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Introduction

1.1 The beginnings

The theory of sets can be regarded as prior to any other mathematical theory: any everyday mathematical1

object, whether it be a group, ring or field from algebra, or the structure of the real line, the complex2

numbers etc., from analysis, or other mathematical construct, can be constructed from sets.3

The apparent simplicity of sets belies a bewildering collection of paradoxes, and logical antinomies4

that plagued the early theory and led many to doubt that the theory could be made coherent. Set theory5

as we are going to study it was called into being by one man: Georg Cantor (1845-1918).6

7

His papers on the subject appeared between 1874 to 1897. In one sense we can even date the first real8

result in set theory: it was his discovery of the uncountability of the real numbers, which he noted on9

December 7’th 1873.10

His ideas met with some resistance, some of it determined, but also with much support, and his11

ideas won through. Chief amongst his supporters was the great Germanmathematician DavidHilbert12

(1862-1943).13

This course will start with the basic primitive concept of set, but will also make use along the way14

of a more general notion of collection or class of objects. We shall use the standard notation P for the15

elementhood relation: x P A will be read as “ the set x is an element of the collection A”. Only sets will16

occur to the left of the P symbol. In the above Amay be a set or a class. We shall reserve lower case letters,17

3



The beginnings

a, b, . . . u, v , x , y, . . . for sets, and use upper case letters for collections or classes in general - but such18

collections will often also be sets. In the beginning of the course we shall be somewhat vague as to what19

objects sets are, and even more so as to what objects classes might be; we shall merely study a growing20

list of principles that we feel are natural properties that a notion of set should or could have. Only later21

shall we say precisely to what we are referring when we talk about the “domain of all sets”. The notion22

of “class” is not a necessary one for this development, but we shall see that the concept arises naturally23

with certain formal questions, and it is a useful shorthand to be able to talk about classes, although our24

theory (and this course) is about sets, all talk about classes is fundamentally eliminable.125

One such basic principle is:26

Principle (or Axiom) of Extensionality (for sets): For two sets a, b, we shall say a = b iff :27

@x(x P a ←→ x P b).28

Thus what is important about a set is merely its members. Whilst the Axiom of Extensionality does29

not tell us exactly what sets are, it does give us a criterion for when two sets are equal. There is a similar30

principle for collections or classes in general:31

Principle (or Axiom) of Extensionality (for classes): For two classes A, B, we shall say A = B iff :32

@x(x P A←→ x P B).33

Obviously there is no difference in the criterion, but we state the Principle separately for classes too,34

so that we knowwhen we can write “A = B” for arbitrary classes. It is conventional to express a collection35

within curly parentheses:36

● {} = {x∣x is an evenprimenumber} = {Largest integer less than
√
}37

● {Morning Star} = {Evening Star} = {x∣x is the planet Venus};38

● {Lady Gaga} = {Stefani Joanne Angelina Germanotta}.39

This illustrates two points: that the description of the object(s) in the set or class is not relevant (what40

philosophers would call the intension). It is only the extension of the collection, that is what ends up in41

the collection, however it is specified, or even if unspecified, that counts. Secondly we use the abstraction42

notation when we want to specify by a description. This was seen at the first line of the above and will43

be familiar to you as a way of specifying collections of objects:44

An abstraction term is written as {y ∣ . . . y . . .} where . . . y . . . is some description (often in a formal45

language - say the first order language fromaLogic course), and is used to collect together all the objects y46

that satisfy the description . . . y . . . into a class. We use this notation flexibly and write {y P A ∣ . . . y . . .}47

to mean the class of objects y in A that satisfy . . . y . . .48

Axiom of Pair Set For any sets x , y there is a set z = {x , y} with elements just x and y. We call z the49

(unordered) pair set of x,y.50

In the above note that if x = y then we have that {x , y}={x , x} = {x}. (This is because {x , x}51

has the same members as {x} and so by the Axiom of Extensionality they are literally the same thing.)52

The Axiom asserts the existence of such a pair object as a set. (We could formally have written out the53

pair set as an exact abstraction term by writing {z ∣ z = x ∨ z = y} but this would be overly pedantic54

at this stage.) It is our first example of a set existence axiom. As is usual we say that x Ď y if any55

member of x is a member of y. We say “x is a subset of y”, or “x is contained in y”, or “y contains x”. In56

symbols:57

1In short we do not need a formal theory of classes for mathematics.
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1. Introduction

x Ď y⇔df @z(z P x → z P y) ;58

also: x Ă y⇔df x Ď y ∧ x ≠ y.59

Definition 1.1 We let P(x) denote the class {y∣y Ď x}.60

Implicit in this is the idea that we can collect together all the subsets of a given set. Is this allowed?61

We adopt another set existence axiom about sets that says we can:62

Axiom of Power Set For any set x P(x) is a set, the power set of x.63

Notice that a set x can have only one power set (why?) which justifies our use of a special name P(x)64

for it. Another axiom asserting that a certain set exists is:65

Axiom of the Empty SetThere is a set with no members.66

Definition 1.2 The empty set, denoted by ∅, is the unique set with no members.67

●We can define ∅ as {x ∣ x ≠ x} (since every object equals itself). Again note that there cannot be68

two empty sets (Why? Appeal to the Ax. of Extensionality).69

● For any set (or class) Awe have ∅ Ď A (just by the logic of quantifiers).70

Example 1.3 (i) ∅ Ď ∅, but ∅ R ∅; {∅} P {{∅}} but {∅} /Ď {{∅}}.71

(ii) P(∅) = {∅}; P({∅}) = {∅, {∅}} ; P({a, b}) = {∅, {a}, {b}, {a, b}}.72

We are going to build out of thin air, (or rather the empty set) in essence the whole universe of math-73

ematical discourse. How can we do this? We shall form a hierarchy of sets, starting off with the empty74

set, ∅, and applying the axioms generate more and more sets. In fact it only requires two operations to75

generate all the sets we need: the power set operation, and another operation for forming unions. The76

picture is thus:77

Figure 1.1: The universe V of sets

At the bottom is V =df ∅; V =df P(V) = P(∅); V =df P(V); Vn+ =df P(Vn) . . . The question78

arises as to what comes “next” (if there is such). Cantor developed the theory of ordinal numbers which79

extends the standard natural numbersN. These new numbers also have an arithmetic that extends that80
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of the usual +,ˆ etc. which he developed, and which will be part of our study here. He defined a “first81

infinite ordinal number” which comes after all the natural numbers n and which he called !. After !82

comes ! + , ! + , . . .. It is natural then to accumulate all the sets defined by the induction above, and83

we set V! =df {x ∣ x P Vn for some n P N}. V!+ will then be defined, continuing the above, as P(V!).84

However this is in the future. We first have to make sure that we have our groundwork correct, and that85

this is not all just fantasy.86

Exercise 1.1 List all the members of V. Do the same for V. How many members will Vn have for n P N?87

Exercise 1.2 Prove for � <  that V�+ = V� ∪P(V�). (This will turn out to be true for any �.)88

Exercise 1.3 We define the rank of a set x (‘�(x)’) to be the least � such that x Ď V�. Compute �({{∅}}). Do89

the same for {∅, {∅}, {∅, {∅}}}.90

1.2 Classes91

We shall see that not all descriptions specify sets. This was a pitfall that the early workers on foundations92

of mathematics fell into, notably Gottlob Frege (1848-1925)The second volume of his treatise on the93

foundations of arithmetic (which tried to derive the laws of arithmetic from purely logical assumptions)94

was not far from going to press in 1903, when Bertrand Russell (1872-1970) informed him of a fun-95

damental and, as it turned out, fatal error to his programme. Frege had, in our terms, assumed that any96

specification defined a set of objects. Like the Barber Paradox, Russell argued as follows.97

Theorem 1.4 (Russell) The collection R = {x∣x R x} does not define a set.98

Proof: Suppose this collection R was a set, z say. Then is z P R? If so then by the description of R,99

z R z. However if z R R then we should have z P z! We thus have the contradiction z R R⇔ z P R! So100

there is no set z equal to {x∣x R x}. Q.E.D.101

102

What we have is the first example of a class of objects which do not form a set. When we know that103

a class is not, or cannot be, a set, then we call it a proper class. (In general we designate any collection of104

objects as a class and we reserve the term set for a class that we know, or posit, or define, as a set. The105

RussellTheorem above then proves that the Russell class R defined there is a proper class. The problem106

was that we were trying to define a set by looking at every object in the universe of sets (which we have107

not yet defined!). The moral of Russell’s argument (which he took) is that we must restrict our ways of108

forming sets if we are to be free of contradictions. There followed a period of intense discussion as to109

how to “correctly” define sets. Once the dust eventually cleared, the following axiom scheme was seen to110

correctly rule out all obviously inconsistent ways of forming sets.2 We hence adopt the following axiom111

scheme.112

Axiom of Subsets. Let Φ(x) be a definite, welldefined property. Let x be any set. Then113

2The word “obviously” is intentional: by Gödel’s Second Incompleteness Theorem, we can not prove within the theory of
sets that the Axiom of Subsets will always consistently yield sets. However this is a general phenomenon about formal systems,
including formal number theory: such theories cannot prove their own consistency. Hence this is not a phenomenon peculiar
to set theory.
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1. Introduction

{y P x ∣ Φ(y)} is a set.114

115

We call the above a scheme because there is one axiom for every property Φ. Youmight well ask what116

do I mean by ‘a welldefined property Φ’, and if we were being more formal we should specify a language117

in which to express such properties3.This axiom rules out the possibility of a “universal set” that contains118

all others as members.119

Corollary 1.5 Let V denote the class of all sets. Then V is a proper class.120

Proof: If V were to be a set, then we should have that R = {y P V ∣ y R y} is a set by the Ax. of Subsets.121

However we have just shown that R is not a set. Q.E.D.122

123

Note that the above argument makes sense, even if we have not yet been explicit as to what a set124

is: whatever we decree them to be, if we adopt the axioms already listed the above corollary holds. We125

want to generate more sets much as in the way mathematicians take unions and intersections. We may126

want to take unions of infinite collections of set. For example, we know how to take the union of two127

sets x and x: we define x ∪ x =df {z ∣ z P x ∨ z P x}. By mathematical induction we can define128

x ∪ x ∪ ⋯ ∪ xk . However we may have an infinite sequence of sets x, x,⋯, xk , . . . (k P N) all of129

whose members we wish to collect together. We thus define z = ⋃X, where X = { xk ∣ k P N}, as:130

⋃X =df {t ∣ Dx P X(t P x)}.131

This forms the collection we want. In fact we get a general flexible definition. Let Z be any set132

whatsoever. Then133

Definition 1.6 ⋃ Z =df {t ∣ Dx P Z(t P x)}. In words: for any set Z there is a class, ⋃ Z, which consists134

precisely of the members of members of Z.135

We are justified in doing this by an axiom:136

Axiom of Unions: For any set Z, ⋃ Z is a set.137

This notation subsumes the more usual one as a special case: ⋃{a, b} = a ∪ b (Check!); ⋃{a, b, c, d} =138

a ∪ b ∪ c ∪ d. Note that if y P x then y Ď ⋃ x (but not conversely).139

Example 1.7 (i) ⋃{{, , }, {, }, {, , }} = {, , , , }.140

(ii) ⋃{a} = a; (iii) ⋃(a ∪ b) = ⋃ a ∪ ⋃ b141

An extension of the above is often used:142

Notation: If I is set used to index a family of sets {a j ∣ j P I} we often write ⋃ jPI A j for ⋃{A j ∣ j P I}.143

Notice that this can be expressed as: x P ⋃ jPI A j ↔ (D j P I)(x P A j) . We similarly define the idea144

of intersection:145

Definition 1.8 If Z ≠ ∅ then ⋂ Z =df {t ∣ @x P Z(t P x)}.146

In words: for any non-empty set Z there is another set, ⋂ Z, which consists precisely of the members of147

all members of Z. Using index sets we write148

3It would be usual to adopt a first order language LṖ,= which had = plus just the single binary relation symbol Ṗ; then
well-formed formuale of this language would be deemed to express ‘well-defined properties.’
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x P ⋂ jPI A j ↔ (@ j P I)(x P A j).149

Example 1.9 ⋂{{a, b}, {a, b, c}, {b, c, d}} = {b};⋂{a, b, c} = a ∩ b ∩ c;⋂{{a}} = {a}.150

Suppose the set Z in the above definition were empty: then we should have that for any t whatsoever151

that for any x P Z t P x (because there are no x P Z!). However that leads us to define in this special152

case ⋂ jP∅ A j = V . Note that ⋃ jP∅ A j makes perfect sense anyway: it is just ∅.153

We have a number of basic laws that ⋃ and ⋂ satisfy:154

(i) I Ď J → ⋃iPI Ai Ď ⋃ jPJ A j. I Ď J → ⋂iPI Ai Ě ⋂ jPJ A j155

(ii) @i(i P I → Ai Ď C)→ ⋃iPI Ai Ď C. @i(i P I → Ai Ě C)→ ⋂iPI Ai Ě C.156

(iii) ⋃iPI(Ai ∪ Bi) = ⋃iPI Ai ∪⋃iPI Bi . ⋂iPI(Ai ∩ Bi) = ⋂iPI Ai ∩⋂iPI Bi .157

(iv) ⋃iPI(A ∩ Bi) = A ∩ (⋃iPI Bi). ⋂iPI(A ∪ Bi) = A ∪ (⋂iPI Bi).158

(v) D/⋃iPI Ai = ⋂iPI(D/Ai) D/⋂iPI Ai = ⋃iPI(D/Ai)159

(where we have written as usual for sets, X/Y = {x P X ∣ x R Y}). You should check that you can justify160

these. Note that (iv) generalises a distributive law for unions and intersections, and (v) is a general form161

of de Morgan’s law.162

Exercise 1.4 Give examples of sets x , y so that x ≠ y but ⋃ x = ⋃ y.[Hint: use small sets.]163

Exercise 1.5 Show that if a P X then P(a) P P(P(⋃X)).164

Exercise 1.6 Show that for any set X: a) ⋃P(X) = X b) X Ď P(⋃X); when do we have = here?165

Exercise 1.7 Show that the distributive laws (iv) above are valid.166

Exercise 1.8 Let I =Q ∩ (, /) be the set of rationals p with  < p < /. Let Ap=R ∩ (/ − p , / + p). Show167

that ⋃pPI Ap = (, ); ⋂pPI A i = {/}.168

Exercise 1.9 Let X Ě X Ě ⋯and Y Ě Y Ě be two infinite sequences of possibly shrinking sets. Show that169

⋂iPN(X i ∪ Yi) = ⋂iPN X i ∪⋂iPN Yi . If we take away the requirement that the sequences be shrinking, does170

this equality hold in general for any infinite sequences X i and Yi?171

1.3 Relations and Functions172

In this section we shall see how the fundamental mathematical notions of relation and function can be173

represented by sets. First relations, and we’ll list various properties that relations have. In general we174

have sets X ,Y and a relation R that holds between some of the elements of X and of Y . If X is the set of175

all points in the plane, and Y the set of all circles, the ‘p is the centre of the circle S’ determines a relation176

between X and Y . We shall be more interested in relations between elements of a single set, that is when177

X = Y .178

We list here some properties that a relation R can have on a set X. We think of xRy as “x is related179

by R to y”.180
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1. Introduction

Type of relation Defining condition181

Reflexive x P X → xRx182

Irreflexive x P X → ¬xRx (which we may write x /R x)183

Symmetric (x , y P X ∧ xRy)→ yRx)184

Antisymmetric (x , y P X ∧ xRy ∧ yRx)→ x = y)185

Connected (x , y P X)→ (x = y ∨ xRy ∨ yRx)186

Transitive (x , y, z P X ∧ xRy ∧ yRz)→ (xRz).187

You should recall that the definition of equivalence relation is that R should satisfy symmetry, reflex-188

ivity, and be transitive.189

● If X =R and R =≤ the usual ordering of the real numbers, then R is reflexive, connected, transitive,190

and antisymmetric. If we took R =< then the relation becomes irreflexive.191

● If X = P(A) for some set A and we took xRy⇔ x Ď y for x , y P X then R is reflexive, antisym-192

metric, and transitive. If A has at least two elements, then it is not connected since if both x − y and y− x193

are non-empty, then ¬xRy ∧ ¬yRx.194

● If T looks like a ‘tree’, (think perhaps of a family tree) with an ordering aRb as ‘a is a descendant195

of b’ then we should only have irreflexivity and transitivity (and rather trivially antisymmetry because196

we should never have aRb and bRa simultaneously).197

1.3.1 Ordering Relations198

Of particular interest are ordering relations where R is thought of as some kind of ordering with xRy199

interpreted as x somehow “preceding” or “coming before” y. It is natural to adopt some kind of notation200

such as ă or ĺ for such R. The notation of ă represents a strict order: given an ordering where we want201

reflexivity to hold, then we use ĺ, so that then x ĺ x is allowed to hold. We may define ĺ in terms of202

ă: x ĺ y ⇔ x ă y ∨ x = y. Of course we can define ă in terms of ă and = too, and we may want to203

make a choice as to which of the two relations we think of as ‘prior’ or more fundamental. In general204

(but not always) we shall tend to form our definitions and propositions in term of the “stricter” ordering205

ă, defining ĺ as and when we wish from it.206

Definition 1.10 A relation ă on a set X is a (strict) partial ordering if it is irreflexive and transitive. That207

is:208

(i) x P X → ¬x ă x ;209

(ii) (x , y, z P X ∧ x ă y ∧ y ă z)→ (x ă z) .210

Exercise 1.10 Think about how youwould frame an alternative, but equivalent definition of partial order in terms211

of the non-strict ordering ĺ. Which of the defining conditions above do we need?212

We saw above that for any set A that P(A) with ĺ as Ď was a (non-strict) partial order. If Y Ď X213

then we shall call (Y ,ă) a suborder of (X ,ă). We say that an element x P X is the least element of214

X (or the minimum of X) if @x P X(x ĺ x) and we call it a minimal element if @y P X(¬y ă x).215

Note that a minimal element need not be a least element. (This is because a partial order need not be216

connected: it might have many minimal elements). Greatest element andmaximal elements are defined217

in the corresponding way.218
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Notions of least upper bound etc. carry over to partially ordered sets:219

Definition 1.11 (i) If ă is a partial ordering of a set X, and ∅ ≠ Y Ď X, then an element z P X is a lower220

bound for Y in X if221

@y(y P Y → z ĺ y).222

(ii) An element z P X is an infimum or greatest lower bound (glb) for Y if (a) it is a lower bound for223

Y, and (b) if z′ is any lower bound for Y then z′ ĺ z.224

(iii)The concepts of upper bound and supremum or least upper bound (lub) are defined analogously.225

● By their definitions if an infimum (or supremum) for Y exists, it is unique and we write inf(Y)226

(sup(Y)) for it. Note that inf(Y), if it exists, need not be an element of Y . Similarly for sup(Y). If Y has227

a least element then in this case it is the infimum, and it obviously belongs to Y .228

Definition 1.12 (i) We say that f ∶ (X ,ă)Ð→ (Y ,ă) is an order preservingmap of the partial orders229

(X ,ă), (Y ,ă) iff230

@x , z P X(x ă z Ð→ f (x) ă f (z)).231

(ii) Orderings (X ,ă) and(Y ,ă) are (order) isomorphic, written (X ,ă) ≅ (Y ,ă), if there is an order232

preserving map between them which is also a bijection.233

(iii)There are completely analogous definitions between nonstrict orders ĺ and ĺ.234

● Notice that ({Even natural numbers},<) is order isomorphic to (N, <) via the function f (n) = n.235

However (Z, <) is not order isomorphic to (N, <).236

● The function f (k) = k −  is an order isomorphism of (Z, <) to itself. However as we shall see,237

there are no order isomorphisms of (N, <) to itself.238

● For a set X with an ordering R, then wemay think of the (X , R) as being officially the ordered pair239

⟨X , R⟩ (to be defined shortly), although it is easier on the eye to simply use the curved brackets.240

In one sense any partial order of a set X can be represented as partial order where the ordering is Ď,241

as the following shows.242

Theorem 1.13 (Representation Theorem for partially ordered sets) If ă partially orders X, then there is a243

set Y of subsets of X which is such that (X ,ĺ) is order isomorphic to (Y ,Ď).244

Proof: Given any x P X let Xx = {z P X ∣ z ĺ x}. Notice then that if x ≠ y then Xx ≠ X y. So the245

assignment x ↣ Xx is (1-1). Let Y = {Xx ∣ x P X}. Then we have246

x ĺ y ←→ Xx Ď X y ;247

consequently, setting f (x) = Xx we have an order isomorphism. Q.E.D.248

Often we deal with orderings where every element is comparable with every other - this is “strong249

connectivity” and we call the ordering “total”. The picture of such an ordering has all elements strung250

out on a line, and so is often called (but not in this course) a ‘linear order’.251

Definition 1.14 A relation ă on X is a strict total ordering if it is a partial ordering which is connected:252

@x , y(x , y P X → (x = y ∨ x ă y ∨ y ă x)).253

If we use ĺ we call the ordering non-strict (and the ordering is then reflexive). We can then formulate254

the connectedness condition as: @x , y(x , y P X → (x ĺ y ∨ y ĺ x)).255
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1. Introduction

● In a total ordering there is no longer any difference between least and minimal elements, but that256

does not imply that least elements will always exist (think of the total ordering (Z, ≤)).257

● We often drop the word “strict” (or “non-strict”) and leave it is as implicit when we use the symbol258

ă (or ĺ).259

● Order preserving maps f ∶ (X ,ă) Ð→ (Y ,ă) between strict total orders must then be (1-1).260

(Check why?) Moreover, if f is order preserving then it also implies that @x P X@z P X(x ă z ←Ð261

f (x) ă f (z)) and so we also have equivalence here.262

An extremely important notion that we shall come back to study further is that of wellordering:263

Definition 1.15 (i) (A,ă) is awellordering if (a) it is a strict total ordering and (b) for any subset Y Ď A,264

if Y ≠ ∅, then Y has a ă-least element. We write in this case (A,ă) P WO.265

(ii) A partial ordering R on a set A, (A, R) is a wellfounded relation if for any subset Y Ď A, if Y ≠ ∅,266

then Y has an R-minimal element.267

Then (N, <) is a wellordering, but (Z, <) is not. Cantor’s greatest mathematical contribution was268

perhaps recognizing the importance of this concept and generalizing it. The theory of wellorderings is269

fundamental to the notion of ordinal number. If (A, R) is my family tree with xRy if x is a descendant270

of y, then it is also wellfounded.271

Exercise 1.11 If ⟨A,ă⟩ is a total ordering and A is finite, show that it is a wellordering.272

Notice that if (A,ă) is a wellordering, (and to avoid trivialities A ≠ ∅) thenwe have that Amust have273

a ă-least element, a say. Then ă still wellorders A/{a}. Hence A/{a}must have a ă-least element,274

a say. We may continue in this way, defining a ă a ă ⋯ ă an ă ⋯. In general we see that because275

(A,ă) is a wellordering, not only is there a least element, a, but every element a P A has an immediate276

successor a ă a′, that is with no b such that a ă b ă a′. To deduce this we only used of the wellorder277

property that A/{a, a, . . . , an} had a ă-least element. We shall say that C Ď A is an end segment of the278

strict total order (A,ă), if whenever a P C and a ă b then b P C. Building on this idea we have that:279

Lemma 1.16 A strict total ordering (A,ă) is a wellordering if and only if any non-empty end segment C of280

A, has a ă-least element.281

The proof is left as an Exercise.282

1.3.2 Ordered Pairs283

We have talked about relations R that may hold between objects, and even used the notation ĺ if we284

wanted to think of the relation as an ordering. However we shall want to see howwe can specify relations285

using sets. From that it is a short step to do the same for functions. The key building block is the notion286

of ordered pair.287

Definition 1.17 (Kuratowski) Let x , y be sets. The ordered pair set of x and y is the set288

⟨x , y⟩ =d f {{x}, {x , y}}.289
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Relations and Functions

Why do we need this? Because {x , y} is by definition unordered: {x , y} = {y, x}. Hence {x , y} =290

{u, v}Ð→ x = u ∧ y = v fails. However:291

Lemma 1.18 (Uniqueness theorem for ordered pairs)292

⟨x , y⟩ = ⟨u, v⟩←→ x = u ∧ y = v.293

Proof: (←Ð) is trivial. So suppose ⟨x , y⟩ = ⟨u, v⟩. Case 1 x = y. Then ⟨x , y⟩ = ⟨x , x⟩ = {{x}, {x , x}} =294

{{x}, {x}} = {{x}}. If this equals ⟨u, v⟩ then we must have u = v (why? otherwise ⟨u, v⟩ would have295

two elements). So ⟨u, v⟩ = {{u}} = {{x}}. Hence, by Extensionality {u} = {x}, and so, again using296

Extensionality, u = x = y = v.297

Case 2 x ≠ y. Then ⟨x , y⟩ and ⟨u, v⟩ have the same two elements. (Hence u ≠ v.) Hence one of these298

elements has one member, and the other two. Hence we cannot have {x} = {u, v}. So {x} = {u} and299

x = u. But that means {x , y} = {u, y} = {u, v}. So of these last two sets, if they are the same then y = v.300

Q.E.D.301

Example 1.19 We think of points in the Cartesian planeR as ordered pairs: ⟨x , y⟩ with two coordinates,302

with x “first” on one axis, y on the other.303

Definition 1.20 We define ordered k-tuple by induction: ⟨x, x⟩has beendefined; if⟨x1, x2,⋯, xk⟩ has304

been defined, then ⟨x,⋯, xk , xk+⟩ =d f ⟨⟨x1,⋯, xk⟩, xk+1⟩305

● Thus ⟨x, x, x⟩ = ⟨⟨x, x⟩, x⟩, ⟨x, x, x, x⟩ = ⟨⟨⟨x, x⟩, x⟩, x⟩ etc. Note that once we have306

the uniqueness theorem for ordered pairs, we automatically have it for ordered triples, quadruples,... that307

is: ⟨x, x, x⟩ = ⟨z, z, z⟩↔ xi = zi( < i ≤ ) etc.308

This leads to:309

Definition 1.21 (i) Let A, B be sets. Aˆ B =d f {⟨x , y⟩ ∣ x P A∧ y P B}. If A = B this is often written as310

A.311

(ii) If A, . . .Ak+ are sets, we define (inductively)312

A ˆ A ˆ⋯ˆ Ak+ =d f (A ˆ A ˆ⋯ˆ Ak)ˆ Ak+313

(which equals ∶ {⟨⋯⟨⟨⟨x, x⟩, x⟩,⋯, xk⟩, xk+⟩ ∣ @i ( ≤ i ≤ k + → xi P Ai)}) .314

● In general Aˆ B ≠ B ˆ A and further, the ˆ operation is not associative.315

Exercise 1.12 Suppose for no sets x , u do we have x P u P x. Then if we define ⟨x , y⟩ = {x , {x , y}} then show316

⟨x , y⟩ also satisfies theUniqueness statement of Lemma ..317

Exercise 1.13 Does {{x}, {x , y}, {x , y, z}} give a good definition of ordered triple? Does {⟨x , y⟩, ⟨y, z⟩}?318

Exercise 1.14 LetP be the class of all ordered pairs. Show thatP is a proper class - that is - it is not a set. [Hint:319

suppose for a contradiction it was a set; apply the axiom of union.]320

Exercise 1.15 Show that if x P A, y P A then ⟨x , y⟩ P P(P(A)). Deduce that if x , y P Vn then ⟨x , y⟩ P Vn+.321

Exercise 1.16 Show that Aˆ (B ∪ C) = (Aˆ B) ∪ (Aˆ C). Show that if Aˆ B = Aˆ C and A ≠ ∅, thenB = C.322

Exercise 1.17 Show that Aˆ⋃B = ⋃{Aˆ X ∣ X P B}.323

Exercise 1.18 We define the ‘unpairing functions’ (u) and (u) so that if u = ⟨x , y⟩ then (u) = x and (u) = y.324

Show that these can be expressed as: (u) = ⋃⋂u; (u) = ⋃ (⋃u −⋂u) if⋃u ≠ ⋂u; and (u) =⋃⋃u otherwise.325
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1. Introduction

Definition 1.22 (i) A (binary) relation R is a class of ordered pairs. R is thus any subset of some A ˆ B.326

(ii) We write: R− =d f {⟨y, x⟩ ∣ ⟨x , y⟩ P R}.327

Example 1.23 (i) R = {⟨, ⟩, ⟨, ⟩, ⟨, ⟩, ⟨, ⟩} is a relation. So are:328

(ii) S = {⟨x , y⟩ PR ∣ x ≤ y};329

(iii) S = {⟨x , y⟩ PR ∣ x = y}.330

(iv) If x is any set, the identity relation on x is idx =d f {⟨z, z⟩ ∣ z P x}.331

(v) A partial ordering can also be considered a relation: R = {⟨x , y⟩ ∣ x ĺ y}.332

Definition 1.24 If R is a relation, then

dom(R) =d f {x ∣ Dy⟨x , y⟩ P R}, ran(R) =d f {y ∣ Dx⟨x , y⟩ P R}.

The field of a relation R, Field(R), is dom(R) ∪ ran(R).333

● With these definitions we can say that if R is a relation, then R Ď dom(R)ˆ ran(R). Check that334

Field(R) = ⋃⋃R.335

Notice it would be natural to want to next define a ternary relation as an R which is a subset of336

some A ˆ B ˆ C say. But of course elements of this are also ordered pairs, namely something of the337

form ⟨⟨a, b⟩, c⟩. Then dom(R) Ď Aˆ B, ran(R) Ď C. Hence ternary relations are just special cases of338

(binary) relations, and the same is then true for k-ary relations.339

Ultimately functions are just special kinds of relations.340

Definition 1.25 (i) A relation F is a function (“Func(F)”) if341

@x P dom(F)(there is a unique y with ⟨x , y⟩ P F).342

(ii) If F is a function then F is (1-1) iff @x , x′(⟨x , y⟩ P F ∧ ⟨x′, y⟩ P F Ð→ x = x′).343

● In the last Example (iii) and (iv) are functions; (i) and (ii) are not.344

● It is much more usual to write for functions “F(x) = y” for “⟨x , y⟩ P F”. (ii) then becomes the345

more familiar: @x@x′[F(x) = F(x′) → x = x′]. We also write “F ∶ X → Y” instead of “F Ď X ˆ Y”346

(with Y called the co-domain of f ). Then “F is surjective”, or “onto” becomes @y P Y(Dx P X(F(x) = y).347

A function F ∶ X → Y is a bijection if it is both (1-1) and onto (and we write “F ∶ X ←→ Y”). If348

F ∶ Aˆ B Ð→ C, we write F(a, b) = c rather than the more formally correct F(⟨a, b⟩) = c.349

Notation 1.26 Suppose F ∶ X → Y then350

(i) F“A =d f {y P Y ∣ Dx P A(F(x) = y)}. We call F“A the range of F on A.351

(ii) F ↾ A =d f {⟨x , y⟩ P F ∣ x P A}. F ↾ A is the restriction of F to A.352

(iii) If additionally G ∶ Y Ð→ Z we write G ○ F ∶ X Ð→ Z for the composed function defined by353

G ○ F(x) = G(F(x)).354

● In this terminology F“A = ran (F ↾ A).355

Exercise 1.19 (i) Find a counterexample to the assertion F ∩ A equals F ↾ A.356

(ii) Show F ↾ A = F ∩ (Aˆ ran(F)).357
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Transitive Sets

Exercise 1.20 As a further exercise in using this notation, suppose T is a class of functions, with the property358

that that for any two f , g P T , f ↾ (dom( f ) ∩ dom(g)) = g ↾ (dom( f ) ∩ dom(g)) (more simply put: they359

both agree on the part of their domains they have in common). Then check a) F = ⋃T is a function, and b)360

dom(F) = ⋃{dom(g) ∣ g P T}.361

Again we don’t need a new definition for n-ary functions: such a function F ∶ A ˆ ⋯ ˆ An → B is362

again a relation F Ď A ˆ⋯ˆ An ˆ B. Then, quite naturally, dom(F) = A ˆ⋯ˆ An.363

As well as considering functions as special kinds of relations, which are in turn special kinds of sets,364

we shall want to be able to talk about sets of functions. Then:365

Definition 1.27 If X ,Y are sets, then XY =d f {F ∣ F ∶ X → Y}.366

Exercise 1.21 Suppose X ,Y both have rank n (“�(X) = n” - see Ex.1.3). Compute a) �(X ˆ Y); b)�(YX).367

[Hint for b) ∶ showfirst if X ,Y P Z show that YX P PPPP(Z).]368

Definition 1.28 (Indexed Cartesian Products). Let I be a set, and for each i P I let Ai ≠ ∅ be a set; then

∏
iPI

Ai =d f { f ∣ Func( f ), dom( f ) = I ∧ @i P I( f (i) P Ai)}

This allows us to take Cartesian products indexed by any set, not just some finite n.369

Example 1.29 (i) Let I = N. Each Ai = R. Then∏iPI Ai is the same as NR the set of infinite sequences of370

reals numbers.371

(ii) Let Gi be a group for each i in some index set I; then it is possible to put a group multiplication372

structure on∏iPI Gi to turn it into a group.373

1.4 Transitive Sets374

We think of a transitive set as one without any “P-holes”.375

Definition 1.30 A set x is transitive, Trans(x), iff @y P x(y Ď x). We also equivalently abbreviate376

Trans(x) by ⋃ x Ď x.377

● Note that easily Trans(x)↔ ⋃ x Ď x: assume Trans(x); if y P z P x then, as we have z Ď x, we378

have y P x. We conclude that ⋃ x Ď x. Conversely: if ⋃ x Ď x then for any y P x by definition of ⋃,379

y Ď ⋃ x, hence y Ď x and thus Trans(x).380

Example 1.31 (i) ∅, {∅}, {∅, {∅}} are transitive. {{∅}}, {∅, {{∅}}} are not.381

Definition 1.32 (The successor function) Let x be a set. Then S(x) =d f x ∪ {x}.382

Exercise 1.22 Show the following: (i) Let Trans(Z) ∧ x Ď Z .Then Z ∪ {x} is transitive.383

(ii) If x , y are transitive, then so are: S(x), x ∪ y, x ∩ y,⋃ x.384

(iii) Let X be a class of transitive sets. then ⋃X is transitive. If X ≠ ∅, then ⋂X is transitive.385

(iv) Show that Trans(x)←→ Trans(P(x)). Deduce that each Vn is transitive.386
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1. Introduction

Lemma 1.33 Trans(x)←→ ⋃ S(x) = x.387

Proof: First note that⋃ S(x) = ⋃(x ∪{x}) = ⋃ x ∪⋃{x} = ⋃ x ∪ x. For (Ð→), assume Trans(x); then388

⋃ x Ď x. Hence x Ď ⋃ S(x) Ď x. Q.E.D.389

Exercise 1.23 Prove the (←Ð) direction of the last lemma.390

Exercise 1.24 (i) What sets would you have to add to {{{∅}}} to make it transitive?391

(ii) In general given a set x think about how a transitive y could be found with y Ě x. (It will turn out392

(below) that for any set x there is a smallest y Ě x with Trans(y).) [Hint: consider repeated applications of ⋃:393

⋃ x =d f x;⋃ x =d f ⋃ x, ⋃ x =d f ⋃(⋃ x), ,. . . ,⋃n+ x =d f ⋃(⋃n x) . . . as in the next definition.]394

Definition 1.34 Transitive Closure TCWe define by recursion on n:395

⋃ x = x ; ⋃n+ x = ⋃(⋃n x); TC(x) = ⋃{⋃n x ∣ n PN}.396

The idea is that by taking a ⋃ we are “filling in P-holes” in the sets. Informally we have thus defined397

TC(x) = x ∪⋃ x ∪⋃ x ∪⋃ x ∪⋯⋃n x ∪⋯ but the right hand side cannot be an ‘official formula’ as it398

is an infinitely long expression! But the above definition by recursion makes matters correct.399

Exercise 1.25 Show that y P ⋃n x ↔ Dxn , xn− , . . . , x(y P xn P xn− P ⋯ P x P x).400

Note by constuction that Trans(TC(x)): y P TC(x) if and only if for some n y P ⋃n x. Then401

y Ď ⋃n+ x Ď TC(x).402

Lemma 1.35 (Lemma on TC) For any set x (i) x Ď TC(x) and Trans(TC(x)) ; (ii) If Trans(t)∧ x Ď t →403

TC(x) Ď t. Hence TC(x) is the smallest transitive set t satisfying x Ď t. (iii) Hence Trans(x)↔ TC(x) =404

x.405

Proof (i)This clear as x = ⋃ x Ď TC(x), and by the comment above.406

(ii): x Ď t → ⋃ x Ď t. Now by induction on k, assume ⋃k x Ď t. Now use A Ď B ∧ Trans(B) →407

⋃A Ď B to deduce ⋃k+ x Ď t and it follows that TC(x) Ď t. However t was any arbitrary transitive408

set containing x. (iii): x Ď TC(x) by (i). If Trans(x) then substitute x for t in the above: we conclude409

TC(x) Ď x. Q.E.D410

411

As TC(x) is the smallest transitive set containing x we could write this as TC(x) = ⋂{t ∣ Trans(t)∧412

x Ď t)} (the latter is indeed transitive, see Ex. 1.22).413

Exercise 1.26 (i) Show that y P x → TC(y) Ď TC(x).414

(ii) TC(x) = x ∪⋃{TC(y) ∣ y P x} (hence TC({x}) = {x} ∪ TC(x).)415

The point to note is that taking TC(x) ensures that ⟨TC(x), P⟩ satisfies transitivity as a partial or-416

dering.417

Exercise 1.27 If f is a (1-1) function show that f − Ď PP (⋃{dom( f ), ran( f )}).418
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420

Number Systems421

We see how to extend the theory of sets to build up the natural numbers N. It was R. Dedekind (1831-422

1916) whowas the first to realise that notions such as “infinite number system” needed proper definitions,423

and that the claim that a function could be defined by mathematical induction or recursion required424

proof. This required him to investigate the notion of such infinite systems. About the same time G.425

Peano (1858-1932) published a list of axioms (derived from Dedekind’s work) that the structure of the426

natural numbers should satisfy.427

Figure 2.1: Richard Dedekind

2.1 The natural numbers428

Proceeding ahistorically, there were several suggestions as to how sets could represent the natural num-429

bers , , , . . ..430

E. Zermelo (1908) suggested the sequence of sets ∅, {∅}, {{∅}}, {{{∅}}}, . . . Later von Neu-431

mann (1903-1957) suggested a sequence that has since become the usually accepted one. Recall Def.1.32.432
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The natural numbers

=d f ∅ ,433

=d f {} = {∅} =  ∪ {} = S() ,434

=d f {, } = {∅, {∅}} =  ∪ {} = S(),435

=d f {, , } = {∅, {∅}, {∅, {∅}}} =  ∪ {} = S().436

In general n =d f {, , . . . , n − }. Note that with the von Neumann numbers we also have that for437

any n S(n) = n + :  = S(∅),  = S() etc. This latter system has the advantage that “n” has exactly n438

members, and is the set of all its predecessors in the usual ordering. Both Zermelo’s and von Neumann’s439

numbers have the advantage that they can be easily generated. We shall only workwith the vonNeumann440

numbers.441

Definition 2.1 A set Y is called inductive if (a) ∅ P Y (b) @x P Y(S(x) P Y).442

Notice that we have nowhere yet asserted that there are sets which are infinite (not that we have443

defined the term either). Intuitively though we can see that any inductive set which has to be closed444

under S cannot be finite: ∅, S(∅), S(S(∅)) are all distinct (although we have not proved this yet). We445

can remedy this through:446

Axiom of Infinity: There exists an inductive set:447

DY(∅ P Y∧@x P Y(S(x) P Y)).448

One should note that a picture of an inductive set would show that it consists of “S-chains”: ∅, S(∅),449

SS(∅), . . .. but possibly also others of the form u, S(u), SS(u), SSS(u) . . .. thus starting with other sets450

u. Given this axiom we can give a definition of natural number.451

Definition 2.2 (i) x is a natural number if @Y[Yis an inductive setÐ→ x P Y].452

(ii) ! is the class of natural numbers.453

We have defined: ! = ⋂{Y ∣ Y an inductive set}454

by taking an intersection over (what one can show is a proper) class of all inductive sets. But is it a set?455

Proposition 2.3 ! is a set.456

Proof: Let z be any inductive set (by the Ax. of Inf. there is such a z). By the Axiom of Subsets: there is457

a set N so that:458

N = {x P z ∣ @Y[Y an inductive setÐ→ x P Y]}. Q.E.D.459

Proposition 2.4 (i) ! is an inductive set. (ii) It is thus the smallest inductive set.460

Proof:We have proven in the last lemma that ! is a set. To show it is inductive, note that by definition∅461

is in any inductive set Y so∅ P !. Hence (a) of Def. 2.1 holds. Moreover, if x P !, then for any inductive462

set Y , we have both x and S(x) in Y . Hence S(x) P !. So ! is closed under the S function. So (b) of Def.463

2.1 holds. (ii) is immediate. Q.E.D.464

465

To paraphrase the above: if we have an inductive subset of ! we know it is all of !. It may seem odd466

that we define the set of natural numbers in this way, rather than as the single chain ∅, S(∅), . . . and so467

on. However it is the insight of Dedekind’s analysis that we obtain the powerful principle of induction,468
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2. Number Systems

which of course is of immense utility. Note that we may prove this principle, which is prior to defining469

order, addition, etc. We formally state this as a principle about inductive sets given by some property Φ:470

Theorem 2.5 (Principle of Mathematical Induction)
Suppose Φ is a welldefined definite property of sets. Then

[Φ() ∧ @x P !(Φ(x)Ð→ Φ(S(x))]Ð→ @x P !Φ(x).

Proof: Assume the antecedent here, then it suffices to show that the set of x P ! for which Φ(x) holds471

is inductive. Let Y = {x P ! ∣ Φ(x)}. However the antecedent then says  P Y ; and moreover if x P Y472

then S(x) P Y . That Y is inductive is then simply the antecedent assumption. Hence ! Ď Y . And so473

! = Y . Q.E.D.474

Proposition 2.6 Every natural number y is either  or is S(x) for some natural number x.475

● To emphasise: this need not be true for a general inductive set: not every element can be necessarily476

be “reached eventually” by repeated application of S to ∅.477

Proof: Let Z = {y P ! ∣ y =  ∨ Dx P !(S(x) = y)}. Then  P Z and if u P Z then u P !. Hence478

S(u) P !, (as ! is inductive). Hence S(u) P Z. So Z is inductive and is thus !.479

● One should note that actually the Principle of Mathematical Induction has been left somewhat480

vague: we did not really specify what “a welldefined property” was. This we can make precise just as we481

can for the Axiom of Subsets: it is any property that can be expressed using a formal language for sets.482

Exercise 2.1 Every natural number is transitive. [Hint: Use Principle ofMathematical Induction - in other words,483

show that the set of transitive natural numbers is inductive.]484

Lemma 2.7 ! is transitive.485

Proof: Let X = {n P ! ∣ n Ď !}. If X = ! then by definition Trans(!). So we show that X is inductive.486

∅ P X; assume n P X, then n Ď ! and {n} Ď !, hence n∪{n} Ď !. Hence S(n) P X. So X is inductive,487

and ! = X. Q.E.D.488

2.2 Peano’s Axioms489

Dedekind formulated a group of axioms could that capture the important properties of the natural num-490

bers. They are generally known as “Peano’s Axioms.” We shall consider general “Dedekind systems”:491

A Dedekind system is a triple ⟨N , s, e⟩ where492

(a) N is a set with e P N ;493

(b) Func(s) ∧ s ∶ N Ð→ N and s is (1-1) ;494

(c) e R ran(s) ;495

(d) @K Ď N(e P K ∧ s“K Ď K → K = N).496

Note that s“K Ď K is another way of saying that K is closed under the s function. We shall prove497

that our natural numbers form a Dedekind system; furthermore, any structure that satisfies (a) - (d) will498

look like !.499
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The wellordering of !

Firstly then, let �={⟨k, S(k)⟩ ∣ k P !} = S ↾ ! the restriction of the successor operation on sets in500

general, to the natural numbers.501

Proposition 2.8 ⟨!,�, ⟩ forms a Dedekind system.502

Proof: We have that  P !, � ∶ ! → !, and that  ≠ �(u)(∅ ≠ S(u)) for any u. The axiom (d) of503

Dedekind system just says for ⟨!,�, ⟩ that any subset A Ď !, that is, of the structure’s domain, that504

contains  and is closed under � (i.e. that is inductive) is all of !. But ! itself is the smallest inductive505

set. So certainly A = !. So (a),(c)-(e) hold and all that is left is to show that � is (1-1).506

Suppose S(m) = �(m) = �(n) = S(n). Hence⋃ S(m) = ⋃ S(n). By the last exercise Trans(m), Trans(n).507

By Lemma 1.33, ⋃ S(m) = m, and ⋃ S(n) = n; so m = n. Q.E.D.508

Remark 2.9 We shall later be showing that any two Dedekind systems are isomorphic.509

2.3 The wellordering of !510

Definition 2.10 For m, n P ! set m < n⇐⇒ m P n. Set m ≤ n⇐⇒ m = n ∨m < n.511

Note that if m P ! then m < S(m) by definition of < and S.512

Lemma 2.11 (i) < (and ≤) are transitive; (ii) @n P !@m(m < n↔ S(m) < S(n)); (iii) @m P !(m /< m).513

Proof: (i) That < is transitive follows from the fact that our natural numbers are proven (Ex.2.1) to be514

transitive sets: n P m P k → n P k.515

(ii): (←)If S(m) < S(n) thenwe havem P S(m) P S(n) = n∪{n}. If S(m) = n, thenm P S(m) = n,516

so m < n. If S(m) P n then as Trans(n) we have m P n and so m < n. (→)We prove the converse517

by the Principle of Mathematical Induction (PMI). Let Φ(k) say: “@m(m < k → S(m) < S(k))”. Then518

Φ() vacuously; and so we suppose Φ(k), and prove Φ(S(k)).519

Let m < S(k). Then m P k ∪ {k}. If m P k then, by Φ(k) we have520

S(m) < S(k) < S(S(k)). If m = k then S(m) = S(k) < S(S(k)). Either way we have Φ(S(k)). By PMI521

we have @nΦ(n).522

(iii) Note  /<  since  R . If k R k then S(k) R S(k) by part (ii).523

So X = {k P ! ∣ k R k} is inductive, i.e. all of !. Q.E.D.524

Lemma 2.12 < is a strict total ordering.525

Proof: All we have left to prove is connectivity (often called Trichotomy): @m, n P !(m = n ∨ m <526

n ∨ n < m). Notice that at most one of these three alternatives can hold for m, n: if, say, the first two527

then we should have n < n, and if the second two then m < m (by transitivity of <) and these contradict528

irreflexivity, i.e. , (iii) of the last Lemma. Let X = {n P ! ∣ @m P !(m = n ∨ m < n ∨ n < m)}. If X is529

inductive, the proof is complete. This is an Exercise. Q.E.D.530

Exercise 2.2 Show this X is inductive.531

Exercise 2.3 Show that @m, n P !(n < m↔ n ⫋ m).532
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Theorem 2.13 (WellorderingTheorem for !) Let X Ď !. Then either X = ∅ or there is n P X so that533

for any m P X either n = m or n P m.534

Note: such an n can clearly be called the “least element of X”, since @m P X(n ≤ m). Thus the535

wellordering theorem, can be rephrased as:536

537

Least Number Principle: any non-empty set of natural numbers has a least element.538

539

Proof: (of 2.13) Suppose X Ď ! but X has no least element as above. Let

Z = {k P ! ∣ @n < k(n R X)}.

We claim that Z is inductive, hence all of ! and so X = ∅. This suffices. Vacuously  P Z. Suppose now540

k P Z. Let n < S(k). Hence n P k ∪ {k}. If n P k then n R X (as n < k and k P Z). But if n P {k} then541

n = k and so n R X because otherwise it would be the least element of X and X does not have such. So542

S(k) P Z. Hence Z is inductive. Q.E.D.543

Exercise 2.4 Let X ≠ ∅, X Ď !. Show that there is n P X, with n ∩ X = ∅.544

Exercise 2.5 (Principle of Strong Induction for!) Suppose Φ is a definite welldefined property of natural num-545

bers. Show that546

@n[@k < nΦ(k)→ Φ(n)]→ @nΦ(n).547

[Hint: Suppose for a contradiction X = {n P ! ∣ ¬Φ(n)} ≠ ∅. Apply the Least Number Principle.]548

2.4 The Recursion Theorem on !549

We shall now show that it is legitimate to define functions by recursion on !.550

Theorem 2.14 (Recursion theorem on !) Let A be any set, a P A, and f ∶ A → A, any function. Then551

there exists a unique function h ∶ ! → A so that552

(i) h() = a ;553

(ii) For any n P !: h(S(n)) = f (h(n)).554

Proof: We shall find h as a union of k-approximations where u is a k-approximation if555

a) Func(u) ∧ dom(u) = k ; b) If k >  then u() = a; if k > S(n) then u(S(n)) = f (u(n)).556

In other words u satisfies the defining clauses above for our intended h - without our requiring that557

dom(u) is all of !.558

Note: (i) that {⟨, a⟩} is the only 1-approximation. {⟨, a⟩, ⟨, f (a)⟩} is a -approximation. ∅ is a -559

approximation: this is because the empty set counts as a function with empty domain, hence it can be560

considered a -approximation.561

(ii) If u is a k-approximation and l ≤ k then u ↾ l is an l-approximation.562

(iii) If u is a k-approximation, and u(k − ) = c for some c say, then u′ = u ∪ {⟨k, f (c)⟩} is a k + -563

approximation. Hence an approximation may always be extended.564
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(1) If u is a k-approximation and v is a k′-approximation, for some k ≤ k′ then v ↾ k = u (and hence565

u Ď v).566

Proof: If not let  ≤ m < k be least with u(m) ≠ v(m). Then by b) u() = a = v() so m ≠ .567

So m = S(m′) and u(m′) = v(m′). But then again by b) u(m) = f (u(m′)) = f (v(m′)) = v(m).568

Contradiction! QED (1).569

Exactly the same proof also shows:570

(2) (Uniqueness) If h exists, then it is unique.571

Proof: Suppose h, h′ are two different functions satisfying (i) and (ii) of the theorem. Then X = {n P572

! ∣ h(n) ≠ h′(n)} is non-empty. By the least number principle, (or in other words the Wellordering573

Theorem for !), there is a least number n P X. But then h ↾ n + , and h′ ↾ n +  are two different574

n +  approximations. This contradicts (1) which states that they must be equal. Contradiction! So575

X = ∅. QED (2).576

(3) (Existence). Such an h exists.577

Proof: (This is the harder part.) Let u P B ⇐⇒ Dk P !(u is a k-approximation). We have seen any578

two such approximations agree on the common part of their domains. In other words, for any u, v P B579

either u Ď v or v Ď u. So we take h = ⋃B.580

(i) h is a function.581

Proof: If ⟨n, c⟩ and ⟨n, d⟩ are in h, with c ≠ d then there must be two different approximations u582

with u(n) = c, and v with v(n) = d. But this is impossible by (1)!583

(ii) dom(h) = !.584

Proof: Let ∅ ≠ X =d f {n P ! ∣ n R dom(h)}. By definition of h this means also X = {n P ! ∣585

there is no approximation u with n P dom(u)}. By Note (i) above {⟨, a⟩} is the -approximation and586

is in B, so we have that the least element of X is not 0. Suppose it is n = S(m). As m R X, there must587

be an n-approximation u with, let us say u(m) = c. But then by Note (iii) above, u ∪ {⟨n, f (c)⟩} is a588

legitimate S(n)-approximation. So n R X. Contradiction! Q.E.D.589

590

In short: h(n) is that value given by u(n) for any approximation with n P dom(u).591

Example 2.15 Let n P !. We can define an “add n” function An(x) as follows:592

An() = n;593

An(S(k)) = S(An(k)).594

We shall write from now “n + ” for S(n). Then we would more commonly write An(k) as n + k.595

Note that the final clause of An then says n+(k+) = (n+k)+. Assuming we have defined the addition596

functions An(x) for any n:597

Example 2.16 (i) Mn(x) function: Mn() = ;Mn(k + ) = Mn(k) + n.598

(ii) En(x): En() = ; En(k + ) = En(k) ⋅ n599

Again we more commonly write these as Mn(k) as n ⋅ k, and En(k) as nk .600

Proposition 2.17 The following laws of arithmetic hold for our definitions:601

(a) m + (n + p) = (m + n) + p602
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(b) m + n = n +m603

(c) m ⋅ (n + p) = m ⋅ n +m ⋅ p604

(d) m ⋅ (n ⋅ p) = (m ⋅ n) ⋅ p605

(e) m⋅n=n⋅m606

(f) mn+p = mn ⋅mp
607

(g) (mn)p = mn⋅p.608

Proof: These are all proven by induction. As a sample we do (c) (assuming (a) and (b) proven). We do609

the induction on p. p = : then m.(n + ) = m.n = m.n +m.. Suppose it holds for p. Then610

m ⋅ (n + (p + )) = m ⋅ ((n + ) + p) (by (a))611

= m ⋅ (n + ) +m ⋅ p (inductive hypothesis)612

= (m ⋅ n +m) +m ⋅ p (by definition of Mm)613

= m ⋅ n + (m +m ⋅ p) = m ⋅ n +m ⋅ (p + )614

using (a) again and finally (b) and the definition of Mm. Q.E.D.615

Exercise 2.6 Prove some of the other clauses of the last Proposition.616

Now the promised isomorphism theorem on Dedekind systems.617

Theorem 2.18 Let ⟨N , s, e⟩ be any Dedekind system. Then ⟨!,�, ⟩ ≅ ⟨N , s, e⟩.618

Proof: By the Recursion Theorem on ! (2.14) there is a function f ∶ ⟨!,�, ⟩ → ⟨N , s, e⟩ defined by:619

f () = e;620

f (�(k)) = f (k + ) = s( f (k)).621

The claim is that f is a bijection. (This suffices since f has sent the special zero element  to e and622

preserves the successor operations �, s.)623

ran( f ) = N : because ran( f ) satisfies (d) of Dedekind System axioms;624

dom( f ) = !: because dom( f ) likewise satisfies the same DS(d).625

f is (1-1): let X =d f {n P ! ∣ @m(m ≠ n Ð→ f (m) ≠ f (n)}. We shall show X is inductive and626

so is all of !. By DS(c)  P X (because f () = e ≠ s(u) for any u P N , so if m ≠ , m = m− +  say,627

and so f (m) = s( f (m−)) P ran(s) and s( f (m−)) ≠ e = f ().) Suppose now n P X. But now assume628

we have m with f (m) = u =d f f (n + ) P N (and we show that m = n + ), then for the same reason,629

namely e R ran(s) and so u = s( f (n)) ≠ e, we have m ≠ . So m = m− +  for some m−, and then we630

know f (m) = s( f (m−)). But by assumption on m and definition of f : f (m) = f (n + ) = s( f (n)). We631

thus have shown s( f (n)) = s( f (m−)); s is (1-1) so f (m−) = f (n). But n P X so m− = n. So m = n + .632

Hence n +  P X. Thus X is inductive, which expresses that f is (1-1). Q.E.D.633

Example 2.19 Let s(k) = k + , let E be the set of positive even natural numbers. Then ⟨E , s, ⟩ is a634

Dedekind system.635

Exercise 2.7 (i) Let h ∶ ! → ! be given by: h() =  and h(n + ) =  ⋅ h(n). Compute h().636

(ii) Let h ∶ ! → ! be given by h(n) =  ⋅ n + . Express h(n + ) in terms of h(n) as simply as possible.637

Exercise 2.8 Assume f and f are functions from ! to A, and that G is a function on sets, so that for every n638

f ↾ n and f ↾ n are in dom(G). Suppose also f and f have the property that639

f(n) = G( f ↾ n) and f(n) = G( f ↾ n). Show that f = f.640
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Exercise 2.9 Let h ∶ ! → ! be given by: h(k) = k −  if k >100; and h(k) = h(h(k + )) if k ≤ .641

Give a definition of h if possible, using the standard formulation of a definition by recursion, which involves642

only computing values h(k)from smaller values, or constants. If this is impossible show it so.643

Exercise 2.10 Find (i) infinitely many functions h ∶ ! → ! satisfying: h(k) = h(k + ); (ii) the unique function644

h ∶ ! → ! satisfying: (a) h() = ; h(k) = h(k + )(h(k + ) + ) if k > .645

Exercise 2.11 Prove that for any n,m P ! that n +m = ↔ (n =  ∧m = ).646

Exercise 2.12 Prove that for any n,m, k P ! (i) n < m → n + k < m + k; (ii) k >  ∧ n < m → n ⋅ k < m ⋅ k.647

Exercise 2.13 Prove that for any n,m P ! that if n ≤ m then there is a unique k P ! with n + k = m.648

Exercise 2.14 (˚)(The Ackermann function) Define using the equations the Ackermann function:649

A(, x , y) = x ⋅ y650

A(k + , x , ) = 651

A(k + , x , y + ) = A(k,A(k + , x , y), x)652

Show that A(k, x , y) is defined for all x , y, k. [Hint: Use a double induction: first on k assume that for all x , y653

A(k, x , y) is defined; then assume for all y′ < yA(k + , x , y′) is defined.] What is A(, x , y)?654
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655

Wellorderings and ordinals656

In this chapter we study what was perhaps Cantor’s main mathematical contribution: the theory of657

wellorder. He generalized the key fact about the natural numbers to allow for wellorderings on infi-658

nite sets of different type than that of N. He noted that such wellorderings fell into equivalence classes,659

where all wellorderings in an equivalence class were order isomorphic. Thus each infinite wellordered660

set had a unique “order type”. These order types could be treated like numbers and added, multiplied661

etc.A new kind of number had been invented. Later Zermelo, and then von Neumann, picked out sets662

to represent these new ‘transfinite’ numbers.663

It is possible to wellorder an infinite set in many ways.664

Example 3.1 Define ă on N by:665

n ă m⇐⇒ (n is even and m is odd)∨ (n,m are both even or both odd, and n < m).666

Then ⟨N,ă⟩ is a wellordering.667

Exercise 3.1 Let < be the usual ordering on N+ =d f {n P ! ∣ n ≠ }. For n P N+define f (n) to be the number of668

distinct prime factors of n. Define a binary relation mRn⇔ f (m) < f (n) ∨ ( f (m) = f (n) ∧m < n). Show that669

R is in fact a wellordering of N+. Draw a picture of it.670

Example 3.2 If ⟨A,ă⟩ is a set with a wellordering and B Ď A then ⟨B,ă⟩ is also a wellordering. Note
that if y P A is any element that has ă-successors then it has a unique successor, namely

inf{x P A ∣ y ă x}.

Convention: Note that we shall use, as here, the ordering ă for B although originally it was given for A.671

That is, we shall not bother with writing ⟨B,ă ∩ B ˆ B⟩ but simply ⟨B,ă⟩.672

Exercise 3.2 Show that ⟨A,ă⟩ P WO implies there is no set {xn P A ∣ n P !} with @n(xn+ ă xn). (Is there a673

reason one might hesitate to replace the ‘implies’ by ‘←→’ here?)674

Theorem 3.3 (Principle of Transfinite Induction) Let ⟨X ,ă⟩ P WO. Then

[@z P X ( (@y ă zΦ(y))→ Φ(z) )]→ @z P XΦ(z).

Proof: Suppose the antecedent holds but ∅ ≠ Z =d f {w P X ∣ ¬Φ(w)}. As ⟨X ,ă⟩ P WO there is675

a ă-least element w P Z. But then @y ă wΦ(y). So Φ(w) by the antecedent. Contradiction! So676

Z = ∅. Q.E.D.677
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Definition 3.4 If ⟨X ,ă⟩ P WO then the ă-initial segment Xz (or just “(initial) segment”) determined678

by some z P X is the set of all predecessors of z: Xz =d f {u P X ∣ u ă z}.679

In Example 3.1,N is the set of evens,N = {, }. We now prove some basic facts about any wellordering.680

Exercise 3.3 Show that if ⟨X ,ă⟩ is a total ordering, then681

⟨X ,ă⟩ P WO ⇔ @u P X@Z Ď Xu ( if Z ≠ ∅, then Z has a ă-least element).682

[Thus it suffices for a total order to be a wellorder, if its restrictions to all its proper initial segments are wellorders.]683

Recall the definition of (order) isomorphism.684

Lemma 3.5 If f ∶ ⟨X ,ă⟩ → ⟨X ,ă⟩ is any order preserving map of ⟨X ,ă⟩ P WO into itself, then @z P685

X(z ĺ f (z)). (NB f is not necessarily an isomorphism.)686

Proof: As ⟨X ,ă⟩ is awellordering, if for some zwehad f (z) ă z, then, there is a least element zwith the687

property. Then as f is order preserving, we should have f ( f (z)) ă f (z) ă z thereby contradicting688

the ă-leastness of z. Q.E.D.689

Note: this fails if ⟨X ,ă⟩ R WO: f ∶ ⟨Z, <⟩→ ⟨Z, <⟩ defined by f (k) = k−  is an order isomorphism.690

Lemma 3.6 If f ∶ ⟨X ,ă⟩→ ⟨Y ,ă′⟩ is an order isomorphismwith ⟨X ,ă⟩, ⟨Y ,ă′⟩ P WO, then f is unique.691

Note: again this fails for general total orderings: f ′ ∶ ⟨Z, <⟩ → ⟨Z, <⟩ is also an order isomorphism692

where f ′(k) = k − .693

Proof: Suppose f , g ∶ ⟨X ,ă⟩ → ⟨Y ,ă′⟩ are two order isomorphisms. Then h =d f f − ○ g ∶ ⟨X ,ă⟩ →694

⟨X ,ă⟩ is also an order isomorphism. By Lemma 3.5 x ĺ h(x) for any x P X. But f is order preserving,695

so f (x) ĺ′ f (h(x)) = g(x). Applying the same argument with h− = g− ○ f we get g(x) ĺ′ f (x).696

Hence f (x) = g(x) for any arbitrary x P X. Q.E.D.697

Corollary 3.7 If ⟨X ,ă⟩ P WO and f ∶ ⟨X ,ă⟩→ ⟨X ,ă⟩ is an isomorphism then f = id .698

Proof: Since id ∶ ⟨X ,ă⟩→ ⟨X ,ă⟩ is trivially an isomorphism this follows from the last lemma. Q.E.D.699

Exercise 3.4 Let f ∶ ⟨X ,ă⟩→ ⟨Y ,ă′⟩ be an order isomorphismwith ⟨X ,ă⟩, ⟨Y ,ă′⟩ P WOas in the last Lemma700

3.6. Show that for any z P X, f ↾ Xz ∶ ⟨Xz ,ă⟩ ≅ ⟨Yf (z) ,ă′⟩.701

Lemma 3.8 (Cantor 1897) A wellordered set is not order isomorphic to any segment of itself.702

Proof: If f ∶ ⟨X ,ă⟩ → ⟨Xz ,ă⟩ is an order isomorphism then by 3.5 we have x ĺ f (x) for any x, and in703

particular z ĺ f (z). But f (z) P Xz! In other words z ĺ f (z) ă z! Contradiction! Q.E.D.704

Lemma 3.9 Any wellordered set ⟨X ,ă⟩ is order isomorphic to the set of its segments ordered by Ă (recall705

Ă means proper subset: ⫋).706

Proof: Let Y = {Xa ∣ a P X}. Then a ↣ Xa is a (1-1) mapping onto Y the set of segments, and since707

a ă b⇐⇒ Xa Ă Xb the mapping is order preserving. Q.E.D.708
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Exercise 3.5 Find an example of two totally ordered sets which are not order isomorphic, although each is order709

isomorphic to a subset of the other. [Hint: consider subsets ofQ with the usual order.]710

Exercise 3.6 Suppose ⟨X ,ă⟩ and ⟨Y ,ă⟩ are wellorderings. Show that ⟨X ˆ Y ,ălex⟩ P WO where we define711

⟨u, v⟩ ălex ⟨t,w⟩ if u ă t ∨ (u = t ∧ v ă w).712

3.1 Ordinal numbers713

We can now introduce ordinal numbers. Recall that we generated the sequence of sets

∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}} . . .

calling these successively , , , , . . .where each is the set of its predecessors: each member is the set714

of all those sets that have gone before. We shall call such wellordered sets with this property “ordinal715

numbers” (or more plainly “ordinals”). We thus have seen already some examples: any natural number716

is an ordinal, as is !. We first define ordinal through another property that ⟨!, <⟩ had.717

Definition 3.10 ⟨X , P⟩ is an ordinal iff X is transitive and setting ă=P, then ⟨X ,ă⟩ is a wellorder of X.718

(In which case we also set u ĺ v ↔ u = v ∨ u P v, for u, v P X .)719

Example 3.11 ⟨!, P⟩ is an ordinal, and we had  = {k P ! ∣ k P } = {, , } = (!).720

Lemma 3.12 ⟨X , P⟩ is an ordinal implies that every element z P X is identical with the P-initial segment Xz721

i.e. z = Xz = {w P X ∣ w P z}722

Proof: Suppose X is transitive and P wellorders X. Let z P X. Thenw P Xz ⇐⇒ w P X∧w P z⇔ w P z723

(the last equivalence holds as z Ď X). Hence z = Xz . Q.E.D.724

725

So what we are doing in defining “ordinals” is generalising what we saw obtained for the von Neu-726

mann natural numbers: that each was the set of its predecessors in the ordering < that was also defined727

as P. Since the ordering on an ordinal is always P we can drop this and simply talk about a set X being728

an ordinal. Note that it is somehow more natural to talk about strict total orderings when using P as the729

ordering relation.730

We shall see that we can have many infinite ordinals. Note that if ⟨X , P⟩ is an ordinal then, as a = Xa731

for any a P X (by the last lemma), and for any other b P X, we have that a P b ⇔ a ⫋ b ⇔ Xa ⫋ Xb.732

Hence for ordinals, the ordering ă is also nothing other than ⫋=Ă restricted to the elements of X.733

Lemma 3.13 Any P-initial segment of an ordinal ⟨X , P⟩ is itself an ordinal.734

Proof: Suppose w is an element of the segment Xu. Then as P totally orders X, t P w P u → t P u = Xu.735

Hence Trans(Xu). Since P wellorders X andXu Ď X, P wellorders Xu. Hence the latter is an ordinal.736

Q.E.D.737

Lemma 3.14 If Y Ă X is a proper subset of the ordinal X, and Y is itself an ordinal, then Y is an P- initial738

segment of X.739
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Proof: Let Y be an ordinal which is a proper subset of the ordinal X. If a P Y , then as Y is an ordinal740

(by 3.12) a = Ya, and similarly, as a P X, a = Xa .Then Xa = Ya. As Y is not all of X, then if we set741

c = inf{z P X ∣ z R Y}, (c exists as an element of X as X is wellfounded) then we have that Y = Xc .742

Q.E.D.743

Lemma 3.15 If X ,Y are ordinals, so is X ∩ Y.744

Proof: As X ,Y are transitive, so is X ∩ Y . As P wellorders X, it wellorders X ∩ Y , and hence the latter745

is an ordinal. Q.E.D.746

Exercise 3.7 Show that if ⟨X , P⟩ is an ordinal, then so is ⟨S(X), P⟩ (where S(X) = X ∪ {X}).747

Theorem 3.16 (Classification Theorem for Ordinals) Given two ordinals X ,Y either X = Y or one is748

an initial segment of the other (or, equivalently, one is a member of the other).749

Proof: Suppose X ≠ Y . By the last lemma X ∩ Y is an ordinal. Then750

Either (i) X = X ∩Y or (ii) Y = X ∩Y and since X ≠ Y (in case (i)), X ∩Y is an initial segment of Y751

by Lemma 3.13, or (in case (ii)), using the same Lemma, an initial segment of X;752

Or X ∩ Y is an ordinal properly contained in both X and Y . We show this is impossible. By Lemma753

3.13 X∩Y is simultaneously a segment Xa say of X, and a segment Yb say of Y for some a P X and b P Y .754

But a = Xa = Yb = b in that case. Hence a = b P X ∩Y = Xa . But then a P Xa which is absurd! Q.E.D.755

Lemma 3.17 For any two ordinals X ,Y, if X and Y are order isomorphic then X = Y.756

Proof: Suppose X ≠ Y . Then by the last theorem X is an initial segment of Y (or vice versa). However,757

if we had that X and Y were order isomorphic, then we should have that the wellordered set ⟨Y , P⟩ iso-758

morphic to an inital segment of itself. This is impossible by Lemma 3.8. Q.E.D.759

760

Corollary 3.18 If ⟨A,ă⟩ P WO then it can be isomorphic to at most one ordinal set.761

(Check!) We shall show that it will be so isomorphic to at least one ordinal. We first give an argument762

for what will be the inductive step in the argument to follow.763

Lemma 3.19 If every segment of a wellordered set ⟨A,ă⟩ is order isomorphic to some ordinal, then ⟨A,ă⟩764

is itself order isomorphic to an ordinal.765

Proof: By the last Corollary we can define a function F which assigns to each element b P A, a unique
ordinal F(b) so that ⟨Ab ,ă⟩ ≅ ⟨F(b), P⟩. Let Z = ran(F).1 So

Z = {F(b) ∣ Db P ADgb(gb ∶ ⟨Ab ,ă⟩ ≅ ⟨F(b), P⟩)}.

(Note that for each b there can be only one such gb by Lemma 3.6.) Nownotice that if c ă b, with c, b P A
thenAc = (Ab)c . Hencewe can not have F(c) = F(b), as this would imply that g−c ○gb would be an order

1Why does this set Z exist? We shall discuss later the Axiom of Replacement that justifies this.
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isomorphism between Ab and its initial segment Ac , contradicting Lemma 3.8. Thus F is (1-1) and so a
bijection between A and Z. We should have that F is an order isomorphism, i.e. that F ∶ ⟨A ,ă⟩ ≅ ⟨Z , P⟩,
if it is order preserving which will be (1) below. If still c ă b then gb ↾ Ac ∶ ⟨Ac ,ă⟩ ≅ ⟨(F(b))gb(c), P⟩
(by an application of Ex.3.4). So, again by uniqueness of the isomorphism of ⟨Ac ,ă⟩ with an ordinal, gc
is gb ↾ Ac and F(c)must be (F(b))gb(c). Thus writing these facts out we have that

c ă b Ô⇒ F(c) = (F(b))gb(c) P F(b) ()

(The latter P by Lemma 3.12.) We’d be done if we knew ⟨Z , P⟩ was an ordinal. This is the case: because F766

is an isomorphism Z is wellordered by P. All we have to check is that Trans(Z). But this is easy: let u P767

F(b) P Z be arbitrary. As gb is onto F(b), u = gb(c) for some c ă b.Then u = F(b)u = F(b)gb(c) = F(c)768

(the first equality holds as F(b) is an ordinal, the last holds by (1) above). Hence u P Z. Thus Trans(Z).769

Q.E.D.770

Theorem 3.20 (Representation Theorem for Wellorderings, Mirimanoff 1917) Every wellordering771

⟨X ,ă⟩ is order isomorphic to one and only one ordinal.772

Proof: Uniqueness follows from the Corollary 3.18. Existence will follow from the last lemma: the
wellordering ⟨X ,ă⟩ will be order isomorphic to an ordinal, if all its initial segments are. Suppose

Z =d f {v P X ∣ Xv is not isomorphic to an ordinal}.

If Z = ∅ then by the last Lemma we have achieved our task. Otherwise if v is the ă-least element of773

Z then ⟨Xv ,ă⟩ is a wellordering all of whose initial segments (Xv)w = Xw for w ă v, are isomorphic774

to ordinals (as such w R Z). But by the last lemma then, ⟨Xv ,ă⟩ is isomorphic to an ordinal. But then775

v R Z! Contradiction! So Z = ∅. Q.E.D.776

Definition 3.21 If ⟨X ,ă⟩ P WO then the order type of ⟨X ,ă⟩ is the unique ordinal order isomorphic to777

it. We write it as ot(⟨X ,ă⟩).778

Corollary 3.22 (Classification Theorem for Wellorderings, Cantor 1897) Given two wellorderings779

⟨A,ă⟩ and ⟨B,ă′⟩ exactly one of the following holds:780

(i) ⟨A,ă⟩ ≅ ⟨B,ă′⟩781

(ii) Db P B ⟨A,ă⟩ ≅ ⟨Bb ,ă′⟩782

(iii) Da P A⟨Aa ,ă⟩ ≅ ⟨B,ă′⟩.783

Proof: If ⟨X , P⟩ and ⟨Y , P⟩ are the unique ordinals isomorphic to ⟨A,ă⟩ , ⟨B,ă′⟩ respectively, then784

by Theorem 3.16, either ⟨X , P⟩ = ⟨Y , P⟩ (in which case (i) holds); or ⟨X , P⟩ is isomorphic to an initial785

segment of ⟨Y , P⟩ (in which case we have (ii)), or vice versa, and we have (iii). Q.E.D.786

Definition 3.23 Let On denote the class of ordinals.787

For �,� P On, we write � < � =d f � P �. � ≤ � =d f � < � ∨ � = �.788

We shall summarise below some of the basic properties of ordinals. In the sequel, as in the last789

definition we follow the convention of using lower case greek letters to implicitly denote ordinals.790
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3.2 Properties of Ordinals791

We collect together:792

Basic properties of ordinals: Let �,� , 
 P On.793

(1) � is a transitive set, Trans(�); P wellorders �.794

(2) � P � P 
 → � P 
.795

(3) X P � → X P On∧X = �X .796

(4) ⟨�, P⟩ ≅ ⟨� , P⟩→ � = �.797

(5) Exactly one of (i) � = �, (ii) � P �, (iii) � P � holds.798

799

(1) here is Def. 3.9; (2) holds by Trans(
); (3) is 3.12 and 3.13, and (4) is 3.17. (5) follows from 3.12 and 3.16.800

Lemma 3.24 (6) Principle of Transfinite Induction forOn LetΦ be a well defined and definite property
of ordinals.

@� P On[(@� < �Φ(�))Ð→ Φ(�)] Ð→ @� P OnΦ(�)

Hence we have a Least Ordinal Principle for classes:

If C ≠ ∅,C Ď On then D� P C@� P C[� ≤ �].

Hence On is itself well-ordered.801

Proof of (6): The proof of the first statement concerning Φ is exactly like, and can be considered a802

special case of, the Principle of Transfinite Induction Theorem 3.3. Suppose the conclusion is false and803

C = {� ∣ ¬Φ(�)}. Then reason as follows. Let � P C as C is assumed non-empty. If for no � P C do we804

have � < � then � was the P-minimal element of C. Otherwise we have that C ∩ � ≠ ∅. As � P On,805

by definition P wellorders �. Hence, as C ∩� Ď � is non-empty, it has an P-minimal element �; and806

then � is the minimal element of C. For the last sentence, we know that On is totally ordered by (5); (6)807

then says < (or P) wellorders On. Q.E.D.808

809

Note: This last argument seems a little unnecessary, but it is not: we know any individual ordinal is810

wellordered: (6) implies the whole class On is wellordered. Note also that we did not require C to be a811

set, it could be a proper class.812

The following was originally noted as a “paradox” by Burali-Forti. This was the first of the set theo-813

retical paradoxes to appear in print. Burali-Forti noted (as in the argument below) that On itself formed814

a transitive class of objects well-ordered by P. Hence, as On consists of all such transitive classes, (On, P)815

is isomorphic to amember of itself! A plain contradiction! The reaction to this contradiction wasmessy:816

Burali-Forti thought he had shown that the class of ordinalswasmerely partially ordered. Russell thought817

that the class of ordinals was linearly ordered only (although two years later he saw the need for the818

distinction between sets and classes, and reasoned that On had to be a proper class, but was indeed819

wellordered). Again we must distinguish between sets as objects of study, and proper classes as collec-820

tions of sets brought together by an arbitrary description. Burali-Forti’s argument when properly dressed821

in its modern clothes is the following.822
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Lemma 3.25 (Burali-Forti 1897) On is a proper class.823

Proof . Suppose for a contradiction x is a set and x = On.Then as we have seen (Lemma 3.24) we can824

wellorder x by the ordering P on On. But then ⟨x , P⟩ is itself a wellordering and furthermore Trans(x).825

Hence x P On. But then x P x, and x becomes an ordinal that is a member of itself. This is nonsense as826

P, is a strict ordering, and so is irreflexive, on any ordinal! QED827

Definition 3.26 Let ⟨A, R⟩, ⟨B, S⟩ be total orderings, with A∩B = ∅. We define the sum of ⟨A, R⟩, ⟨B, S⟩828

to be the ordering ⟨C , T⟩ where C = A∪ B and we set829

xTy ←→ (x P A∧ y P B) ∨ (x , y P A∧ xRy) ∨ (x , y P B ∧ xSy)830

The picture here is that we take a copy of ⟨A, R⟩ and place all of it before a copy of ⟨B, S⟩.831

Exercise 3.8 Show that if ⟨A, R⟩, ⟨B, S⟩ P WO, then the sum ⟨C , T⟩ P WO.832

Note that the definition required that A, B be disjoint (so that the orderings did not become “con-833

fused”. We should like to use ordinals themselves for A, B but they are not disjoint. Hence it is convenient834

to use a simple “disjointing device” as follows. If�,� P On, then�ˆ{} and �ˆ{} are disjoint “copies”835

of � and �. We could now define the “sum” of � and � as836

� +′ � =d f ot(⟨� ˆ {}∪ � ˆ {}, T⟩ where ⟨
 , i⟩T⟨�, j⟩↔ (i = j ∧ 
 < �) ∨ i < j.837

The operation +′ is pretty clearly associative, but it is not commutative as the following examples will838

show.839

Example 3.27  +′ ;  +′ !; ! +′ ;! +′ !; (! +′ !) + ; (! +′ !) +′ ! . . .840

sup{!,! +′ !, (! +′ !) +′ ! . . .} = !.′! = sup{!.′n ∣ n P !}.841

Definition 3.28 Let⟨A, R⟩, ⟨B, S⟩ be total orderings.Wedefine theproduct of⟨A, R⟩, ⟨B, S⟩,⟨A, R⟩ˆ⟨B, S⟩,
to be the ordering ⟨C ,U⟩ = where C = Aˆ B and we set U to be the anti-lexicographic ordering on C:

⟨x , y⟩U⟨x′, y′⟩←→ (ySy′) ∨ (y = y′ ∧ xRx′).

This is different: here we imagine taking a copy of ⟨B, S⟩ and replacing each element y P B with a842

copy of all of ⟨A, R⟩.843

Exercise 3.9 Show that if ⟨A, R⟩, ⟨B, S⟩ P WO, then the product ⟨C ,U⟩ = ⟨A, R⟩ˆ ⟨B, S⟩ P WO.844

Exercise 3.10 Suppressing the usual ordering < on the following sets of numbers, show that in the product order-845

ings: Zˆ N /≅ ZˆZ. Is N ˆZ ≅ ZˆZ?. IsQˆZ ≅Qˆ N?846

Again we could define ordinal products � ⋅′ � by setting � ⋅′ � to be:

� ⋅′ � =d f ot(⟨� ˆ � ,U⟩) where ⟨
 , �⟩U⟨
′, �′⟩←→ (� < �′) ∨ (� = �′ ∧ 
 < 
′).

Again ⋅′ will turn out to be associative (after some thought) but non-commutative.847

Example 3.29  ⋅′ ;  ⋅′ !; ! ⋅′ ;! ⋅′ !; (! ⋅′ !) ⋅′ ; (! ⋅′ !) ⋅′ ! . . .848
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Exercise 3.11 (i) Express (! +′ !) +′ ! using the multiplication symbol .′ only.849

(ii) Informally express ! ⋅′ ! using the addition symbol +′ only.850

Exercise 3.12 Show that the distributive law (�+′ �) ⋅′ 
 = �.′
 +′ � .′
 is not valid. On the other hand, convince851

yourself that � ⋅′ (� +′ 
) = � ⋅′ � +′ � ⋅′ 
 will be true.852

The reason we have put primes above our arithmetical operations is that we shall soon define them853

in another way, extending our everyday definition of +, ⋅ for natural numbers.854

Definition 3.30 For A a set of ordinals, supA is the least ordinal 
 P On so that @� P A(� ≤ 
). The855

strict sup of A, sup+ A, supA is the least ordinal 
 P On so that @� P A(� < 
).856

This conforms entirely to our notion of supremum as the lub of a set. In particular:857

(i) If A has a largest element � then supA = �.858

(ii) Suppose A ≠ ∅ has no largest element; then supA is the smallest ordinal strictly greater than all859

those in A.860

(iii) For A any set of ordinals check that sup+ A = sup{� +  ∣ � P A}.861

Example 3.31 sup 3 = 2 =sup {0,2}; sup{} = ; sup{Evens} = ! = sup! = sup{!};862

sup{, ,! + } = ! + . But sup+  =  = sup+{0,2}; sup+{} = ; sup+{Evens} = ! = sup+ ! ≠863

sup+{!} = ! + .864

Many texts simply define sup(A) as ⋃A. This makes sense:865

Lemma 3.32 Let A be a set of ordinals then supA is properly defined, and equals ⋃A.866

Proof: First note that sup(A) is properly defined: there is an ordinal which is an upper bound for A.867

Suppose not, then we have that for every 
 P On there is � P A with 
 < �. By the axiom of union: as A868

is assumed to be a set, so is ⋃A. But On = ⋃A! This contradicts Lemma 3.25. Hence A has an upper869

bound, and sup(A) exists.870

Claim: supA = ⋃A.871

Proof: Let 
 = supA. Suppose � P ⋃A. Then for some � P A we have: � P � P A. So � < 
 and872

so � P 
. Hence ⋃A Ď 
. Conversely suppose � P 
. Then � < 
 = supA and so there is � P A with873

� < � ≤ 
. Hence � P � P A and so � P ⋃A. Thus 
 Ď ⋃A. Q.E.D.874

875

Observe also that if X Ď Y are sets of ordinals, then by definition, supX ≤ supY .876

Definition 3.33 Succ(�)⇔ D�(� = S(�)).877

We write � +  for S(�) = � ∪ {�}. .878

Lim(�)⇔ � P On∧� ≠  ∧ ¬ Succ(�).879

We thus have ordinals are divided into three types: (i) ; (ii) those of the form�+, i.e. those that have880

an immediate predecessor, and (iii) the rest, the “limit ordinals” which have no immediate predecessors.881

Notice we have written S(�) as ‘�+’, that is because we shall define our official ‘+’ operation to coincide882

with S (see Lemma 3.39 below) as we did for natural number addition. So we are getting slightly ahead883

of ourselves. Note that if A ≠ ∅ has no largest element; then supA is a limit ordinal.884
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Example 3.34 Successors are: 2,n,! + , (! + ) + , . . .885

Limits: ! is the first limit ordinal; the next will be ! +!, then (! +!)+!; . . .! ⋅!, . . . when we come886

to define these arithmetic operations, which we shall now turn to.887

Exercise 3.13 (i) Compute sup(� + ) and verify that it equals ⋃(� + ). Suppose  < � P On. Show that � is a888

limit ordinal iff � = ⋃� iff sup� = �. (ii) Prove that if X is a transitive set of ordinals, then X is an ordinal.889

Exercise 3.14 Suppose that X ,Y are two sets of ordinals, so that for every � P X there is � P Y with � ≤ �, and890

conversely that for every @� P YD� P X(� ≤ �). Show that supX = supY . Deduce that if �,�′ are both limit891

ordinals, and that ⟨�� ∣ � < �⟩ and ⟨�� ∣ � < �′⟩ are two increasing sequences of ordinals with the property that892

@� < �D� < �′(�� < ��) and also that @� < �′D� < �(�� < ��), then sup{�� ∣ � < �} = sup{�� ∣ � < �′}.893

In order to give our definition of ordinal arithmetic we first prove a RecursionTheorem on ordinals,894

just as we did for the natural numbers !. The structure of the proof is exactly the same. We only must895

take care of the fact that there now are limit ordinals as well as successors.896

Theorem 3.35 (RecursionTheorem on On; vonNeumann ) Let F ∶ V → V be any function. Then897

there exists a unique function H ∶ On→ V so that:898

@�( H(�) = F(H ↾ �)).899

Proof: The reader should compare this with the proof of the RecursionTheorem on !. As there we shall900

define H as a union of approximations to H where u is a �-approximation if:901

(i) Func(u), dom(u) = �, and (ii) @� < �(u(�) = F (u ↾ �)).902

Such a u satisfies the defining clauses of H throughout its domain up to �. As before we shall combine903

the pieces u into the required function H. Notice how this works: (i) if � >  then u() = F(u ↾ ∅), but904

u ↾ ∅ = ∅; hence u() = F(∅) for any �-approximation.905

Note: (i)There is a single -approximation: it is v = {⟨, F()⟩}. (Again u = ∅ is a -approximation!)906

(ii) if u is a �-approximation, then, by the definition above, u ↾ 
 is a 
-approximation for any 
 ≤ �.907

(iii) If u is a �-approximation, then u ∪ {⟨�, F(u)⟩} is a � + -approximation. So any approximation908

can be extended one step.909

We let910

B = {u ∣ D�(u is a �-approximation)}911

(1) If u is a �-approximation and v a 
-approximation, with � ≤ 
, then u = v ↾ �.912

Proof: As usual, look for a point of least difference for a contradiction: suppose � is least with u(�) ≠913

v(�). Then the two functions agree up to � ; i.e. u ↾ � = v ↾ � ; but then u(�) = F(u ↾ �) = F(v ↾ �) =914

v(�)! Contradiction.915

The import of (1) is that there can be no disagreement between approximations: they are all compat-916

ible. There are two immediate consequences of (1). Firstly, the same argument from (1) will establish:917

(2) (Uniqueness) If H exists then it is unique.918

(If H,H′ are any two different functions that satisfy the conditions of the theorem, then let � be the919

least ordinal with H(�) ≠ H′(�). But then H ↾ � + , H′ ↾ � +  are two different � + -approximations.920

This contradicts (1).)921

Secondly:922

(3) If Lim(�) and for all � < �, u� is an �-approximation, then ⋃�<� u� is a �-approximation.923
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Proof: The union here is of an increasing sequence of sets which are approximating functions which924

agree on the intersecting parts of their domains. Thus u = ⋃�<� u� is a⋃�<� � = �-approximation, as it925

ovberys the requirements on forming approximtions.926

Finally:927

(4) (Existence). Such an H exists.928

Proof: As any two approximations agree on the common part of their domains, we may sensibly929

define H = ⋃B. Just as for the proof of recursion on !:930

(i) H is a function.931

(ii) dom(H) = On.932

Proof: Let C be the class of ordinals � for which there is no �-approximation. So if C is non-empty,933

by the Principle of Transfinite Induction for On, then it will have a least element � . By Note (i) above,934

� > . By (3) it cannot be a limit ordinal.935

If � = � +  then there is a �-approximation v. But by Note (iii) we may extend v to a � + -936

approximation u by setting u(�) = F(v); i.e. , set u = v ∪ {⟨�, F(v)⟩}. Contradiction! Hence C = ∅.937

Q.E.D.938

939

Thus again, H(�) is defined to be that value u(�) given by any �-approximation u, with � < �.940

Remark 3.36 As we have stated it, we have used proper classes - the function F for example is such, and941

On being a proper class will entail that H is too. This is not as risky as might be thought at first, since we942

may eliminate talk of proper classes by their defining formulae if we are careful. We have chosen to be a943

little relaxed about this, for the sake of the exposition.944

Remark 3.37 Although this is the common form of the Recursion Theorem for On in text books, it945

is often more useful in the following form, which tends to “unpack” the function F into two different946

“subfunctions” and a constant depending on the type of ordinal just occurring in the definition of H. It947

essentially contains nomore than the first theorem: one should think of it as a version of the first theorem948

where F is defined by cases.949

Theorem 3.38 (RecursionTheorem onOn, Second Form) Let a P V. Let F, F ∶ V → V be functions.950

Then there is a unique function H ∶ On→ V so that:951

(i) H() = a ;952

(ii) If Succ(�) then H(�) = F(H(�)) where � = � +  ;953

(iii) If Lim(�) then H(�) = F(H ↾ �).954

Proof: Define F ∶ V → V by:955

F(x) = a if x = ∅,956

F(u) = F(u) if Func(u) ∧ dom(u) is a successor ordinal,957

F(u) = F(u) if Func(u) ∧ dom(u) is a limit ordinal,958

F(u) = ∅ in all other cases.959

Now apply the previous theorem to the single function F . Q.E.D.960

961
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In practise we shall be a little informal as in the following definitions of the ordinal arithmetic oper-962

ations.963

Definition 3.39 We define by transfinite recursion on On:964

(Ordinal Addition) A�(�) = � + �:965

A�() = �;966

A�(� + ) = S(A�(�)) = A�(�) + ;967

A�(�) = sup{A�(�) ∣ � < �} if Lim(�). We write � + � for A�(�).968

969

(Ordinal Multiplication) M�(�) = � ⋅ �:970

M�() = ;971

M�(� + ) = M�(�) + �;972

M�(�) = sup{M�(�) ∣ � < �} if Lim(�). We write � ⋅ � for M�(�).973

974

(Ordinal Exponentiation) E�(�) = �� (for � > ).:975

E�() = ;976

E�(� + ) = E�(�) ⋅ �977

E�(�) = sup{E�(�) ∣ � < �} if Lim(�). We write �� for E�(�).978

Compare these definitions with those for the usual arithmetic operations on the natural numbers.979

Note that definition of multiplication (and exponentiation) assumes that addition (respectively multi-980

plication) has been defined for all �. They are obtained in each case by adding a third clause to cater981

for limit ordinals. Hence we know immediately that the ordinal arithmetic operations agree with stan-982

dard ones on !, the set of natural numbers. Note we have gone straight away to the more informal983

but usual notation: the second line of the above, A�(� + ) = S(A�(�)), could have been stated as984

� + (� + ) = S(� + �) = (� + �) +  etc. Clearly then � + � < � + (� + ) for any �,�.985

Lemma 3.40 The functions A� are strictly increasing and hence (1-1). That is, for any �:

(˚) � < 
 → � + � < � + 
 .

Proof: This is formally a proof by induction on 
, but really given the definition of the arithmetical986

operation A� should be (or become) intuitively true. For suppose as an inductive hypothesis that (˚)987

holds for all 
 ≤ �. Then we show it is true for � + . Let � < � + . If � = � then � + � < � + (� + ) by988

the comment immediately before this lemma. But if � < � then by IH we know � + � < � + � and the989

latter we have just argued is less than � + (� + ).990

Now suppose that (˚) holds for all 
 < � for some limit ordinal �. We show it holds for �. Suppose991

� < �. Note � < � +  < �. So � + � < � + (� + ) ≤ sup{� + 
 ∣ 
 < �} = � + � (the first < holding by992

definition of A�(� + )). Q.E.D.993

Lemma 3.41 Similarly both M�, E� are also strictly increasing and hence (1-1): suppose �,� , 
 P On are994

such that � < 
. (i) If � >  then � ⋅ � < � ⋅ 
; (ii) if � >  then �� < �
 .995
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We shall not bother to do so, but we could prove that these arithmetic operations coincide with those996

defined earlier in terms of order types of composite orders: for any�,�,�+′� = �+� and�⋅′� = �⋅�; we997

again emphasise that, as we remarked for the operations +′ and ⋅′, we do not have commutativity of our998

official operations: +! = sup{+ n ∣ n P !} = ! ≠ !+ ; similarly  ⋅! = sup{ ⋅ n ∣ n P !} = ! ≠ ! ⋅ ;999

Exercise 3.15 Prove this last lemma.1000

Exercise 3.16 By applying the last two lemmas, justify the following cancellation laws (and hence deduce that all1001

these implications could be replaced by equivalences).1002

(a) � + � = � + 
 → � = 
 .1003

(b) ( < � ∧ � ⋅ � = � ⋅ 
)→ � = 
 .1004

(c) �� = �
 → � = 
 .1005

(d) � + � < � + 
 → � < 
 .1006

(e) (� ⋅ � < � ⋅ 
)→ � < 
 .1007

(f) �� < �
 → � < 
 .1008

Exercise 3.17 Show that for any 
 and any � ≤ �:1009

(a) � + 
 ≤ � + 
;1010

(b) � ⋅ 
 ≤ � ⋅ 
;1011

(c) �
 ≤ �
 .1012

The following lemma gives an alternative way to view the addition and multiplication of ordinals in1013

terms of their set elements.1014

Lemma 3.42 Let �,� P On. Then1015

(i) � + � = � ∪ {� + 
 ∣ 
 < �};1016

(ii) � ⋅ � = {� ⋅ � + � ∣ � < � ∧ � < �}1017

Proof: (i) By induction on �: if � =  then � +  = � ∪ ∅ = �. Suppose (i) is true for �. Then1018

� + (� + ) = (� + �) +  = S(� + �) = � + � ∪ {� + �} =1019

= � ∪ {� + 
 ∣ 
 < �} ∪ {� + �}(by Ind Hyp.)1020

= � ∪ {� + 
 ∣ 
 < � + }.1021

It is thus true for � + .1022

Now suppose Lim(�) and that (i) is true for � < �. Then1023

� + � = sup{� + � ∣ � < �} (by Def. of +)1024

= ⋃{� ∪ {� + 
 ∣ 
 < �} ∣ � < �} (by Lemma 3.32 and the Ind. Hyp.)1025

= � ∪ {� + 
 ∣ 
 < �}1026

(as Lim(�) implies that any � + 
 for 
 < � is also trivially � + 
 for 
 < � for a � < �).1027

It is thus true for Lim(�) also.1028

(ii) Again by induction on �. For � =  then � ⋅  =  = ∅ = {� ⋅ � + � ∣ � <  ∧ � < �}. Suppose it is1029

true for �. Then:1030

� ⋅ (� + ) = � ⋅ � + � (by Def. of Multiplication)1031

= � ⋅ � ∪ {� ⋅ � + � ∣ � < �} (by (i) of the Lemma)1032

= {� ⋅ � + � ∣ � < � ∧ � < �} ∪ {� ⋅ � + � ∣ � < �} (by the Inductive Hypothesis)1033

= {� ⋅ � + � ∣ � < � +  ∧ � < �}.1034

Now suppose Lim(�) and it is true for � < �, we ask the reader to complete the proof as an exercise.1035
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Exercise 3.18 Complete the proof of (ii) of the Lemma.1036

Corollary 3.43 Suppose �,� P On and  < � ≤ �. Then (i) there is a unique ordinal 
 so that �+
 = �;1037

(ii) there is a unique pair of ordinals �, � so that � < � ∧ � = � ⋅ � + �.1038

Proof: (ii) By Lemma 3.41 the function M�(�) is strictly increasing. So � ≤ M�(�) < M�(� + ) for1039

example. So there must be a least � so that � ⋅ � ≤ � < � ⋅ (� + ) = � ⋅ � +�. By part (i) there is a unique1040

� so that � = � ⋅ � + �. So at least one pair �, � satisfying these requirements exists. Suppose �′, �′ is1041

another. If � = �′ then � ⋅ � = � ⋅ �′; but then � = � ⋅ � + � = � ⋅ � + �′. By part (i) � = �′.1042

However if, say, � < �′ then � +  ≤ �′ and so1043

� = � ⋅ � + � < � ⋅ � + � = � ⋅ (� + ) ≤ � ⋅ �′ ≤ � ⋅ �′ + �′ = �1044

which is absurd. So this case cannot occur. Q.E.D.1045

1046

Example: If � < ! then � = ! ⋅ k + l for some k, l P !.1047

Exercise 3.19 Show that if � < ! then there exist unique n, k, l P ! with � = ! ⋅ n + ! ⋅ k + l .1048

Exercise 3.20 Say that 
 is an end segment of � if there is an � so that � + 
 = �. (Note that � is an end segment1049

of itself.) Show that any � has at most finitely many end segments.1050

It is easy to see that sup{� + n ∣ n P !} = � + !. This is an elementary example of (i) of the next1051

exercise where we have taken X as the set of even natural numbers.1052

Exercise 3.21 Let X be a set of ordinals without a largest element. Show1053

(i) � + supX = sup{� + � ∣ � P X};1054

(ii) � ⋅ supX = sup{� ⋅ � ∣ � P X};1055

(iii) �supX = sup{�� ∣ � P X}.1056

Lemma 3.44 The following laws of arithmetic hold for our definitions:1057

(a) � + (� + 
) = (� + �) + 
1058

(b) � ⋅ (� + 
) = � ⋅ � + � ⋅ 
1059

(c) � ⋅ (� ⋅ 
) = (� ⋅ �) ⋅ 
1060

(d) ��+
 = �� ⋅ �
 .1061

Proof: These are all proven by transfinite induction. Again we do (b) as a sample. We perform the1062

induction on 
. For 
 =  we have � ⋅ (� + ) = � ⋅ � +  = � ⋅ � + � ⋅ . Suppose it is true for 
. Then1063

� ⋅ (� + (
 + )) = � ⋅ ((� + 
) + ) = � ⋅ (� + 
) + � = (� ⋅ � + � ⋅ 
) + �1064

= � ⋅ � + (� ⋅ 
 +�) = � ⋅ � +� ⋅ (
 + ). So it holds for 
 + . Suppose now Lim(
) and it holds for1065

� < 
.1066

Then � ⋅ (� + 
) = � ⋅ sup{� + � ∣ � < 
}1067

= sup{� ⋅ (� + �) ∣ � < 
} (by (ii) of the last Exercise1068

= sup{� ⋅ � + � ⋅ � ∣ � < 
} (by the Ind. Hyp.)1069

= � ⋅ � + sup{� ⋅ � ∣ � < 
} (by (i) of the last Exercise1070

= � ⋅ � + � ⋅ 
 (by Def. of Multiplication).1071

1072
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It is sometimes useful to note that if � < !
 , then there is always some 
′ < 
 and k < ! with1073

� < !
′ ⋅ k: if Lim(
) then as !
 = sup{!
′ ∣ 
′ < 
} this is immediate (with k = ). If 
 = 
′ +  then1074

!
 = !
′ ⋅!, and then there is some least k < ! (possibly 1) with � < !
′ ⋅k. One can use this observation1075

without diverging into an argument by cases each time.1076

Exercise 3.22 Describe subsets ofQ with order types ! ,!! , and!! + ! +  under the natural < ordering.1077

Exercise 3.23 Prove that if  < �,� then: (i) � + � = � ↔ � ⋅ ! ≤ �.1078

(ii) � + � = � + � ↔ D
Dm, n P ! (� = 
 ⋅m ∧ � = 
 ⋅ n).1079

Exercise 3.24 In each of (i)-(iii) find � and X a set of ordinals without a largest element with the properties1080

(i) supX + � ≠ sup{� + � ∣ � P X};1081

(ii) supX ⋅ � ≠ sup{� ⋅ � ∣ � P X};1082

(iii) (supX)� ≠ sup{�� ∣ � P X}.1083

[Hint: in each case a simple X can be found with X = {�n ∣ n < !}.]1084

Exercise 3.25 (i) Prove that if � < 
 then !� +!
 = !
 . (ii) Prove that if � < � ≤ !
 then � + � = !
 iff � = !
 .1085

Deduce that if for all � < � that � + � = � then � = !
 for some 
.1086

Exercise 3.26 Prove that if � ≥  then @�(� ⋅ � ≤ ��).1087

Exercise 3.27 If � = !� for some � > , and � < �, then show that there are � < � , k < !, and 
 < !� with1088

� = !� ⋅ k + 
.1089

Lemma 3.45 (Cantor’s Normal FormTheorem). Let  ≤ �. Then there exists a unique k P ! and unique

, . . . , 
k−with 
 > . . . > 
k− and d, . . . , dk− P ! so that:

� = !
 ⋅ d + !
 ⋅ d +⋯ + !
k− ⋅ dk−.

The Theorem says that any ordinal � ≥  can be expressed “to base !”. There is nothing special1090

about ! here: if � ≤ � we could still find finitely many decreasing ordinals 
i , and  < di < � and have1091

� = �
 ⋅ d + �
 ⋅ d +⋯ + �
n− ⋅ dn−. Thus � could be expressed to base �.1092

Proof: Let 
 = sup{
 ∣ !
 ≤ �}. If !
 < � then there is a largest d P ! so that !
 ⋅ d ≤ � (thus with1093

!
 ⋅ (d + ) > �). If !
 ⋅ d = � we are done. Otherwise there is a unique � so that !
 ⋅ d + � = �.1094

Note that in this case � < �. Now repeat the argument: let 
 = sup{
 ∣ !
 ≤ �}; by virtue of our1095

construction and the definition of 
 and d, we must have 
 < 
. If !
 < � then define d P ! as the1096

largest natural number with !
 ⋅ d ≤ �. If we have equality here, again we are done. Otherwise there1097

is � defined to be the unique ordinal so that !
 + � = �. Since we have � > � > �⋯ there must be1098

some k with �k = , that is with !
k− ⋅ dk− = �k−. Thus � has the form required for the theorem, and1099

this process uniquely determines k and the 
i . Q.E.D.1100

Exercise 3.28 Convince yourself that aCantorNormal Form theoremcould be proven for other bases as indicated1101

above: if � ≤ � we may find finitely many decreasing ordinals 
i , and  < d i < � with � = �
 ⋅ d +�
 ⋅ d +⋯+1102

�
n− ⋅ dn−.1103

Exercise 3.29 For � >  show that ! ⋅ � = � iff � is a multiple of !! , that is for some �, � = !! ⋅ �.1104
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Exercise 3.30 An ordinal � is called indecomposable if �,� < � → � + � < �. Show that the following are1105

equivalent:1106

(i) � is indecomposable1107

(ii) @� < �(� + � = �), i.e.� is a fixed point of A� for any � < �;1108

(iii) � = !� for some ordinal �.1109

Exercise 3.31 Show that least indecomposable ordinal greater than � is � ⋅ !.1110

Exercise 3.32 An ordinal � is called multiplicatively indecomposable if �,� < � → � ⋅ � < �. Show that the1111

following are equivalent:1112

(i)  < � is multiplicatively indecomposable;1113

(ii) @�( < � < � → � ⋅ � = �), i.e.� is a fixed point of M� for any  < � < �;1114

(iii) � = !(!
�) for some ordinal �.1115

Exercise 3.33 Formulate a definition for an ordinal � >  to be exponentially indecomposable and demonstrate1116

two equivalences by analogy with the two previous exercises.1117

Exercise 3.34 (i) Consider the set S of all finite strings of Roman letters with the dictionary or lexicographic1118

ordering. (Thus a <lex aa <lex aaa <lex ⋯ <lex ab <lex aba <lex abd etc.) Is ⟨S , <lex⟩ a wellordering?1119

(ii) Now consider the set S of all finite strings of natural numbers (this will be denoted <!!). Again consider1120

the lexicographic ordering, where we consider also ‘ <lex ’ i.e. , so that <lex also extends the natural < ordering1121

on !. Is ⟨S , <lex⟩ a wellordering?1122

Exercise 3.35 Faust and Mephistopheles have coins in a currency with k denominations. Mephistopheles offers1123

Faust the following bargain: Every day Faust must give M. a coin, and in return receives as many coins as he,1124

Faust, demands, but only in coins of a lower denomination (except when the coin F. gave was already of the lowest1125

denomination, in which case F. will receive nothing in return). Should Faust accept the bargain? (F. can only1126

demand a finite number of coins each day; part of the bargain is that only M. can call a halt, F. cannot do so - thus1127

the pact may continue indefinitely - hence we assume that F. lives for an indefinite number of days - not just three1128

score and ten years.)1129

Exercise 3.36 Consider the set P of polynomials in the variable x with coefficients from N. For P,Q P P define1130

P ă Q ↔ for all sufficiently large x PR P(x) < Q(x). Prove ⟨P ,ă⟩ P WO .1131

Exercise 3.37 Let <!! = { f ∣ Fun( f ) ∧ Dk ( f ∶ k → !)} be the set of all functions into!with domain some k P !.1132

The Kleene-Brouwer ordering on <!! is defined by:1133

f <KB g ↔ Dn [ f ↾ n = g ↾ n ∧ n P dom( f ) ∧ (n R dom(g) ∨ f (n) < g(n))]1134

Is it a total ordering? A wellordering?1135

Exercise 3.38 Let ⟨X ,ă⟩ P WO. Let QX = <!X. Consider the following order ă on QX :

f ă g ←→df dom( f ) < dom(g) ∨ (dom( f ) = dom(g) ∧ Dk ≤ dom( f )(@n < k f (n) = g(n) ∧ f (k) ă g(k))).

Show that ⟨Qx ,ă⟩ P WO.1136

Exercise 3.39 Show that the following is a wellorder of nOn: for �⃗ = ⟨� , . . . ,�n−⟩, �⃗ = ⟨� , . . . ,�n−⟩ set �⃗ <n �⃗1137

iff max(�⃗) < max(�⃗) or (max(�⃗) = max(�⃗)) ∧ ( if i is least so that �i ≠ �i then �i < �i).1138

Exercise 3.40 * Let FOn be the class of all finite sets of ordinals. Consider the following ordering <˚ on FOn,1139

where as usual p△ q = {� ∣ � P p/q ∪ q/p} is the symmetric difference of p, q:1140

p <˚ q↔ max(p△ q) P q.1141

(Or to put it another way: D� P q/p (p/(� + ) = q/(� + )) ). Show that <˚ is a wellorder of FOn. [Hint: the1142

given <˚ is just the same as the lexicographic ordering <lex (see above) but restricted to finite descending sequences1143

of ordinals p = p > p > ⋯ > pk for variable k P !.]1144
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Exercise 3.41 * Use the Cantor Normal Form to devise a pairing function on ordinals: that is to define a bijection1145

p ∶ On ˆ On ↔ On with the additional property that p ↾ � ˆ � ∶ � ˆ � ↔ � is a bijection if and only if � is1146

indecomposable (See Ex. 3.30). [Hint: Let � = !
 ⋅ d + !
 ⋅ d + ⋯ + !
k− ⋅ dk− and � = !
 ⋅ e + !
 ⋅ e +1147

⋯+ !
k− ⋅ ek− where, in order to match up, some of the d i ’s or e i ’s may have to be zero (but not both e i = d i = 1148

for any i). Let p ∶ ! ˆ ! ↔ ! be any pairing function on ! - with the property that p(, ) = . Then consider1149

!
 ⋅ p(d , e) + !
 ⋅ p(d , e) +⋯ + !
k− ⋅ p(dk− , ek−).]1150
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1151

Cardinality1152

“Je le vois, mais je ne le crois pas!”
G. Cantor 29.vii.1877. Letter to
Dedekind, after discovering that
R ≈RˆR.

1153

We now turn to Cantor’s other major contribution to the foundations of set theory: the theory of1154

cardinal size or cardinality of sets. Informally we seek a way of assigning a “number” to represent the1155

size or magnitude of a set - any set whether finite or infinite. (And we have yet to define what those two1156

words mean.) We extrapolate from our experience with finite sets when we say that two such sets have1157

the same size when we can pair off the members one with another - just as children do arranging blocks1158

and apples.1159

4.1 Equinumerosity1160

Definition 4.1 Two sets A, B are equinumerous if there is a bijection f ∶ A←→ B. We write then A ≈ B1161

and f ∶ A ≈ B.1162

The idea is that f is both (1-1) and onto, and thus we can “use A to count B” (more familarly from1163

analysis we have A is a natural number or perhaps is N itself). An alternative word for equinumerous1164

here (but more old-fashioned) is “equipollent”. Notice that:1165

Lemma 4.2 ≈ is an equivalence relation:1166

(i) A ≈ A; (ii) A ≈ B → B ≈ A ; (iii) A ≈ B ∧ B ≈ C → A ≈ C.1167

Cantor was not the first to consider using ≈ as a way of making a judgement about size. As Cantor1168

acknowledged Bolzano had a few years earlier (1851) considered, but rejected it in his notes on infinite1169

sets. Galileo had also pointed out that the squares were in (1-1) correspondence with the counting num-1170

bers, and drew the lesson that it was useless to apply concepts from the realm of the finite to talk about1171

infinite collections. Cantor was the first to take the idea seriously.1172

Definition 4.3 (i) A set B is finite if it is equinumerous with a natural number:1173

Dn P !D f ( f ∶ n ≈ B).1174

(ii) If a set is not finite then it is called infinite.1175
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Notice that this definition makes use of the fact that our definition of natural number has built into1176

it the fact that a natural number is the (finite) set of its predecessors, so the above definitionmakes sense.1177

Could a set be equinumerous to two different natural numbers? Well, of course not if our definitions1178

are going to make any sense, but this is something to verify.1179

Lemma 4.4 (Pidgeon-Hole Principle) No natural number is equinumerous to a proper subset of itself.1180

Proof: Let Z = {n P ! ∣ @ f (If f ∶ n → n and f is (1-1), then ran( f ) = n)}. (Thus members of Z cannot1181

be mapped in a (1-1) way to proper subsets of themselves.) Trivially  P Z. Suppose n P Z, and prove1182

that n +  P Z. Let f be (1-1) and f ∶ n + → n + .1183

Case 1 f ↾ n ∶ n → n.1184

Then by Inductive hypothesis, ran( f ↾ n) = n. Then we can only have f (n) = n and thus ran( f ) =1185

n + .1186

Case 2 f (m) = n for some m P n.1187

As f is (1-1) we must have then f (n) = k for some k P n. We define g to be just like f but we swap1188

around the action on n,m: define g by g(m) = k, g(n) = n and g(l) = f (l) for all l ≠ m, n. Now1189

g ∶ n+ → n+  and g ↾ n ∶ n → n. By Case 1 ran(g) equals n+ , but in that case so does ran( f ). Q.E.D.1190

Corollary 4.5 No finite set is equinumerous to a proper subset of itself.1191

Exercise 4.1 Prove this.1192

Corollary 4.6 Any finite set is equinumerous to a unique natural number.1193

The next corollary is just the contrapositive of Cor. 4.5.1194

Corollary 4.7 Any set equinumerous to a proper subset of itself is infinite.1195

Corollary 4.8 ! is infinite.1196

Exercise 4.2 Prove the corollaries 4.6 & 4.8.1197

Exercise 4.3 Show that if A ⫋ n P ! then A ≈ m for some m < n. Deduce that any subset of a finite set is finite.1198

Exercise 4.4 Suppose A is finite and f ∶ A→ A. Show that f is (1-1) iff ran( f ) = A.1199

Exercise 4.5 Let A, B be finite. Without using any arithmetic, show that A∪ B andAˆ B is finite.1200

Exercise 4.6 Show that if A is finite and ⟨A, R⟩ is a strict total order, then it is a wellorder (and note in this case1201

that ⟨A, R−⟩ P WO too).1202

Theorem 4.9 (Cantor, Dec. 7’th 1873)1203

The natural numbers are not equinumerous to the real numbers: ! /≈R.1204
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Proof: Suppose f ∶ ! →R is (1-1). We show that ran( f ) ≠R so such an f can never be a bijection. This1205

is the famous “diagonal argument” that constructs a number that is not on the list. We assume that the1206

real numbers in ran( f ) are written out in decimal notation.1207

f () = . . . .1208

f () = −. . . .1209

f () = . . . . etc.1210

We let x be the number . . . . obtained by letting x have 0 integer part, and putting at the n + ’st1211

decimal place a  if the n+ st decimal place of f (n) is even, and a 2 if it is odd. The argument concludes1212

by noting that x cannot be f (n) for any n as it is deliberately made to differ from f (n) at the n + ’st1213

decimal place. Q.E.D.1214

Remark: in the above proof we have used the fact that if a number has a decimal representation1215

involving only the digits 1 and 2 beyond the decimal point, then the number’s representation is unique.1216

Some authors use ’s and ’s (or binary) and then worry about the fact that . . . . . is the same as1217

. (or, in binary, that . . . . is the same as . . . .).The above choice of ’s and ’s avoids this.1218

(They also, somewhat oddly, only argue with a list f ∶ ! → (, ), and show first that (, ) is uncountable1219

- which of course implies that the supersetR is uncountable - but the restriction is unnecessary.)1220

Theorem 4.10 (Cantor) No set is equinumerous to its power set: @X( X /≈ P(X)).1221

Proof: Similar to the argument of the Russell Paradox: suppose for a contradiction that f ∶ X ≈ P(X).1222

Let Z = {u P X ∣ u R f (u)}. Argue that although Z P P(X) it cannot be f (u) for any u P X. Q.E.D.1223

Definition 4.11 We define: (i) X ĺ Y if there is a (1-1) f ∶ X → Y (and write f ∶ X ĺ Y)1224

(ii) X ă Y iff X ĺ Y ∧ Y ⪯̸ X.1225

Note that then X ≈ Y → X ĺ Y ∧ Y ĺ X. The next theorem will show that the converse is true.1226

Exercise 4.7 (i) Show that X ĺ Y implies that P(X) ĺ P(Y); (ii) Show that if X ĺ X′ and Y ĺ Y ′, then1227

X ˆ Y ĺ X′ ˆ Y ′. (iii) Give an example to show that X ă X′ and Y ĺ Y ′, does not imply that X ˆ Y ă X′ ˆ Y ′.1228

Theorem 4.12 (Cantor-Schröder-Bernstein) X ĺ Y ∧ Y ĺ X → X ≈ Y.1229

Proof: Suppose we have the (1-1) functions f ∶ X → Y and g ∶ Y → X. We need a bijection between X1230

and Y and we piece one together from the actions of f and g.1231

We define by recursion: C = X − ran(g)1232

Cn+ = g“ f “Cn.1233

Thus Cis that part of X that stops g from being a bijection. We then define1234

f (v) if v P Cn for some n Case 11235

h(v) =1236

g−(v) otherwise. Case 21237

Note that the second case makes sense: if v P X but v R Cn for any n, then in particular it is not in1238

C, that is v P ran(g).1239

We now define Dn =d f f “Cn. (Note that this makes Cn+ = g“Dn.) We claim that h is our required1240

bijection.1241
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h is (1-1): Let u, v P X; as both f and g− are (1-1) the only problem is if say, u P dom( f ) and1242

v P dom(g−), i.e. , for some m say, u P Cm and v R ⋃nP! Cn (or vice versa). However then:1243

h(u) = f (u) P Dm;1244

h(v) = g−(v) R Dm (it is not in Dm because otherwise we should have v P Cm+ a contradiction).1245

Hence h(u) ≠ h(v).1246

h is onto Y : @nDn Ď ran(h). So consider u P Y −⋃n Dn. g(u) R C = X − ran(g) and g(u) R Cn+1247

for any n either: this is because Cn+ = g“Dn and u R Dn. So g(u) cannot end up in Cn+ without it1248

being equal to some g(v) with u ≠ v P Dn. This would contradict the fact that g is (1-1). Therefore Case1249

2 applies and h(g(u)) = g−(g(u)) = u. Q.E.D.1250

1251

The proof of this theorem has a chequered history: Cantor proved it in 1897 but his proof used the1252

Axiom of Choice (to be discussed later) which the above proof eschews. Schröder announced that he1253

had a proof of the theorem in 1896 but in 1898 published an incorrect proof! He published a correction1254

in 1911. The first fully satisfactory proof was due to Bernstein, but was published in a book by Borel,1255

also in 1898.1256

Exercise 4.8 Show that (i) (−, ) ≈ R ; (ii) (, ) ≈ [, ] by finding directly suitable bijections, without using1257

Cantor-Schröder-Bernstein.1258

Definition 4.13 Let X be any set, we define the characteristic function of Y Ď X to be the function1259

�Y ∶ X →  so that �Y(a) =  if a P Y and �Y(a) =  otherwise.1260

Exercise 4.9 Show that P(!) ≈ R ≈ !. [Hint: First show that P(!) ≈ (, ). It may be easier to show that1261

D f ∶ P(!) ĺ (, ) (by using characteristic functions of X Ď ! and mapping them to binary expansions). Then1262

show that Dg ∶ (, ) ĺ P(!) using a similar device. Then appeal to Cantor-Schröder-Bernstein to obtain the1263

first P(!) ≈ (, ). Now note that P(!) ≈!  is easy: subsets X Ď ! are in (1-1) correspondence with their1264

characteristic functions �X . ]1265

Exercise 4.10 Show directly (without using that P(X) ≈ X or the CSBTheorem) that X ă X.1266

Definition 4.14 A set X is denumerably infinite or countably infinite if X ≈ !. It is countable if X ĺ !.1267

Note that finite sets are countable according to this definition. Trivially from this:1268

Lemma 4.15 Any subset of a countable set is countable.1269

Exercise 4.11 (i) Show that ∅ ≠ X is countable iff there is f ∶ ! → X which is onto. [Hint for (⇐): Construct a1270

(1-1) map from f , demonstrating X ĺ !.]1271

(ii) Prove that X is countable and infinite⇔ X is countably infinite.1272

Lemma 4.16 Let X and Y be countably infinite sets. Then X ∪ Y is countably infinite.1273

By induction we could then prove for any n that if X, . . . , Xn are all countably infinite then so is1274

their union ⋃i≤n Xi .1275

Exercise 4.12 Show that ! ≈ ! ˆ !. [Hint: consider the function f (m, n) = m(n + ) − . For future reference1276

we let (u) and (v) be the (1-1) “unpairing” inverse functions from ! to ! so that f ((u) , (u)) = u.]1277
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Exercise 4.13 Show that Z,Q are both countably infinite. [One way forQ: use Ex.4.11 (i) and 4.12.]1278

Exercise 4.14 Prove this last lemma.1279

Exercise 4.15 Let X ,Y , Z be sets. Either by providing suitable bijections, or by establishing injections in each1280

direction and using Cantor-Schröder-Bernstein, in each case show that:1281

(i) X ˆ (Y ˆ Z) ≈ (X ˆ Y)ˆ Z and X ˆ (Y ∪ Z) ≈ (X ˆ Y) ∪ (X ˆ Z) (assume Y ∩ Z = ∅) ;1282

(ii) X∪YZ ≈ XZ ˆ YZ ; (assume X ∩ Y = ∅)1283

(iii) X(Y ˆ Z) ≈ XY ˆ XZ ;1284

(iv) X(YZ) ≈ (XˆY)Z .1285

Exercise 4.16 Suppose K , L are sets bijective with (not necessarily the same) ordinals. Show that both K ∪ L and1286

K ˆ L are bijective with ordinals.1287

Lemma 4.17 Let X be an infinite set, and suppose R is a wellordering of X. Then X has a countably infinite1288

subset.1289

Proof: Let x be the R-least element of X. Define by recursion xn+ = R-least element of X−{x, . . . , xn}.1290

The latter is non-empty, because X was assumed infinite. Hence for every n < !, xn+ is defined. Then1291

X = {xn ∣ n < !} is a countably infinite subset of X. Q.E.D.1292

1293

Without the supposition of the existence of a wellordering on X we could not run this argument. We1294

therefore adopt the following.1295

1296

Wellordering Principle (WP): Let X be any set, then there is a wellordering R of X.1297

1298

For some sets x we know already that x can be wellordered, for example if x is finite or countably1299

infinite (Why?). But in general this cannot be proven. It will turn out that the Wellordering Principle is1300

equivalent to the Axiom of Choice.1301

Lemma 4.18 Assume the Wellordering Principle. Then if X, . . . , Xn , . . . .(n < !) are all countably infinite1302

then so is ⋃i<! Xi .1303

Remark 4.19 Remarkably, it can be proven that without WP we are unable to prove this.1304

Proof: The problem is that although we are told that each Xi is bijective with ! we are not given the1305

requisite functions - we are just told they exist. We must choose them, and this is where WP is involved.1306

Let Z = {g ∣ Di < !(g ∶ ! ≈ Xi)}. Then Z is a set (it is a subset of ⋃{!Xi ∣ i < !}). Let R be a1307

wellordering of Z. Set our choice of gi to be the R-least function ḡ ∶ ! ≈ Xi . We shall amalgamate all1308

the functions gi for i < !, into a single function g which will be onto ⋃i<! Xi . An application of Ex.4.111309

then guarantees that ran(g) is countable. To do the amalgamation we use the function f of Exercise 4.12,1310

satisfying f ∶ ! ˆ ! ≈ !. Define g ∶ ! → ⋃i<! Xi by g( f (i , n)) = gi(n). Then dom(g) is by design1311

ran( f ) = ! and now Check that g is onto.1312
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4.2 Cardinal numbers1313

We shall assume the Wellordering Principle from now on. This means that for any set X we can find R,1314

a wellordering of it. However if ⟨X , R⟩ P WO then it is isomorphic to an ordinal. If f ∶ ⟨X , R⟩ ≅ ⟨�, P⟩ is1315

such an isomorphism, then in particular f ∶ X ≈ � is a bijection. In general for a set X there will be many1316

bijections between it and different ordinals (indeed many bijections between it and a single ordinal), but1317

that allows for the following definition.1318

Definition 4.20 Let X be any set, the cardinality of X, written ∣X∣, is the least ordinal � with X ≈ �.1319

● This corresponds again with notion of finite cardinality. Note that if X is finite then there is just1320

one ordinal 
 with X ≈ 
 (namely that 
 P ! with which it is bijective). This just follows from the1321

Pidgeon-Hole Principle.1322

● However as already stated, a set may be bijective with different ordinals: ! ≈ ! +  ≈ ! + ! for1323

example. Still for an infinite set X, ∣X∣ also makes sense.1324

Lemma 4.21 For any sets X ,Y(i)X ≈ Y ⇔ ∣X∣ = ∣Y ∣; (ii) X ĺ Y ⇔ ∣X∣ ≤ ∣Y ∣; (iii) X ă Y ⇔ ∣X∣ < ∣Y ∣.1325

Proof: These are really just chasing the definitions: let � = ∣X∣,� = ∣Y ∣. Let g ∶ X ≈ �, h ∶ Y ≈ �. For (i)1326

(⇒) Let f ∶ X → Y be any bijection. Then � /< � since otherwise h ○ f is a bijection of X with � < � = ∣X∣1327

- a contradiction. Similarly � /< � since otherwise g ○ f − ∶ Y ≈ � < � contradicting the definition of � as1328

∣Y ∣. (⇐) Suppose � = � and just look at h− ○ g. This finishes (i). Complete (ii) and (iii) is an exercise.1329

Q.E.D.1330

Exercise 4.17 Complete (ii) and (iii) of this lemma.1331

This last lemma (togetherwithWP) shows that we can choose suitable ordinals as “cardinal numbers”1332

to compare the sizes of sets. Cantor’s theorems in this notation are that ∣N∣ < ∣R∣ and in general ∣X∣ <1333

∣P(X)∣. In general when we are dealing with the abstract properties of cardinality, the lemma also shows1334

that we might as well restrict ourselves to a discussion of the cardinalities of the ordinals themselves. All1335

in all we end up with the following definition of cardinal number.1336

Definition 4.22 An ordinal � is a cardinal or cardinal number, if � = ∣�∣.1337

Notice that we could have obtained an equivalent definition if we had said that an ordinal number is1338

a cardinal if there is some set X with � = ∣X∣. (Why? Because if � = ∣X∣ for some set X, then we have by1339

definition that� is least so that� ≈ X. So we cannot have the existence of a smaller � ≈ � - for otherwise,1340

by composing bijections, we should have � ≈ X. Hence � = ∣�∣. Similar arguments will be implicitly1341

used below.)1342

● We tend to reserve middle of the greek alphabet letters for cardinals: �,�,�, . . .1343

● Check that this means � is not a cardinal iff there is 
 < � with � ĺ 
.1344

● For any � P On � ≥ ∣�∣ = ∣ ∣�∣ ∣. (Check!)1345

Exercise 4.18 Check: each n P ! is a cardinal, ! itself is a cardinal. [Hint: just consult the definition together1346

with some previous lemmas and corollaries.]1347
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Exercise 4.19 Suppose � ≥ !. (i) Show � ≈ � + . (ii) Suppose that  < n < !. Show that � + n is not a cardinal,1348

nor is � + !. [Hint: try it with � = ! first; find a (1-1) map f from � + n (or � + ! respectively) into �.]1349

Note: The last Exercise shows that infinite cardinals are limit ordinals.1350

Lemma 4.23 If ∣�∣ ≤ 
 ≤ � then ∣�∣ = ∣
∣.1351

Proof: By definition there is f ∶ � ≈ ∣�∣ and by Lemma 4.21(i) ∣ ∣�∣ ∣ = ∣�∣. Now (
 ≤ � ←→ 
 Ď �),1352

hence f ↾ 
 ∶ 
 → ∣�∣ (1-1). Hence 
 ĺ ∣�∣. But ∣�∣ ≤ 
 implies that ∣�∣ Ď 
 so trivially ∣�∣ ĺ 
. By CSB1353


 ≈ ∣�∣. Hence, again by Lemma 4.21(i): ∣
∣ = ∣∣�∣∣ = ∣�∣. Q.E.D.1354

Exercise 4.20 Let S be a set of cardinals without a largest element. Show that sup S is a cardinal.1355

Exercise 4.21 Show that an infinite set cannot be split into finitely many sets of strictly smaller cardinality. [Hint:1356

Suppose that Y is an infinite set. Let X Ď Y , and suppose that ∣X∣ < ∣Y ∣. Show that ∣Y/X∣ = ∣Y ∣.]1357

4.3 Cardinal arithmetic1358

We now proceed to define arithmetic operations on cardinals. Note that these, other than their restric-1359

tions to finite cardinals, are very different from their ordinal counterparts.1360

Definition 4.24 Let �,� be cardinals. We define1361

(i) �⊕ � = ∣K ∪ L∣ where K , L are any two disjoint sets of cardinality �,� respectively.1362

(ii) �⊗ � = ∣K ˆ L∣ where K , L are any two sets of cardinality �,� respectively.1363

Notes: (1) There is an implicit use of Exercise 4.16 to guarantee that the chosen sets indeed have1364

cardinalities. Here it really does not matter which sets K , L one takes: if K′, L′ are two others satisfying1365

the same conditions, then there are bijections F ∶ K ≈ K′ and G ∶ L ≈ L′ and thus F ∪G ∶ K ∪ L ≈ K′ ∪ L′1366

(and similarly K ˆ L ≈ K′ ˆ L′). So simply as far as size goes it is immaterial which underlying sets we1367

consider. (ii) can be paraphrased as ∣XˆY ∣ = ∣∣X∣ˆ ∣Y ∣∣ = ∣X∣⊗ ∣Y ∣ for any sets X ,Y . (See also (4) below.)1368

(2) Unlike ordinal operations, ⊕ and⊗ are commutative. This is simply because in their definitions,1369

∪ is trivially commutative, and K ˆ L ≈ L ˆ K. It is easily reasoned that they are associative too.1370

(3) �⊕ � = ∣�ˆ {} ∪ �ˆ {}∣ = ∣�ˆ ∣ = �⊗  by definition.1371

(4) For any ordinals �, �: ∣� ˆ �∣ = ∣�∣⊗ ∣�∣ follows directly from the definition of ⊗.1372

Lemma 4.25 For n,m P ! m + n = m ⊕ n < ! and m ⋅ n = m ⊗ n < !.1373

Proof:We already know thatm+n,m ⋅n < !. One can prove directly thatm+n = m⊕n (or by induction1374

on n), and m ⋅ n = m ⊗ n similarly. Q.E.D.1375

Exercise 4.22 Complete the details of the last lemma.1376

Exercise 4.23 Convince yourself that for any ordinals �,�: ∣� +′ �∣ = ∣�∣ ⊕ ∣�∣ ; ∣� ⋅′ �∣ = ∣�∣ ⊗ ∣�∣ (and so the1377

same will hold for ordinal + and ⋅ replacing +′ and ⋅′). [Hint: This is really rather obvious given our definitions of1378

+′ and ⋅′ using disjoint copies of � and �.1379
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The next theorem shows how different cardinal multiplication is from ordinal multiplication. We1380

shall use the following exercise in its proof.1381

Exercise 4.24 (i) Suppose that ⟨A, R⟩, ⟨A′ , R′⟩ are in WO with both A,A′ uncountable, but so that every proper1382

initial segment of ⟨A, R⟩ or ⟨A′ , R′⟩ is countable. Show that ⟨A, R⟩ ≅ ⟨A′ , R′⟩ ≅ ⟨! , <⟩ where ! is the least1383

uncountable ordinal (which then is the least uncountable cardinal).1384

(ii) Now do this for larger cardinals. Suppose ⟨A, R⟩ P WO and there is a cardinal � with ∣A∣ ≥ �, but so that for1385

every b P A the initial segment ⟨Ab , R⟩ ≅ ⟨�, P⟩ for a � < �. Show that ot(⟨A, R⟩) = �.1386

Theorem 4.26 (Hessenberg) Let � be an infinite cardinal. There is a bijection �ˆ� ≈ � and thus �⊗� =1387

�.1388

Proof: By transfinite induction on �. As !ˆ! ≈ ! (Ex.4.12), we already know that !⊗! = ∣!ˆ!∣ = !.1389

Thus we assume the theorem holds for all smaller infinite cardinals � < � and prove it for �. We consider1390

the following Gödel ordering on �ˆ �:1391

⟨�,�⟩ ⊲ ⟨
 , �⟩⇔df max{�,�} < max{
 , �}∨[max{�,�} = max{
 , �}∧(� < 
∨(� = 
∧� < �))]1392

(Note the last conjunct here is just the lexicographic ordering on �ˆ �.)1393

(1) ⊲ is a wellorder of �ˆ �.1394

Proof: Let ∅ ≠ X Ď �ˆ �. Let, in turn:1395


 = min{max{�,�} ∣ ⟨�,�⟩ P X}; X = {⟨�,�⟩ P X∣max{�,�} = 
}; � = min{� ∣ ⟨�,�⟩ P X};1396

and � = min{� ∣ ⟨�,�⟩ P X}. Then consider ⟨�,�⟩. ◻()1397

The ordering starts out:1398

⟨, ⟩⊲ ⟨, ⟩ ⊲ ⟨, ⟩ ⊲ ⟨, ⟩ ⊲ ⟨, ⟩ ⊲ ⟨, ⟩ ⊲ ⟨, ⟩ ⊲ ⟨, ⟩⋯ ⊲ ⟨,!⟩ ⊲ ⟨,!⟩ ⊲ ⟨,!⟩⋯ ⊲ ⟨!, ⟩ ⊲1399

⟨!, ⟩⋯ ⊲ ⟨!,!⟩⋯1400

(2) Each ⟨�,�⟩ P �ˆ � has no more than ∣max(�,�)+ ˆmax(�,�)+ ∣ < �many ⊲-predecessors.1401

Proof: By looking at the square pattern that occurs, the predecessors of ⟨�,�⟩ fit inside a cartesian1402

product box of this size. To state it precisely, A⟨�,�⟩ Ă 
 ˆ 
 where we set 
 = max{�,�} +  < �. But1403

by Remark (4) following on Def.4.24, ∣
 ˆ 
∣ = ∣
∣ ⊗ ∣
∣. As 
 < �,then ∣
∣ < � and so by the inductive1404

hypothesis we have ∣
∣⊗ ∣
∣ < � as required. ◻()1405

By (2) it follows that ⊲ has the property that every initial segment has cardinality less than �. The1406

whole ordering certainly has size ≥ � since for every � < � ⟨�, ⟩ is in the field of the ordering! That1407

means (by Exercise 4.24) that ot(⟨�ˆ�, ⊲⟩) = �. But that means we have an order isomorphism between1408

⟨�ˆ�, ⊲⟩ and ⟨�, P⟩. But such an isomorphism is a bijection. Hencewededuce�ˆ� ≈ �, which translates1409

to �⊗ � = �. Q.E.D.1410

Corollary 4.27 Let �,� be infinite cardinals. Then �⊕ � = �⊗ � = max{�,�}.1411

Proof: Assume � ≤ �, so � = max{�,�}. Then let X ,Y be disjoint with ∣X∣ = �, ∣Y ∣ = �. (Then1412

Y ĺ X ĺ X ˆ {}.) Thus we have:1413

X ĺ X ∪ Y ĺ X ˆ {} ∪ X ˆ {} = X ˆ  ĺ X ˆ X.1414

In terms of cardinal numbers (i.e. Lemma 4.21) this expresses:1415

∣X∣ ≤ ∣X ∪ Y ∣ ≤ ∣X ˆ {} ∪ X ˆ {}∣ = ∣X ˆ ∣ ≤ ∣X ˆ X∣, or:1416

� ≤ �⊕ � ≤ �⊕ � = �⊗  ≤ �⊗ �.1417
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However Hessenberg shows that � ⊗ � = � so we have equality everywhere above, and in particular1418

� = �⊕ � = max{�,�}.1419

Further: X ĺ X ˆ Y ĺ X ˆ X. Again in terms of cardinals, and quoting Hessenberg:1420

� ≤ �⊗ � ≤ �⊗ � = � and so �⊗ � = max{�,�} = � again. Q.E.D.1421

Exercise 4.25 Show that for infinite cardinals! ≤ � ≤ � that �⊕� = � directly, that is without use of Hessenberg’s1422

Theorem.1423

Exercise 4.26 Let ⊲ be the wellorder on �ˆ � from Hessenberg’sTheorem. Let o(�) =d f ot(�ˆ�, ⊲). Show (i)1424

{⟨�,�⟩ ∣ ⟨�,�⟩ ⊲ ⟨, 
⟩} = 
 ˆ 
; (ii) o(� + ) = o(�) + � + � + ; (iii) o(!) = !; o(! ⋅ ) = ! ⋅ ! ; (iv) o(�) = �1425

implies � is indecomposable; (v)˚ (Harder) o(�) = � is equivalent to � being multiplicatively indecomposable1426

(see Ex.3.32.)1427

Exercise 4.27 Show that if � ≥ ! is an infinite cardinal, then it is a fixed point of any of the ordinal arithmetic1428

operations A� ,M� or Ea for any � < �: � + � = �; � ⋅ � = � and �� = �.1429

Definition 4.28 Let A be any set. Then <!A = ⋃n
nA ; this is the set of all functions f ∶ n → A for some1430

n < !.1431

Exercise 4.28 Show that nA ≈ Aˆ⋯ˆ A (the n-fold cartesian product of A).1432

Exercise 4.29 (˚) AssumeWP. Let ∣Xn ∣ = � ≥ ! for n < !. Show that that ∣⋃n Xn ∣ = �. (This is the generalisation1433

of Lemma 4.18 for uncountable sets Xn .) [Hint: The (˚) means it is supposed to be slightly harder. Follow closely1434

the format of Lemma 4.18; use the fact that we now know ! ˆ � ≈ � to replace ! ˆ ! = ! in that argument.]1435

Corollary 4.29 Let � be an infinite cardinal. Then ∣<!�∣ = �.1436

Proof: It us enough to show that Xn =d f n� has cardinality � and then use Exercise 4.29. However1437

n� ≈ �ˆ⋯ˆ� ≈ � (the first ≈ by Exercise 4.28, the latter ≈ by repeated use of the HessenbergTheorem).1438

Q.E.D.1439

Definition 4.30 (WP) Let �,� be cardinals, then �� =d f ∣LK∣, where L,K are any sets of cardinality �,�1440

respectively.1441

(Recall that XY =d f { f ∣ f ∶ X → Y}.) We needWP here (unlike the definitions of the other cardinal1442

arithmetic operations) since we need to know that the set of all possible functions can be bijective with1443

some ordinal.1444

Exercise 4.30 Show that the definition of �� is independent of the choices of sets L,K. Deduce that ∣XY ∣ =1445

∣X ∣Y ∣∣ = ∣∣X∣∣Y ∣∣ = ∣Y ∣∣X∣.1446

Lemma 4.31 If � and � are cardinals, with � ≥ !, and  ≤ � ≤ �, then �� ≈ �� ≈ � ≈ P(�). Hence1447

� = �� = ��(= ∣P(�)∣).1448

Proof: We can establish � ≈ P(�) by identifying characteristic functions of subsets of � with those1449

subsets themselves. Now see that: � ĺ �� ĺ �� ĺ P(� ˆ �) ≈ P(�) ≈ � (using Hessenberg’s1450

Theorem to see that � ˆ � ≈ �, and hence the first ≈ holds). Hence we have ≈ throughout. Q.E.D.1451
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Lemma 4.32 (WP) If �,�,� are cardinals, then1452

(i) ��⊕� = �� ⊗ ��; (ii) (��)� = ��⊗�.1453

Proof: (i)This is Exercise 4.15 (ii) with, for example, X = � ˆ {},Y = �ˆ {}, and Z = �.1454

��⊕� =d f ∣�⊕��∣ = ∣X∪Y�∣ = ∣X�ˆ Y�∣ (the second equality by Ex 4.30, the last by Ex 4.15 (ii))1455

= ∣X�∣⊗ ∣Y�∣ ( def. of ⊗)1456

= �� ⊗ �� (using Ex. 4.30).1457

(ii) (��)� =d f ∣�(��)∣ = ∣�(��)∣ (the latter equality by Ex. 4.30)1458

= ∣�ˆ��∣ (by Exercise 4.15 (iv))1459

= ∣�ˆ��∣ = ��⊗� (since ∣A�∣ = �∣A∣ - Ex.4.30 - for any set A and ∣� ˆ �∣ = �⊗ �). Q.E.D.1460

Theorem 4.33 (Hartogs’Theorem). For any ordinal � there is a cardinal � > �.1461

Remark: The observant may wonder why we prove this: after all Cantor’sTheorem showed that for any1462

�, � ă P(�) and so ∣P(�)∣ > �. This is true, but this required the WP (to argue that P(�) is bijective1463

with an ordinal, and so has a cardinality). Hartogs’ theorem does not require WP - although it does1464

require the Axiom of Replacement - which we have not yet discussed. It shows that there are arbitrarily1465

large cardinals without appealing to Cantor’s theorem.1466

Proof: For finite � this is trivial. Let � ≥ ! be arbitrary. Let S =d f {R∣⟨�, R⟩ P WO}. Then S is a set -1467

it is a subset of P(� ˆ �) and so exists by Power Set and Subset Axioms. Let S̃ = {ot(⟨�, R⟩)∣R P S}.1468

Then to argue that S̃ is a set we need to know that the range of the function that takes a wellordering to1469

its order type, when restricted to a set of wellorderings yields a set of ordinals. To do this we appeal to1470

the Axiom of Replacement that says that any definable function F ∶ V → V when restricted to a set has1471

a set as its range: (@x P V)(F “x P V) (see next Chapter).1472

Then, knowing that S̃ is a set, we form sup S̃ which is then an ordinal � > �. As S̃ has no largest1473

element (Exercise), � is a limit ordinal (Lemma 3.31). Hence � R S̃. Hence there is no ontomap f ∶ � → �1474

(for if so we could define a wellordering R by 
R� ↔ f (
) < f (�); R is a wellordering as ⟨� , <⟩ is such,1475

and would demonstrate that � P S̃.) Hence � /≈ �. But then � /≈ � for any � < �, since for such � there is1476

an onto map from � onto � (because � < �′ for some �′ P S̃ - in fact one may show: � ≤ � < � → � P S̃).1477

So ∣�∣ = �. Q.E.D.1478

Corollary 4.34 Card =d f {� P On ∣� a cardinal} is also a proper class.1479

Proof: If there were only a set of cardinals, call it z say, then sup(z) P On. By Hartogs’ (or Cantor’s)1480

Theorem there is nevertheless a cardinal > sup(x)! (For example ∣P(sup(z))I if we are appealing to1481

Cantor’sTheorem.) Q.E.D.1482

Corollary 4.35 For any set x there is an ordinal � so that � ⪯̸ x.1483

Exercise 4.31 (Without WP, that is without assuming there is 
 with 
 ≈ x.) Prove the last corollary. [Hint: this1484

is really Hartogs’ theorem, with the set x substituted for � throughout.]1485

Definition 4.36 We define by transfinite recursion on the ordinals:1486

! = !; !�+= least cardinal number > !�; Lim(�)→ !� = sup{!�∣� < �}.1487
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A widely used alternative notation for !� uses the Hebrew letter “ℵ�” (read “aleph-sub-alpha”). We shall1488

use both forms.1489

Definition 4.37 An infinite cardinal !� with � > , is called an uncountable cardinal; it is also called a1490

successor or a limit cardinal, depending on whether � is a successor or limit ordinal.1491

We are thus defining by transfinite recursion a function F ∶ On → On which enumerates all the1492

infinite cardinals starting with F() = ! = !. This function is strictly increasing (� < � → F(�) = !� <1493

!� = F(�)) and it is continuous at limits, meaning that F(�) = sup{F(�) ∣ � < �} for Lim(�) - note1494

that this supremum is certainly a cardinal (see Ex.4.20).1495

.1496

● Technically we should also call finite cardinals and zero successor cardinals as well. (Infinite)1497

successor cardinals are however of the form !�+. Given any ordinal � then, the least cardinal > � must1498

then be a successor cardinal, and is written �+.1499

Exercise 4.32 Are there ordinals � so that � = !�? If so find one. (Such would be a fixed point of the cardinal1500

enumeration function F: we should have F(�) = �.)1501

Cantor wrestled with the problem of whether there could be a set X ĎR that was neither countable,1502

nor bijective with R. Such an X would satisfy ∣N ∣< ∣X ∣< ∣R∣ . He believed this was impossible. This1503

belief could be expressed as saying that for any infinite set X ĎR, either X ≈ N or X ≈R.1504

If so, then we should have that ∣N∣ = ! and then wemust have ∣R∣ would be the size of the very next1505

cardinal, so !: ∣R∣ = ! . There would thus be no intermediate cardinal number for such an X to have.1506

This is known as the Continuum Problem. As N ≈ ! andR ≈ P(!) ≈ !, we can express Cantor’s belief1507

as ∣P(!)∣ = ! = !, and again as ∣R∣ = !.1508

Definition 4.38 (Cantor) ContinuumHypothesis CH: ! = !;1509

The Generalised ContinuumHypothesis GCH: @� !� = !�+.1510

● The GCH says that @� ∣!�∣(= ∣P(!�)∣) = !�+, the exponential function � ↦ � thus again1511

always takes the very least possible value it could.1512

● As we have said, Cantor believed that CH was true but was unable to prove it. We now know1513

why he could not: the framework within which he worked, was prior to any formalisation of axioms for1514

sets, but even once those axioms were written down and accepted, (the “ZFC” axioms which we have1515

introduced above) we have the following contrasting (and startling) theorems:1516

Theorem (Gödel 1939) In ZFC set theory we cannot prove ¬CH : it is consistent that ∣R∣ be !.1517

Theorem (Cohen 1963) In ZFC set theory we cannot prove CH: it is consistent that ∣R∣ be ! (or1518

!,!!+, . . .).1519

CH on the basis of the ZFC axioms is thus an undecidable statement. Set theorists have searched1520

subsequently for axioms to supplement ZFC that would decide CH but to date, in vain. We simply do1521

not know the answer, or moreover any simple way of even trying to answer it.1522

Indeed the cardinal exponentiation function in general is problematic in set theory, little can defi-1523

nitely be said about�� in general. (It is consistent with the ZFC axioms, for example, that ! = ! = !,1524
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so cardinal exponentiation need not be strictly increasing: � < � /→ � < �.) However work on this1525

function for so-called singular limit cardinals � (and � < �) has resulted in a lot of information about the1526

universe of sets V .1527

Exercise 4.33 Show that CH is equivalent to the statement that every ordinal less than ℵ is countable.1528

Exercise 4.34 Show that (i) the set of countable subsets ofR has cardinality ℵ1529

(ii) the set of countable subsets ofR which contain all ofQ has cardinality ℵ ;1530

(iii) the set of open intervals ofR also has cardinality ℵ .1531

Definition 4.39 (The beth numbers)We define by transfinite recursion on the ordinals:1532

ℶ = !; ℶ�+ = ℶ� ; Lim(�)→ ℶ� = sup{ℶ�∣� < �}.1533

● Note that if the GCH holds, then @�(ℶ� = ℵ�).1534

Exercise 4.35 Prove that there is � with � = ℶ�.1535

Exercise 4.36 Show that the union of � ≥ ! many sets of cardinality � is of cardinality �. [Hint: If ⟨A i ∣ i < �⟩1536

are the sets with each ∣A i ∣ = � then consider a (1-1) map into �⊗ �.]1537

Exercise 4.37 Place in correct order the following cardinals using =, <, ≤:1538

ℵ, ℵ! , ∅, ℵℵ!
! , sup{ℵn ∣ n < !}, ℵ! ⊕ ℵ! , ℵ! , ℵ! ⊗ ℵ! , ℵ! ⊕ ℵ! , ∅, ℵ! .1539

You should give your reasons; apart from the ‘!’ in the second cardinal, the arithmetic is all cardinal arith-1540

metic.1541

Exercise 4.38 Simplify where possible: ℵ ; ℵ! ⊕ ℵ! ; (ℵ)ℵ ; (ℵ!) ⊕ (ℵ).1542

You should do this twice: the first time without assuming the Generalised Continuum Hypothesis, and the1543

second time assuming it. (The operations are all cardinal arithmetic.)1544

Exercise 4.39 Show directly (without using Hessenberg’sTheorem) that for n < ! (ℶn) = ℶn . [Hint: use induc-1545

tion on n.]1546

Exercise 4.40 This exercise asks you to show that various classes of sequences {an}n<! with each an P N are1547

countable.1548

(i)The eventually constant sequences: Dk@k ≥ k ak = ak ;1549

(ii)The arithmetic progressions: Dp@n an+ = an + p ;1550

(iii)The eventual geometric progressions: DkDp@n ≥ k an+ = an ⋅ p.1551

Exercise 4.41 A real number is said to be algebraic if it is a root of a polynomial anxn+an−xn−+⋯+ax+a = 1552

where each a i P Q. Show that there are only countably many algebraic numbers. A real number that is not1553

algebraic is called transcendental. Deduce that almost all real numbers are transcendental, in that the set of such1554

is equinumerous withR.1555

Exercise 4.42 A word in an alphabet Σ is a string of symbols from Σ of finite length. Show that the number of1556

possible words made up from the roman alphabet is countable. If we enlarge the alphabet to be now countably1557

infinite, is the answer different?1558

Exercise 4.43 What is the cardinality of (i) the set of all order isomorphisms f ∶ Q → Q; (ii) the set of all1559

continuous functions f ∶RÐ→R? ; (iii) the set of all convergent sequences Σ∞n=an of real numbers?1560

Exercise 4.44 (i) The Cantor set C is the set of all real numbers of the form Σ∞n=an ⋅ −(n+) with an P {, }.1561

Show that C ≈R. (ii)The Hilbert cube is the set H = N[, ] . What is ∣H∣?1562
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Exercise 4.45 Let V be a vector space, with a basis B. We suppose B to be infinite, in which case we have that V1563

is an infinite dimensional vector space. How many finite dimensional subspaces does V have?1564

Exercise 4.46 Show that the set of all permutations of N has cardinality ℵ .1565

Exercise 4.47 Show that the set of all Riemann integrable functions onR has cardinality (ℵ)
ℵ .1566

Exercise 4.48 Let (N,ă)be any strict total order. Show that there is a (1-1) order preserving embedding of (N,ă)1567

into (Q, <).1568

Exercise 4.49 Let (N,ă)be any strict total order; show that there is a (1-1) order preserving map of (N, <) either1569

into (N,ă) or into (N, ≻).1570

Exercise 4.50 Let X Ď R and suppose that (X , <) P WO where < is the usual order on R. Show that X is1571

countable.1572

Exercise 4.51 Show that any countable ordinal (�, P) can be (1-1) order-preserving embedded into (R, <). Show1573

that no uncountable ordinal can be so embedded.1574

Definition 4.40 (i) If (A,ă) is a strict total order, then it is called dense, if for any x ă y P A there is1575

z P Awith x ă z ă y.1576

(ii) If (A,ă) is a strict total order, and B Ď A then (B,ă) is called a dense suborder if for any x ă y P A1577

there is z P B with x ă z ă y.1578

Exercise 4.52 * Let (N,ă) be any strict total order which is dense and has no endpoints, i.e. no maximum1579

nor minimum elements. Show that (N,ă) ≅ (Q, <). Deduce that any two countable dense total orders without1580

endpoints are isomorphic. (This is a theorem of Cantor.)1581

Exercise 4.53 (i) Find (P, <) and (S , <) two countable suborders of (R, <) with (P, <) ≅ (S , <) but1582

(R/P, <) /≅ (R/S , <).1583

(ii) * Show that if (P, <) and (S , <) are two countable dense suborders of (R, <) then (R/P, <) ≅ (R/S , <). [For1584

(ii) use the last Exercise.]1585

Exercise 4.54 Suppose (P, <) is a dense suborder of (R, <). Show that there is a countable S Ď P with (S , <) a1586

dense suborder of (P, <).1587

A note onDedekind-finite sets:1588

Dedekind tried to give a direct definition of infinite set as any set X for which there was a (1-1) map of X1589

to a proper subset of itself. Let us call such a set D-infinite. By contrast aDedekind finite set, was defined1590

as any set that was not D-infinite. However notice that this means for a particular set X, it is D-finite if1591

there is no (1-1) map of a certain kind. The question then arises: are D-finite sets always finite (in our1592

sense)? Or could there be a D-finite set that is infinite? It turns out that this depends on theWellordering1593

Principle. If WP holds then for any set X there is R so that ⟨X , R⟩ P WO. If X is infinite then we may1594

map X to a proper subset of itself. (How?) Thus any infinite set is also D-infinite. But what if WP fails?1595

It turns out to be consistent with the axioms of set theory that WP fails and that there is an infinite but1596

D-finite set. For many mathematicians this would be reason enough to add WP to our axioms of set1597

theory - although there are many other reasons also to do so.1598
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Axioms of Replacement and Choice1601

We consider in this chapter the Axiom of Choice (AC) and its various equivalents, one of which we have1602

already mentioned: the Wellordering Principle (WP). However we first look more closely at another1603

axiom which delimits the existence of sets.1604

5.1 Axiom of Replacement1605

This axiom (which we have already used in one or two places) asserts that the action of a function on a1606

set produces a set.1607

Axiom of Replacement Let F ∶ V → V be any function, and let x be any set. Then

F“x =d f {z∣Du P x(F(u) = z)}

is a set.1608

The import of the axiom is one of delimitation of size: it says that a function applied to a set cannot1609

produce a proper class, i.e. something that is too large. It thus appears prima facie to be different from1610

those of the other axioms, which assert simple set existence. The ‘replacement’ is that of taking a set X1611

and ‘replacing’ each element u P X by some other set a; and that a is specified by F: F(u) = a. If this is1612

done for each u P X the resulting X′ = F“X should still be considered a set.1613

Examples: (i) Let F(x) = {x} for any set x. Then the Axiom of Replacement ensures that F“ ! =1614

{{}, {}, {}, . . . , {n}, . . .} is a set.1615

(ii) Likewise Replacement is needed to justify that {ℵ,ℵ,ℵ,ℵ, . . .} is a set which we can think of1616

as Fℵ“! where Fℵ(�) = ℵ� for � P On. Without Replacement we cannot say the supremum of this set1617

exists (which supremum is ℵ!).1618

(iii) Similarly V!+! , which will be defined below as⋃{V� ∣ � < ! +!}, requires the use of Replace-1619

ment on the function FV where FV(�) = V�, in order to justify FV “! + !={V� ∣ � < ! + !} to be a set,1620

before we can apply ⋃ to it.1621

A slightly less trivial example occurs in the proof of Hartogs’Theorem (Thm. 4.33). There we had a1622

set of wellorders S. Consider the function F that takes x to 0 unless x = ⟨A, R⟩ where R wellorders the1623

set A, in which case F(⟨A, R⟩) returns the ordinal ot(⟨A, R⟩). Then F ∶ V → V is a legitimate function,1624

and the Axiom of Replacement then asserts that S̃ = {ot(⟨�, R⟩) ∣ R P S} = F“S is a set of ordinals.1625

The axiomwas introduced in a paper by Zermelo who attributed it to Fraenkel (although it had been1626

considered by several others before in various versions). In Zermelo’s earlier paper there was nomention1627

of any principle such as Replacement (in German Ersetzung) and thus in his axiomatic system (which1628
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was, and is, called Z for Zermelo) the set of finite numbered alephs in Example (ii) above, did not exist1629

as a set (and nor did V!+!). Since the set of finite numbered alephs did not exist, ℵ! did not exist.1630

Figure 5.1: Abraham Fraenkel 1891-1965

Other important examples are afforded by proofs of transfinite recursion theorems such asTheorem1631

3.32 (although we brushed these details under the carpet at the time). In axiomatic set theory it is usual1632

to think of the function F as given to us defined by some formula '(u, v) where we have proven that1633

@u P xD!v'(u, v) (recall that D!v⋯ is read “there exists a unique v⋯”). The conclusion then can be1634

expressed as “Dw@u P xDv P w'(u, v)” and then w in effect has been defined as a set containing F“x.1635

(Then if we want a set that is precisely F“x we may use the Axiom of Subsets to pick out from w just the1636

set of elements in the desired range.)1637

5.2 Axiom of Choice1638

This is an axiom that is ubiquitous in mathematics. It appears in many forms: analysts use it to form se-1639

quences of real numbers, or to justify that the countable union of countable sets is countable. Algebraists1640

use it to form maximal prime ideals in rings, and functional analysts to justify the existence of bases for1641

infinite dimensional vector spaces. We have adopted as a basic axiom the Wellordering Principle that1642

every set can be wellordered: for any Awemay find R so that ⟨A, R⟩ P WO. In particular this meant that1643

⟨A, R⟩ ≅ ⟨�, <⟩ for some ordinal �, and then we could further define ∣A∣ the cardinality of A. Without1644

WP we could not have done this. A very common form in set theory text books of AC - the Axiom of1645

Choice - is the following:1646

Axiom of Choice - AC Let G be a set of non-empty sets. Then there is a choice function F so that1647

@X P G(F(X) P X).1648
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The reason for the name “choice function” is obvious: F(X) picks out for us, or chooses for us, a1649

unique element of the set X (which is why we specify that X ≠ ∅). AC turns out to be equivalent to WP.1650

We shall prove this.1651

Theorem 5.1 (Zermelo 1908) AC⇐⇒WP.1652

Proof : (Ô⇒) Assume AC. Let Y be any set. We may assume that Y ≠ ∅ (otherwise the result is1653

trivial). We seek a wellordering R of Y . Let G = {X Ď Y ∣ X ≠ ∅}. By AC let F be a choice function for1654

G. Let u be any set not in Y . Now let F ∶ V → V be defined by:1655

F(t) = F(t) if t P G;
= u otherwise.1656

We define by recursion H ∶ � → Y a (1-1) onto function with domain some � P On. If we succeed1657

here then we can define easily a wellordering R: put xRy ←→ H−(x) < H−(y) (this makes sense as H1658

is a bijection). Define:1659

H(�) = F(Y − {H(�) ∣ � < �}) if the latter is non-empty;
= u otherwise.1660

Note that this definition implies that H() = F(Y − ∅) = F(Y) P Y . Then by the Theorem on1661

Transfinite RecursionTheorem on On,Theorem 3.35, there is a function H ∶ On→ Y ∪ {u}.1662

ClaimThere is � P On with H(�) = u.1663

Proof: (The Claim says that sooner or later we exhaust Y .) Suppose not. Then H is a (1-1) function1664

sending all ofOn into the set Y . But thenH− is a function. Look atH− “Y . By theAxiomof Replacement1665

this is a set. But it is On itself, and by the Burali-Forti Lemma On is a proper class! This is absurd.1666

Q.E.D.Claim1667

Let � be least with H(�) = u and let H = H ↾ �. By the above comment this suffices.1668

(⇐Ô) Suppose WP. Let G be any set of non-empty sets. Let A =d f ⋃G = {u ∣ DX P G(u P X)}.1669

By WP suppose ⟨A, R⟩ P WO. We need a choice function F for G. Let X P G and define F(X) to be the1670

R-least element of X. Check that this works! Q.E.D.1671

1672

A collection G of sets is called a chain if @X ,Y P G(X Ď Y ∨ Y Ď X).1673

Zorn’s Lemma (ZL) Let F be a set so that for every chain G Ď F then ⋃G P F .Then Fcontains a1674

maximal element Y, that is @Z P F(Y ≠ Z → Y /Ă Z).1675

Theorem 5.2 WP⇔ AC⇔ ZL.1676

Proof : (ZL⇒ AC) Let G be a set of nonempty sets. We defineF to be the set of all choice functions1677

that exist on subsets of G. That is we put f P F if (a) dom( f ) Ď G; (b) @x P dom( f ) f (x) P x. Such1678

an f thus acts as a choice function on its domain, and it may only fail to be a choice function for all of G1679

if dom( f ) ≠ G. Consider a chainH Ď F . H is thus a collection of partial choice functions of the kind1680

f , g P F with the property that either f Ď g or g Ď f . However then if we set h = ⋃H we have that h1681

is itself a function and dom(h) = ⋃{dom( f ) ∣ f P H}. That is h is a partial choice function, so h P F .1682

Now by ZL there is amaximal m P F .1683

Claim m is a choice function for G.1684
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Proof: m is a partial choice function for G: it satisfies (a) and (b) above. Suppose it failed to be a1685

choice function. Then there is some x P G with x R dom(m). As G consists of non-empty sets, pick1686

u P x. However then m ∪ {⟨x , u⟩} P F as it is still a partial choice function, but now we see that m was1687

not maximal. Contradiction!1688

(WP⇒ ZL) LetF be a set so that for every chainG Ď F then⋃G P F . ByWPFcan bewellordered,1689

and a fortiori there is a bijection k ∶ � ←→ F for some � P On. We define by transfinite recursion on �1690

a maximal chainH by inspecting the members of F in turn.1691

We start by putting k() intoH. If k() Ą k()we put k() intoH; if not we ignore it, and consider1692

k(). We continue in this way inspecting each k(�) in turn and if it extends all the previous k(�) which1693

we put inH then we put it intoH; and ignore it otherwise. This is an informal transfinite recursion on1694

�. We first claim thatH is a chain. This is obvious as we only add X = k(�) say toH, if it contains as1695

subsets all the previous elements already added. We further claim that ⋃H is a maximal element of F .1696

By our defining property of F ,⋃H P F . If Y Ě ⋃H then Y contains every element of H as a subset.1697

However, if additionally Y P F then Y = k(�) for some �, and so by the definition of our recursion, at1698

stage � we decided that Y PH. So Y Ď ⋃H. This suffices since we have now shown Y = ⋃H. QED1699

1700

There are many equivalents of AC. We state without proof some more. 11701

Uniformisation Principle (UP) If R Ď X ˆY is any relation, then there is a function f ∶ X → Y with1702

(i) dom( f ) = dom(r) =d f {x ∣ Dy(⟨x , y⟩ P R} and (ii) f Ď R.1703

Inverse Function Principle (IFP) For any onto function H ∶ X → Y between sets X ,Y, there is a1704

(1-1) function G ∶ Y → X with @u P Y(H(G(u)) = u).1705

Cardinal Comparison For any two sets X ,Y either X ĺ Y orY ĺ X.1706

Hessenberg’s Principle For any infinite set X ≈ X ˆ X.1707

Vector Space Bases Every vector space has a basis.1708

Tychonoff Property Let G be any set of non-empty sets. Then the direct product ΠXPGX ≠ ∅ [Here1709

ΠiPIXi =d f { f ∣dom( f ) = I ∧ @i P I( f (i) P Xi} . Clearly each such f is a choice function for {X ∣ X P1710

G}.]1711

Tychonoff-Kelley Property Let Xi (for i P I) be any sequence of compact topological spaces. Then the1712

direct product space ΠiPIXi is a compact topological space.1713

It can also be shown that GCHÔ⇒ AC but this is not an equivalence.1714

Exercise 5.1 Show that AC⇔ UP1715

Exercise 5.2 Show that AC⇒ IFP.1716

In general with the above exercises the converse implications are harder.1717

Exercise 5.3 Show that WP⇔ Cardinal Comparison. [Hint: for (⇐) use the Cor. 4.35.]1718

Exercise 5.4 Show that AC⇔ Tychonoff Property.1719

Exercise 5.5 Show that WP⇒ Vector Space Bases. [Hint: use the argument for finite dimensional vector spaces,1720

but transfinitely; use WP to wellorder the space, to be able to keep choosing the ‘next’ linearly independent ele-1721

ment.]1722

1There is whole book devoted to listing and proving such equivalents: Equivalents of the Axiom of Choice by H.Rubin &
J.Rubin, Studies in Logic Series, North-Holland Publishing, 1963.

58



5. Axioms of Replacement and Choice

Exercise 5.6 Show that if C is any proper class and F any (1-1) function, then F“C is a proper class.1723

Exercise 5.7 For sets X ,Y let F = {h ∣ h Ď X ˆ Y ∧ h is a (1-1) function}. Assume ZL and show that there is a1724

g P F with either dom(g) = X or ran(g) = Y . Deduce that using ZL we have Cardinal Comparison, that for any1725

sets X ,Y we have either X ĺ Y or Y ĺ X.1726

Exercise 5.8 Use various equivalents of WP to show that if f ∶ X → Y is an onto function, that there is g ∶ Y → X1727

with id = f ○ g.1728

Exercise 5.9 (˚) ZL is often stated in an apparently stronger form, ZL+ ∶ Let F be a set so that for every chain1729

G Ď F then G has an upper bound in F .Then Fcontains a maximal element Y. Show that this increase in strength1730

is indeed only apparent: ZL⇔ ZL+.1731

Exercise 5.10 UseZL to show that for any partial order ⟨A,ĺ⟩ there is an extensionĺ′Ěĺ, so that ⟨A,ĺ′⟩ is a total1732

order. [Hint: (i) If ⟨A,ĺ⟩ is not total pick u, v P A that are ĺ-incomparable; let ĺ =ĺ ∪{⟨x , y⟩ ∣ x ĺ u ∧ v ĺ y};1733

check that ĺ Ă ĺ is still a partial order; (ii) apply ZL to the set of partial orders on A. This is known as the Order1734

Extension Principle.] Deduce that there is a total order ĺ extending the partial order Ď on P (N).1735

Exercise 5.11 Show that AC is equivalent to: every family of sets contains a maximal subfamily of disjoint sets.1736

Formally: let DF(y)↔df @u, v P y (u ≠ v → u ∩ v = ∅). Show that1737

AC↔ @yDx Ď y (DF(x) ∧ @z Ď y (DF(z)→ x /Ă z)).1738

Exercise 5.12 Let Φ be the statement: for any two non-empty sets X ,Y , either there exists an onto map f ∶ X → Y1739

or there exists an onto map g ∶ Y → X.1740

(i) Show that WP⇒ Φ.1741

(ii) (˚) Show that Φ ⇒ WP. [Hint: Consider the family of maps of a set X onto an ordinal. Use a Hartogs’1742

like argument to show that the supremum of such ordinals exists.]1743

Figure 5.2: Ernst Zermelo 1871-1953
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Axiom of Choice

5.2.1 Weaker versions of the Axiom of Choice.1744

Clearly AC implies the following:1745

Definition 5.3 (AC! − the countable axiomof choice) Every countable family of non-empty sets has a1746

choice function.1747

But we cannot assume AC! and hope that it implies the general AC .1748

Theorem 5.4 AssumeAC! . Then (i) the union of countably many countable sets is countable. (ii) (Russell1749

&Whitehead 1912) Every infinite set has a countably infinite subset.1750

Definition 5.5 DC! . Let R be a relation on a set A with the property that for any u P A there is b P A1751

with bRa. Then there is a sequence of elements {ui ∣ i P !} of A with ui+Rui for all i P !.1752

It can be shown that DC! ⇒ AC! (Bernays 1952) but not conversely (Jensen 1966). A very large part1753

of contemporary analysis, indeed mathematics, can be done assuming only DC! and not the full AC or1754

WP.1755
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1756

TheWellfounded Universe of Sets1757

At the very start of this course we introduced a picture of the universe of sets of mathematical discourse,1758

which we dubbed V . The idea was that we could start with the empty set and build up a hierarchy1759

of sets that would be sufficient for all of mathematics. We defined V = ∅, and then Vn+ = P(Vn).1760

The suggestion was that this idea would be continued into the transfinite. Now that we have a theory1761

of ordinals, and theorems concerning the possibility of definitions along all the ordinals by transfinite1762

recursion, we can make complete this picture.1763

Definition 6.1 (The Wellfounded hierarchy of sets)We define the V� function by transfinite recursion1764

as:1765

V = ∅; V�+ = P(V�); Lim(�)→ V� = ⋃�<� V�; we set V = ⋃�POn V�.1766

Lemma 6.2 For any �: (i) Trans(V�)1767

(ii) � < � → V� P V� and hence by (i), V� Ď V�.1768

Proof : Use transfinite induction on �: � =  is trivial; if � = � +  then Trans(X) Ð→ Trans(P(X))1769

(see Exercise 1.19), thus Trans(V�) implies Trans(V�+). Then V� P V� and so V� Ď V� by the latter’s1770

transitivity. If �′ < �, then also V�′ P V� by the Ind. Hyp., so V�′ P V�. If Lim(�) then as a union1771

of transitive sets is transitive (Exercise 1.19(iii)), so Trans(V�) is immediate from the definition of V� as1772

⋃�<� V� . If � < 
 < � then by inductive hypothesis V� P V
 . We thus have V� P ⋃
<� V
 = V�. Q.E.D.1773

Definition 6.3 (The rank function) For any x P V we let:1774

�(x) =the least � so that x Ď V� .1775

Note that by the definition of V�+ we could just as easily have defined rank by setting �(x) to be the1776

least � so that x P V�+. (If we think of sets being formed as we ascend the V�-hierarchy, then once all1777

elements of a set x have appeared, say by stage � , then x will be an element of V�+ - as the latter consists1778

of all possible subsets of V� . Notice also that if y P x then �(y) < �(x). As the ordinals are wellordered,1779

this means that the P-relation is a wellfounded relation on V (Why?).1780

Examples If x , y P V� then: {x}, {x , y} P P(V�) = V�+. Hence ⟨x , y⟩ = {{x}, {x , y}} P1781

P(V�+) = V�+. Hence if �(x) = �(y) = � then �({x , y}) = � + , and � (⟨x , y⟩) = � + .1782

Hence V� ˆ V� Ď V�+ and so V� ˆ V� P V�+. As any ordering R on V� is a subset of V� ˆ V� we1783

have R Ď V�+ as well, and so is also in V�+. So �(R) ≤ � + .1784

Exercise 6.1 Compute (i) �(S(x)) in terms of �(x). (ii) Show that � (⋃ x) ≤ �(x), and give examples of sets1785

x , x with � (⋃ x) < �(x) but � (⋃ x) = �(x); can you characterise those sets z for which � (⋃ z) < �(z)? (iii)1786

Suppose �(x) = �(y) = � and f ∶ x → y. Compute � (⟨x , y, x⟩) ;�( f );�(x y);�(�x).1787
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Exercise 6.2 What if � in the above example is a limit ordinal? Can we improve the bounds on ranks? If ⟨!, R⟩1788

is an ordering, what is �(R)? [Hint: compute �(! ˆ !), and �((! + )ˆ (! + )).]1789

It is so useful to have sets organised in this hierarchical fashion that we adopt from now on one last1790

axiom:1791

Axiom of Foundation: Every set is wellfounded, that is, @x (x ≠ ∅→ Dy P x (y ∩ x = ∅)).1792

Notice that such a y in the statement of the axiom, is an P-minimal element of x: there cannot be1793

any z P x which is also in y. We may thus paraphrase the Axiom of Foundation by saying that “every1794

non-empty set x has an P-minimal element”. We thereby rule out by fiat the existence of sets such as x1795

and y with the properties that x P x, or x P y P x, because for such a “set”, whatever “P” means it is not a1796

wellfounded relation on x. Consequently since we do adopt this axiom, we have that P- is a wellfounded1797

relation on every set, and every set appears somewhere in the V�-hierarchy. Some texts writeWF for the1798

class of wellfounded sets in theV�-hierarchy, prove a lemma such as 6.4 forWF, and then later introduce1799

the Axiom of Foundation.1800

Lemma 6.4 The following are equivalent: (i)The Axiom of Foundation;1801

(ii) @xD�(x P V�);1802

(iii)@xD� (x Ď V�).1803

Proof: Assume (i). We prove (ii). Let x be any set. First note that if TC(x) Ď V then for some ordinal1804

�, TC(x) Ď V� [ �“TC(x) is a set of ordinals by Ax. Replacement, and so for some � �“TC(x) Ď � ].1805

However then we are done, since both x Ď TC(x) are elements of V�+. Suppose TC(x)/V ≠ ∅. Then1806

let y be in this set, but such that y∩(TC(x)/V) = ∅ by Ax. Foundation. Then any z P y is in TC(x) and1807

by assumption then, z P V . So y Ď V . Again � “y is a set of ordinals. So for some �, y Ď V� . But then1808

y P V�+ contradicting the choice of y. (ii)⇒ (iii): note that the least �with x P V� is always a successor1809

ordinal,�′+ say; but then x Ď V�′ . (iii)⇒ (i) is also trivial: note if x Ď V�, then � ∶ ⟨x , P⟩→ ⟨�, <⟩ is an1810

order preserving map. Hence any element z P x with �(z) least amongst {�(z) ∣ z P x} is P-minimal1811

in x, that is z ∩ x = ∅. Thus ⟨x , P⟩ is wellfounded.1812

Exercise 6.3 Show that the Axiom of Foundation implies the apparently stronger statement that for any class1813

(A ≠ ∅→ Dy P A(y ∩ A = ∅)) .1814

Is the Axiom of Foundation justified? Perhaps there are mathematical objects that cannot be repre-1815

sented by sets or structures in V? If so this would destroy our claim that the set theory of V provides a1816

sufficient foundation for all of mathematics. In fact this turns out not to be the case: if we assume AC1817

we can prove that every structure that mathematicians invent can be seen to have an isomorphic copy in1818

V - and since mathematicians only worry about truths in mathematical structures “up to isomorphism”1819

this will do for us.11820

1There should be a slight caveat here: some category theorists deal with proper class sized objects because they wish to work
with the “category of all groups”, or the “category of all sets”, but there are ways of dealing also with these notions, so the spirit
of the claim is true.
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6.The Wellfounded Universe of Sets

Exercise 6.4 Let G = ⟨G , ○, e ,− ⟩ be a group. Assume WP, but not the Axiom of Foundation. Show that there1821

is a group G̃ P Vwith G ≅ G̃. [Hint: By WP find R so that ⟨G , R⟩ P WO. Then “copy” G onto the domain1822

� = ot(⟨G , R⟩).]1823

Exercise 6.5 Let Φ be the proposition “There is no sequence of sets x i for i P !, with x i+ P x i”. a) Show that the1824

Axiom of Foundation implies Φ; b) WP together with Φ implies theAxiomof Foundation .1825

We now prove some properties about this hierarchy.1826

Lemma 6.5 (i) V� = {x P V ∣ �(x) < �};1827

(ii) If x P V then@y P x(y P V ∧ �(y) < �(x));1828

(iii) If x P V , then �(x) = sup{�(y) +  ∣ y P x} = sup+{�(y) ∣ y P x};1829

Proof:1830

For (i): If x P V , then �(x) < �⇔df D� < �(x Ď V�)) ⇔ D� < �(x P V�+)⇔ x P V� (by Lemma1831

6.4(ii)).1832

For (ii): Let � = �(x). Then x Ď V�. So if y P x then y P V� and so �(y) < � by (i).1833

For (iii): Notice the second equality follows by definition of sup+. Let � = sup+{�(y) ∣ y P x}. By (ii)1834

if y P x then �(y) < %(y) +  ≤ �(x), thus � ≤ �(x). Again by (i) for each y P x, �(y) < %(y) +  ≤ �1835

implies y P V�; so x Ď V�, i.e. �(x) ≤ �. Q.E.D.1836

1837

● Note in (iii), that now we may write �(x) = sup+{�(y) ∣ y P x}.1838

Lemma 6.6 (i) �(�) = �; (ii) On∩V� = �.1839

Proof: Assume by induction for (i) that � < � Ð→ �(�) = �. But then by Lemma 6.5 (iii) �(�) =1840

sup+{� ∣ � < �} = �.1841

For (ii): (i) here shows (Ě); and (Ď) is immediate from (i), Lemma 6.5(i) and the inductive hypoth-1842

esis. Q.E.D.1843

1844

So we have a picture of sets, V , in which as an object x lives at a certain rank on the V�-hierarchy,1845

and its members y P x live below that at lesser levels, and in turn whose members u P y live below �(y)1846

and so forth.1847

Exercise 6.6 Show that if � ∶ ⟨V , P⟩ → ⟨V , P⟩ is an isomorphism, then � = id . There are thus no non-trivial1848

isomorphisms of V with itself. [Hint: Suppose there was an x with �(x) ≠ x. Choose one such x of least rank with1849

this property. Then y P x → �(y) = y.] (This both generalises Cor. 3.7 and is a special case of: if f ∶ ⟨M , R⟩ →1850

⟨M , R⟩ is an isomorphism, where ⟨M , R⟩ is a wellfounded relation, then f = id .)1851

We can thus think of a set x as given by a graph or picture of “nodes” in a certain kind of tree where1852

we go downwards in the P-relation as we descend the tree. The tree will most likely have infinitely many1853

nodes, and any one node may have infinitely many members immediately below it, but what it does not1854

have is any infinitely long downwards growing branches: this is because every level of a node comes with1855

an ordinal denoting the rank of the set attached at that point, and we can have no infinite descending1856

chains through the ordinals. This idea provides us with a new way of defining functions or proving1857

properties about sets: since P is wellfounded we have:1858
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Lemma 6.7 Principle of P-induction Let Φ(v) be any welldefined and definite property of sets.1859

(i) (Set Form) Let Trans(X).Then1860

@y P X ((@x P yΦ(x))→ Φ(y)) → @y P XΦ(y).1861

(ii) (V or Class form)1862

@y ((@x P yΦ(x))→ Φ(y)) → @yΦ(y).1863

Proof: (i) Let Z =d f {y P X ∣ ¬Φ(y)}. We prove the contrapositive and suppose Z ≠ ∅ and we shall1864

show that the antecedent of the induction scheme fails. Let y be P-minimal in Z (by appealing to the1865

Axiom of Foundation). Then for any x P y we have x P X. (Since Trans(X)), ). Hence Φ(x) holds for1866

such x. Suppose @y P x[(@x P yΦ(x))→ Φ(y)] were true (for a contradiction). However we have just1867

argued that @x P yΦ(x). If this were true we’d conclude Φ(y)- a contradiction! This finishes (i).1868

(ii) Notice this is exactly the same, thinking of X as the transitive class V ! Instead now take Z =d f1869

{y ∣ ¬Φ(y)}. The rest of the argument makes perfect sense. Q.E.D.1870

Theorem 6.8 (P-RecursionTheorem) Let G ∶ V → V be any function.Then there is exactly one function1871

H ∶ V → V so that1872

@xH(x) = G(H ↾ x) [= G({⟨y,H(y)⟩ ∣ y P x})].1873

Proof This is done in just the same format as Theorem 3.32 - the Recursion Theorem for On. As be-1874

fore we shall define H as a union of approximations where now u is an approximation if (a) Func(u),1875

Trans(dom(u)), and (b) @w P dom(u)( u(w) = G(u ↾ w)). We call it an x-approximation, if addi-1876

tionally x P dom(u). So u satisfies the defining clauses of H throughout its domain. Note for later1877

that TC({x}) Ď dom(u) for any x-approximation u. Further if u is an x-approximation then the1878

u ↾ TC({x}) is an x-approximation, and indeed is the minimal such. Lastly we may extend an ap-1879

proximation u in the following way: let z Ď dom(u) but z R dom(u). Then Trans(dom(u) ∪ {z}), so1880

we may set v = u ∪ {⟨u,G(u)⟩}.1881

(1) If u and v are approximations, and we set y = dom(u) ∩ dom(v) then u ↾ y = v ↾ y and is an1882

approximation.1883

Proof: Note that Trans(y) as the intersection of any two transitive sets is transitive. Suppose we have1884

shown that for some x P y that @z P x(u(z) = v(z)). Then u ↾ x = v ↾ x; but then u(x) =d f G(u ↾ x) =1885

G(v ↾ x) =d f v(x)! We thus have shown1886

@x P y(@z P x(u(z) = v(z)→ u(x) = v(x)))1887

By the (set form of the) Principle of P-induction applied to the transitive set X = y we conclude that1888

@x P y(u(x) = v(x)), and we are done.1889

(2) (Uniqueness) If H exists then it is unique.1890

Proof: This is really the same as before but we repeat the detail: if H, H′ were two such functions1891

defined on all of V , there would be an P-least set z on which they disagreed. Note that z cannot be ∅.1892

Let x = TC({z}). So thenH ↾ x ≠ H′ ↾ x are two different x-approximations, which is impossible by (i).1893

(3) (Existence). Such an H exists.1894

Proof: Let u P B ⇔ {u ∣ u is an approximation}. B is in general a proper class of approximations,1895

but this does not matter as long as we are careful. As any two such approximations agree on the common1896

transitive part of their domain, we define H = ⋃B. Just as for the proof of recursion on !:1897

(i) H is a function;1898
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6.The Wellfounded Universe of Sets

(ii) dom(H) = V .1899

Proof: We use the principle of P-induction. It suffices to show then that @z(@y P z(y P dom(H))→1900

z P dom(H)).1901

Let C be the class of sets z for which there is no z-approximation. So if we suppose for a contra-1902

diction that C is non-empty, by the Principle of P-Induction, then it will have an P-minimal element1903

z such that @y P zDu(u is a y-approximation). By the remark in the first paragraph of this proof, any1904

y-approximation restricts to a y-approximation with domain TC({y}). So now we let h be the function1905

⋃{hy ∣ hy is a y-approximation ∧y P z ∧ dom(hy) = TC({y})}.1906

By the above these functions hy all agree on the parts of their domains they have in common. Note1907

that the domain of h is a transitive set, being the union of transitive sets dom(hy) for y P z. Hence1908

z Ď dom(h) and thus {z} ∪ dom(h) is transitive. As noted just before (1) we can thus extend h to1909

h′ = h ∪ {⟨z,G(h ↾ z)⟩} and h′ is then a z-approximation. However we assumed that z P C! A1910

contradiction. Hence C = ∅ and (ii) holds. Q.E.D.1911

Exercise 6.7 Show for any x that �(x) = �(TC(x)).1912

Exercise 6.8 Let X be any set. Show that Trans(X)→ � “X P On .1913

Exercise 6.9 Does Trans(X) ∧ X ≠ ∅ imply that ∅ P X?1914

Exercise 6.10 Show that for all � ∣V!+�∣ = ℶ�.1915

Exercise 6.11 (˚)We say that a function j ∶ V → V is an elementary embedding if it preserves the truth about1916

objects. In other words if '(v , . . . , vn) is a formula expressing a property, and x , . . . , xn are sets; then1917

'(x , . . . , xn)↔ '( j(x), . . . , j(xn)).1918

If we assume the axioms of set theory (but not AC) our current state of knowledge allows the possibility that1919

such a class function j could exist which is not the identity (so j(x) ≠ x for some x P V ). Show if there is such a j1920

then for some ordinal �, j(�) ≠ �. [Hint: Consider the formula “u = rk(v)”.] (It is known by a result of K. Kunen1921

that AC rules out the existence of such a j.)1922
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denumerably or countably infinite, 44

equinumerous, ≈, 41

finite, 41
Fraenkel, A, 56
Frege, G, 6
function, 13

Gödel ordering, 48

Hartogs’Theorem, 50
Hessenberg’sTheorem, 48
Hilbert, D, 3

indecomposable ordinal
additively, 39
exponentially, 39
multiplicatively, 39

69



inductive set, 18
infimum, 10
infinite, 41
initial segment, 26
injective or (1-1) function, 13

Least Number Principle, 21

Mirimanoff, D, 29

natural number, 18

order preserving map, 10
order type, 29
ordered k-tuple, 12
ordered pair, 11
ordinal

ordinal number, 27
arithmetic, 35
successor ordinal, limit ordinal, 32

partial ordering, 9
Peano, G, 17
Pidgeon-Hole Principle, 42
Principle of P-induction, 64
Principle of Mathematical Induction, 19
Principle of Strong Induction for !, 21
Principle of Transfinite Induction, 25
Principle of Transfinite Induction for On, 30

rank function, �, 61
RecursionTheorem on On

First Form, 33
Second Form, 34

Recursion theorem on !, 21
relation, 13
RepresentationTheorem

for partially ordered sets, 10
for wellorderings, 29

restriction of a function, 13
Russell’s Paradox, orTheorem, 6

strict total ordering, 10
suborder, 9
successor function, 14
supremum, 10, 32
surjective, 13

transitive
closure, TC, 15
set, Trans, 14

upper bound, lower bound, 10

von Neumann natural numbers, 17
von Neumann, J, 17

wellordering, 11
Wellordering Principle (WP), 45
WellorderingTheorem for !, 21

Zermelo, Z, 17
Zorn’s Lemma, 57
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