, there is a formula defining a wellorder <W of the whole of W in order type On). Show that1883

W Ď HOD. (Consequently HOD is the largest inner modelW with a definable bijection F ∶ On↔W .)1884

Exercise 4.23 Define “Π-OD” (and Π-HOD) just as we did for OD and HOD but now restrict the formulae1885

allowed in definitions to beΠ only. Show thatΠ-OD = OD andΠ-HOD = HOD. Now do the same for Σ-OD1886

and Σ-HOD.1887

Exercise 4.24 * Show that there is a single formula (v) with just the free variable shown, so that OD is the1888

class of all those x so that x P Def (V ) for some , that is for some , {x} = {z ∣ (z)V }.1889

Again it is consistent that V = L = HOD, V ≠ L = HOD and V ≠ L ≠ HOD as well as further com-1890

binations such as HODHOD may or may not equal HOD. CH may fail in HOD (see the next Exercise).1891

Exercise 4.25 (˚)(E))This shows that we may have (¬CH)HOD . Let C = {n P ∣ ℵ +n = ℵ +n+}. Suppose1892 ∣{C ∣ P On}∣ ≥ ℵ (this can be shown consistent with ZFC), then (¬CH)HOD .1893

We can defineODx andHODx as before but nowwe allow sets z P x as parameters in our definitions1894

as well as ordinals. HODx will be an inner model of ZF as before, but it will only be a model of Choice1895

if there is an HODx-definable wellorder of x itself to start with.1896

4.6 Criteria for InnerModels1897

It is possible to give a definition for when a class term W defines an inner model, IM(W), for the ZF1898

axioms which is formalisable in ZF. We first give an equivalent axiomatisation of ZF.1899

Definition 4.28 We set ZF∗ to be the theory that consists of the Axioms Ax0-4, Ax7-8 and:1900

Ax5∗ (∆-Separation Scheme) For every ∆-term a: x ∩ a P V1901

where by a ∆-term a we mean a term a = {x ∣ (x , y⃗)} where is a ∆-formula.1902

Ax6∗ (Collection Scheme) For every formula : @ y⃗Dv (v , y⃗)%→ @zDw(@ y⃗ P zDv P w (v , y⃗).1903

Theweakening of theAx.5 ismade up for by the strengthening of Ax6which is less about the range of1904

functions than ‘collecting’ together the ranges of relations on sets z. Note we could have expressedAx6∗,1905

somewhat more awkwardly, as: “For any term r if @y r“{y} ≠ ∅ then @zDw@y P z(r“{y} ∩w ≠ ∅)”.1906

Theorem 4.29 ZF ⊢ ZF˚ and ZF˚ ⊢ ZF, and thus the two theories are equivalent.1907

It is unknown whether weakening Ax5 alone to Ax5∗ but keeping Ax6 is a theory equivalent to ZF1908

in this sense.1909

Theorem 4.30 For any term W IM(W) is equivalent to the set of formulae:

ZFW ∪ {Trans(W),On Ď W}.
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Theorem 4.31 If W is any term, and (i) Trans(W), On Ď W, (ii) @x P W Def(x) Ď W, and (iii) W is1910

supertransitive, that is @x Ď WDz Ě x(z P W), then ZFW, and so IM(W).1911

The utility of the last theorem is that often it is a simple matter to verify (i)-(iii) for any given W .1912

For example, HOD is easily seen to have these three properties. Whilst the statement “ZFW” (or indeed1913

“IM(W)”) is metatheoretic in nature: it requires assertions of the infinitely many formulae contained1914

in “ZFW”, the three assertions (i)-(iii) are in our formal language. This shows that a term W being an1915

inner model is truly a first order expression aboutW .1916

Exercise 4.26 Show that there is a finite set of axioms of ZF so that if On Ď W and W is a transitive class1917

model of just these axioms then it is a model of all the axioms of ZF. Why does this not contradict the non-finite1918

axiomatisability of ZF,Theorem 3.10?1919

Exercise 4.27 Show that if M is a class term, and IM(M), and (¬CH)M then ZF is inconsistent.1920

4.6.1 Further examples of inner models1921

Relative constructibility1922

There are several ways to generalise Gödel’s construction of L.1923

1924

(I)The L(A)-hierarchy.1925

1926

Here we start out, not with the empty set as L but with the set A:1927

Definition 4.32
L(A) = A∪ {A};

L +(A) = Def(⟨L (A), P⟩);
Lim( )→ L (A) = ⋃{L (A) ∣ < }.

L(A) = ⋃{L (A) ∣ < On}.
In this model the arguments for L can be straightforwardly used to show that all axioms of ZF are1928

valid in L(A). However the Axiom of Choice need not hold, unless in L(A) there is a L(A)-definable1929

wellorder of A. Of course if V = L then A P L and the construction of L inside the ZF-model L(A)1930

reveals that “V = L” holds, in which case ACL(A) trivially holds. Matters become more interesting when1931

V ≠ L, and an important model here is when A = . The model L( ) contains all the reals (and so the1932

structure of mathematical analysis). Consequently anything definable in the structure of analysis resides1933

in the model. Moreover anything obtained by ‘iterated definability over analysis’ is also here: it would be1934

definable using ordinals and the set of reals. Thus it is thought, the broadest methods of definability over1935

analysis would produce sets in this model. Consequently it is in some sense a laboratory for generalised1936

definability in analysis. However it is not thought in general that there must be wellorder of that is1937

definable over , or indeed in L( ). (This was one approach that Cantor took to look at CH: to try to1938

find a definable wellorder of ; but it is consistent with the axioms of ZF that there is no such wellorder.)1939

Consequently when. set theorists investigate L( ) they do not assume that AC holds there, although it1940
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is taken to hold hold in the wider universe V .1941

1942

(II)The L[A]-hierarchy.1943

1944

The next hierarchy instead enlarges the language of set theory to incorporate a one place predicate1945

symbol Ȧ. Thus A(x) either will or will not be true of sets x. The Def operator is enlarged to an operator1946

Def Ȧ that now defines new sets over some structure in this new language1947

Definition 4.33
L[A] = ∅;

L +[A] = Def Ȧ(⟨L [A], P,A⟩);
Lim( )→ L [A] = ⋃{L [A] ∣ < }

L[A] = ⋃{L [A] ∣ < On}.
The predicate A is usually taken to be a set in V , but the definition is perfectly good, and can be1948

formulated in ZF if A is a definable proper class of sets. In either case A may impose quite a ‘wild’1949

behaviour on the model L[A]. hat is not the case for the following very important inner model: unlike1950

L, this model can accommodate the large cardinal called a ‘measurable cardinal’.1951

Definition 4.34 (L[ ]) L[ ] is the above hierarchy where is a -complete ultrafilter on P( ) in the1952

sense of the discussion at the end of Section 2.1.2.1953

The inner model L[ ] is much studied ( is a -complete ultrafilter on P( ))L[ ] and moreover, is the1954

least inner model with this property. It has an absolute construction property similar to L within in any1955

other inner model with such a ultrafilter or ‘measure’ on . It can be shown that (GCH)L[ ], although1956

the Condensation Lemma strictly speaking, fails in L[ ].1957

Exercise 4.28 Show for any A that (ZF)L(A) and that (ZFC)L[A]. [Hint: Just modify the same arguments for L.]1958

Exercise 4.29 (i) Show that in L[A], for A Ď , that for any ≥ ,  = +. (Thus, in L[A] the GCH holds ‘above1959

’.) [Hint: Again modify the argument for L; this can only work above since A could be completely general, and1960

we have no knowledge how L [A]may look.]1961

(ii) However improve the last exercise, by showing that in L[A], for A Ď = +, that for any ≥ ,  = +.1962

Higher Order Constructibility1963

We do not give the details, but for the reader familiar with notions of higher order logics, in particular1964

n’th-order logics for n < , we may construct Ln using n’th order logical definablility Defn (where our1965

previous Def is now Def . Remarkably these notions do not form a hierarchy for n ≥ , but instead all1966

collapse:1967

Theorem 4.35 (Myhill-Scott) For n ≥  Ln = HOD.1968
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4.7 The Suslin Problem1969

It is well known (in fact it is a theoremofCantor) that if ⟨X , <⟩ is a totally ordered continuum that satisfies1970

(i) ⟨X , <⟩ has no first or last end points ;1971

(ii) ⟨X , <⟩ has a countable dense subset Y (that is @x , z P XDy P Y(x < y < z));1972

then ⟨X , <⟩ is isomorphic to ⟨ , <⟩.1973

(By continuum one requires that for any bounded subset of an interval in ⟨X , <⟩ has a supremum in1974

X (and likewise an infimum in X.)1975

Suslin asked (1925) whether (ii) could be replaced with the seemingly weaker1976

(iii) ⟨X , <⟩ has the countable chain condition (c.c.c.) (that, if I = (x , y ) for <  is a family of1977

open intervals in ⟨X , <⟩ then D D (I ∩ I ≠ ∅)).1978

Notice that (ii) implies (iii) : every open interval I must contain an element of Y ; however Y only1979

has countably many elements.1980

The question is thus: do (i) and (iii) also characterise the real line ⟨ , <⟩? Suslin hypothesised that1981

they did. This became known as Suslin’s hypothesis (SH).The problem can be reduced to the following1982

question concerning trees on ordinals.1983

Definition 4.36 A tree ⟨T , <⟩ is a partial ordering such that @x P T({y ∣ y < x}) is wellordered.1984

(i)The height of x in T , ht(x), is ot({y ∣ y < x}, <) (also called the rank of x in T).1985

(ii)The height of T is sup{ht(x) ∣ x P T};1986

(iii) T =df {x P T ∣ ht(x) = }.1987

Thus T consists of the bottommost elements of the tree, and so are called root(s) (we shall assume1988

there is only one root). A chain in any partial order ⟨T , <T⟩ is any subset of T linearly ordered by <T1989

and an antichain is any subset of T no two elements of which are <T −comparable. For a tree T a subset1990

b Ď T is a branch if it is a maximal linearly ordered (and so wellordered) set under <T . A branch need1991

not necessarily have a top-most element of course.1992

Definition 4.37 Let be a regular cardinal. A - Suslin tree is a tree ⟨T , <⟩ such that1993

(i) ∣T ∣ = ;1994

(ii) Every chain and antichain in T has cardinality < .1995

We shall be concerned with - Suslin trees (andwe shall drop the prefix “ ”). König’s Lemma states1996

that every countable tree with nodes that “split” finitely, has an infinite branch. This paraphrased says, a1997

fortiori, that there are no -Suslin trees.1998

It turns out (see Devlin [1]) that the Suslin Hypothesis is equivalent to:1999

(SH): “There are no -Suslin trees”2000

(Although this requires proof which we omit.) So do such trees exist?2001

Theorem 4.38 (Jensen) Assume V = L; then there is an -Suslin tree.2002

Hence:2003

Corollary 4.39 Con(ZF)⇒ Con(ZFC+CH+¬ SH)2004
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It turns out that there is a construction principle for Suslin trees that is in itself of immense interest:2005

it can be considered a strong form of the Continuum Hypothesis. It has been widely used in set theory2006

and topology and has been much studied.2007

Definition 4.40 (The Diamond Principle). ◇ is the assertion that there exists a sequence2008 ⟨S ∣ < ⟩ so that (i) @ (S Ď )2009

(ii) @X Ď { ∣X ∩ = S } is stationary.2010

◇ thus asserts that there is a single sequence of S ’s that approximate any subset of  “very often”.2011

In particular note that◇ %→ CH: if x Ď is any real then x = S for “stationarily” many < . Thus2012

the ◇ sequence incorporates an enumeration of the real continuum with each real occurring  many2013

times in that enumeration. However it does much more beside.2014

Theorem 4.41 (Jensen) In L,◇ holds. That is ZF ⊢ (◇)L.2015

Proof: Assume V = L. We have to define a◇-sequence ⟨S ∣ < ⟩. We define by recursion ⟨S ,C ⟩2016

for < : ⟨S ,C ⟩ is the <L-least pair of sets ⟨S ,C⟩ so that2017

(a) S Ď2018

(b) C is c.u.b. in ;2019

(c) @ P C(S ∩ ≠ S )2020

if there is such a pair, and ⟨S ,C ⟩=⟨∅,∅⟩ otherwise.2021

Thus, somewhat paradoxically, ⟨S ,C ⟩ is chosen to be the <L- least “counterexample” to a ◇-2022

sequence of length .2023

Let S = ⟨S ∣ < ⟩. As we are assuming V = L, we have just constructed S P H  = L  . Looking2024

a little more closely, since P( ) Ď L  , we have actually defined S by a recursion which only involved2025

inspecting objects in L  which had certain definite properties. L  is a model of ZF− so these properties2026

are absolute between L  andV which is L by assumption. In short the recursion as defined in L  defines2027

the same S as in V : @ < (⟨S ,C ⟩)L 
= ⟨S ,C ⟩ and indeed (S)L 

= S .2028

If S is not a◇-sequence then:2029

(1)There is an <L-least pair ⟨S ,C⟩ with2030

(a) S Ď ; (b) C Ď  and C cub in ; (c) @ P C(S ∩ ≠ S ).2031

Given that we have S PL  the quantifiers in (1) are referring only to sets in L  . () thus holds2032

relativised to L  . Expressing that in semantical terms we have:2033

(2) ⟨L  , P⟩ ⊧“ ⟨S ,C⟩ is the <L-least pair with2034

(a) S Ď ; (b) C Ď  and C cub in ; (c) @ P C(S ∩ ≠ S ).”2035

By appealing to the Löwenheim-SkolemTheorem we can find X Ď L  with:2036

(3) ⟨X , P⟩ ă ⟨L  , P⟩ with S , ⟨S ,C⟩,  P X, Ď X, and ∣X∣ = .2037

By Exercise 4.13 (ii) we have that X ∩ L  is transitive and so in fact is some L for some < . If2038

we now apply the Mostoski-Shepherdson Collapsing Lemma we have there is a and a with:2039

(4) ∶ ⟨L , P⟩ ≅ ⟨X , P⟩ with ↾ L = id.2040

(Recall that as L Ď X and is transitive will be the identity on L .)2041

(5) ( ) = , and if S ,C are such that (S) = S, (C) = C, then S = S ∩ ,C = C ∩ .2042

Proof: −( ) = { −( ) ∣ P  ∩ X}2043
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= { ∣ P  ∩ X}2044 =  ∩ X = .2045

Similarly S = −(S) = { −( ) ∣ P S ∩ X}2046 = { −( ) ∣ P S ∩ }2047 = { ∣ P S ∩ } (using (4))2048 = S ∩ .2049

That C = C ∩ is entirely the same. Q.E.D.(5)2050

(6) If S = −(S) then S = S ↾ .2051

Proof: Note that −(⟨S ∣ < ⟩) = −({⟨ , S ⟩ ∣ < })2052 = { −(⟨ , S ⟩) ∣ < −( )}2053 = {⟨ −( ), −(S )⟩ ∣ < }2054

= {⟨ , S ⟩ ∣ < } since both , S P L .2055

2056

Similar equalities hold for −(⟨C ∣ < ⟩). Hence −(⟨⟨S ,C ⟩∣ < ⟩) = S ↾ . Q.E.D.(6)2057

Appealing to (2) and (4) we have:2058

(7) ⟨L , P⟩ ⊧“ ⟨S ,C⟩ is the <L-least pair with2059

(a) S Ď ; (b) C Ď and C cub in ; (c) @ P C(S ∩ ≠ S ).”2060

As <L = (<L)L and <L is an end-extension of <L and since (a)-(c) are absolute for transitive ZF−2061

models, we have that (a)-(c) are really true in V of S ,C, i.e. :2062

(8) ⟨S ,C⟩ is the <L-least pair with2063

(a) S Ď ; (b) C Ď and C cub in ; (c) @ P C(S ∩ ≠ S ).2064

That is, S ,C really are the candidates to be chosen at the next, ’th, stage of the recursion:2065

(9) ⟨S ,C⟩ = ⟨S ,C ⟩.2066

Now note that P C as C = C ∩ is unbounded in the closed set C. Also, using (5), S ∩ = S = S .2067

This contradicts (1)! Q.E.D.2068

Exercise 4.30 (*) Formulate a principle◇ which asserts similar properties for a sequence ⟨S ∣ < ⟩ where2069

is any regular cardinal, and prove that it holds in L2070

Exercise 4.31 (**) Show that ◇ implies the existence of a family ⟨A ∣ < ⟩ of stationary subsets of , such2071

that the intersection of any two of them is countable.2072

Theorem 4.42 (Jensen)◇ implies the existence of a Suslin tree.2073

Proof: We shall construct by recursion a tree T of cardinality , using countable ordinals. In fact2074

we shall have that T =  itself, the construction thus delivers <T . T will be the union of its levels T2075

all of which will be countable, and <T= ⋃ <  <T≤ where (a) T< = ⋃ < T and (b) <T< is the tree2076

ordering constructed so far on T< . We shall ensure that every <T-branch is countable, and likewise2077

every maximal antichain. Then ⟨T, <T⟩ will be Suslin. The recursion will ensure a normality condition:2078

for every P T , and if P T , then for every < <  there is P T with <T ; every node then in2079

the tree has tree-successors of arbitrary height below .2080

We let T ↾  = T = {} and T< = ∅. Assume Lim( ) and T , <T< defined for all < . Then2081

T ↾ = ⋃ < T and <T< =⋃ < <T< . Normality as described above, is then trivially conserved.2082
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Assume now = +  and that Succ( ). We assume that T ↾ , and <T< have been defined. We2083

thus have defined T where +  = . For each P T we allot in turn the next sequence of ordinals2084

available { i ∣ i < }. (We thus go through T say by induction on the ordinals P T and we define2085 <T< by adding to the ordering <T< (which equals in the obvious sense <T≤ ) the pairs ⟨ , i⟩ (and also2086

the pairs ⟨ , i⟩ for those <T≤ to complete the ordering.) Thus at successor stages of the tree it is2087

infinitely branching. Again normality is obvious. This defines T ↾ and <T≤ =<T< .2088

Finally if = + but Lim( )we need to define T ↾ andmake a careful choice of whichmaximal2089

branches through T< (thus those of order type ) that we may extend with impunity to have nodes at2090

level , i.e. in T , thus fixing <T< . This is where we use ◇.2091

Case 1 S (Ď ) is a maximal antichain in the tree so far defined: ⟨T< , <T< ⟩.2092

In this case for any P T< there must be some P S with either <T< or ≤T< . Either way2093

by the normality of the tree ⟨T< , <T< ⟩ so far, we pick a branch b through T< with both , P b . Let2094

B = {b ∣ P T< }. This is a countable set of branches. We enumerate B as {bn ∣ n < } and choose the2095

next many ordinals n for n < , with n R T< . We extend the branch bn to have n as a final node,2096

and enlarge <T< appropriately to <T< . (Thus if is on the branch bn extended with the new point n ,we2097

add the ordered pair ⟨ , n⟩ to <T< ; we thus obtain <T< .) Then we have T = T< ∪ { n ∣ n < } and2098

so we have T ↾ . By construction again we preserve normality: every P T< has a successor in T .2099

Case 2 Otherwise.2100

Then we let T be any set consisting of the next many ordinals not used so far, and extend the2101

ordering of <T< to T in any fashion as long as normality is preserved. (In other words we can just2102

enumerate T< as ⟨ n∣n < ⟩ and go through adding on some new ordinals n to some branch through2103

n that has order type -if need be- as long as we ensure n has some successor at height .2104

This ends the construction. We claim that if we set T = ⋃ <  T and <T= ⋃ <  <T then ⟨T , <T⟩ is2105

a Suslin tree. First we see that it has no uncountable antichain. Suppose there were such, and let A Ď 2106

be a maximal uncountable antichain (which exists by Zorn’s Lemma).2107

Claim C = { ∣ A∩ T< is a maximal antichain in T< } is cub in .2108

Proof: Let  <  be arbitrary. As T<  is countable, there exists  <  with every element of T< 2109

compatible with some element of A ∩ T<  . Repeating this, we find  >  so that every element of2110

T<  compatible with some element of A ∩ T<  ; and similarly n+ > n so that every element of T< n2111

compatible with some element of A∩T< n+ . If = supn n then A∩T< is a maximal antichain in T< .2112

C is thus unbounded in . That C is closed is immediate. Q.E.D. Claim2113

By our requisite property that ⟨S ∣ < ⟩ is a ◇-sequence, now that C is cub and A Ď , there2114

must be P C with S = A ∩ . Thus S is a maximal antichain in <T< . However at precisely this2115

point in the construction we would have chosen T so that every element of T< , and so every element2116

of A ∩ T< , has a tree successor at height in T . Note that all elements of the tree at greater heights2117 > are extensions of the tree above these elements on T . Thus A ∩ is a maximal antichain in <T !2118

But A∩ must be A and be countable! Contradiction! Q.E.D.2119

Exercise 4.32 (**) Show that◇ implies the existence of two non-isomorphic Suslin trees.2120

One could further ask whether SH depends on CH. It is completely independent of CH as the fol-2121

lowing states.2122 ● Con(ZF) implies the consistency of any of the following theories:2123



70 The Constructible Hierarchy

ZF+CH+SH; ZF+CH+¬ SH; ZF+¬CH+¬ SH: ZF+¬CH+ SH2124

The second of these is Cor. 4.39 above. The other consistencies can be shown by using variations on2125

Cohen’s forcing methods, for which see [4]. Some of the arguments are very subtle.2126

Ronald Jensen
2127



Appendix A2128

LogicalMatters2129

A.1 The formal languages - syntax2130

We outline formal first order languages of predicate logic with axioms for equality. We do this for our2131

language L = LP which we shall use for set theory, but it is completely general:2132

2133

(i) set variables; v, v, . . . , vn , . . . (for n P N)2134

(ii) two binary predicates: =̇, Ṗ; an optional n-ary relation symbol Ṙv⋯vn (other languages would2135

contain further function symbols Ḟi and relations symbols Ṙ j of different -arities).2136

(iii) logical connectives: ∨,¬2137

(iv) brackets: (,)2138

(v) an existential quantifier: D.2139

2140

A formula is finite string of our symbol set; the formulae of L (‘Fml’) are defined inductively in a way2141

similar for any first order language.2142

1) x = y and x P y are the atomic formulaewhere x , y stand for any of the variables vi , v j. (If we opt for2143

variants where we have the relation or function symbols, then Rv⋯vn and Fv⋯vn = vn+ are also atomic.)2144

2) Any atomic formula is a formula;2145

3) If and are formulae then so is ¬ and ( ∨ ), Dx where x is any variable;2146

4) is only a formula if it is so by repeated applications of 1)-3).2147

2148

Inherent in the induction is the idea that a formula has subformulae and that a formula is built up2149

from atomic formulae according to some finite tree structure. Further, given the formulawemay identify2150

the unique tree structure. Indeed we think of this as an algorithm that given a symbol string tests whether2151

it is a formula by winding the recursion backwards to try to discover the underlying tree structure. Using2152

this fact we can then perform recursions over the class of formulae using the clauses 1)-3) as part of our2153

recursive definition. Clause 4) then ensures that our recursion will cover all formulae.2154

Definition A.1 For a formula we define2155

(A) the set of variables of , Vbl( ) by:2156

71
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Vbl(vi = v j) = Vbl(vi P v j) = {vi , v j}; Vbl(Rv⋯vn) = {v, v, . . . , vn};2157

Vbl( ¬ )) = Vbl( ); Vbl(( ∨ )) = Vbl( ) ∪Vbl( ); Vbl(Dx ) = Vbl( ) ∪ {x}.2158

(B) the set of free variables of , FVbl( ) would be obtained exactly as above but changing the clause2159

for Dx to: FVbl(Dx ) = FVbl( ) − {x}2160

(C) is a sentence if FVbl( ) = ∅.2161

By the above remarks in (B) we have defined the free variable set for all formulae. Note the crucial2162

very final clause in (B) concerning the D quantifier. The set of official logical connectives is minimal, it is2163

just ¬ and ∨. But it is well known that the other connectives, ∧,→,↔ can be defined in terms of them, as2164

can @, from D and ¬. We shall use formulae freely involving these connectives, without comment. Here2165

is another example.2166

Definition A.2 For a formula, we define the set of subformulae of , Subfml( ), by:2167

Subfml(vi = v j) = Subfml(vi P v j) = Subfml(Rv⋯vn) = ∅;2168

Subfml(¬ )) = Subfml(Dx ) = Subfml( ) ∪ { };2169

Subfml(( ∨ )) = Subfml( ) ∪ Subfml( ) ∪ { , }.2170

Deductive systems2171

A deductive system of predicate calculus is (I) a set of axioms from which we can make pure logical2172

deductions together with (II) those rules of deduction. There are many examples. The following is the2173

simplest to explain (but rather difficult to use naturally) but this allows us to prove things about the2174

system as simply as possible.2175

(I) Axioms of predicate calculus (for a language with relational symbols, and equality):2176

For any variables x , y and any , , in Fml:2177 → ( → )2178 ( → ( → ))→ (( → )→ ( → ))2179 (¬ → ¬ )→ ((¬ → )→ )2180

@x (x)→ (y/x) where y is free for x (this has a slightly technical meaning).2181

@x( → )→ ( → @x ) (where x R Fr( ))2182

@x(x = x)2183

x = y → ( (x , x)→ (x , y))2184

(II) Rules of Deduction2185

(1)Modus Ponens. From ( → ) and deduce: .2186

(2) Universal Generalisation: From deduce @x .2187

2188

In general a theory is a set of sentences, T , in a language (such asLP). A proof of a sentence is then2189

a finite sequence of formulae: , ,⋯, n = such that for any formula i on the list either: (i) i is2190

an instance of a pure axiom of predicate calculus; or (ii) i is in T ; or (iii) i follows from one or more2191

earlier members of the list by an application of a deduction rule.2192

In which case we shall say that the list is a proof from the set of axioms T , and write T ⊢ . If2193

T = ∅ then we shall call this a proof in first order logic alone. We shall want to be able to say that it is2194

a mechanical, or algorithmic, process to check a proof . Given a finite list which purports to be a proof,2195

it is indeed a mechanical process to check (i) or (iii) for any i on the list. In order to ensure the whole2196
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process is algorithmic it is usual (and overwhelmingly the case) that the set of axioms T is either finite2197

itself, or for any formula there is an algorithm or recursive process which can decide whether is in2198

T or not. In which case we say that T is a recursive set of axioms.2199

A.2 Semantics2200

We have defined so far only syntactical concepts. We have not associated anymeaning, or interpreta-2201

tion to our language. We want to know what it means for a sentence to be true (or false) in an interpre-2202

tation. If I wish to express the commutative law in group theory say, then I may write something down2203

such as @x@y(○(x , y) = ○(y, x)) (with a binary function symbol ○(vi , v j) ). For this to be true in the2204

group G say, we need that for any interpretation of the variables x , y as group elements g , h in G that2205

g .h = h.g holds for the group multiplication.2206

We can give a recursive definition of what it means for a sentence to be ‘true in a structure’, but as can2207

be seen, the recursion involves at the same time defining satisfaction of a formula by an assigment of2208

elements to the free variables of , again by recursion on the structure of formulae. We’ll keep with the2209

example of a group ⟨G , e , ⋅,− ⟩ for a language containing a binary function symbl F○, a unary function2210

symbol I and a constant symbol E which are interpreted as ⋅,−, and e respectively. Then ‘I(v j) = vk ’ and2211

‘F○(vi , v j) = vk ’ now count as atomic formulae.2212

We let QG = < VblG be the set of maps from finite sequences of variables of the language to G to G.2213

For a formula let Vbl( ), be the set of all variables occurring in . For h P QG , vi P dom(h) and2214

g P G we let h(g/i) be the function that is defined everywhere like h except that h(g/i)(vi) = g.2215

2216

Definition A.3 (i) We define by recursion the term Sat( ,G);2217

Sat(vi = v j ,G) = {h P QG ∣h(i) = h( j)} ;2218

Sat(I(v j) = vk ,G) = {h P QG ∣h( j)− = h(k)}2219

Sat(F○(vi , v j) = vk ,G) = {h P QG ∣h(i) ⋅ h( j) = h(k)} ;2220

Sat( ∨ ,G) = (Sat( ,G) ∪ Sat( ,G)) ∩ {h P QG ∣ dom(h) Ě {Vbl( ) ∪Vbl( )}};2221

Sat(¬ ,G) = QG/ Sat( ,G)} ;2222

Sat(Dvi ,G) = {h P QG ∣dom(h) Ě Vbl( ) ∪ {vi}&Dg P G(h(g/i) P Sat( ,G))]};2223

Sat(u,G) = ∅ if u is not a formula.2224

(ii) We write ⟨G , e , ⋅,− ⟩ ⊧ [h] iff h P Sat( ,G).2225

Note: By design then we have ⟨G , e , ⋅,− ⟩ ⊧ ¬ [h] iff it is not the case that ⟨G , e , ⋅,− ⟩ ⊧ [h] etc. (We2226

write the latter as ⟨G , e , ⋅,− ⟩ /⊧ [h].)2227

If is a sentence then we write2228 ⟨G , e , ⋅,− ⟩ ⊧ iff for some h P QG with dom(h) Ě Vbl( ) ⟨G , e , ⋅,− ⟩ ⊧ [h]2229

(equivalently for all h P QG with dom(h) Ě Vbl( ) ⟨G , e , ⋅,− ⟩ ⊧ [h] ).2230

If T is a set of sentences in a language, and A is a structure appropriate for that language, we write2231

A ⊧ T iff for all in T A ⊧ .2232

Definition A.4 (Logical Validity) Let T∪{ } be a theory in a language; then T ⊧ if for every structure
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A appropriate for the language,
A ⊧ T ⇒ A ⊧ .

Theorem A.5 (Gödel CompletenessTheorem) Predicate Calculus is sound, that is,

T ⊢ ⇒ T ⊧ .

and is moreover complete, that is T ⊧ ⇒ T ⊢ .2233

The substantial part here is the Completeness direction: it is an adequacy result in that it shows that2234

Predicate Calculus is sufficient to deduce from a theory T all those sentences that are true in all structures2235

that aremodels of a particular theory.That it deduces only those sentences true in all structures satisfying2236

the theory, is the soundness direction.2237

This theorem should not be confusedwithGödel’s IncompletenessTheorems. These concernedwhether2238

sets of axioms T were consistent, that is whether from the axioms of T we cannot prove a contradiction2239

such as ‘ = ’. Here if we take T to be PA - Peano Arithmetic the accepted set of axioms for the natural2240

number structure N = ⟨N, , Succ⟩, then Gödel showed that there was a suitable mapping ↣ x y tak-2241

ing formulae in the language appropriate forN, into code numbers of these formulae (called gödel codes).2242

If formulae could be coded as elements of N, so can a finite list of formulae - in other words potential2243

proofs. Using the fact that the axioms of PA are capable of being recursively listed, he showed that there2244

was a formula defining a function on pairs of numbers, F(n, k), to / with:2245

2246

PA ⊢ @n@kF(n, k) P {, }∧2247

F(n, k) = ⇔ n is a code number of a proof from PA of the formula with x y = k.2248

2249

He then showed that if PA is consistent, then in fact PA /⊢ @nF(n, x = y) = . The right hand2250

side here is a statement about F and numbers, but has the interpretation that “PA is a consistent system2251

(in other words that ‘ =  is not deducible’). This is commonly abbreviated ‘Con(PA)’; so he showed2252

that even if PA is consistent, PA /⊢ Con(PA) (the Second IncompletenessTheorem). In fact the theorem2253

has wider applicability as he noted after considering Turing’s work on computability: for any consistent,2254

computably given set of axioms T say, if from T we can deduce the Peano axioms, then T /⊢ Con(T).2255

The axioms of set theory ZF, if consistent, are of course such a T .2256

Exercise A.1 Let x be any set, and fi ∶ ni V %→ V for i < be any collection of finitary functions (meaning2257

that ni < ); show that there is a y Ě x which is closed under each of the fi (thus fi“ niy Ď y for each i) and2258 ∣y∣ ≤ max{ , ∣x∣}. [Hint: no need for a formal argument here: build up a y in many stages yk Ď yk+ at each2259

step applying all the fi .]2260

Definition A.6 LetA = ⟨A, =,%→Ri ,
%→Fj⟩ be any structure for any (first order) languageLA. WewriteB ă A

(“B is an elementary substructure of A”), whereB = ⟨B, =,%→Ri ↾ B,%→Fj ↾ B⟩, to mean that every formula(v, . . . vn−) of the language of LA, and every n-tuple of elements y, . . . , yn− fromB, then

A ⊧ [y/v , . . . , yn−/vn−]⇔B ⊧ [y/v , . . . , yn−/vn−].
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The Tarski-Vaught criterion yields when one substructureB is an elementary substructure of A.2261

Lemma A.7 (Tarski-Vaught criterion) B ă A iff for all formulae (v, . . . , vn),
@b, . . . , bn P B(Da P AA ⊧ (a, b⃗)→ Db P BB ⊧ (a, b⃗)).

Definition A.8 (Skolem Function) Let Dx (x , y, . . . , yn) be any formula in the language LA appro-
priate for the structure A. Suppose there is a wellorder◁ of the domain A. The skolem function h for
is the (partial) function:

h (y, . . . , yn) ≈ the◁-least x such that (x , y, . . . , yn).
Notice that there are as many skolem functions as formulae in the language - which will be countable2262

in the cases of interest to us. The following theorem will be used in applications.2263

Theorem A.9 Löwenheim-Skolem Theorem Let A be any infinite structure for any language as above2264

of cardinality . Suppose X Ď A. Then there is a elementary substructureB of A ,B ă A, with X Ď B Ď2265

A∧ ∣B∣ =max{∣X∣, }.2266

Proof: The idea is to find the closure of X under the finitary skolem functions h . Let H be the set of
such functions. Then ∣H∣ we are told is . Let X = X, and let

Xn+ =⋃{h “Xn ∣ h P H} ; Y = ⋃
n< Xn .

The idea is that by closing up in this way we have ensured that the Tarski-Vaught criterion can be applied.2267

However ∣Xn+∣ = ⊗ ∣Xn∣ = ⊗ ∣X∣. Hence B = ⋃n Xn satisfies ∣B∣ = ⊗ ∣X∣ = max{ , ∣X∣}. Now if we2268

take any y, . . . , yn P B we shall have that y, . . . , yn P Xm for somem < . But then ifA ⊧ (z, y⃗) then2269

Dx P Xm+ (B ⊧ (x , y⃗)). Q.E.D.2270

Corollary A.10 Any infinite structure A has a countable substructureB ă A.2271

A.3 A Generalised Recursion Theorem2272

Definition A.11 If ⟨A, R⟩ is a partial order, we let Ax =d f {y ∣ y P A ∧ yRx}. We sometimes write2273

Ax = pred⟨A,R⟩(x) if we wish to be clear about which order on A is concerned.2274

Ax is thus the set of R-predecessors of x that are in A.2275

Definition A.12 If ⟨A, R⟩ is a wellfounded relation, R is said to be is set-like on A, if for every x P A,2276

Ax =d f pred⟨A,R⟩(x) =d f {y ∣ y P A∧ yRx} is a set.2277
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One can prove a recursion theorem for wellfounded relations, but observe that such relations are not
necessarily transitive orderings. We remedy this by defining R˚ - the transitive closure or transitivisation
of R in A, where for x , y P Awe want to put

xR˚y↔df xRy ∨ Dn > Dz P A, . . . , zn P A(xRzRz⋯RznRy).
This is a somewhat informal definition, but the intention is clear: xR˚y if there is a finite R-path using2278

elements from A from x to y.2279

Definition A.13 ⟨A, R⟩ be a relation. For x P Awe define ⋃R x =d f ⋃zPx Az. We let2280

⋃
R x = Ax ;⋃n+

R x = ⋃{Az ∣ z P ⋃n
R x} .2281

For x , y P Awe set yR˚x iff y P ⋃{⋃n
R x∣n P }. R˚ is called the ancestral or transitive closure of R.2282

The reader should check that a) ⋃n+
R x = {y P A ∣ Dz P A⋯Dzn P A(yRzRz⋯RznRx)}, and b)2283

with R as the P-relation itself y P˚ x ↔ y P TC(x).2284

Lemma A.14 Let ⟨A, R⟩ be a relation. Then:2285

(i) R˚ is transitive on A. If x P A then R˚ is transitive on Ax ∪ {x}.2286

(ii) If R is set-like, then so is R˚.2287

Proof: (i) is obvious. (ii) We first note that ⋃R z is a set; this is because z is a set and R is set-like on2288

A which implies that Ax is a set for each x P z, and the Axiom of Unions allows us to conclude that2289 ⋃xPz Ax P V . Hence by induction, so is each ⋃n+
R z, and then another application of Replacement and2290

Union ensures that ⋃{⋃n
R{x}∣n P } P V ; but this latter set is then the set of R˚ predecessors of x.2291

Q.E.D.2292

Theorem A.15 (Transfinite Induction onWellfoundedRelations). Suppose ⟨A, R⟩ is awellfounded relation,2293

with R set-like on A. Let t Ď A be non-empty class term. Then there is u P t which is R-minimal amongst2294

all elements of t.2295

Proof: Let A˚
x =d f pred⟨A,R˚⟩(x) be the set of R˚-predecessors of x. Note this is a set and is a subset of2296

A. Let x be any element of t, and let u be an R-minimal member of the set (t ∩ A˚
x) ∩ {x}. Q.E.D.2297

2298

One should note that we do need to prove the above theorem, since the definition of ⟨A, R⟩ being2299

wellfounded (Def. 1.14) entails only that every non-empty set z Ď A has an R-minimal element. The2300

theorem then says that this holds for classes t too.2301

Theorem A.16 (Generalized Transfinite RecursionTheorem)2302

Suppose ⟨A, R⟩ is a wellfounded relation, with R set-like on A. If G ∶ V ˆ V → V then there is a
unique function F ∶ A→ V satisfying:

@xF(x) = G(x , F ↾ Ax).
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Proof: We shall define G as a union of approximations where u P V is an approximation if (a) Fun(u);2303

(b) dom(u) Ď A is R-transitive - meaning y P dom(u) → A˚
y Ď dom(u); and (c) @y P dom(u)u(y) =2304

G(y, u ↾ Ay). We call an approximation u an x-approximation if x P dom(u). So u satisfies the defin-2305

ing clauses for F throughout its domain. Notice that if u is an x-approximation, then v is also an x2306

approximation, where v = u ↾ {x} ∪ A˚
x . (It is the smallest part of u which is still an x-approximation.)2307

(1) If u and v are approximations, and we set t = dom(u) ∩ dom(v) then u ↾ t = v ↾ t and is an2308

approximation.2309

Proof: Note that for any y P t, A˚
y Ď t so t is R-transitive. Let Z = {y P t ∣ u(y) ≠ v(y)}.2310

If Z ≠ ∅ let w be an R-minimal element of Z (by the wellfoundedness of R). Then u ↾ Aw = v ↾ Aw ,
hence:

u(w) = G(w , u ↾ Aw) = G(w , v ↾ Aw) = v(w).
This contradicts the choice of w. So Z = ∅ and u, v agree on t, the common part of their domains.2311

This finishes (1). Exactly the same argument establishes:2312

(2) (Uniqueness) If F , F are two functions satisfying the theorem then F = F.2313

(3) (Existence) Such an F exists.2314

Proof: Let u P B⇔ {u ∣ u is an approximation}. B is in general a proper class of approximations,2315

but this does not matter as long as we are careful. As any two such approximations agree on the common2316

part of their domain, we may define F = ⋃B and obtain:2317

(i) F is a function ;2318

(ii) dom(F) = A.2319

Proof (ii): Let C be the class of sets z P A for which there is no z-approximation. So if we suppose for a
contradiction that C is non-empty, byTheorem A.15, then it will have an R-minimal element z such that
@y P AzDu(u is a y-approximation). But now we let f be the function:

⋃{ f y ∣ y P Az ∧ f y is a y-approximation ∧ dom( f y) = {y} ∪ A˚
y}.

By (1) for a given y such an f y is unique, and moreover the f y all agree on the parts of their domains
they have in common. Note that the domain of f is R-transitive, being the union of R-transitive sets
dom( f y) for y P z. Hence A˚

z Ď dom( f ) and thus {z} ∪ dom( f ) is also R-transitive. We can extend f
to

f z = f ∪ {⟨z,G( f ↾ Az)⟩}
and f z is then a z-approximation. However we assumed that z P C, contradiction! Hence C = ∅ and2320

(ii) holds. Q.E.D.2321

2322

For some applications it is useful to note that the AxPower was not used in the proof of this the-2323

orem, and it can be proved in ZF−. For ⟨A, R⟩ a wellfounded relation, we can define a rank function2324

⟨A,R⟩ ∶ A→ On by appealing to the last theorem: ⟨A,R⟩(x) = sup{ ⟨A,R⟩(y) +  ∣ y P A∧ yRx}. Clearly2325

this satisfies xRy → ⟨A,R⟩(x) < ⟨A,R⟩(y), and ⟨A,R⟩(x) is onto On if A is a proper class, or an initial2326

segment of On, i.e. an ordinal, if A P V .2327

Exercise A.2 If ⟨A, R⟩ a wellfounded set-like relation, x P A, and ⟨A,R⟩(x) = , show that @ < Dy(y P2328

A∧ yR˚x ∧ ⟨A,R⟩(y) = ).2329
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Exercise A.3 If ⟨A, R⟩ a wellfounded set-like relation, show that ⟨A,R⟩ is (1-1) if and only if R˚ is a total order.2330

Exercise A.4 (i) If ⟨A, R⟩ a wellfounded set-like relation, and B Ď A, show that ⟨B ,R⟩(x) ≤ ⟨A,R⟩(x) for any2331

x P B. Show that additionally equality holds if A˚
x Ď B where A˚

x is as in the proof ofTheorem A.15 above.2332

(ii) If ⟨A, R⟩,⟨A, S⟩ are wellfounded set-like relations, and S Ď R, show that ⟨A,S⟩(x) ≤ ⟨A,R⟩(x) for any2333

x P A.2334
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