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Scientific Experiments.

• This led Turing to a rediscovery of the Central Limit Theorem in Feb.
1934.

• However this had already been proven in a similar form by Lindeberg in
1922.
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PHILIP HALL



First start in group theory1

1Equivalence of left and right almost periodicity” J. of the London Math. Society,10, 1935.



Max Newman



Hilbert’s grave



Hilbert’s program and the Entscheidungsproblem.

• (I Completeness) His dictum concerning the belief that any mathematical
problem was in principle solvable, can be restated as the belief that
mathematics was complete: that is, given any properly formulated
mathematical proposition P, either a proof of P could be found, or a disproof.

• (II Consistency) the question of consistency: given a set of axioms for, say,
arithmetic, such as the Dedekind-Peano axioms,PA, could it be shown that
no proof of a contradiction can possibly arise? Hilbert stringently wanted a
proof of consistency that was finitary, that made no appeal to infinite objects
or methods.

• (III Decidability - the Entscheidungsproblem) Could there be a finitary
process or algorithm that would decide for any such P whether it was
derivable from axioms or not?

• There was both hope (from the Göttingen group) that the
Entscheidungsproblem was soluble . . .
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Skepticism

. . . and from others that it was not:

• Hardy: “There is of course no such theorem [that there is a positive
solution to the Entscheidungsproblem holds] and this is very fortunate, since
if there were we should have a mechanical set of rules for the solution of all
mathematical problems, and our activities as mathematicians would come to
an end.”2

• von Neumann: “ When undecidability fails, then mathematics as it is
understood today ceases to exist; in its place there would be an absolutely
mechanical prescription with whose help one could decide whether any
given sentence is provable or not.”3

2“Mathematical Proof” , Mind, 1929.
3“Zur Hilbertsche Beweistheorie”, Math. Z., 1927.
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Gödel and Incompleteness

Theorem (Gödel-Rosser First Incompleteness Theorem - 1931)
For any theory T containing a moderate amount of arithmetical strength,
with T having an effectively given list of axioms, then:
if T is consistent, then it is incomplete, that is for some proposition neither
T ` P nor T ` ¬P.

Theorem (Gödel’s Second Incompleteness Theorem - 1931)
For any consistent T as above, containing the axioms of PA, the statement
that ‘T is consistent’ (when formalised as ‘ConT ’) is an unprovable sentence.
Symbolically: T 6 `ConT .
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Church and the λ-calculus

A. CHURCH

• The λ-calculus - a strict formalism for writing out terms defining a class of
functions from base functions and an induction scheme.



S.C.KLEENE

• They used the term “effectively calculable functions”: the class of
functions that could be calculated in the informal sense of effective
procedure or algorithm.



1934 - Princeton

• Church’s Thesis (1934 - First version, unpublished) The effectively
calculable functions coincide with the λ-definable functions.

Gödel: “thoroughly unsatisfactory”.
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The switch to Herbrand-Gödel general recursive functions

• Gödel introduced the Herbrand-Gödel general recursive functions (1934).

Kleene:
“I myself, perhaps unduly influenced by rather chilly receptions from
audiences around 1933—35 to disquisitions on –λ-definability, chose, after
[Herbrand-Gödel] general recursiveness had appeared, to put my work in
that format. . . . ”



Preliminary solutions to the Entscheidungsproblem

• By 1935 Church could show that there was no λ formula ”A conv B” iff A
and B were convertible to each other within the λ-calculus.

•Moreover, the λ definable functions were co-extensive with the general
recursive functions.

• There was therefore a problem in number theory that could not be solved
using general recursive functions. This was published by Church 4

Another thesis was formulated:

• Church’s Thesis (1936 - second version) The effectively calculable
functions coincide with the [H-G] general recursive functions.

Gödel: he remained unconvinced.

4“An Unsolvable problem of elementary number theory”, 58, J. of AMS 1936
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On Computable Numbers



Turing’s Analysis: Section 1



“. . . these operations include all those which are used in the
computation of a number.”



Section 2

“ If at any each stage the motion of the machine is completely
determined by the configuration, we shall call the machine an
“automatic” or a-machine.”

“For some purposes we may use machines whose motion is only
partly determined. When such a machine reaches one of these
ambiguous configurations, it cannot go on until some arbitrary
choice has been made ...”
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Section 9 “The extent of the computable numbers”

• A complete analysis of human computation in terms of finiteness of the
human acts of calculation broken-down into discrete, simple, and locally
determined steps.

• It is important to see that this analysis should be taken prior to the
machine’s description. He had asked:

“What are the possible processes which can be carried out in
computing a real number” [My emphasis].

Turing’s Thesis: Anything that is humanly calculable is computable by
a Turing machine.

• According to Gandy5 Turing has in fact proved a theorem albeit one with
unusual subject matter.

5“The confluence of ideas in 1936”, in “The Universal Turing Machine”, Ed R. Herkel, OUP,
1988.
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What did Turing achieve - besides specifying a universal
machine?

• Turing provides a philosophical paradigm when defining “effectively
calculable.”

• He also makes completely precise what is a ‘formal system’.

• It is because of T’s analysis that we can assert statements such as
“Hilbert’s 10th problem is an undecidable”.

In the final 4 pages he gives his solution to the Entscheidungsproblem. He
proves that there is no machine that will decide of any formula ϕ of the
predicate calculus whether it is derivable or not.
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Gödel again:6

“When I first published my paper about undecidable
propositions the result could not be pronounced in this generality,
because for the notions of mechanical procedure and of formal
system no mathematically satisfactory definition had been given at
that time. . . . The essential point is to define what a procedure is.”

“That this really is the correct definition of mechanical
computability was established beyond any doubt by Turing.”

6From a Lecture in the Nachlass Vol III, p166-168.
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Turing’s “Ordinal logics”



Turing’s “Ordinal logics”

Let T0 be PA;

T1 : T0 + Con(T0)

where “Con(T0)” some expression arising from the Incompleteness
Theorems expressing that “T0 is a consistent system”

Tk+1 : Tk + Con(Tk) for k < ω , and then:

Tω =
⋃

k<ω

Tk.

Presumably we may continue:

Tω+1 = Tω + Con(Tω) etc.
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Ordinal logic continued

Question: Can it be that for any arithmetical problem A there might be an
ordinal α so that Tα proves A or ¬A?

• Let ϕ0(v0) define the set of gödel code numbers n of instances of the
axiom set T0 = PA.

• Then set
ϕk+1(n)←→ ϕk(n) ∨ n = Con(ϕk)

where Con(ϕk) expresses in a Gödelian fashion the consistency of the
axiom set defined by ϕk.

• But ϕω ??
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Notations

• The problem can be solved really only with numerical notations for
ordinals.

• The set of notations O ⊂ N is essentially a tree order with

n <O m↔ |n| < |m|.

• If n is the immediate <O predecessor of m, then Tm = Tn + Con(ϕn).

• If m ∈ O and |m| a limit ordinal given by a total TM {e} then

Tm =
⋃

k

T{e}(k).

(But we end up needing to assign theories Tb for all numbers b.)



Theorem (Turing’s Completeness Theorem)
There is an assignment ψ → b(ψ) so that for any true ∀ sentence of
arithmetic, ψ, b = b(ψ) ∈ O with |b| = ω + 1, so that Tb ` ψ.

Thus we may for any true ψ find a path through O of length ω + 1,

T = T0,T1, . . . ,Tω+1 = Tb

with Tb ` ψ.

• There is a trick here: what one does is construct for any ∀ sentence ψ an
extension Tb(ψ) proving ψ
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Then:

if ψ is true we deduce that b ∈ O (and is a notation for ω + 1) with Tb(ψ) a
consistency extension proving ψ.

if ψ is false Tb(ψ) is inconsistent.

• In general it is harder to answer ?b ∈ O? than the original ∀ question, and
so we have gained no new arithmetical knowledge.
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“This is only a foretaste of what is to come, and only the shadow of what is
going to be. We have to have some experience with the machine before we
really know its capabilities. It may take years before we settle down to the
new possibilities, but I do not see why it should not enter any of the fields
normally covered by the human intellect and eventually compete on equal
terms.” (Press Interview with The Times June 1949)



Robin Gandy

In Memoriam: Robin Gandy 1919 - 1995


