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GAMES FOR TRUTH

P. D. WELCH

Die Wahrheit liegt weder in der unendlichen Annährung an einer objektiv Gegebenes

noch in der Mitte, sondern rundherum wie ein Sack, der mit jeder neuen Meinung,

die man hineinstopft, seine Form ändert, aber immer fester wird.

R. Musil

Abstract. We represent truth sets for a variety of the well known semantic theories of truth

as those sets consisting of all sentences for which a player has a winning strategy in an infinite

two person game. The classifications of the games considered here are simple, those over the

natural model of arithmetic being all within the arithmetical class of Σ03.

§1. Introduction. These remarks examine the possibilities for representing
the various commonly proposed solutions to the paradox of the liar, as
games between players. We are dealing here with semantical solutions or
approaches to those paradoxes. The most well known of those is due to
Kripke [10]. In that paper he suggested building up values to a partially
defined truth predicate, using (amongst other suggested methods) the three
valued Strong Kleene truth tables. The monotonicity of the procedure
implied that starting from the empty set the least fixed point set could be
built up as an extension of the partially defined truth predicate, interpreted
over some countable modelM. Thus, if we let the language of the model
be L = LM, we may extend it to the language L

+ by adding a predicate
symbol Ṫ which is then partially interpreted as T = (T+, T−), yielding an
extension T+ of true sentences and a so-called anti-extension T− of false
sentences. We then give, iteratively, successive progressive extensions Tα =
(T+,α , T

−
α ) each containing all previous ones. A fixed point T

∞ = (T+∞, T
−
∞)

must then be reached when no further applications of the truth table rules
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add any further sentences of the language L+ to the extension or anti-
extension. (See Burgess [1] or the monograph of McGee [12] for a complete
description.) This monotone operation results in complete inductive sets of
sentences via the use of any of the Kleene schemes and of (variations on) the
supervaluation jump operator when starting with the standard model of the
natural numbers N asM.
At a similar period to Kripke, Hans Herzberger produced in [6, 7] a con-
struction for studying the behaviour of diagonal liar, or liar-like, sentences
that involved atotally interpreted truth predicate Ṫ , but where the iterative
stages did not build up any truth set in an accumulative fashion, but revised
the extension at stage Tα into a new extension at Tα+1. The intention was to
provide a tool for the analysis of sentence behaviour along such a sequence
of revisions. (Herzberger explained in the opening of [6] that he was not
thinking of providing a full-blown theory of truth with these mechanisms,
but intended them as diagnostic tools.) We might then start with an ‘empty’
or null assignment to the predicate at the initial stage: T0 = ∅, correspond-
ing in fact to assigning false to all sentences of L+; ‘iterate’ by applying
the standard Tarskian truths, and obtaining a sequence of predicates in this
fashion. Thus ó is in Tα+1 if and only if 〈M, Tα〉 |= ó; the procedure was
supposed to be carried through at limit stages by using a truth-parsimonious
‘liminf’ rule where by for limit ordinals ë:

Të = Liminfα→ë Tα =df
⋃

â<ë

⋂

â<α<ë

Tα.

The revision semantics then discusses three kinds of sentences: those ó
that are stably true (stably false)—meaning that ∃α∀â(α < â −→ ó ∈ Tâ)
(∃α∀â(α < â −→ ó /∈ Tâ) respectively) and those that are paradoxical
namely ∀α∃â(α < â ∧ó ∈ Tâ+1\Tâ). As is easily argued there is a “stability
point”: a countable ordinal æ = æ(M) so that ó ∈ Tæ ←→ ó is stably true;
and hence a stability set T∞ = Tæ .
One may try to understand these processes through different means. One
may try and axiomatise a theory dealing with a truth predicate to attempt
to capture the semantic intention. The theory KF of Feferman is an ax-
iomatisation of Kripke’s strong Kleenean scheme. (See again [12]). The
naturalness of the axiom set gives a successful description or fit to Kripke’s
original semantical theory. (However Halbach and Horsten have recently
argued that since the Kripkean theory is one of partial interpretation of a
Ṫ -predicate, then this should be better performed in a partial logic which
they do in [5]. KF was originally developed in a classical framework). In [2]
Cantini develops a theory which he calls VF to try and axiomatise a Krip-
kean approach using supervaluations. He has also asked whether there is any
axiomatisation possible for the stable truth set T∞ arising fromHerzberger’s
theory. We are somewhat doubtful of the possibilities for this here. Part of
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this doubt comes from the mathematics, and derives firstly from the strength
of the statement that any revision sequence stabilizes (this requires a not in-
substantial piece of second order number theory to establish), and secondly
from the reflecting properties of the particular level of the Gödel hierarchy
where the stability set occurs. The more serious doubt is philosophical, and
comes from the lack of any motivation based in truth-theoretic principles
for the choice of this (or any other current) limit rule. We turn to this issue
in the final Section.
However a second means to try and understand the various semantical
approaches is through the medium of games, meaning the notion of two
person perfect information (Gale–Stewart) games. These games are a familiar
tool to descriptive set theorists. Martin has shown [11, p. 417] how to
illuminatingly represent the StrongKleene fixedpoint over a countablemodel
as the set of sentences for which a player has a strategy in an open game. He
shows:

A Kleenean fixed point game (Martin). There is a game Gϕ for the least
fixed point T∞ = (T

+
∞, T

−
∞) of the strong Kleenean scheme so thatPlayer I has

a winning strategy inGϕ if and only ifϕ ∈ T
+
∞; Player II has a winning strategy

if and only if ϕ ∈ T−
∞; such winning strategies, if they exist, result in games of

finite length; if neither player has a winning strategy, then, ϕ /∈ T+∞ ∪T
−
∞, and

play may continue for infinitely many steps; neither player wins the game and
thus it can be declared a draw.
The appeal of these games is partly that the moves in the game reflect the
compositionality inherent in the Strong Kleene Truth Tables and hence ulti-
mately in the fixed points that arise. They thus allow a new epistemological
slant on the semantically defined fixed point.
The task here is to provide games for the supervaluational fixed point
theory (which we define below but for further discussion see [12]), but prin-
cipally for the stable theory of a Herzberger sequence (whose definition we
gave above).
We have not seen a similar account of a game devised specially for su-
pervaluation fixed points—although such is certainly possible on general
grounds, as the least supervaluational fixed point over N is a complete Π11-
set, and as such is representable by an open game formula (by a result of
Svenonius forM = N, and by Moschovakis [14] for more general countable
acceptable structures). Such games may well be known to others. They
can not be expected to be “compositional” in the same way as for Strong
Kleene, given the non-compositional nature of the supervaluation process.
The formulation of the game here is thus more redolent of this process which
involves looking at all possible ‘completions’ of the theory’s extension built
so far.
In the third section, we give a game, G svϕ , mirroring the statement above
for Martin’s game in terms of players’ winning strategies and sentences
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in the fixed point. A variation on this game is shown to give a similar
characterisation of the grounded dependency fixed point of Leitgeb [8].
In Section 4 we address the main problem here of providing a game rep-
resentation of the Herzberger stability set. Such games can no longer be
represented as open games, (where winning runs of play for either of the
players are given by an ∃ formula, or Σ01 in the arithmetical hierarchy if we
are consideringM as the standard model of arithmetic); we discuss the mat-
ter further there, but on general grounds the payoff sets for such games can
not be even ∃∀, although they are ∃∀∃. In terms of the usual Levy hierarchy
of first order formulae, these are thus best possible results. Unlike the other
games discussed here, play is not effectively over after a finite number of
moves if one of the players has a winning strategy: play must in general
continue for infinitely many moves whether there is a winner or it is a draw.
We have then a further way of looking at, or measuring, the size/complexity
of the most basic sequence, the null sequence of the Herzbergerian revision
theory: it is at the level of that of determinacy of Σ03 games. That is lucky:
determinacy for such games is at least provable in second order number
theory. Had it been Σ04 then such determinacy is not provable in full second
order number theory (by results of Friedman [4] and Martin). It should
be stressed that the game given in detail here, although stated in terms ap-
propriate to Herzberger sequences, has variants for certain quasi-inductive
definitions over appropriate countable ground models M. The pertinant
feature is the stabilisation of values by a liminf rule (together with a certain
“universality” of the inductive process). In particular it can be adapted for
the notion of ultimate truth of Field [3]. There a three valued semantics is
given using a model also constructed by such a quasi-induction (albeit not
an arithmetical one). We comment on this game below at Remark 3.
The final section also makes some remarks, and tries to draw some con-
clusions, about the possibility of finding open game representations of Tæ in
a logic with generalised quantifiers, which, speculatively, could be germane
to an axiomatisation of either of the theories of Herzberger or Field.

§2. A Kleenean fixed point game. Given a countable first order structure
M with a suitable first order language LM, we may extend the language to
L+ to contain an additional unary predicate symbol Ṫ . We shall assume
that every element u of the domain ofM has a name u̇ in the language LM.
In L+ consider the least fixed point of the strong Kleene three valued logic
built up from the empty extension for Ṫ : starting with T0 = (T

+
0 , T

−
0 ) with

both T
+/−
0 = ∅ this least fixed point T∞ = (T

+
∞, T

−
∞) is thought of as built

up in ordinals stages Tα = (T
+
α , T

−
α )

We describe the game due to Martin [11] that produces forM, a repre-
sentation of those sets of sentences that are true or false inM with the fixed
point partially interpreting Ṫ . Let ϕ be a sentence of L+. Players I and II
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then make moves which simply add a single sentence from L+ to a list. Play
does not strictly alternate between players with every move, but the player
currently listing elements from the language continues to do so, until the
rules below oblige them to halt and the other player to take over.
The Rules are as follows: Player I starts and the first move must be the
sentence ϕ.
If Player J (where J is one of I , II) in the last move added ô to the list,
then, depending on ô, the Rules stipulate if:

ô = (÷ ∨ø) then in the next move J moves again, playing either ÷
or ø; or if
ô = ∃vø(v) then in the next move J moves again, and must play
ø[v\ḃ] for some constant ḃ in the language LM; or if
ô = ¬ø then in the next move the other player must play ø; or if

ô = Ṫ (pøq) then in the next move J must play ø; or if
ô is some atomic sentence, then play halts.

The Winning Condition if this final case occurs, is that J wins if ô is true
inM. If not the other player wins. However if this final case does not occur
then the play will continue for infinitely many moves, and then the game is
declared a draw.
Notice that play only swaps to the other player if a negation is played.
It is not hard to see that the rules conform to the entries in the Strong
Kleene truth tables, and thus the game fulfils its task. Martin also points
out some variations on the winning conditions, that allow one to have a
theory similar in spirit to Yablo’s theory of [17]. The very simple nature of
these games, reflecting as they do the structure of the logic, makes a very
attractive characterisation of this minimal fixed point. We shall see that even
for the least supervaluational fixed point, although the complexity of such
(in analytical terms) is the same as that for the Strong Kleene fixed point,
the game itself requires a more substantial description.

§3. A supervaluational fixed point game. Again letϕ ∈ L+ for some count-
able model M with L+ just as above. For ease of exposition we assume
thatM contains a name póq for each sentence ó ∈ L+.
There is a game G svϕ for the least fixed point T∞ = (T

+
∞, T

−
∞) of the super-

valuational scheme so thatPlayer I has a winning strategy in G svϕ if and only if

ϕ ∈ T+∞; Player II has a winning strategy if and only if ϕ ∈ T
−
∞; such winning

strategies, if they exist, result in games of finite length; if neither player has
a winning strategy, then, ϕ /∈ T+∞ ∪ T

−
∞, and play may continue for infinitely

many steps, and then the game is declared a draw.
We shall first define a simpler two person perfect information game G+ϕ
played between Player I who we shall enliven with the name Ulrich, and
Player II, whom we shall call Agathe, now moving in strict rounds, the k’th
round will consist of the plays ik , mk respectively from L

+. This game will
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provide one half of the above game G svϕ . (It is simpler, and less cluttered
with notation, to slice the game up into two halves and prove the requisite
Lemma 1 below for this; then the gameG svϕ can be assembled from the game

G+ϕ and an easily understood dual game.)
Before giving a more formal definition, we give the original motivation
for G+ϕ .
If she plays well in the game, Agathe is attempting to play a sequence Σ
of sentences (m0 = ¬ϕ,m1, . . . ) of the language L

+ such that, if Ψ is the
extension of Ṫ so listed, (i.e., Ψ = {póq|∃i mi = “póq ∈ Ṫ” }) then Σ is the
complete L+-theory of 〈M,Ψ〉.
We arrange this as follows: we may think of the game as a series of queries
by Ulrich as to whether sentencesmk = í are, or are not, in the Σ that she is
constructing (including of course the sentences as to whether “póq ∈ Ṫ”);
Agathe will be giving, in effect, yes or no answers to these queries, when
she responds by agreeing with, or contradicting each of his regular moves
in turn; this, sometimes together with some additional information. During
the course of the gameUlrichmay issue a challenge to Agathe’s earlier replies
about the extension of her Ψ. He may either attempt to point out that her
extension Σ is inconsistent, or he may directly challenge an assertion by
Agathe that some ó is, or is not, in Ψ. In this latter case, the emphasis of
the game G+ϕ is shifted and a subgame G

+
ó is initiated.

Now a more formal description:

Ulrich I: i0 i1 . . .
Agathe II: m0 m1 . . .

Rules for II in G+ϕ : Each mj must be a sentence from L
+; m0 must

be ¬ϕ.
Rules for I in G+ϕ : Each move ij must be one of three types: either a

sentence from L+ or a finite list of sentences from L+ or a pair (Flag, ó)
where Flag is any object not in L+, and ó is a sentence of L+. The
initial move i0 must be the pair (Flag, ϕ).

This completes the rules for moves in the game. If a Rule is broken the
game halts immediately, and the player breaking the rule loses. We shall refer
to the three types of move of I as being either a regular move, a consistency
challenge, or a game challenge. (Thus the initial move i0 is a game challenge,
and initates the whole game. It is of this peculiar form just for convenience,
so that the whole game resembles later parts that are similarly initiated by
later game challenges.)

Winning Conditions for the game at round k: We may assume then no one
has broken a Rule at any previous round.

Winning Conditions for Player I at Round k: (i) Suppose Player I plays a
regular move “ik”. If ik is a sentence ó not of the form ∃viø(vi) ofL

+ and if
Player II’s reply movemk is neither “ó” nor “¬ó” then II loses immediately.
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If however, ó is of the form ∃viø(vi) and mk is not of the form ø[ḃ] nor of
the form ¬ó, then again II loses immediately.
(This can be interpreted as II asserting “yes, ó ∈ Σ” or, “no, ¬ó ∈ Σ” de-
pending on the responsemk she plays. If howeveró is of the form“∃v0ø(v0)”
and she wishes to answer “yes”, then she must also choose some object
b ∈M to witness this, and play “ø[ḃ]”.)
(ii) If ik = ó is an atomic sentence of LM, then her answering move mk
of ó or ¬ó must be true inM, or else she forfeits the game immediately.
(iii) Suppose player Imakes a consistency challenge to Player II by playing
ik = ~ô sentences. Suppose k

′ < k is the last round in which Ulrich issued
a game challenge (k′ is always defined but may be zero). If ~ô consists of a
correct proof of a contradiction using only as hypotheses moves that II has
played since (and including) round k′ then he wins outright.
(iv) Suppose he makes a game challenge ik = (Flag, ó). If II responds
with mk different from ¬ó then again he wins immediately.

This completes the winning conditions for I at a round k.

Winning Conditions for II at round k: Either Ulrich makes a consistency
challenge at round k which fails to prove Agathe’s moves since the last game
challenge are inconsistent or he makes an improper game challenge. These
are of the form ik = (Flag, ó) (respectively (Flag,¬ó)) where Agathe has
not played póq /∈ Ṫ (respectively póq ∈ Ṫ ) since the last game challenge.
In either case as soon as Ulrich makes a failing challenge of either of these
types, the game is over with Agathe declared the winner.
This completes the ways a game is won at a finite round. If the game
continues for infinitely many moves then II, Agathe, wins.

We explain the game challenge moves which are those of the form ik =
(Flag, ó) (for k > 0). If Ulrich makes a proper game challenge, then the
game does not yet terminate with a winner, but continues just as if ik was
the first play in a game defined in exactly the same way as G+ϕ but with the

original ϕ instead replaced by ó, if “póq /∈ Ṫ ” was the earlier play of II
challenged, and replaced by ¬ó if it was “póq ∈ Ṫ ” that was challenged.
We may imagine that play in G+ϕ concentrating on ϕ is abandoned, and

instead play starts afresh in G+ó (or in G
+
¬ó if “ póq ∈ Ṫ ” was the sentence

challenged). It should be noted that consistency challenges by I can only
be made up from hypotheses that II has made since the last game challenge.
Hence themoves of II prior to the last game challenge are no longer relevant,
and we may indeed think of the initial part of the run of play up to the last
game challenge as being, in effect, discarded. We shall thus think, and talk
in this case (with some terminological abuse), of G+ó as a “subgame” ofG

+
ϕ ,

which Ulrich has caused to be initiated through a game challenge in the
course of playing G+ϕ , but in any case it is defined from ó (or ¬ó) just as G

+
ϕ

was defined from ϕ.
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To recapitulate: Ulrich wins G+ϕ if and only if (i) Agathe makes a mistake

on the basic rules of the game, or (ii) he makes a successful consistency
challenge to the sentences Agathe is playing. Thus, for Ulrich to win, the
overall game must be finite in length. Agathe thus wins precisely when:
either (i) Ulrich breaks a basic rule; or (ii) he makes a false accusation that
her list is inconsistent, or he makes an improper game challenge; or (iii) she
manages tomake infinitelymanymoves inG+ϕ (or one of the above subgames

G+ó ); or lastly (iv) through the whole course of play he makes infinitely many
game challenges (thus initiating infinitely many subgames).

We recall the definition of the least supervaluation fixed point (T+∞, T
−
∞),

(we ignore corner quote marks for readability).

T
+/−
0 = ∅; if Lim(ë) then T

+/−
ë =

⋃
α<ë T

+/−
α , and at successor steps one

takes:

T+α+1 =
⋂

{T : T∩T−

α =∅,T
+
α ⊆T}

{ϕ ∈ L+ | 〈M, T 〉 |= ϕ},

T−
α+1 = {¬ϕ ∈ L

+ | ϕ ∈ T+α }.

T∞=〈T
+
∞, T

−
∞〉 is then given by the leastα so that 〈T

+
α , T

−
α 〉=〈T

+
α+1, T

−
α+1〉.

The intersection defining T+α+1 is taken over all T which are said to be
compatible with 〈T+α , T

−
α 〉. (Other variants are possible here.)

Lemma 1. I has a winning strategy in G+ϕ ⇐⇒ ϕ ∈ T
+
∞ where T∞ =

〈T+∞, T
−
∞〉 is the least Kripkean supervaluation fixed point.

Proof. (⇐=) Suppose ϕ ∈ T+α0+1\T
+
α0
(we’ll say that “rk(ϕ) = α0”).

Using the nomenclature from the game motivation above, Agathe attempts
to play out a consistent Σ = Σ(ϕ), and Ψ = Ψ(ϕ), an included extension
for Ṫ , so that 〈M,Ψ〉 |= Σ. Additionally, as an example, if ϕ is of the
form ∃v0ø(v0) then for every constant ḃ in L

+, she must be ensuring that
〈M,Ψ〉 |= ¬ø[ḃ]. In every case, if she is to try and win, Ψ cannot be
compatible with (T+α0 , T

−
α0
) as ϕ ∈ T+α0+1 whilst her first movem0 asserts that

¬ϕ ∈ Σ. Hence by that incompatibility, either:

(i) For some ó1 ∈ T
+
α0
, ó1 /∈ Ψ, or:

(ii) For some ó1 ∈ T
−
α0
, ó1 ∈ Ψ.

As part of his strategy, I makes sure that he asks every possible sentence
query of the form “ô ∈ Ṫ” during his course of play. (Indeed in this way I
can ensure the completeness of the pertinent Σ of any infinite run of any
subgame. This querying by I is not an essential feature of the game: we
could instead have varied the basic rules and simply required II to list facts
true or false from a priorly fixed enumeration of all sentences.) At some
point then, for some such ó1 as above, when queried on ?ó1 ∈ Ṫ ?, (that
is when I plays “ó1 ∈ Ṫ” as ik if Case (i) (or “ó1 /∈ Ṫ” as ik if Case (ii)
respectively) holds, II plays asmk “ó1 /∈ Ṫ” (or “ó1 ∈ Ṫ” respectively). I on
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his next move can immediately call a game challenge (ik+1 = (Flag, ó1) (or
(Flag,¬ó1) respectively) in the appropriate numerology) to this statement,
and the subgame G+ó1 (or G

+
¬ó1
respectively) is initiated. The point is that

ó1 ∈ T
+
α0
(or ó1 ∈ T

−
α0
). In either case (with the obvious extension of

notation) α1 =df rk(ó1) < α0, and the subgame now being initiated is being
played on a formula of lower rank. The set Ψ(ó1) (or Ψ(¬ó1)) that II now
tries to play out is incompatible with (T+α1 , T

−
α1
), and thus at some stage in

this sub-game I may issue another game challenge on the assertion that
some “ó2 ∈ / /∈ Ṫ”, and the resulting α2 =df rk(ó2) < α1. Proceeding
in this way, as long as II does not lose through inconsistency, I eventually
challenges with some ók with rk(ók) = 0. However if ók ∈ T

+
1 then every

Ψ is compatible with (T+0 , T
−
0 ) = (∅,∅) and II in her play of G

+
ók
, simply

cannot produce an extension Ψ for Ṫ and a consistent set of sentences Σ
so that 〈M,Ψ〉 |= Σ , whilst 〈M,Ψ〉 |= ¬ók . (Note that the sets Σ being
produced, if consistent, are true in the model 〈M,Ψ〉, as we have required
that whenever “∃v0ø(v0)” is queried with affirmative response from II she
must also provide evidence of the form ø[ḃ] for some constant ḃ naming an
object in the domain ofM.) She thus will end up losing G+ók by breaking a
basic rule.
(=⇒) Suppose ϕ /∈ T+∞. We describe how Agathe can win. By hypothesis
there is Ψ = Ψ(ϕ) and with Ψ ⊇ T+∞,Ψ ∩ T

−
∞ = ∅, with 〈M,Ψ〉 |= ¬ϕ.

Whenever she is queried Agathe consults the above model and gives the
appropriate reply. She thus will not lose G+ϕ on consistency grounds, nor by

breaking any other basic rule. If she is challenged on her assertion “ó1 /∈ Ṫ”
then ó1 /∈ T

+
∞. The subgame initiated is G

+
ó1
, but as ó1 /∈ T

+
∞ she is no

worse off than before and can play just as well here using an appropriate
Ψ = Ψ(ó1), and the new model 〈M,Ψ(ó1)〉 |= ¬ó1. If she is challenged on
“ó1 ∈ Ṫ” then the subgame G

+
¬ó1
is initiated; but ¬ó1 /∈ T

+
∞, and she can

continue in the same way. Clearly she can keep this up no matter how many
challenges that Ulrich issues, and she will ultimately win. ⊣

For the full game G svϕ we double up the roles we have described: now both

players must produce sequence of sentences Σ(I ), Ψ(I ) and Σ(II), Ψ(II)
with I now trying to ensure the truth of ϕ in 〈M,Ψ(I )〉 and II as before
its falsity in 〈M,Ψ(II)〉. II now can also make appropriate queries of I ’s
sentence moves. If neither have a winning strategy, then this is because
ϕ /∈ T+∞ ∪ T

−
∞, and we have the above properties of the full game. We

wish to spare the reader the formal definition here, one can think of the
full game as being played on two boards: one for G+ó , as above, and on
the second board G+¬ó , but on this second board the roles of the players I
and II are switched. For G svϕ , play is amalgamated by having one round
played on the first board, then a round on the second, and so on, back and
forth.
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A dependency game. We now informally sketch the variant of the game
which characterises Leitgeb’s (dependency) grounded sentences

Φ∞ =
⋃

α<ùck1

Φα .

(We give but a very brief review of this notion here and refer the reader
to Leitgeb [8] for a full description). Here we set D(Ψ) to be the set of
sentences that depend on Ψ, where ϕ depends on Ψ if ∀Ψ0(〈M,Ψ0〉 |= ϕ ↔
〈M,Ψ ∩Ψ0〉 |= ϕ). It is shown that D is a monotone operator, and hence
we may define by induction Φ0 = ∅, Φα+1 = D(Φα), and taking unions at
limit ë to form Φë. The fixed point Φ∞ (which is Φùck1

, for the standard

model of arithmeticM =〈N,+,×, 0,′ , . . . 〉, and which is a complete Π11 set)
is then the set of sentences whose truth value depends on non-semantic states
of affairs.
The similarity to the notion of supervaluation scheme is apparent and
so we may form a similar game to G+ϕ above for sentences ϕ appropriate
forM. G∗

ϕ is played in a similar fashion, Agathe must produce now two
extensions Ψ0,Ψ1 and complete sets of sentences Σ0,Σ1 about the models
〈M,Ψ0〉, 〈M,Ψ1〉 respectively. (Say she attends to queries about Σ0 in even
numbered rounds, and to Σ1 on odd numbered ones). She is trying to ensure
that 〈M,Ψ0〉 |= ¬ϕ whilst 〈M,Ψ1〉 |= ϕ. Thus when queried about ϕ
must answer accordingly. The basic rules and winning conditions are the
same mutatis mutandis and I may still challenge on grounds of consistency,
with the same outcomes. If however II has earlier asserted “ó ∈ Ψ0”
and “ó /∈ Ψ1” (or vice versa) then I may issue a game challenge, and the
subgame G∗

ó is initiated (again the subgame is the same as the game: she
tries to produce two extensions Ψ0(ó),Ψ1(ó) with 〈M,Ψ0(ó)〉 |= ¬ó, whilst
〈M,Ψ1(ó)〉 |= ó). As before, if neither player messes up their basic rules,
then if the overall game lasts for infinitely many stages II wins.

Lemma 2. I has a winning strategy in G∗
ϕ ⇐⇒ ϕ ∈ Φ∞.

Proof. (⇐=) Suppose now ϕ ∈ Φα+1\Φα ; we set rk
∗(ϕ) = α. By the

definition of dependency, if 〈M,Ψ0〉 |= ¬ϕ whilst 〈M,Ψ1〉 |= ϕ, then
Ψ0 ∩Φα 6= Ψ1 ∩ Φα . Hence if II is trying to produce such Ψ0,Ψ1 for some
ó1 ∈ Φα she must answer “ó1 /∈ Ψ0” and “ó1 ∈ Ψ1” (or vice versa) when
queried by Ulrich, and the latter may now issue a challenge and the game
proceeds to the subgame G∗

ó1
. Now of course α1 =df rk

∗(ó1) < α0, and if
no one messes up their basic rules, we arrive as before at the situation of
playing in G∗

ók
where rk∗(ók) = 0. But here, as Φ0 = ∅, for every Ψ,Ψ′,

〈M,Ψ〉 |= ók ←→ 〈M,Ψ
′〉 |= ók and so Agathe will lose at this point.

(=⇒) Suppose ϕ /∈ Φ∞. Then there exists Ψ0 with 〈M,Ψ0〉 |= ϕ ←→
〈M,Ψ0 ∩ Φ∞〉 |= ¬ϕ. Let Ψ1 = Ψ0 ∩ Φ∞. She may then play out the
complete theories of the two models 〈M,Ψ0〉, 〈M,Ψ1〉. If she is challenged
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at some point on her assertions amounting to ó ∈ Ψ0\Ψ1, then even when
the subgame G∗

ó is initiated we have ó /∈ Φ∞ and she is no worse off than
before, and can continue in the same fashion using someΨ2 with 〈M,Ψ2〉 |=
ó ←→ 〈M,Ψ2 ∩ Φ∞〉 |= ¬ó. If in G

∗
ϕ (or some initiated subgame) Ulrich

makes no challenge, she can play out to the end without breaking any basic
rule.

§4. A game for Herzbergerian revision sequences. We now see how one
can formulate a game for a Herzbergerian style revision sequence. We shall
assume a further condition on our countable modelM, that it should be
acceptable in the sense of Moschovakis (this seems to be needed in order
for the proof of the technical lemma below to go through). Acceptability
is, inter alia, a requirement that we can define over the structure M an
appropriate coding scheme for finite sequences of elements from the domain
ofM. (We do not need these details here as we shall not be proving the
Lemma.) Nothing will be lost if the reader keeps in mind the standard
model N asM. In the sequel we shall assume the sentences of L+, SentL+ ,
are disjoint from N. We let 〈−,−〉 : N2 ↔ N be any fixed recursive bijection.
As outlined in the Introduction we let Tα be the extension of the Ṫ -
predicate at the α’th stage of a Herzberger Revision sequence starting out
with T0 = ∅. Then, ó is in the revised extension at stage æ = æ(M) iff ó is
stably true; similarly at such a point we have ¬ó ∈ Tæ ←→ ¬ó ∈ TOn, which
expresses that ó is stably false iff ¬ó is in the extension Tæ . Thus the overall
status of sentences in the revision sequence is mirrored precisely at this stage
æ(M). ([1] identified the ordinal æ(N) and this can be generalised.) From
æ(M) onwards thewhole process is cycling through afixed sequence of exten-
sions. The next ordinal where the extension Tæ reoccurs is called Σ = Σ(M).
The game presentation relies on the following new result on such sequences:

Lemma 3. If â < ã < Σ, then in the Herzberger revision sequence Tã * Tâ .

The proof of this is technical and indirect. In order to show this, one
first demonstrates how the whole Herzberger sequence overM up to stage ã
can be uniformly reconstructed from knowledge of the ã’th truth set Tã
alone. Moreover one must additionally show that it is possible to do this in a
sufficiently uniform manner to ensure the non-decreasing nature of the truth
sets as stated in the Lemma’s conclusion. It will appear elsewhere. Using the
above Lemma we can give the following:

The stability game. There is a game G̃Hϕ for the least stability pointT∞ = Tæ
of theHerzbergerian revision sequence starting outwithT0 = ∅ so thatPlayer I
has awinning strategy in G̃Hϕ if and only ifϕ is stably true, ie,ϕ ∈ T∞; Player II
has a winning strategy if and only if ϕ is stably false, that is when ¬ϕ ∈ T∞;
if neither player has a winning strategy, then ϕ is paradoxical, and then the
game is declared a draw.
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The (One-sided ) Stability GameGHϕ then is again one ‘half ’ of the required
game in which as above, for a sentence ϕ, I , as Ulrich, tries to show that ϕ
is stably true. II, Agathe, tries simply to defeat this, without being obliged
to demonstrate that ϕ is stably false. We describe then GHϕ . Lemma 4 below
then will demonstrate the outcomes of this game.

Aim for II: To play her moves (n0, n1, . . . ) in order to code a revision
sequence along a linear ordering in which ϕ is not stably true.
Aim for I : To try and pick out, if possible, an infinite descending chain
through II’s linear ordering, thereby demonstrating that she has not pro-
duced a genuine revision sequence. To help him do this, he is allowed to ask
certain queries of II about her final revision sequence, that she must honestly
answer and keep to.

It will turn out that if II is to win, remarkably I can, by asking the right
questions, force II to play a wellorder, and thus a true revision sequence—
this even though there is no mention of wellorders in the game’s definition.
(Indeed the payoff set when the game is coded over integers, is not Π11—
which it would have to be at best, were the game’s conditions to explicitly
require wellorders—but is merely Σ03.)
The game is played as usual with I , II strictly alternatingmoves. We denote
I ’s moves as (m0, m1, . . . ) and II ’s as (n0, n1, . . . ). The moves (mk , nk) are
the moves in round k.
The Rules for II : For any k: n2k ∈ N; n2k+1 ∈ SentL+ .
The Rules for I : (i) mi may be a “Pass”; (ii) mi may be an element of N;
(iii) mi can be a triple 〈a, b, ó〉 with a, b ∈ N and ó ∈ SentL+ . This latter
kind will be called a query move for II.

This completes the basic Rules for the players, and if a player breaks one
of them the game is immediately halted and is then forfeit to the other player.
The reason for naming the third kind of move that I makes as a ‘query’ is
that it will have the following interpretation for II:

Is it true that a, b ∈ Field(≺) ∧ ∀c(a ≺ c ≺ b −→ ó ∈ Tc)? (∗)

Agathe will be required to give honest answers to any such query.

TheWinning Conditions for I : Ulrich will be declared the winner if Agathe
fails in any of the tasks (a)–(e) below.
(a) Her even moves (n2k) must code a discrete linear order ≺ of N: where
we set a ≺ b ↔ ∃k(n2k = 〈a, b〉). It is required that ≺ have end points
o, s , and a further distinguished point z ∈ [o, s]≺. We let Field(≺) denote
{a | ∃b(a ≺ b ∨ b ≺ a)}.
(b) Using the odd round moves, (n2k+1), she must play out a complete
theory Ta ⊆ SentL+ to each a ∈ Field(≺). (The details of how this and
other coding matters are priorly fixed up is immaterial; it suffices to do
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this in some effective manner: let us say that a ∈ Field(≺) → Ta = {ó |
∃u(n3a .5u = ó)}).
(c) Both the following must hold: if t′ is the ≺-successor of t, then
Tt′ = Th(〈M, Tt〉). If t is a ≺-limit, then Tt = lim inft′≺ t Tt′ .
(d) Both z, s are limit points of the ordering ≺; Tz = Ts and ϕ /∈ Tz .
(e) “Committment Condition” for II: If mi is a query such as (∗), then
she must play an answer at round 7i with n7i a “1” (read: “Yes”) or a “0”
(read: “No”). Further, IImust honour each such answering play she makes,
as a committment to her truth sets in the final revision sequence she will
build along ≺.

List making Condition for I : If mk is neither a pass nor a query, but
mk = 〈r, a, b〉 then there must be 2j < k with n2j = 〈a, b〉; and if on the last
round k′ with mk′ which was a move for Ulrich of the form 〈r, d, c〉 (if any)
then d = b. If these conditions are fulfilled we shall say that “mk is a correct
entry.”
• Interpretation: We think of the integer moves mk, that are of the form
〈r, c, d 〉 as being entries on the r’th list Lr of attempts by I to list an infinite
descending chain through the underlying Field(≺) of Agathe’s revision se-
quence. We shall allow him however infinitely many attempts at writing such
a list Lr (as r varies), and the above mechanism simply organises such list-
writing moves mk ∈ N. By making such a move mk I has simply adverted
to the fact that he has extended the list Lr below b ≺ c with an element a
satisfying a ≺ b ≺ c which II has already announced will be ≺-below b. He
is not forcing her into making any committments: II has already revealed
this much of the ordering.

Winning Conditions for I (concluded ):
I wins iff
Either II breaks any of her rules, or leaves one of the conditions (a)–(e)
unfulfilled, or ∃r[I makes infinitely many correct entries on list Lr].

The first two disjuncts in the above can be shown to amount to an ∃∀∃
condition on the set of all runs of play. (All the conditions (a)–(e) apart
from (c) are ∀∃ conditions. The requirement that if t is a ≺-limit, then
Tt = lim inft′≺ t Tt′ is prima facie ∀∃∀, but in fact the requirement can be
enforced in any case through the committment condition. Hence it may be
dropped and (c) then becomes an ∀∃ condition too.) The entry in square
brackets is an ∀∃ condition on the run of play. The third disjunct thus adds
an ∃∀∃ condition, to be a win for I . GHϕ is thus overall an ∃∀∃ game.

Lemma 4. Any sentence ó0 is stably true under the Herzberger revision se-
quence with starting distribution of truth values T0 = ∅, that is ó0 ∈ T∞, if
and only if I has a winning strategy in GHó0 .

Proof. (⇐) Suppose ó0 /∈ T∞. Then in the “true revision sequence” of
length Σ + 1, we see ó0 /∈ T∞ = TΣ = Tæ . II ignores I and plays out a set
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of integers on her even moves coding a wellordering of length Σ + 1, and
attaching to appropriate integers a in the field of that wellordering truth sets
T‖a‖ (where ‖a‖ is the rank of a in the wellorder) and obeying all the Basic
Rules, answering I’s questions truthfully, and so keeping, necessarily, to all
committments and fulfilling all conditions (a)–(e). This way she wins: I can
find no illfounded chains in ≺. Hence I can have no winning strategy.
(⇒) Suppose ó0 ∈ T∞. Could II nevertheless have a way of playing G

H
ó0

and winning? We show how I can defeat any strategy of II. First note that
her ordering ≺ cannot be a wellorder (because it would then in effect be a
true revision sequence with a repeating pair of stability points, and we’d see
“ó0 ∈ T∞” in II’s sequence—this alone would cause her to lose). So must≺
be illfounded.
Let WFP(≺) denote the wellordered part of the linear ordering ≺ that II
putatively plays out, and let â be its order type. In fact let us identify â with
WFP(≺). Then: (1) Lim(â); (2) Σ /∈ WFP(≺) again for the reasons just
mentioned.
AprioriUlrichhas absolutely no ideawhat ordinalâ ≤ Σ is beingdiscussed
here. He only knows (1) and (2). However let us suppose that he makes the
working assumption that some fixed â truly will turn out to be (isomorphic
to) WFP(≺). We shall see how, if this assumption were to be correct, that
he could win. The method used relies on the following technical lemma:

Lemma 5. If a is a point of Field(≺), with a /∈WFP(≺) then Ta * Tâ .

This lemma in fact is the “non-wellfounded” version of the result about
such revision sequences (which we shall not use directly in this argument)
mentioned at the outset.
So, if we assume Lemma 5 proven, I additionally does know one more
fact: he knows (3) that Ts * Tâ . He may therefore wait until Agathe reveals
some õ ∈ Ts\Tâ at some stage in time—which she must do sooner or later,
as she must tell any basic fact about her sequence at some point since she
has to play Ts as complete theories, if she is to win. He is then in business.
He starts making queries of the form
Is s ′ ≺ s and ∀t(s ′ ≺ t ≺ s → õ ∈ Tt)?
Once he gets an affirmative answer to one such query (which again hemust
do, at some finite stage of the game, if õ ∈ Ts and II fulfils her conditions—
by the ‘liminf’ nature of Ts) then he knows s

′ /∈WFP(≺). (Since s ′ cannot
be below â , for otherwise we’d have õ ∈ Tâ (by the ‘liminf’ nature of Tâ this
time). He could then make an mk listing move indicating s

′ ≺ s , and start
off a descending ≺-chain.
However we can repeat this: as Ts ′ * Tâ , by the Lemma, he can, by
consulting Tâ again, wait until a similar situation as the one outlined above
occurs again with a “Yes” committment, and anothermk move can be made
indicating s ′′ ≺ s ′. Continuing in thiswayhe can list an infinite≺-descending
chain.
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The above discussion was based on the (probable) fiction that â is to be
WFP(≺). However if this were to be the case, then I could defeat II. If
we now let F : N\{0} ↔ Lim∩(Σ + 1) be a (1–1) enumeration of the limit
ordinals below Σ + 1, then we have an enumeration of all possible working
assumptions for I ; we may thus let I make moves as listing entries on Lr
with the working assumption that â = F (r) is the wellordered part of the
ordering ≺. By constantly shifting his attention infinitely often back and
forth between all such working assumptions, I may play using them all, and
thereby consulting all the Tâ , within the infinite amount of time available
during the one game. So if ≺ is not a wellorder, and Agathe fulfils all her
conditions, there will be at least one list, namely Lr where F (r) in the event
turns out to be the wellfounded part of ≺, on which he can make infinitely
many entries and thus win. ⊣ (Lemma 4)

The full game G̃Hϕ is the variant where, besides the above moves, I also is
obliged to play out a linear ordering mirroring precisely the kind of moves II
made, with attached complete theories, etc., excepting that I ’s putative revi-
sion sequence must demonstrate that ϕ is in fact stable. Agathe is obliged in
her sequence to show that ¬ϕ is stable. Simultaneously, as I did before, she
has the opportunity to write countably many lists of potential descending
chains through I ’s linear order. If ϕ is truly paradoxical then neither person
has a winning strategy. Again this can be realised by amalgamating simul-
taneous play on two boards, on the first is played GHϕ as above, and on the

second GH¬ϕ—with the roles of I , II in the latter interchanged.

Remark 1. That I be allowed to draw up infinitely many independent
lists can be shown to be necessary. It might be thought that there could
be an equivalent variant of the game with I only drawing up a single list,
and that the use of infinitely many lists was a symptom of our inability to
design the right game (thereby squandering a quantifier). However there is
no such game—for which see the next remark. In essence (but still a rough
approximation) the relationship between the different truth setsTâ for â < Σ
is so complex that one cannot continuously define a single game with one
list whilst still enforcing that II produce a wellordered sequence; one has to
consider the “infinitely many working assumptions at once” device as above.

Remark 2. If we start with the standard modelM = N then the complete
runs of play of both players can be coded together as a sequence of integers y,
and be classified within the arithmetical hierarchy. We then see that the
conditions (a)–(e) on Agathe amount (with some care) to a Π02 condition
on y. The payoff set of sequences for Ulrich is then a Σ03 set. It is a non-trivial
fact that there is no simpler game (for example, with a Σ02 payoff set) for a
Herzberger sequence. Thus in terms of the classificatory Levy hierarchy
by formulae, the games GHó here are already at the lowest possible level of
complexity.
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Briefly we discuss the reasons for this. (The reader uninterested in these
issues may simply avoid this paragraph.) Solovay (unpublished by him, but
see [9, Thm. 2.5.2]) showed that winning stategies for all Σ02 games occur at
a level of the Gödel constructible hierarchy of constructible L-rank much
less than æ, the first repeat point of the Herzberger sequence, that is where
Tæ = T∞. If we were able to find Σ

0
2 games to represent the Herzberger

stability set Tæ , then that set could be found at a constructible level much
lower than æ. This is impossible as the Herzbergerian Tæ only appears first
in Læ+1. (A similar argument using a result of [13] shows that no ∆

0
3 game

will do either as these also have strategies that occur well below æ.) On
the other hand [16] shows that there are levels of the L hierarchy beyond
æ whose truth sets can be represented using Σ03 games. It thus has to be

at this level of Σ03 payoff sets that one should look for suitable representing
games.

Remark 3. Variant games, GFϕ , are definable for Field’s sets of ultimate
truths, or falsehoods, or of intermediate value, from [3]. Here for a given ϕ
the players I , and II will be trying to present linear evaluation sequences
demonstrating (in the notation from [3]) that ||ϕ|| = 1 or 0, and if neither
has a winning strategy, then we should conclude that ||ϕ|| = 1

2 . For this to
work we need the appropriate version of the technical Lemma 3. Again here
this requires showing that from a knowledge of the semantic values at a stage
α less than or equal to the first acceptable point ∆0 (which is our æ), the
whole sequence of prior semantic evaluations can be recovered. This should
perhaps be in any case plausible to readers of [15] since there it is shown how
to recover codes for levels of the Lα hierarchy and their complete theories,
from a set of semantic values at a stage. At these low levels of theL hierarchy,
the complete sequence of codes of previous levelsLâ for â < α is obtainable
from the theory for Lα (at least for mildly closed α). Moreover Field’s
semantic model construction can be run inside the constructible universe
and hence those theories of levels Lα contain a fortiori all the previous
semantic evaluation sets. One may then prove the Lemma in the following
form: if Fα =df {ó : |ó|α = 1}, then for α < â < ∆, Fâ * Fα . Then the
template of the above game GHϕ can be used to give a similar G

F
ϕ .

§5. Implications and conclusions. What do these games show us about the
defined truth sets? For the simpler open games, and especially Martin’s
Strong Kleene game where the game directly follows the compositionality
of the truth forming rules, the games give an alternative epistemological
description of the truth sets that do not refer to ‘ordinals’, ‘fixed points’ and
the like. A strategy for an open game that is over (at least for one player)
in finitely many steps is something graspable (pace the fact that the strategy
itself is nevertheless an infinite object).
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What of the strategies for the games involved in the stability game? These,
as we have remarked, are necessarily of infinite length, and must have runs
of play in prescribed Σ03 sets. Indeed their complexity reflects the complexity
of the stable truth sets, and indeed of the whole enterprise of the revision
theory of truth. However, we may draw something from this representation
via descriptive set theory. The quasi-inductive notion that is implicit in the
Herzberger revision sequence (andwhichBurgessmade explicit in [1, p. 679])
yields a notion of sets of integers forming a Spector class and we may apply
a very general theorem due to Harrington, see [9, Thm. 3.2], that represents
such classes of integers using open games (and thus over in a finite time
for Player I if he has the winning strategy). These, however, are not in the
usual first order logic, but in such augmented with non-standard quantifiers.
When one inspects the quantifiers the theorem gives for a general Spector
class, on this particular case, one sees that the quantifier would ‘measure’
gödel numbers of sets of sentences in terms of the prewellordering≺ of their
‘settling down’ or ‘becoming stable’. What that indicates is that: (a) one can
have an open, and so ‘Σ01’, game formula representation of the stability set,
albeit in terms of a logic of non-standard quantifiers; and further suggests
(b) the possibility of axiomatising the stable theory of truth, perhaps not
well in a language L+M containing a Ṫ symbol for truth alone, but in a
language augmented with a predicate symbol incorporating somehow the
notion of ≺. Without some kind of additional modality, or intension, we
are rather doubtful of any possibility for meaningfully axiomatising (qua a
theory of truth alone) the Herzberger style revision theory (or any of the
other versions). This is because of the disjunction between the successor
rules, which clearly have truth theoretic content, and the limit rules, which
as proposed in the literature, have none. Whether there is any meaningful
modality that corresponds to ≺ remains to be seen, but there are points
of contact. As remarked in the conclusion of [15] the revision theoretic
machinery gives an interpretation to T (ϕ) ∧ ϕ as something of the form
‘having been true and true at this stage now’.
Similarly Field defines in his model [3] a hierarchy of ‘determinately true
operators’. This model has an additional binary operator ‘−→’ added to
the language as a sort of extended conditional. This, at least at the bottom
level whereD(A) is taken as abbreviating A∧ (⊤ −→ A) has a similar effect
of taking into account the truth value of a sentence A at previous stage(s).
He defines not one but a sequence of determinacy operators Dα for α < ë0
(for ë0 some unspecified countable ordinal) and shows that these have nice
properties when evaluated in his model construction. As mentioned at
Remark 3 above, from the semantic values at stage α it is possible to recover
the whole evaluation sequence of the model up to stage α. This allows us,
instead of finding an axiomatisation of the validities of this model, rather
to define the determinacy operators via an internal characterisation of this
particular model. These results will hopefully appear elsewhere.
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