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e We have no need to ‘perceive’ in a Godelian sense, or otherwise ‘locate’
any mathematical objects in order to understand and communicate that
understanding of the concepts involved.

o Thus instantiation of our concepts is not necessary, but what is needed is
uniqueness of the concept up to isomorphism.
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o We seek to extend arguments of Martin’s along the above lines which he
advocated for the ‘concept of w-sequence’ and the ‘concept of set of x’s’ to a
‘concept of set with absolute infinities’.

(I
e We then formulate within this framework reflection principles that
establish large cardinals beyond those consistent with Godel’s L.



(I) Conceptualism: Sets and Classes

e Martin! has questioned the level of realism that Godel, although on
occasion expressing this with talk of ‘perception of mathematical objects’
etc. , needs in order to make some of his arguments, e.g. , of the analyticity
of mathematical truths work.

e Martin identifies two kinds of sense to ‘concept of set’. (i) That more
nearly akin to pure platonism - the whatever it is that falls under the
extension of ‘concept of set (of x’s)’ - that is sets (of x’s), and

(i1) a more general sense of ‘concept of set’ under which falls concepts of
sets, or ‘set-structures’.

L“Gédel’s Conceptual Realism”, BSL, 2005.



Martin: concepts of sets

My sense differs from the straightforward sense in that
instances of a concept of set in the straightforward sense - the
objects that fall under the concept - are sets (or, at least, what the
concepts are count as sets). The instances of a concept of set in my
sense are not sets. There are two versions of my sense. In one
version the instances are concepts: straightforward-sense
concepts of set. In the other version the instances might be
described as set structures or universes of sets.
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objects that fall under the concept - are sets (or, at least, what the
concepts are count as sets). The instances of a concept of set in my
sense are not sets. There are two versions of my sense. In one
version the instances are concepts: straightforward-sense
concepts of set. In the other version the instances might be
described as set structures or universes of sets.

It is this final ‘other version’ that I shall want to mostly take here.



However first:
A concept of set expressed by axioms such as comprehension
axioms cannot put any constraint on which objects count as sets
and which do not. Such axioms put constraints on the isomorphic
type of set theoretic structure . .. a concept of set could count as
concept of set in my [indirect] sense even if it determined
completely what objects count as sets and what counts as the
membership relation. A concept of this sort would have at most
one instance: it would allow at most one structure to count as a
set-theoretic universe . ..
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o Instantiation is not needed either in mathematics or in set theory. Hence:

e This is closer to a structuralist viewpoint.



Basic concepts and their properties

He? discusses in the following terms the concept of an w-sequence and the
concept of set.
identifies three properties a basic concept may have:

(1) First order completeness: the concept determines truth values for all first
order statements.

(i) Full determinateness: the concept fully determines what any instantiation
would be like.

(iii) Categoricity.

2 «Completeness or Incompleteness of Basic Mathematical Concepts”, EFI Workshop
Papers,2012
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Basic concepts and their properties

He? discusses in the following terms the concept of an w-sequence and the
concept of set.
identifies three properties a basic concept may have:

(1) First order completeness: the concept determines truth values for all first
order statements.

(i) Full determinateness: the concept fully determines what any instantiation
would be like.

(iii) Categoricity.

o For the w-sequence case he asserts that the concept of natural number
yields IPA: Informal Peano Axioms, (not in the usual 1st order sense) which
in turn yields categoricity of IN.

I believe that full determinateness of the concept [ of w-sequence]
is the only legitimate justification for the assertion that the concept
is instantiate or that natural numbers exist.

2 «Completeness or Incompleteness of Basic Mathematical Concepts”, EFI Workshop
Papers,2012



The concept of set

The modern iterative concept has four important components:
(1) concept of natural number

(2) concept of ‘set of x’s’
(3) concept of transfinite iteration

(4) concept of absolute infinity.



Informal Comprehension

e Which informal axioms are implied by the concept of set?
(1) If @ and b have the same members, then a = b. (Extensionality)

(ii) For any property P, there is a set whose members are those x’s that have
P (Informal Comprehension).



Theorem

(Essentially Zermelo) Informal Axioms (i) and (ii) are categorical: if

(V1, €1), (U, €2) are two structures satisfying (i) and (ii) with the same
x’s, then with each set b €, %0, we associate a w(b) €, V.

Proof: Let P be the property of being an x such that x €; b. By the Informal
Comprehension Scheme there is a ¢ €, U, such that

Vx[x € ¢ ¢ P(x)] Q.E.D.



o Similarly for any two U, = (V}, €;), B, = (V,, €,) obtained by iterating
the V,, function throughout all the absolute infinity of ordinals, we have an
isomorphism

T (V1,€1) = (Vz,Ez)
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We shall want to apply this treatment to any absolute infinity not just On.



(IT) Absolute Infinities

e We take a naive, pre-theoretic Cantorian stance on absolute infinities.

o We take a view that absolute infinities are parts of V rather than some
dramatically new entity or object. As such they are necessary to our iterative
concept of set (where the modality is logical necessity).

e V is then the universe of mathematical discourse, but the absolute infinities
are not mathematical or formal set theoretical structures.
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e We take a naive, pre-theoretic Cantorian stance on absolute infinities.

o We take a view that absolute infinities are parts of V rather than some
dramatically new entity or object. As such they are necessary to our iterative
concept of set (where the modality is logical necessity).

e V is then the universe of mathematical discourse, but the absolute infinities
are not mathematical or formal set theoretical structures.

Let C denote the collection of the parts of the domain of the universe 3.
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(1)
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VX3YVxyz((x,y,2) € X <> (z,x,y) € Y)

VX3YVxyz((x,y,2) € X <> (x,z,y) € Y).

When talking more formally about a structure with its parts as a predicate
such as U = (V,C, €) we are thinking of a two sorted language £ with
variables x,y, z,... forsetsin V,and X, Y, Z, ... for the parts in C, and no
quantification over the latter.

e We conclude: U = (V,C, €) satisfies the NBG axioms.



Isomorphism again

Theorem

If we have two structures of sets 0; = (V;, €;) (i = 1,2) satisfying (i) and
(ii) above, with collections of parts C;, we may define an isomorphism

7w (Vi,€1) = (Va, €2) as before. m then extends to an isomorphism:

7w (V,C1, €1) 2 (Vp,Ca, E).



(IIT) Reflection

We let LT be the usual first order language, augmented with second order
variables X1, X5, . . . but no second order quantification. The X; are
interpreted as ranging over the parts in C.

Formula-by-formula reflection now is unexceptional: Fix an i < w: then for
any ¢ € 3
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Formula-by-formula reflection now is unexceptional: Fix an i < w: then for
any ¢ € 3
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Or the whole existential part of £7:
Vi, € VWX, € C¥a3f > aVyp € 3,

o —
(P()_C'i,Xj)(V’C’e) o (p()‘c‘i’Xj N VB))(VﬁyvﬁJrhE).
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GRP - a Global Reflection Principle

We take the whole (V,C, €) and reflect it down to some initial segment.

We assert the explicit existence of a connection, or reflecting map j as
follows:

Vadg > Ozﬂj@ : (Vg7 V5+1, S ) —r, (V,C, E) (GRP)
where j | Vs =id | Vg, and the elementarity is ¥ in the language £F.

1) Notice that jg(3) = On where (3 is a ‘part’ of Vg and so is in V54, and
similarly On € C.

2) More generally for X € Vg jg(X) =X N Vp.

3) Crucially dom(jz) D Vay1 D P(5).



Theorem
(GRPy) = There is an absolute infinity of measurable Woodin cardinals.

Together with the work of Martin & Steel®, and Woodin*, we have:
Corollary

(GRP,) = Projective Determinacy, AD*®), and no statement of analysis
can be forced to change its truth value by Cohen style set forcing.

3A Proof of Projective Determinacy, J. of the AMS,2, 1989
4¢f. The Axiom of Determinacy, Forcing Axioms and the Non-stationary Ideal



Principles at a threshold

A comment here:

Such principles seem to sit at a watershed between those weaker large
cardinals and those that imply there are £-elementary embeddings

j 'V — M with critical point some « so that j(k™) > supj“s™. (All
weaker large cardinals have equality here.)



