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WEAK SYSTEMS OF DETERMINACY AND ARITHMETICAL
QUASI-INDUCTIVE DEFINITIONS.

P. D. WELCH DRAFT 23.04.10

Abstract. We locate winning strategies for various Σ0
3-games in the L-hierarchy in order to prove the

following:

THEOREM 1. KP +Σ2-Comprehension ` ∃αLα |=“Σ2-KP +Σ0
3-Determinacy .”

Alternatively: Π1
3-CA0 `“there is a β-model of ∆1

3-CA0 + Σ0
3Determinacy.” The implication is not

reversible. (The antecedent here may be replaced with Π1
3(Π

1
3)-CA0: Π1

3 instances of Comprehension with
only Π1

3-lightface definable parameters - or even weaker theories.)

THEOREM 2. KP +∆2-Comprehension + Σ2-Replacement +AQI 6 `Σ0
3-Determinacy .

(Here AQI is the assertion that every arithmetical quasi-inductive definition converges.) Alternatively:
∆1

3CA0 + AQI 6 ` Σ0
3-Determinacy.

Hence the theories: Π1
3-CA0,∆

1
3-CA0 + Σ0

3-Det,∆1
3-CA0 + AQI, and ∆1

3-CA0 are in strictly descending
order of strength.

§1. Introduction. The work in this paper was initially at least, motivated by trying
to see how the theory of arithmetical quasi-inductive definitions (AQI as defined below)
fits in with other subsystems of second order number theory. We had been working
with one example of such a definition, essentially a recursive quasi-inductive defini-
tion, and had calculated certain ordinals where such definitions reached fixed points
or exhibited a looping convergence [21] and [20]. Earlier J. Burgess [2] had in fact
distilled from H. Herzberger’s notion of a revision sequence [9] the notion of arithmeti-
cally quasi-inductive, and shown that the same ordinals appeared. (Herzberger’s notion
was connected with a “truth operator” and thus, strictly speaking is not arithmetical,
but just beyond; however this only makes for a trivial difference.) Other examples of
constructions involving such quasi-inductive definitions have appeared in the theory of
truth [5], and in theoretical computer science: S.Kreutzer in [12] uses essentially arith-
metical quasi-inductive definitions to formulate a notion of semantics for partial fixed
point logics over structures with infinite domains in order to separate away this logic
from inflationary fixed point logic.

Here however we rather mention some of the possibilities that connect these concepts
with potential proof theoretical results on the way to looking at ordinal notation systems
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for Π1
3-CA0: for Π1

2-CA0, by work of Rathjen [16], [15], we have that this second level
of Comprehension is tied up with the theory of arbitrarily long finite Σ1-elementary
chains through the Lα-hierarchy: indeed the first level Lα which is an infinite tower of
such models, is the first whose reals form a β-model of Π1

2-CA0. The same occurs for
Π1

3-CA0: the first Lγ whose reals form a β-model of Π1
3-CA0 is the union of an infinite

tower of models Lζn ≺Σ2 Lζn+1 . Presumably one will need to analyse finite chains
of such models to get at an ordinal notation system for this theory. Seeing that AQI
is connected with levels Lζ of the Gödel’s L-hierarchy, and with Σ2-end extensions
(albeit only chains of length 1), analysing the proof theoretic strength of AQI would be
a natural stepping stone.

Other notions of inductive definition have been tied to determinacy. Positive mono-
tone arithmetical operators have fixed points bounded by the first admissible ordinal
ωck

1 , and in turn strategies for recursive open (that is Σ0
1) games are either in Lωck

1
(for

player I) or definable over it (for the “closed” player II). Solovay (cf [11]) showed that
for Σ0

2-games, strategies for player I in such games occur in Lσ where σ is the closure
ordinal of Σ1

1 monotone inductive definitions (and for Player II they lie in the next ad-
missible set beyond it). Tanaka [19] formulated a subsystem of analysis related to Σ1

1

monotone inductive definitions, Σ1
1-MI0, and showed that over RCA0 it was equivalent

to Σ0
2-Determinacy. Our original intention had been to tie in AQI with some level of

determinacy. Is there anything at all analogous for AQI?
Turning naturally to Σ0

3-Determinacy, the location of strategies for such games in
the constructible L-hierarchy seems to be unknown. There is little published on this
question; John does state some results on this in [10]. However this does not really
yet reveal (at least to us) where such strategies lie. A closer reading of Davis’s proof of
Σ0

3-Determinacy showed that it was provable in KP +Σ2-Comprehension, and thus that
winning strategies appear in the least model which is an infinite tower of the form of a
union of a chain of submodels Lζn ≺Σ2 Lζn+1 . Whilst we always thought it would be
a happy coincidence if Σ0

3-Determinacy matched up exactly with AQI we never really
believed it would be so, and the theorems here show this. However they are extremely
close. We have not located the exact ordinal where the winning strategies (for either
player) appear, but we have shown that for some games they must appear after the
first Σ2-extendible ξ0, i.e. ξ0 initiates a proper Σ2-chain of length 1: Lξ0 ≺Σ2 Lξ1
(indeed after the first Σ2-admissible µ so that the reals of Lµ are closed under boldface
AQI). However for all Σ0

3 games they are strictly bounded below the first γ where the
reals of Lγ are a model of “ Π1

3(Π1
3)-CA0”, i.e. they are closed under instances of

Π1
3-Comprehension, with only Π1

3 (lightface) definable set parameters allowed (a more
precise definition of a better bound is below - see also the final corollary). Thus our
β-models of interest in Section 4, occur well before the beginning of the least Σ2-chain
of length 2: Lζ0 ≺Σ2 Lζ1 ≺Σ2 Lζ2 . It thus seemed to us that even with extra effort,
finding exactly at which level each Σ0

3 game had a strategy might not be very much
more illuminating: at least not in the way that Solovay’s was for Σ0

2 vis à vis levels of
the L-hierarchy: there are seemingly no well-established theories or ordinals here in
this narrow gap to aim for.

§2. Preliminaries. The structure of the paper is as follows: we outline some of the
theories and subsystems of second order number theory that we use. Then, in the next
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subsection we do the same for the constructible hierarchy L and prove a result on uni-
formly definable Skolem functions. In Section 2.2 we introduce arithmetical quasi-
inductive definitions, list some of the basic facts concerning them, and formulate the
subsystem AQI. We state there also how it is situated with regards to known theories
such as ∆1

3-CA0. In Section 2.3 we introduce mainly notation that we are going to use
concerning game trees, strategies and the like. We are much indebted to D.A. Martin’s
(regrettably unpublished) account [14], of the basics of determinacy and in particular
also for his account of Davis’s theorem on Σ0

3-Determinacy which we follow closely in
Section 4. We classify the complexity of some of these notions in terms of the Levy
hierarchy and the theory KPI0. In Sections 3 and 4 we prove the Theorems 2 and 1 of
the abstract respectively.

The reader may consult [18] on the mutual interpretability between theories in sub-
systems of second order number theory, such as ∆1

3-CA0 for example, and set theoretical
counterparts ∆1

3-CAset
0 , or Σ2-KP. We do not have to do any fine analysis of provability

in any such subsystems, as we are typically showing that a rather strong theoryA proves
the existence of (many) β-models of theory B.

By Σ2-Comprehension we mean the usual Axiom of Comprehension but restricted to
formulae that are Σ2 in the Levy hierarchy. By “KP” we shall mean the usual axioms
of Kripke-Platek set theory, but we shall assume these include the Axiom of Infinity. By
“KPI0” we shall mean the conjunction of the axiom of extensionality together with the
assertion “For every set x there is a set y with x ∈ y ∧ (KP)y .” (By (KP)y we mean
the axioms of KP relativised to y.) By “KPI” we shall mean “KP + KPI0.” By “Σ2-
KP” we shall mean KP with the Comprehension and Replacement Axiom schemes
reinforced to allow for ∆2 and Σ2 formulae respectively.

We call a set admissible if it is a model of the KP axioms. An ordinal α is admissible
if Lα |= KP. Note that KP alone does not prove Σ1-Comprehension. The Compre-
hension axioms are themselves essentially “boldface” axioms, as they allow parameters
into the axiom schemes. The class of all admissible ordinals, other than ω shall be de-
noted by ADM. For information on admissibility theory the reader may consult [1]. The
reals of a model of KP +Σi-Comprehension form a model of Π1

i+1-CA0 for i ∈ {1, 2}.
We follow the definitions and development of the theories Π1

i+3-CA0 (the latter we take
to include the set induction axiom) of [18]. The set of reals belonging to Lα, where α
is least such that Lα is a model of KP +Σi-Comprehension, are those of the minimum
β-model of Π1

i+1-CA0, (i > 0) (cf. [18],VII.5.17). It is well known, and easy to see, that
if Lα is a countable model of KP +Σi-Comprehension, then Lα is a union of an infinite
Σi-elementary chain of submodels: Lζk ≺Σi Lζk+1 · · · ≺Σi Lα. Hence the least such
α is the union of an ω-length such chain. As a consequence KP +Σi-Comprehension
proves the existence of β-models whose reals code Σi-elementary chains of length, say,
2: Lζ0 ≺Σi Lζ1 ≺Σi Lζ2 . In Section 4 we shall use something much weaker: we
shall assume only that there is a trio of ordinals γ0 < γ1 < γ2 with Lγ0 ≺Σ2 Lγ1 and
Lγ0 ≺Σ1 Lγ2 . Obviously such occur well below such Σ2-elementary chains of length
2.

Our set theoretical notation is standard. If z = 〈u, v〉 is an ordered pair, then we use
the functions (z)0 = u, (z)1 = v to denote the unpairing functions. For D a class of
ordinals we let D∗ be the closed class of its limit points. By HC we denote the class of
sets that are hereditarily countable.
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2.1. On the constructible hierarchy. We shall use some further facts about the L-
hierarchy. (These can be found in [4].) In particular that if ωα = α then Lα is equal to
the level Ja of the Jensen hierarchy. (We shall write Lα rather than Jα when we know
that they are equal, and for the ordinal heights of the models of our theories, this will
always be the case.)

We shall write Σn(Lα) for the relations Σn (for n ≤ ω) over 〈Lα,∈〉 possibly
with parameters from Lα. If we wish to display the parameters p, q, r . . .we shall
write ΣLαn ({p, q, r}) (and similarly for Jα if needed in place of Lα.) We shall not
make much use of the fine-structure theory but we shall use the Σ1-Skolem func-
tion h1

α(v0, v1) which is uniformly definable over such levels. Thus if 〈ϕk | k <
ω〉 is a recursive listing of the Σ1 formulae of L∈̇, with say ϕk with free variables
amongst those displayed as ϕk(v0, . . . , vn(k)), and if Lα |= ∃v0ϕk(v0, x1 . . . , xn(k))
then Lα |= ϕk(h1

α(k, 〈p1
α,
−→xi 〉), x1 . . . , xn(k)) where p1

α is the (possibly empty) Σ1-
standard parameter. The reader should remark that we are working very low down in
the L-hierarchy: any model that occurs will have at most a single proper Σ2-elementary
substructure; hence any level will have at most some Σ2 definable map from ω onto the
whole structure; every Lα of interest will have only ω as the single infinite cardinal,
and any standard parameters that occur can be taken to be single ordinals. Also for any
limit α there will be always a ∆1(Lα) definable map of α onto Lα (although for α not
closed under Gödel pairing this is not necessarily a parameter free definition; for those
α which are Gödel closed however, the definition is uniform in α.)

Indeed we are so far down in the L-hierarchy that we always have uniformly Σn-
definable Skolem functions. For this recall that β0 is defined as the least β such that
Lβ0 |= ZF−. (It is well known that the reals of Lβ0 are those of the minimal model
of full comprehension, the minimal model of full second order analysis.) Sy Friedman
showed in [6] that if Jα |=“V = HC” (that is, every set is hereditarily countable), then
for any n there is gnα, a Σn-Skolem function for Jα, which is Σn-definable without pa-
rameters over Jα. (The point here is the phrase “without parameters”.)

Remark: It is well known that for n > 1 there is no uniform Σn-definable Σn-Skolem
function for all the levels of the Jα hierarchy. It is perhaps less well known that down
low, there are in fact such, as we now show.

THEOREM 3. (Uniform Σn-Skolem Functions) For every n < ω there is a single
Σn-definition of a partial function hn, which defines a Σn-Skolem function over any
〈Jα,∈〉 with α < β0.

Proof. For a fixed countable α0 with Jα0 |=“V = HC”, it is proven in [6], by using
an induction on n < ω, that Σn-Skolem functions exist for Jα0 which are definable
without parameters. For the theorem under discussion here, any Jα for α ≤ β0 sat-
isfies the requirement Jα |=“V = HC”. For an α0 as given and starting with n = 2
Friedman’s definition for a Skolem function g2

α0
, is in terms of the Σ1-Skolem function

which is indeed uniformly parameter free Σ1 over all α. An inspection of the definition
(on p3328 of [6]) shows however that it does not depend on α0 in any way. We thus
have that for any α ≤ β0 there is indeed a Σ2-Skolem function uniformly parameter
free Σ2-definable over Jα, which we shall call h2

α. Turning to n = 3 his definition
again for the fixed α0, is in terms of this Σ2-definable Skolem function g = g2

α0
(as de-

fined at the bottom of p3328) for Jα0 , but is otherwise independent of α0. However we
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have just argued that the Σ2-Skolem functions h2
α may be assumed to be here uniformly

definable. Hence so will be the Σ3-Skolem functions, defined using them, that we may
call h3

α for all α ≤ β0. Similarly for other n < ω. QED

Consequently, every x ∈ Jα (for α < β0) is of the form hnα(i, n) some i, n < ω.
In fact the argument in the above proof readily works uniformly beyond β0 up until the
least α+ 1 such that Jα+1 |=“there is an uncountable cardinal.”

We shall also use the fact that if T is a recursive theory of Σ1 sentences, and α is
the least such that Lα |= KP +T + V = HC then every x ∈ Lα is definable by some
ΣLα1 term. This is because, by using an elementary Σ1-Skolem hull argument together
with the uniform Σ1-definable Skolem function h1

α, there will be a ΣLα1 map, perhaps
partial, of ω onto Lα: hence for every x ∈ Lα there is i, n < ω with x = h1

α(i, n).
2.2. Arithmetical quasi-inductive definitions. Let Γ : P(ω)→ P(ω) be any arith-

metic operator (that is “n ∈ Γ(X)” is arithmetic; we emphasise that Γneed be nei-
ther monotone nor progressive). We define the following iterates of Γ : Γ0(X) =
X; Γα+1(X) = Γ(Γα(X)) ;

Γλ(X) = lim inf
α→λ

Γα(X) =
⋃
α<λ

⋂
α<β<λ

Γβ(X).

Following Burgess we say that Y ⊆ ω is arithmetically quasi-inductive if for some
such Γ, Y is (1-1) reducible to ΓOn(∅). Any such definition has a least countable ξ =
ξ(Γ) with Γξ(∅) = ΓOn(∅). If we let ζ denote the supremum of all such ξ(Γ), then
we have:

PROPOSITION 1. (Burgess [2] Sect.14) (i) ζ is the least Σ2-extendible ordinal; that
is the least ζ so that there is a Σ > ζ with Lζ ≺Σ2 LΣ.

(ii) A set Y is arithmetically quasi-inductive iff Y ∈ Σ2(Lζ).

In general we shall stay with the notation that Σ denotes the ordinal height of the
least properΣ2-end extension of Lζ . It can be shown:

PROPOSITION 2. There is a recursive operator Γ with ξ(Γ) = ζ.

Proof: The universal Infinite Time Turing machine of Hamkins and Kidder ([7]) is in
effect such a recursive operator Γ. That ξ(Γ) = ζ is shown in [20]. QED

Some quasi-inductive definitions may reach a fixed point.

DEFINITION 1. We say that Γ reaches a fixed point on X, if there is α so that Γα(X)
= Γα+1(X); and if so we call Γα(X) the fixed point.

The following can be shown.

PROPOSITION 3. For any arithmetical operator Γ, either ξ(Γ) = ζ, or else there
is an equivalent recursive operator Γ̃ in the sense that it reaches Γξ(Γ)(∅) as a fixed
point; specifically there is a recursive operator Γ̃ and an α < ζ with Γξ(Γ)(∅) Turing
(1-1) reducible to Γ̃α(∅) = Γ̃α+1(∅).

The quasi-inductive definitions that reach fixed points (on ∅, or on some particular
inputX) form an interesting subclass. Investigation of such is an appealing combination
of admissibility theory and reflection properties of ordinals.
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Propositions 2 and 3 indicate that in one sense, to study recursive operators, is to
study all arithmetical ones: if one has a Σn-definable operator, one seemingly only
needs to look instead at Πn+1-reflecting ordinals. For such an arithmetical operator Γ,
it is easy to see from the definition of (ζ,Σ) that Γζ(∅) = ΓΣ(∅) and thus we might
call (ζ,Σ) a “repeat pair” for Γ and ∅. Again one may show for such a Γ, that (ζ,Σ) is
the lexicographic least such repeat pair. We use this to formulate a definition allowing
parameters x as starting inputs.

DEFINITION 2. AQI is the sentence: “For every arithmetic operator Γ, for every
x ⊆ ω, there is a wellordering W with a repeat pair (ζ(Γ, x),Σ(Γ, x)) in Field(W )”.
If an arithmetic operator Γ acting on x has a repeat pair (in Field(W )), we say that Γ
stabilizes along W (with input x).

Clearly a certain amount of set theory (or analysis) is needed to show that every
operator stabilizes. Reformulated using the relativisation of Proposition 1, this is thus:

LEMMA 1. KP � AQI←→ ∀x ⊆ ω∃ξ, σ(Lξ[x] ≺Σ2 Lσ[x]).

We note some facts concerning the pair (ζ,Σ) inL:

PROPOSITION 4. (i) ([20] Thm. 2.1) Lζ is a model of Σ2-KP (and is a union of
such).
(ii) ([21] Cor.3.4) LΣ is not a model of KP, but is a model of KPI0 plus the scheme of
parameter-free Σ2-Comprehension.

In the language of subsystems of second order number theory, the reals of LΣ form a
β-model of Π1

1-CA0 together with a β3-submodel (provided by the reals of Lζ), and in
fact it is the minimum such β-model. (See [18] VII.7.1 for the notion of a β = β1 and
βk-submodels.) This β-model thus gives an example of a model of parameter free, so
lightface, Π1

3-CA0, together with (boldface) Π1
1-CA0 + ¬∆1

2-CA0.
Note also that immediately from the definition of Σ2-extendability and (i) of the last

lemma, LΣ is also a union of models of Σ2-KP.
Prop. 4(i) then already shows that AQI is stronger than ∆1

3-CA0 since any Σ2-
extendible is already a (union of) models of Σ2-KP. Somewhat more formally:

COROLLARY 1. ∆1
3-CA0 + AQI ` ∀x(∃β-model of ∆1

3-CA0 containing x).

Proof: In fact we have: ∆1
3-CA0+ AQI `“There is a countably coded β-model of

∆1
3-CA0”. This is because the former proves “∀x∃W ∈ WO(∃z, s ∈ Field(W ) ∧

L‖z‖[x] ≺Σ2 L‖s‖[x]).” By Prop. 4(i), P(N) of the model L‖z‖[x] form a model of
∆1

3-CA0. QED
2.3. Strategies and game trees. We assume familiarity with the basic notions of

two person perfect information games played using integers. We shall follow Martin
and shall assume that such games are played on game trees T ⊆<ωω although we
disallow terminal nodes. We let G(A;T ) denote the game with payoff set A ∩ dT e
where dT e denotes the set of all plays in T . A position in the game is simply a finite
sequence r ∈ T . For q ∈ T we let Tq denote the set of all positions r ∈ T where r ⊇ q.

LEMMA 2. Let A be arithmetic; let M be a transitive model of KPI0 with T ∈ M.
Then (i) “G(A;T ) is not a win for I” is ΠM

1 ; (ii) if this holds then “p is a position in
II’s non-losing quasi-strategy for G(A;T )” is ΠM

1 .
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Proof: “G(A;T ) is not a win for I” is equivalent to “∀σ ∈ ωω(σ is not a winning
strategy for I in G(A;T ) )”; which in turn is equivalent to : “∀σ(if σ is a strategy for I
in G(A;T ) then ∃r ∈ωω σ ∗ r /∈ A ∩ dT e)”. The set {r | σ ∗ r /∈ A ∩ dT e} is then
∆1

1(σ, T ), and hence, if non-empty with σ ∈M , has an element definable over the least
admissible set containing σ and T , and hence has an element in M . This completes (i).
For (ii): let T ′ be II’s non-losing quasi-strategy for G(A;T ). Then

p ∈ T ′ ⇔ lh(p) = k → ∀n ≤ k
p � n ∈ T ∧ ∀2n+ 1 < k(q = (p0, p1, . . . , p2n+1)→ “G(A;Tq) is not a win for I”.

QED
One should note that a quasi-strategy for II in G(A;T ) is then a subtree of T that

does not restrict I’s moves in any way, but potentially only II’s moves.

§3. AQI is weaker than Σ0
3-Determinacy.

DEFINITION 3. T jα(X) denotes the set of Σj formulae, true of parameters from X ,
in the structure 〈Jα,∈〉; T jα abbreviates T jα(∅), the Σj-theory of 〈Jα,∈〉.

DEFINITION 4. (i) Let E0 be the class of Σ2-extendible ordinals. If Eα is defined,
let Eα+1 be the class E0 ∩ E∗α. If Lim(λ) let Eλ = E0 ∩

⋂
α<λEα;

(ii) Let F0 = E0 ∩ {µ | ∀α < µ(µ ∈ Eα)}; let Fn+1 be the class E0 ∩ F ∗n ; let
F = Fω = E0 ∩

⋂
n<ω Fn;

Part (ii) of the above defines the Eα hierarchy through a diagonalisation, which one
might have called a “hyperextendible”. Clearly these hierarchies continue, but we had
to stop somewhere. For k < ω the classes Ek we can think of as having depth k in the
“Σ2-extendible limits of Σ2-extendible ...” hierarchy: if γ ∈ Ek then there are ordinals
γ = µk ≤ µk−1 ≤ . . . ≤ µ0 < ν0 < ν1 < . . . < νk satisfying Lµj ≺Σ2 Lνj for j ≤ k.

The ordinals in theF -hierarchy also have made their appearance on the stage: Lubarsky
has formulated a notion of iterated Infinite Time Turing Machines: ITTM’s with feed-
back [13]. For these machines the least “eventually writable” ordinal (to take over the
terminology from ITTM theory, but which is the analogue of our least Σ2-extendible
ζ here), is actually the least element in F0. We could appropriately formulate a theory
of quasi-inductive using these notions, and again we could prove by our methods that a
complete such quasi-inductive set is also aΣ0

3.

THEOREM 4. Σ2-KP +∀α∃β(α < β ∧ β ∈ F )0Σ0
3-Determinacy.

Proof: We shall effect this by showing that the least level of the L-hierarchy that is
a model of the antecedent theory is a model M0 = Lδ in which Σ0

3-Determinacy fails.
The reals of this model will a fortiori form a β-model of ∆1

3-CA0+ AQI. The rest of
this section is taken up with proving this theorem (which is Theorem 2 of the Abstract).

We do this, using a technique that goes back to H. Friedman, by defining certain
games Gψ so that codes for initial segments of the L-hierarchy are recursive in any
winning strategy for the game. So henceforth, let M = Lδ be the least level of the
antecedent theory in the statement of the theorem.

Let Ψ = {ψ|ψ ∈ Σ1 ∩ Sent ∧ Lδ |= ψ} = T 1
δ be the Σ1-theory of Lδ . (Essentially

we show that Ψ is a aΣ0
3 set of integers: see the Corollary 2 below.)
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(1) “Σ0
3-Determinacy” is ΣKPI

1 .

Proof: Σ0
3-Determinacy is equivalent to

∀n ∈ ω[if An is the n’th Σ0
3 set then ∃σ(σ is a winning strategy for a player in

G(An;<ωω))]
The statement that σ is a winning strategy for Player I is equivalent to saying: “The

∆1
1(σ) set {x | σ ∗ x /∈ A} is empty”. If it were non-empty then it would have a mem-

ber Σ1
1(σ)-definable and thus definable over the least admissible set containing σ. (The

latter by Kleene’s Basis Theorem relativised to x cf [17] III.1.3.) Thus “σ is a winning
strategy” is ΣKPI

1 . We thus have a numerical quantifier in front of a ΣKPI
1 predicate, and

is thus overall ΣKPI
1 . QED (1)

Hence, were Σ0
3-Determinacy to hold in Lδ it would be equivalent to some ψ ∈ Ψ.

For any ψ ∈ Ψ we define: αψ = the least β so that Lβ |= KP +ψ.

Note: The minimality of β ensures that every x ∈ Lαψ is Σ1-definable by some pa-
rameter free Σ1 term tx. (In other words the Σ1-Skolem hull inside 〈Lαψ ,∈〉 of ∅ is all
of Lαψ itself.)

The following is straightforward:

(2) Let α = sup{αψ|ψ ∈ Ψ}. Let α′ = the least β(Lβ ≺Σ1 Lδ). Then α′ = ᾱ.

We shall show for every ψ ∈ Ψ there is a game Gψ with a Π0
3 payoff set, but without

a winning strategy in Lαψ . In view of the comment just after the proof of (1), this will
suffice.

Fix for the rest of the argument ψ ∈ Ψ. Let α denote αψ . We consider the following
game G = Gψ.
I plays m0,m1, . . . ,mi x = (m0,m1, . . . ,mi, . . . )
II plays n0,n1, . . . , ni y = (n0,n1, . . . , ni, . . . )

in the usual way, playing in the i’th round integers (mi, ni). Let z = x⊕ y.

Rules for I.
Let T be the theory KP +V = L+ψ. I’s play x must be a set of Gödel numbers for

the complete Σ1-theory of an ω-model of T+“there is no set model of T ”.
Using the Note 3 we denote by 〈M,E〉 the model I essentially constructs if he obeys

this rule. We may regard also as part of the rule that x as given by I should be specified
simply by I stating “k ∈ T 1

M” or ‘‘k/∈T 1
M” where TM = T 1

M is the standard Σ1-code
or ‘truth-set’ for his model. Also, as in Lαψ , in 〈M,E〉, every set is given by a Σ1

parameter free Skolem term.

Note: If 〈M,E〉 is wellfounded then it is isomorphic to 〈Lαψ ,∈〉. We have built
into these Rules for I of the game inter alia the ‘smallness’ requirement on the models
played, that no level (Lκ)M has an ordinal κ ∈ F which is also Σ2-admissible.
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Amongst the codes for sentences that I plays are those of the form

ptm ∈ On∧ tn ∈ On∧ tm < tnq

These we shall use to formulate rules for player II. So far the Rules for I amount to
a Π0

2 condition on x and so on z. (We may take a recursive listing of Σ1-sentences
〈ψk|k ∈ ω〉 and we then require ∀k∃k′(mk′ = pψkq ∨mk′ = p¬ψkq), thus the theory
I constructs will be Σ1-complete; we obtain that M has at least the integers as standard
also by a Π0

2 condition.) Let r : ω → ω× ω be a recursive enumeration of ω2 in which
each (i, j) appears infinitely often.

Rules for II.
At round k: if (i, j) = r(k) and nk 6= 0, then we shall say that “II makes the entry

nk on list Li,j .”. These ‘Listing’ Rules here require her to list terms in a correct order.
She may make an entry on list Li,j in round k if:

Either Li,j is empty at the current round, in which case nk can be any term ts as long
as I has asserted at an earlier round pts ∈ Onq ∈ TM ;

or Li,j 6= ∅, and if ts was the last entry II made on this list, then nk can be
any term tr, again provided that I has at an earlier round k′ < k asserted mk′ =
ptr ∈ On∧ tr < tsq ∈ TM .

The winning conditions. I wins immediately at a finite round if II breaks one of her
Listing Rules just enumerated. II wins if I fails to obey his conditions on x, or both
players obey their respective rules and additionally

∃(i, j)[II makes infinitely many entries on list Li,j ].
This is a Σ0

3 winning condition for II on z. Hence Gψ has a Π0
3 payoff set.

In other words, if I obeys his rules, II can win if for some (i, j), r−1“(i, j) in effect
picks out an infinite descending chain through the ordinals of the model M that I re-
veals via the gödel numbers of the Σ1sentences true in M .

II is not allowed to make an entry indicating that ts < tr until I has asserted this at
some earlier stage. II is thus not predicting what the model will look like below tr; by
making an entry on a list she is merely adverting to the fact that I has already revealed
that ts < tr.

(3) I has a winning strategy.
Proof: I plays out all “k ∈ TM” for all k ∈ T 1

αψ
, and “k/∈TM” for all k/∈T 1

αψ
. Obvi-

ously then, 〈M,E〉 ' 〈Lαψ ,∈〉 and II has no chance to pick out any infinite descending
chains. Q.E.D. (3)

The point is the following:

(4) Let τ be any winning strategy for I . Let x = T 1
αψ

; then x ≤T τ.
From this the theorem then follows as x /∈ Lαψ , being essentially the latter’s Σ1-truth
set.
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Proof of (4) We argue that, with II only playing constantly nk = 0 for all k, that τ
forces I to play for x a list of all and only the correct facts “k ∈//∈T ” for TM = T 1

αψ
.

The point is to show that if at any time I deviates from this course of action, then he
will lose - and hence the purported strategy τ is not a winning one.

II plays “Pass” (ie plays nk = 0) until such a point, if ever, when I asserts ‘k ∈ TM ’
or ‘k /∈ TM ’ whereas in reality k /∈ T 1

αψ
or k ∈ T 1

αψ . At this point II knows that I ’s
eventual model 〈M,E〉 will be illfounded, and so she must act to discover a descending
chain. In this case we shall set β = βM =df On∩WFP(M). However she will not yet
know, and in fact will not at any move know, where βM lies. All she will know is that
as (KP)M (if I plays correctly) then by the Truncation Lemma (cf. [1]) βM ∈ ADM.
By our requirements on the theory T 1

αψ
, and upwards persistence of Σ1 formulae, we

must have βM ≤ αψ .

DEFINITION 5. Let F : ω � ADM∩ αψ + 1 be some fixed surjection.

The idea is that at rounds k where r(k) = (i, j) II will be making the working
assumption that the ordinal height of the wellfounded part of M , βM , is precisely F (i),
and will be trying to find an illfounded chain through OnM above βM . She will be
working simultaneously on all such possible βM . We shall prove that if I deviates from
enumerating T 1

αψ , then II, knowing only that one of them is the correct assumption, can
nevertheless be successful and win the game Gψ; thus I is forced to play only the truth
concerning T 1

αψ .
We assume then that I has played an untruth. We concentrate on a fixed i and hence

on β = βM = F (i), and describe how II can move in rounds k with r(k) = (i, j).

(5) Claim ∃ā /∈WFP(M)∀b < ā(b /∈WFP(M)→ T 2
b 6⊂ T̃ =df T

2
β .

Proof. Supposed this failed, then ∀ā /∈ WFP(M)∃b < ā(b /∈ WFP(M) ∧ T 2
b ⊂ T̃ ).

For such b we shall show that Jγb ≺Σ2 Jb for a γb < β. To do this we could employ
a version of Theorem 3 on uniformly definable Skolem functions, to apply to the non-
wellfounded model M . To do this one would simply apply h2

b (the uniformly defined
Σ2-Skolem function, as defined over the illfounded model Jb), and look at h2

b“ω × ω,
and argue that this is a Σ2 Skolem hull of Jb which is transitive, and in fact wellfounded,
and is then a Jγb for a γb < β. However we prefer to argue for this directly as follows.

Let η = ηb =df sup{c < b | ∃f ∈ ΣJb2 , f : ω � c, f partial, onto}. Note also,
for use in a moment, that if {c} is any ΣJb2 definable ordinal (that is, defined without
parameters) then c < η, as the L-least onto map f : ω → c is then also ΣJb2 definable (it
lies in Jc+1). We first claim that η < β. Clearly equality fails, as otherwise that would
make β definable inside M from b. If however c /∈WFP(M), with f ∈ ΣJb2 , f partial,
but onto c, then the sentences “f(n) ↓, f(m) ↓ ∧ f(n) < f(m) ∈ On” are all in T 2

b

and so in T̃ . This is absurd as β is wellfounded! Hence η < β. Note that this somewhat
trivially implies that b is an <M -limit ordinal: were b = b0 + 1 then b0 itself is ΣJb2 and
by the above reasoning we’d have the absurdity b0 ∈WFP(M)!

It is not hard to see that η is closed under the Gödel pairing function and this implies
that there is a parameter free ∆Jη

1 bijection η ↔ Jη (cf [4]). Suppose Jb |= ∃uψ(u, ξ)
where ξ < η and ψ ∈ Π1. (It suffices to verify Σ2-elementarity just on formulae with
single ordinal parameters ξ by the above remarks.)



WEAK SYSTEMS OF DETERMINACY AND ARITHMETICAL QUASI-INDUCTIVE DEFINITIONS. 11

Let δ be the least ordinal such that Jb |=“∀δ′ > δJδ′ |= ∃uψ(u, ξ).” Then {δ} ∈
ΠJb

1 ({ξ}). There is thus a ΣJb2 ({ξ}) partial map fδ : ω � δ given by some formula:
fδ(m) = τ ↔ ∃wχ(w,m, τ, ξ) for a Π1 χ.

As ξ = f0(n) for some ΣJb2 f0, we have

fδ(m) = τ ↔ ∃x[x = f0(n) ∧ ∃wχ(w,m, τ, x)].

Replacing “x = f0(n)” with its Σ2 definition, this yields a parameter free ΣJb2 definition
of fδ . Hence δ < η. By the definition of δ we shall have Jη |= ∃uψ(u, ξ) as required.

Hence for such a b we have (Jηb ≺Σ2 Jb)M . However the supposition implies there
is an infinite descending chain of such b in the illfounded part of M . This implies that
we have an infinite nested sequence of Σ2 reflecting intervals: there exists 〈bn|n < ω〉,
〈ηn|n < ω〉 with (ηn ≤ ηn+1 ≤ . . . < bn+1 < bn), and with (Jηn ≺Σ2 Jbn)M , for
n < ω. Elementary reasoning using this Σ2 reflection shows that each ηn ∈ F , and
in fact is in F ∗, (F ∗)∗, . . . ; moreover such ηn are Σ2-admissible. This contradicts our
smallness hypothesis on our L hierarchies: more specifically then, I has broken a basic
Rule. Q.E.D. (5)

Let 〈tk|k ∈ ω〉 be our priorly fixed recursive enumeration of the Σ1-Skolem terms
(using the standard Σ1-Skolem function, this could simply be an enumeration of
〈h1(i, n) | i, n < ω〉). II makes the additional working assumption, or guess if you
will, that tMj = a0, where a0 is a witness for ā to the truth of the last Claim. (Again
the point is that II does not know in advance which term in M will denote such a0.)
As I reveals more and more facts about his model, he must, if M is not going to be
isomorphic to Lαψ , at some point reveal a Σ1-fact which is true in M but false in Lαψ .
There really is then such an M -ordinal a0. II will, in effect, place her ‘guess’ a0 = tMj
at the head of her putative descending chain, on list Li,j . In order to choose the next
element of the chain II considers the set T̃ = T 2

β . Set T0 = (T 2
tj )M .

II now waits until I asserts that some σ0 is in T0, (this itself being one of the Σ1

facts about M she must enumerate) but II sees is not in T̃ . (If II is wrong in her guess
about tj of course, then she may fruitlessly wait for ever.)

(6) Suppose M |=“a1 < a0 is least so that ∀b ≤ a0(b ≥ a1 → (σ0)Lb).” Then
a1 /∈WFP(M).

Proof: Were a1 ∈ Lβ then we should have σ0 ∈ T̃ . Q.E.D. (6)

II may thus wait until I asserts that some such σ0 ∈ T0\T̃ and additionally, perhaps
later, the Σ1 fact that some term tj1 names the ordinal a1 defined in (4) above. And
at some round l then, I must play the number ml = ptj1 ∈ On∧ tj ∈ On∧tj1 < tjq;
once all these facts have been gathered together, II may at the next appropriate round k
with r(k) = (i, j), set nk = tj1 .

II now has two elements of a descending chain in the illfounded part of M . Now
she watches out for assertions that I makes about T1 = (T tj12 )M , waiting for some
σ1 asserted by him to be in T1 but which does not lie in T̃ . By exactly the same
considerations that held at (4) some a2, tj2 , are definable, and so she can continue. By
the end of the game, if this working assumption about βMand tj was the correct one,
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the chain so defined by continuation of this process will be infinite, and she will have
won.

If I deviates from playing the correct truth set, then at least one of II’s assumptions
will turn out to be a correct one, and hence she will be assured of winning.

Q.E.D. ((4)& Theorem 4)

Remark: One might wonder why Σ2 theories play the role they do here. However
in this kind of game they are necessary. For suppose we tried to do without considering
Σ2 sentences but II tried to divine a descending chain using only Σ1 sentences. Any
M -ordinal is defined by a Σ1 term tk say. However ‘new’ Σ1 facts about standard or-
dinals less than βM may be true in M . Hence II cannot use the terms alone to pick
out a chain without the danger of falling into the wellfounded part. Even if she waits to
hear that a term tl specifies a level hopefully in the ill-founded part where the Σ1 term
tk (i.e. one not mentioned in T̃ ) becomes true (which may be at a much higher level
than the ordinal named by tk) then this could also fail. For suppose that in M there is a
γ < b with γ in the wellfounded part, and b in the illfounded part, and with Jγ ≺Σ1 Jb.
No new Σ1 facts become true within the interval [γ, b)M . I may artfully play terms so
that II ends up choosing a finite chain of terms naming ordinals where new Σ1 facts
are witnessed, with bottom element b. If she drops any further using such Σ1 terms, she
will be in the wellfounded part. Hence the use of the device above of looking where
Σ2-sentences become true.

Remark: One might further wonder whether the use of infinitely many lists only in-
dicates our poor ability to devise a better game that used only one list. However the use
here of infinitely many lists is necessary: for suppose it could be effected with a single
list say, then the game would be Π0

2\Π0
2 (at least in the version described here) and it

is known (see [8]) that the least level Lδ with Lδ |= Σ1-Comprehension is a model of
Boolean(Σ0

2)-Determinacy, and this is a very much smaller ordinal than the first Σ2-
extendible ζ above. Thus AQI proves there are β-models of Boolean(Σ0

2)-Determinacy
(indeed ∆0

3-Determinacy).

Recall the following definition.

DEFINITION 6. Let Γ be a pointclass. A set Z ⊆ N is said to be in aΓ if there is a
set X ⊆ N×NN in Γ so that

Z = {n | I has a winning strategy in G(Xn;ω<ω) where Xn = {y | 〈n, y〉 ∈ X}.
The next Corollary is in a sense merely a restatement of the result above. Let σ3

denote the least σ so that every Σ0
3 game that is a win for I , has a winning strategy in

Lσ .

COROLLARY 2. ᾱ ≤ σ3. Indeed each T 1
αψ

is a aΣ0
3 set of integers, as is Ψ.

Proof: Let αψ etc. be defined as above. We switch roles in the games. I will try and
find descending chains through II ’s model M . (This is only to make the payoff set
Σ0

3 rather than Π0
3.) For ϕ ∈ Σ1 let Gψ,ϕ be the game described in the last theorem,

except that II must now play a code x for a model of T+“there is no set model of
T ” +¬ϕ. Everything else remains the same mutatis mutandis: I ’s task is to find an
infinite descending chain through the ordinals of II ’s model. Note that if ϕ ∈ T 1

αψ
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I now has a winning strategy: for if II obeys her rules, and x codes an ω-model M of
this theory, then M is not wellfounded, and has WFP(M) ∩On < αϕ, where the latter
is the least admissible α where ϕ is true in Lα. However I playing (just as II did in
the last theorem) can find a descending chain and win. On the other hand if ϕ /∈ T 1

αψ

II may just play a code for the true wellfounded Lαψ and so win. This shows that T 1
αψ

is a aΣ0
3 set of integers.

Suppose now that ᾱ > σ3. Let ψ be such that αψ is the second least admissible
greater than σ3. There is thus a set H ∈ Lαψ (definable over the next admissible
γ > σ3) containing winning strategies for all Σ0

3 -games that are a win for player I and
in particular a set H0, definable at the same level, of those winning strategies for I in
games of the form Gψ,ϕ. Hence membership of ϕ in T 1

αψ
is determined by searching

through H0 for a winning strategy for I ; this is a bounded search. Hence T 1
αψ
∈

∆
Lαψ
1 ({H0}). Hence T 1

αψ
∈ Lαψ which is a contradiction.

The result for Ψ can be obtained similarly; recall that we had spare room in our
smallness assumption, in that we could rerun all our arguments for Ψ′ =df T

1
δ′ where

δ′ is least in F ∗. Q.E.D.

COROLLARY 3. The complete AQI set is a aΣ0
3 (but not aΣ0

2) set of integers.

§4. Boldface Σ0
3-Determinacy is strictly weaker than Π1

3-CA0. We shall closely
follow Martin’s account of Davis’s proof ([3]) of Σ0

3-Determinacy. That account is
performed within ZC−+Σ1-Replacement, but we shall pay attention to definability
considerations. It is fairly easy to see that the proof can be effected in the weaker
theory of KP augmented by Σ2-Replacement and Σ2-Comprehension, but we want to
do better than that. As remarked above KP +Σ2-Comprehension (or equivalently Π1

3-
CA0) proves the existence of β-models M of the theory S comprising: V = L+“There
are ordinals γ0 < γ1 ∈ ONM with (Lγ0 ≺Σ1 V ∧ Lγ0 ≺Σ2 Lγ1)”+∀x∃y(Trans(y) ∧
y is admissible).

Notice that if M is a model as just described, and we fix for definiteness, γ0 < γ1 the
lexicographically least such pair fulfilling S, then for parameters t ∈ Lγ0 , ΣLγ12 ({t})-
definable subsets of ω are all in Lγ1 , and are in fact so-definable over (Lγ0)M . We
set γ2 = ONM . The reader should be warned however that Lγ1 in general is not
admissible: indeed requiring the existence of Lδ0 ≺Σ2 Lδ1 with the latter admissible,
is much stronger than the assumptions here, and proves the existence of many triples of
ordinals γi(i < 3) as above.

We shall show for such an M :

THEOREM 5. LMγ0 |= Σ0
3-Determinacy.

By “N |= Σ0
3-Determinacy” we shall mean that for game trees T ⊆ <ω ω with

T ∈ N and for any A ∈ Σ0
3(T ), that a winning strategy σ for player I or II exists

in N . As Lγ0 , Lγ1 are both models of KPI0, the property of any σ ∈ Lγ0 being a
winning strategy for such a game G(A;T ) is absolute between Lγ0 and the universe.
This will complete the first theorem of the abstract (as well as the non-reversibility of
its implication, since by taking γ0, γ1, γ2 least with such properties we have that then
Σ2-Separation fails in Lγ0 ).
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Proof: We shall assume that V = M where M is a model with the above properties.
We shall thus drop the subscript M throughout the proof. Let A be Σ0

3(T ) for some
game tree T ∈ Lγ0 . We shall show G(A;T ) is determined, with either a winning
strategy for I in Lγ0 or a winning strategy for II definable over Lγ0 . We suppose that
player I does not have a winning strategy in Lγ0 and shall then proceed to prove that
the latter case for II does hold. The key lemma is the following.

LEMMA 3. LetB ⊆ A ⊆ dT e withB ∈ Π0
2. If (G(A;T ) is not a win for I)Lγ0 , then

there is a quasi-strategy T ∗ ∈ Lγ0 for II with the following properties:
(i) dT ∗e ∩B = ∅ ;
(ii) (G(A;T ∗) is not a win for I)Lγ0 .

Remark: We recall from Lemma 2 that “G(A;T ) is not a win for I” is a ΠKPI0
1

statement about A, T and is absolute between Lγ0 , Lγ1 ,and V = Lγ2 by our elementar-
ity properties assumed of these models; similarly if there is such a T ∗ as claimed by the
conclusion, then (G(A;T ∗) is not a win for I)Lγi for i < 3.

Proof of Lemma 3. By Lemma 2(ii) “p is in II’s non-losing quasi-strategy for
G(A;T )” is not only ΠLγ0

1 , but also ΠLγi
1 for i = 1, 2, due to the assumed Σ1 ele-

mentarity. We let T ′ denote then this non-losing quasi-strategy as defined, equivalently,
over any of the above models. As Lγ0 is a model of Σ1-Comprehension, T ′ ∈ Lγ0 , and
we thus have, summarising, that for every p ∈ T :

(1) (p ∈ T ′)Lγ0 ←→ (p ∈ T ′)Lγi for i = 1, 2. Hence T ′ is II ’s non-losing quasi-
strategy for G(A;T ) in V .

Likewise for any p ∈ T ′ “G(A, T ′p) is not a win for I” is absolute between Lγi for
i < 3.

Following closely the original argument, we call a position p ∈ T ′good if there is a
quasi-strategy T ∗ for II which is a sub-tree of T ′p so that the following hold:

(i) dT ∗e ∩B = ∅;
(ii) G(A;T ∗) is not a win for I .
Here (ii), again, is a ΠKPI0

1 (T ∗) statement by Lemma 2. Thus the existence of such a
T ∗ becomes a ΣKPI0

2 fact about T (as (i) is simply ∆KPI0
1 ). Hence by our assumed Σ2

reflection properties it makes no difference whether we defined ‘good’ relative to Lγ0
or Lγ1 :

(2) “p is good” is ΣKPI0
2 (T ) and hence (p is good)Lγ0 ←→ (p is good)Lγ1 .

We set H ⊆<ωω to be the class {p ∈ T ′ | (p is good)Lγ0 }. Then

(3) H ∈ ΣLγ02 (T ) and hence H is a set in Lγ1 .

We define the function t : H −→ Lγ0 by:

t(p) = L-least quasistrategy T̂ (p) witnessing (i) and (ii) that (p is good )Lγ0 ).

Then t is definable over Lγ0 in T ′, but is also ΣLγ02 ({T ′}) as a relation.
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We are thus trying to prove that the starting position ∅ is good in Lγ0 , and and we
have seen that such a quasi-strategy T ∗ exists satisfying (i) and (ii) in Lγ1 if and only if
such exists in Lγ0 .

Let B =
⋂
n∈ωDn with each Dn recursively open. Define

En = A ∪ {x ∈ dT ′e | (∃p ⊆ x(dT ′pe ⊆ Dn ∧ “p is not good” )}.

Then, by (2), En has a ΣKPI0
3 definition (in the parameter T ′). By the Σ2-admissibility

of Lγ0 the bounded integer quantifier can be absorbed and (“x ∈ En”)Lγ0 is ΠLγ0
2 . In

any case by our elementarity assumptions we have:

(4) x ∈ Lγ0 −→ ((x ∈ En)Lγ0 ←→ (x ∈ En)Lγ1 ).

Note also that En, when defined over Lγ1 , can be considered a Σ0
3(H) set of reals,

fixing the good parameter set H as above, that was defined over Lγ0 . Hence, in order
to differentiate En when defined over Lγ1 (or Lγ0) and V we set:

Ẽn = A ∪ {x ∈ dT ′e | (∃p ⊆ x(dT ′pe ⊆ Dn ∧ p /∈ H )}.

Then (En)Lγ1 = Ẽn ∩ Lγ1 , and (En)Lγ0 = Ẽn ∩ Lγ0 . The proof now proceeds by
showing:

(+) ∃n ∈ ω∀σ ∈ Σω(Lγ1)(σ is not winning strategy for I in G(Ẽn;T ′))V

We first suppose that (+) can be proven, and work towards showing how this yields the
Lemma:

(5) (+)⇒ ∃T ∗ ∈ Lγ0(Lγ0 |=“T ∗ witnesses that ∅ is good ”).

We assume then (+).

DEFINITION 7. For i = 0, 1:
T ′′i =df {q ∈ T ′ | ∀p ⊆ q(G(En, T ′p) is not a win for I )Lγi}.

In short, T ′′i is II ’s non-losing quasi-strategy for G(En;T ′), as defined over Lγi .
“(G(En, T ′p) is not a win for I )Lγi ” means for all σ ∈ Lγi which are strategies for
I , there is x ∈ Lγi with σ ∗ x /∈ (En)Lγi . Neither T ′′i is a priori a set in Lγi , but

are definable classes over the respective models: T ′′0 is ΠLγ0
3 and T ′′1 is ΠLγ1

1 (H). For
i = 0, 1 we now further define T ∗i ⊆ T ′′i quasi-strategies for II as follows.

DEFINITION 8. q ∈ T ∗i if either:
(a) q ∈ T ′′i and for all positions p ⊆ q dT ′pe * Dn; or
(b) let there be a shortest initial segment p ⊆ q with p ∈ T ′′i and dT ′pe ⊆ Dn. In

this latter case, by definition of T ′′i p ∈ H . (The latter must hold, since otherwise we
should have that (G(En;T ′p) is a win for I)Lγi from position p onwards, I making use
of some arbitrarily defined but trivial strategy in Lγi , contradicting that p ∈ T ′′i .) If
the subsequent moves in q are consistent with t(p) = T̂ (p), then we also put q into T ∗i .
Otherwise q /∈ T ∗i .

The following then hold:
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(6) T ′′1 ⊆ T ′′0 ; T ∗1 ⊆ T ∗0 .

Proof: We show just the first, as the second is then straightforward: this would be
simple absoluteness if H were an element of Lγ0 . Suppose this failed; let q ∈ T ′′1 \T ′′0 .
So on one hand Lγ0 |=“∃p ⊆ q∃σ∀x σ ∗ x ∈ dT ′pe ∩ En.” However on the other σ is
not a win for I in Lγ1 thus Lγ1 |=“∃z(σ ∗ z /∈ dT ′pe ∩ En).” Suppose there exists such
an z satisfying

σ ∗ z ∈ dT ′pe\A ∧ ∀k < ωσ ∗ z � k ∈ {t | d(T ′p)te * Dn}.

Then by absoluteness this would go down to Lγ0 contradicting the assumption that σ is,
inLγ0 , a winning strategy for I inG(En, T ′p). Hence for all z witnessing that σ is not, in
Lγ1 a winning strategy for I inG(En, T ′p) must, for some k, satisfy d(T ′p)σ∗z�ke ⊆ Dn.
However, for such k also, σ ∗ z � k is good. Then

“∃z
(
σ ∗ z ∈ dT ′pe\A ∧ d(T ′p)σ∗z�ke ⊆ Dn ∧ σ ∗ z � k is good ”

is ΣLγ12 (σ) and by elementarity goes down to Lγ0 . Again this would contradict our
assumption on σ. QED (6)

Note that T ∗i are still quasi-strategies for II in T ′. The following then finishes the
Lemma (still under the assumption (+)), since as remarked above, “∅ is good” is
ΣKPI0

2 (T ) so the existence of such a witnessing tree T ∗0 goes down from Lγ1 to Lγ0 .

(7) (T ∗0 witnesses that ∅ is good)Lγ1 .

Proof: If x ∈ dT ∗0 e, then either x /∈ Dn or x ∈ dT̂ (p)e. In the latter case, as T̂ (p)
witnesses that p is good, (i) ensures that x /∈ B. Thus in either case dT ∗0 e ∩ B = ∅.
This gives part (i) of goodness. We next show that

Claim: ∀σ ∈ Lγ1(σ is not a winning strategy for I in G(A;T ∗1 ))V .

Suppose for a contradiction that σ ∈ Lγ1 were a winning strategy for him in this
game.

Subclaim 1 ∀y(σ ∗ y ∈ [T ′′1 ]).
Proof: There cannot be a least position p ∈ T ′′1 consistent with σ so thatdT ′pe ⊆ Dn:

for otherwise for this p we’d have T ∗p = T̂ (p) for the same reason as in Def. 8 (b): if p
were not in H we’d have
Lγ1 |=“p is not good ∧dT ′pe ⊆ Dn ∧G(En, T ′p) is a win for I .”

contradicting that p ∈ T ′′1 . As there is no such position p like this, we must have that
∀x σ ∗ x ∈ dT ′′1 e.

QED Subclaim 1

Subclaim 2 ∀σ0 ∈ Lγ1(σ0 is not a winning strategy for I in G(Ẽn;T ′′1 ))V .
Proof: We reason in V = Lγ2 . Suppose for a contradiction τ0 ∈ Lγ1 were such a

winning strategy in G(Ẽn;T ′′1 ). Recall that T ′′1 is potentially a proper class of Lγ1 . We
convert this to a strategy τ for I in G(Ẽn, T ′) which is winning in V .
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We define τ by initially letting I play using τ0. If II never departs from T ′′1 and I uses
τ0 throughout, then this is a winning run of play for I in G(Ẽn, T ′). On the other hand,
assume II departs from T ′′1 at some position p; then, as p /∈ T ′′1 we conclude (I has a
winning strategy for G(Ẽn, T ′p))Lγ1 and, as the definition of the game is arithmetical in
H,T ′, the latter statement is absolute to V . I may continue playing using the Lγ1 -least
such winning strategy, which we may call σp. By continuing to play with σp he wins
overall G(Ẽn, T ′). The map π p � σp is definable over Lγ1 , and hence the overall
cumulative strategy τ we have just implicitly described is also definable over Lγ1 from
π and τ0. It is thus an element of Σω(Lγ1). However the existence of τ contradicts
(+). QED Subclaim 2

In particular, using Subclaim 2: as σ ∈ Lγ1 , σ itself is not a winning strategy for I in
G(Ẽn;T ′′1 )). Moreover by Subclaim 1 any play consistent with σ is in [T ′′1 ]. Hence
there is a play x = σ ∗ x0 consistent with σ satisfying x /∈ Ẽn. As Ẽn ⊇ A, we thus
have x /∈ A. However it was originally assumed that σ was a winning strategy for I in
G(A;T ∗1 ). This is a contradiction! QED Claim

(8) (G(A;T ∗0 ) is not a win for I)Lγ1 .

Proof: By the Claim, there is no σ ∈ Lγ1 a winning strategy for I in G(A;T ∗1 ).
However T ∗1 ⊆ T ∗0 and T ∗1 does not restrict any of I ’s moves. Hence (8) and thence
(7) hold.

QED (7), (8)

We can finish (5):
By (7) we see that a T ∗0 witnessing the requisite Σ2 formula can be constructed de-

finably over Lγ0 from T . Thus T ∗0 ∈ Lγ1 . Hence by Σ2-reflection of Lγ1 there is then
such a T ∗ ∈ Lγ0 . QED (5)

We thus have to show that (+) above holds. We showed that:
∅ is not good in Lγ0 −→

∀n ∈ ω (There is a winning strategy for I inG(Ẽn;T ′) which is Σω(Lγ1)-definable)V .

If we define:

Ẽpn = A ∪ {x ∈ dT ′e | (∃q ⊆ x(p ⊆ q ∧ dT ′qe ⊆ Dn ∧ q /∈ H)}

then the same argument shows that:

(9) ∀p ∈ T ′ (p is not good in Lγ0 −→
∀n ∈ ω(There is a winning strategy for I in G(Ẽpn;T ′p) which is Σω(Lγ1)-definable)V ).

We suppose the overall Lemma 3 false and obtain a contradiction by building a strat-
egy σ for I for the game G(A;T ′) which is definable over Lγ1 and winning in V .

We define the function s : H × ω −→ Lγ1+1 defined by: s(p, n) = Lγ1+1-least
winning strategy for I in G(Ẽpn;T ′p). By (9) this function is well defined, and total, on
H × ω and moreover is definable over the least admissible set containing Lγ1 , H, T

′.
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Let σ0 = s(∅, 0). Then σ0 is a winning strategy for I in G(Ẽ0;T ′). σ agrees with σ0

until a first, if such occurs, position p0 is reached with dT ′p0e ⊆ D0 but p0 /∈ H . If so,
then we use the strategy σ1 = s(p0, 1) for I inG(Ẽp01 ;T ′p0). σ now agrees with σ1until,
if ever, a position p2 is reached with dT ′p1e ⊆ D1 but p1 is not good. The play continues
using σ2 = s(p2, 2). If q =

⋃
n∈ω pn is a non-terminal position, we let σ take some

arbitrary but canonical choice on positions extending q. The strategy σ is then definable
by a simple recursion involving s,H, T ′.

(10) If x ∈ V is any play consistent with σ then x ∈ A.

Proof: Suppose firstly we have that for some n pn ⊆ x is undefined. This implies
that there is no initial position p ⊆ x with (a) pn−1 ⊆ p (if n > 0); (b) dT ′pe ⊆ Dn,
and (c) p /∈ H . On the other hand, if all the pn are defined, then we shall have that
x ∈

⋂
n∈ωDn ⊆ B ⊆ A. Either way we have shown that any play x ∈ V arising from

following the strategy σ lies in A ∩ [T ′]. QED(10)

However T ′ is defined over Lγ0 to be II ’s non-losing quasi-strategy in G(A;T ) and
at (1) it was shown that T ′ had this property in V . This contradicts (10)! This finishes
the proof of the Lemma 3. QED Lemma 3

The proof of the theorem now follows Martin [14] pretty much verbatim but again
paying attention to definability issues. We repeatedly apply the Lemma with A =⋃
n∈ω An and each An ∈ Π0

2, acting in turn as an instance of B in the Lemma. This is a
Σ2-recursion defining a strategy τ for II over Lγ0 since all the relevant quasi-strategies
given by the Lemma lie in this model. These details now follow.

One applies the lemma with B = A0 obtaining a quasi-strategy for II : T ∗(∅).
By Σ2-reflection the L-least such lies in Lγ0 , and we shall assume that T ∗(∅) refers
to it. For any position p1 ∈ T with lh(p1) = 1, let τ(p1) be some arbitrary but fixed
move in T ′(∅), II ’s non-losing quasi-strategy for the gameG(A, T ∗(∅)). The relation
“p ∈ T ′(∅)” is ΠLγ0

1 ({T ∗(∅)}) and hence “y = T ′(∅)” ∈ ∆Lγ0
2 ({T ∗(∅)}) and thus

T ′(∅) also lies in Lγ0 . For definiteness we let τ(p1) be the numerically least move. For
any play, p2 say, of length 2 consistent with the above definition of τ so far, we apply
the lemma again with B = A1 and with (T ∗(∅))p2 replacing T . This yields a quasi-
strategy for II , call it T ∗(p2), which is definable in a Σ2 way over Lγ0 , in the parameter
(T ∗(∅))p2 . Let T ′(p2) ∈ Lγ0 be II ’s non-losing quasi-strategy for G(A, T ∗(p2)), this
time with “y = T ′(p2)” ∈ ∆Lγ0

2 ({T ∗(p2)}). Again for p3 ∈ T ∗(p2) any position of
length 3, let τ(p3)be some arbitrary but fixed move in T ′(p2). Now we consider ap-
propriate moves p4 of length 4, and reapply the lemma with B = A2 and (T ∗(p2))p4 .
Continuing in this way we obtain a strategy τ for II , so that τ �2k+1 ω, for k < ω, is
defined by a recursion that is ΣLγ02 ({T}). As Lγ0 |= Σ2-KP, we have that τ ∈ Lγ0 . If
x is any play consistent with τ , then for every n, by the defining properties of T ∗(p2n)
given by the relevant application of the lemma, x ∈ dT ∗(x � 2n)e ⊆ ¬An. Hence
x /∈ A, and τ is a winning strategy for II as required. QED(Theorem 5)
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Since γ0 is Σ2-extendible, it is a model of Σ2-KP. Since the existence of such a γ0

was established in KP +Σ2-Comprehension, the last theorem establishes Theorem 1 of
the abstract.

We can reduce our assumptions an epsilon as infinitely many admissibles beyond γ1

are not needed:

COROLLARY 4. Let A ∈ Σ0
3. Suppose T is a suitable game tree for A; then if

(γ0, γ1) is the lexicographic least pair, so that setting γ2 to be the third admissible
ordinal above γ1 we have: γ0 < γ1 < γ2; with T ∈ Lγ0 ; Lγ0 ≺Σ2 Lγ1 and Lγ0 ≺Σ1

Lγ2 , then Lγ0 |=“G(A, T ) is determined”.

Proof: That V = Lγ2 |= KPI0 was only used on the penultimate line of the proof
of Lemma 3, to reason that T ′ as defined in Lγ0 as II ’s non-losing quasi-strategy in
G(A, T ) was still this in V . Let γ+

1 denote the next admissible above γ1. However all
that is required at that point in the proof is that the strategies in Lγ+

1 +1, and in particular
the σ being there defined over Lγ+

1
using the function s, give no reason to eject any p

from T ′ when defining it afresh in V . This can be ascertained definably over Lγ++
1

the
next admissible set containing Lγ+

1
. hence infinitely many more admissibles in V are

not required. QED
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