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A�������. We generalise the ↵-Ramsey cardinals introduced in Holy and Schlicht (2018) for cardinals ↵ to

arbitrary ordinals ↵, and answer several questions posed in that paper. In particular, we show that ↵-Ramseys

are downwards absolute to the core model K for all ↵ of uncountable cofinality, that strategic !-Ramsey car-

dinals are equiconsistent with remarkable cardinals and that strategic ↵-Ramsey cardinals are equiconsistent

with measurable cardinals for all ↵ ° !. We also show that the n-Ramseys satisfy indescribability proper-

ties and use them to provide a game-theoretic characterisation of completely ine�able cardinals, as well as

establishing further connections between the ↵-Ramsey cardinals and the Ramsey-like cardinals introduced

in Gitman (2011), Feng (1990) and Sharpe and Welch (2011).1

1 Introduction
Most of the large cardinals above measurable cardinals can be characterised as the critical points of elementary
embeddings j : V Ñ M, where the strength of the large cardinal notion in question is increased by requiring
more closure of the target modelM and more properties of the embedding j. In analogy, Ramsey-like cardinals
were introduced in Gitman (2011) and Gitman and Welch (2011) to be a natural weakening of this concept,
being roughly cardinals  that can be characterised as critical points of elementary embeddings j : M Ñ N
between -sized ZFC´-modelsM and N . Here we then increase our consistency strength by requiring more
closure of the domain modelM and more properties of the embedding j.
Implicit work in Mitchell (1979) and Donder et al. (1981) shows that Ramsey cardinals are precisely of this

type, in which the derived measure from j is both weakly amenable and countably complete.2 The question
is then how many of the well-known large cardinals can be characterised in this fashion? Gitman (2011)
introduced various Ramsey-like cardinals, whose definitions we will recall in the next section, and recently
Holy and Schlicht (2018) have introduced a new family of cardinals, called (strategic) ↵-Ramsey cardinals,
which have the added feature of having a game-theoretic definition.
In Holy and Schlicht (2018) the (strategic) ↵-Ramseys were considered for ↵ being an infinite cardinal,

and in this paper we will expand this definition to any ordinal ↵. Section 3 will cover the finite case which
12010 Mathematics Subject Classification. 03E35, 03E45, 03E55.

Keywords and phrases. Ramsey-like cardinals, large cardinals, games, weakly compact cardinals, ine�able cardinals, com-
pletely ine�able cardinals, remarkable cardinals, virtually measurable cardinals, measurable cardinals, core model.
2For a proof of this result see Theorem 1.3 of Gitman (2011).
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allows us to characterise ine�able-type cardinals and show indescribability properties of these cardinals —
these arguments are based on arguments in Abramson et al. (1977).
Section 4 contains the countable case in which we establish that strategic !-Ramseys are equiconsistent

with Schindler’s remarkable cardinals, and use this to show that strategic !-Ramseys are of strictly stronger
consistency strength than the !-Ramseys. We will also consider a hierarchy between !-Ramsey cardinals
and Ramsey cardinals called p!,↵q-Ramsey cardinals, which we will show interleaves with the ↵-iterable
cardinals introduced in Gitman (2011), and lastly show that p!`1q-Ramseys are Ramsey limits of Ramseys
and that strategic p!`1q-Ramseys are equiconsistent with a measurable cardinal.
In section 5 we investigate how the strongly Ramsey and super Ramsey cardinals introduced in Gitman

(2011) relate to the ↵-Ramsey cardinals and show that these latter cardinals are downwards absolute to the
core model K . The last part of this section is dedicated to showing a tight correspondence between strategic
↵-Ramsey cardinals and the ↵-very Ramsey cardinals introduced in Sharpe and Welch (2011), leading to the
result that strategic !

1

-Ramsey cardinals are measurable in the core model K below a Woodin cardinal.
Section 6 contains an overview of open problems concerning these Ramsey-like cardinals.
The last section includes two diagrams, showing the relations between all the Ramsey-like cardinals

considered in this paper, both in terms of consistency strength and direct implication. A solid line means that
the (consistency or direct) implication is “strict”, in the sense that no proof exists for the implication in the
opposite direction, and a dashed line means that we do not know whether the implication is strict or not.

2 Setting the scene
In this section we will recall a handful of definitions concerning Ramsey-like cardinals, as well as define the
↵-Ramsey cardinals for arbitrary ordinals ↵. We start out with the models and measures that we are going to
consider.

D��������� 2.1. For a cardinal , a weak -model is a set M of size  satisfying that  ` 1 Ñ M and
pM, Pq |ù ZFC´. If furthermoreM† ÑM,M is a -model.3 %

Recall that µ is anM-measure if pM, P, µq |ù xµ is a -complete ultrafilter on y.

D��������� 2.2. LetM be a weak -model and µ anM-measure. Then µ is
• weakly amenable if x X µ P M for every x P M withM-cardinality ;
• countably complete if

ì ~X ‰ H for every !-sequence ~X P !µ;
• M-normal if pM, P, µq |ù @ ~X P µ : 4 ~X P µ;
• genuine if |4 ~X| “  for every -sequence ~X P µ;
• normal if 4 ~X is stationary in  for every -sequence ~X P µ;
• 0-good, or simply good, if it has a well-founded ultrapower;
• ↵-good for ↵ ° 0 if it is weakly amenable and has ↵-many well-founded iterates.
3Note that our (weak) -models do not have to be transitive, in contrast to the models considered in Gitman (2011) and

Gitman and Welch (2011). Not requiring the models to be transitive was introduced in Holy and Schlicht (2018).

2



%

Note that a genuine M-measure is M-normal and countably complete, and a countably complete weakly
amenableM-measure is ↵-good for all ordinals ↵. We’ll use the fact shown in Holy and Schlicht (2018) that
anM-measure µ is normal i� 4 ~X is stationary for some enumeration ~X “ xX↵ | ↵ † y of µ. We are also
going to use the following alternative characterisation of weak amenability.

P���������� 2.3 (Folklore). LetM be a weak -model, µ anM-measure and j : M Ñ N the associated
ultrapower embedding. Then µ is weakly amenable if and only if j is -powerset preserving, meaning
thatMXPpq “ N XPpq. %

The ↵-Ramsey cardinals in Holy and Schlicht (2018) are based upon the following game.4

D��������� 2.4 (Holy-Schlicht). For an uncountable cardinal  “ †, a limit ordinal � §  and a regular
cardinal ✓ °  define the game wfG✓

�pq of length � as follows.

I M
0

M
1

M
2

¨ ¨ ¨
II µ

0

µ
1

µ
2

¨ ¨ ¨

HereM↵ † H✓ is a -model and µ↵ is a filter for all ↵ † �, such that µ↵ is anM↵-measure, theM↵’s and
µ↵’s are Ñ-increasing and xM⇠ | ⇠ † ↵y, xµ⇠ | ⇠ † ↵y P M↵ for every ↵ † �. Letting µ :“ î

↵†� µ↵ and
M :“ î

↵†� M↵, player II wins i� µ is anM-normal goodM-measure. %

Recall that two games G
1

and G
2

are equivalent if player I has a winning strategy in G
1

i� they have one in
G

2

, and player II has a winning strategy in G
1

i� they have one in G
2

. Holy and Schlicht (2018) showed that
the games wfG✓0

� pq and wfG✓1
� pq are equivalent for any � with cof � ‰ ! and any regular ✓

0

, ✓
1

° .
We will be working with a variant of the wfG�pq games in which we require less of player I but more of
player II. It will turn out that this change of game is innocuous, as Proposition 2.6 will show that they are
equivalent.

D��������� 2.5 (Holy-Schlicht-N.). Let  “ † be an uncountable cardinal, � §  and ⇣ ordinals and ✓ ° 

a regular cardinal. Then define the following game G✓
�p, ⇣q with p�`1q-many rounds:

I M
0

M
1

¨ ¨ ¨ M�

II µ
0

µ
1

¨ ¨ ¨ µ�

HereM↵ † H✓ is a weak -model for every ↵ § �, µ↵ is a normalM↵-measure for ↵ † �, µ� is anM�-
normal goodM�-measure and theM↵’s and µ↵’s areÑ-increasing. For limit ordinals ↵ § � we furthermore
4Unless otherwise stated, every game considered will be a game with perfect information between two players I and II.

For a formal framework modelling these games, see e.g. Kanamori (2008).
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require thatM↵ “ î
⇠†↵ M⇠ , µ↵ “ î

⇠†↵ µ⇠ and that µ↵ is ⇣-good. Player II wins i� they could continue
to play throughout all p�`1q-many rounds. %

For convenience we will write G✓
�pq for the game G✓

�p, 0q, and G�pq for G✓
�pq whenever cof � ‰ !,

as again the existence of winning strategies in these games doesn’t depend upon a specific ✓. Note that we
assume that  “ † is uncountable in the definition of the games that we’re considering, so this is a standing
assumption throughout the paper, whenever any one of the above two games are considered.

P���������� 2.6 (Holy-Schlicht-N.). G✓
�pq, G✓

�p, 1q and wfG✓
�pq are all equivalent for all limit ordinals

� § , and G✓
�p, ⇣q is equivalent to G✓

�pq whenever cof � ° ! and ⇣ P On.

P����. We start by showing the latter statement, so assume that cof � ° !. Consider now the auxilliary
game, call it G, which is exactly like G✓

�p, 0q, but where we also require that !M↵ Ñ M↵`1

and xM⇠ |
⇠ § ↵y, xµ⇠ | ⇠ § ↵y P M↵`1

for every ↵ † �.

Claim 2.6.1. G is equivalent to G✓
�pq.

P���� �� �����. If player I has a winning strategy in G then they also have one in G✓
�pq, by doing

exactly the same. Analogously, if player II has a winning strategy in G✓
�pq then they also have one in G.

If player I has a winning strategy � in G✓
�pq then we can construct a winning strategy �1 in G, which is

defined as follows. Fix some ↵ § � and, writing ~M⇠ :“ xM⇠ | ⇠ § ↵y and ~µ⇠ :“ xµ⇠ | ⇠ § ↵y, we set

�1pxM⇠, µ⇠ | ⇠ § ↵yq :“ HullH✓ p�pxM⇠, µ⇠ | ⇠ § ↵yq Y !M↵ Y t ~M⇠, ~µ⇠uq,

i.e. that we’re simply throwing in the sequences into our models and making sure that we’re still an elemen-
tary substructure ofH✓ . This new strategy �1 is clearly winning. Assuming now that ⌧ is a winning strategy
for player II in G, we define a winning strategy ⌧ 1 for player II in G✓

�pq by letting ⌧ 1pxM⇠, µ⇠ | ⇠ § ↵yq
be the result of throwing in the appropriate sequences into the modelsM⇠ , applying ⌧ to get a measure,
and intersecting that measure withM↵ to get anM↵-measure. %

Now, lettingM� be the final model of a play of G, cof � ° ! implies that any !-sequence ~X P M� really is
a sequence of elements from someM⇠ for ⇠ † �, so that ~X P M⇠`1

by definition of G, makingM� closed
under !-sequences and thus also µ� countably complete. Since � is a limit ordinal and the models contain the
previous measures and models as elements, the proof of e.g. Theorem 5.6 in Holy and Schlicht (2018) shows
that µ� is also weakly amenable, making it ⇣-good for all ordinals ⇣ .
Now we deal with the first statement, so fix a limit ordinal �. Firstly G✓

�pq is equivalent to G✓
�p, 1q as

above, since both are equivalent to the auxilliary game G when � is a limit ordinal. So it remains to show
that G✓

�pq is equivalent to wfG✓
�pq. If player I has a winning strategy � in wfG✓

�pq then define a winning

4



strategy �1 for player I in G✓
�pq as

�1pxM⇠, µ⇠ | ⇠ § ↵yq :“ �pxM
0

, µ
0

yaxM⇠`1

, µ⇠`1

| ⇠ ` 1 § ↵yq

and for limit ordinals ↵ § � set �1pxM⇠, µ⇠ | ⇠ † ↵yq :“ î
⇠†↵ M⇠ ; i.e. they simply follow the same

strategy as in wfG✓
�pq but plugs in unions at limit stages. Likewise, if player II had a winning strategy in

G✓
�pq then they also have a winning strategy in wfG✓

�pq, this time just by skipping the limit steps in G✓
�pq.

Now assume that player I has a winning strategy � in G✓
�pq and that player I doesn’t have a winning

strategy in wfG✓
�pq. Then define a strategy �1 for player I in wfG✓

�pq as follows. Let s “ xM↵, µ↵ | ↵ §
⌘y be a partial play of wfG✓

�pq and let s1 be the modified version of s in which we have ’inserted’ unions
at limit steps, just as in the above paragraph. We can assume that every µ↵ in s1 is good andM↵-normal as
otherwise player II has already lost and player I can play anything. Now, we want to show that s1 is a valid
partial play of G✓

�pq. All the models in s are -models, so in particular weak -models.

Claim 2.6.2. Every µ↵ in s1 is normal.

P���� �� �����. Assume without loss of generality that ↵ “ ⌘. Let player I play any legal responseM
to s in wfG✓

�pq (such a response always exists). If player II can’t respond then player I has a winning
strategy by simply following sXxMy,  , so player II does have a response µ to sX M. But now the rules
of wfG✓

�pq ensures that µ⌘ P M, so since

pM, P, µq |ù @ ~X P µ : x4 ~X is stationary in y,

we then also get thatM |ù x4µ⌘ is stationary in y since µ⌘ Ñ µ, so elementarity ofM in H✓ implies
that 4µ⌘ really is stationary in , making µ⌘ normal. %

This makes s1 a valid partial play of G✓
�pq, so we may form the weak -model M̃⌘ :“ �ps1q. Now let

M⌘ † H✓ be a -model with M̃⌘ Ñ M⌘ and s P M⌘ and set �1psq :“ M⌘ . This defines the strategy �1

for player I in wfG✓
�pq, which is winning since the winning condition for the two games is the same for �

a limit.5

Next, assume that player II has a winning strategy ⌧ in wfG✓
�pq. We recursively define a strategy ⌧̃

for player II in G✓
�pq as follows. If M̃

0

is the first move by player I in G✓
�pq, letM

0

† H✓ be a -model
with M̃

0

Ñ M
0

, makingM
0

a valid move for player I in wfG✓
�pq. Write µ

0

:“ ⌧pxM
0

yq and then set
⌧̃pxM̃

0

yq to be µ̃
0

:“ µ
0

X M̃
0

, which again is normal by the same trick as above, making µ̃
0

a legal move
for player II in G✓

�pq. Successor stages ↵ ` 1 in the construction are analogous, but we also make sure that
xM⇠ | ⇠ † ↵ ` 1y, xµ⇠ | ⇠ † ↵ ` 1y P M↵`1

. At limit stages ⌧ outputs unions, as is required by the rules
of G✓

�pq. Since the union of all the µ↵’s is good as ⌧ is winning, µ̃� :“ î
↵†� µ̃↵ is good as well, making ⌧̃

5More precisely, that � is winning in G✓
�pq means that there’s a sequence xfn :  Ñ  | n † !y with the fn’s all being

elements of the last model M̃� , witnessing the illfoundedness of the ultrapower. But then all these functions will also be
elements of the union of theM↵’s, since we ensured thatM↵ Ö M̃↵ in the construction above, making the ultrapower ofî

↵†� M↵ by
î

↵†� µ↵ illfounded as well.
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winning and we are done. ⌅

We now arrive at the definitions of the cardinals we will be considering. They were in Holy and Schlicht
(2018) only defined for � being a cardinal, but given the above result we generalise it to all ordinals �.

D��������� 2.7. Let  be a cardinal and � §  an ordinal. Then  is �-Ramsey if player I does not have a
winning strategy in G✓

�pq for all regular ✓ ° . We furthermore say that  is strategic �-Ramsey if player
II does have a winning strategy in G✓

�pq for all regular ✓ ° . Define (strategic) genuine �-Ramseys and
(strategic) normal �-Ramseys analogously, but where we require the last measure µ� to be genuine and
normal, respectively. %

D��������� 2.8 (N.). A cardinal  is †�-Ramsey if it is ↵-Ramsey for every ↵ † �, almost fully Ramsey
if it is †-Ramsey and fully Ramsey if it is -Ramsey. Further, say that  is coherent †�-Ramsey if it’s
strategic ↵-Ramsey for every ↵ † � and that there exists a choice of winning strategies ⌧↵ in G↵pq for player
II satisfying that ⌧↵ Ñ ⌧� whenever ↵ † �. In other words, there is a single strategy ⌧ for player II in G�pq
such that ⌧ is a winning strategy for player II in G↵pq for every ↵ † �.6 %

This is not the original definition of (strategic) �-Ramsey cardinals however, as this involved elementary
embeddings between weak -models – but as the following theorem of Holy and Schlicht (2018) shows, the
two definitions coincide whenever � is a regular cardinal.

T������ 2.9 (Holy-Schlicht). For regular cardinals �, a cardinal  is �-Ramsey i� for arbitrarily large ✓ ° 

and every A Ñ  there is a weak -modelM † H✓ withM†� Ñ M and A P M with anM-normal
1-goodM-measure µ on . %

3 The finite case
In this section we are going to consider properties of the n-Ramsey cardinals for finite n. Note in particular
that the G✓

npq games are determined, making the “strategic” adjective superfluous in this case. We further
note that the ✓’s are also dispensible in this finite case:

P���������� 3.1 (N.). Let  † ✓ be regular cardinals and n † !. Then player II has a winning strategy in
G✓
npq i� they have a winning strategy in the game Gnpq, which is defined as G✓

npq except that we don’t
require thatMn † H✓ .

P����.  is clear, so assume that II has a winning strategy ⌧ in G✓
npq. Whenever player I playsMk in

Gnpq for k § n then defineM˚
k :“ HullH✓ pPq where P – Mk is the transitive collapse ofMk , and play

M˚
k in G✓

npq. Let µk be the ⌧ -responses to theM˚
k ’s and let player II play the µk ’s in Gnpq as well.

6Note that, with this terminology, “coherent” is a stronger notion than “strategic”. We could’ve called the cardinals
coherent strategic †�-Ramseys, but we opted for brevity instead.
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Assume that this new strategy isn’t winning for player II in Gnpq, so that UltpMn, µnq is illfounded.
This is witnessed by some !-sequence ~f :“ xfk | k † !y of fk P opMnq X Mn with Xk :“ t↵ †
 | fk`1

p↵q † fkp↵qu P µn for all k † !. Let ⌫ " , H :“ cHullH⌫ pMn Yt~f,Mn, µnuq be the
transitive collapse of the Skolem hull HullH⌫ pMn Yt~f,Mn, µnuq, and ⇡ : H Ñ H⌫ be the uncollapse; write
x̄ :“ ⇡´1pxq for all x P ran⇡.
Now Ā “ A for every A P Ppq X Mn and thus also µ̄n “ µn. But now the f̄k ’s witness that

UltpM̄n, µnq is illfounded and thus also that UltpM˚
n, µnq is illfounded sinceM˚

n “ HullH✓ pM̄nq, contra-
dicting that ⌧ is winning. ⌅

For this reason we’ll work with the Gnpq games throughout this section. Since we don’t have to deal with
the ✓’s anymore we note that n-Ramseyness can now be described using a ⇧1

2n`2

-formula and normal n-
Ramseyness using a ⇧1

2n`3

-formula.
We already have the following characterisations, as proven in Abramson et al. (1977).

T������ 3.2 (Abramson et al.). Let  “ † be a cardinal. Then
(i)  is weakly compact if and only if it is 0-Ramsey;
(ii)  is weakly ine�able if and only if it is genuine 0-Ramsey;
(iii)  is ine�able if and only if it is normal 0-Ramsey.

P����. This is mostly a matter of changing terminology from Abramson et al. (1977) to the current game-
theoretic one, so we only show piq. Theorem 1.1.3 in Abramson et al. (1977) shows that  is weakly compact
if and only if every -sized collection of subsets of  is measured by a †-complete measure, in the sense that
every †-sequence (in V ) of measure one sets has non-empty intersection.
For theñ direction we can let player II respond to anyM

0

by first getting the†-completeM
0

-measure
⌫
0

on  from the above-mentioned result, forming the (well-founded) ultrapower ⇡ : M
0

Ñ UltpM
0

, ⌫q and
then playing the derived measure of ⇡, which isM

0

-normal and good. For, if X ÑPpq has size  then,
using that  “ †, we can find a -modelM

0

† H✓ with X Ñ M
0

. Letting player I playM
0

in G
0

pq
we get someM

0

-normal goodM
0

-measure µ
0

on . SinceM
0

is closed under †-sequences we get that
µ
0

is †-complete. ⌅

Indescribability
In this section we aim to prove that n-Ramseys are ⇧1

2n`1

-indescribable and that normal n-Ramseys are
⇧1

2n`2

-indescribable, which will also establish that the hierarchy of alternating n-Ramseys and normal n-
Ramseys forms a strict hierarchy. Recall the following definition.

D��������� 3.3. A cardinal  is ⇧1

n-indescribable if whenever 'pvq is a ⇧n formula, X Ñ V and V`1

|ù
'rXs, then there is an ↵ †  such that V↵`1

|ù 'rX X V↵s. %

7



Our first indescribability result is then the following, where the n “ 0 case is inspired by the proof of weakly
compact cardinals being ⇧1

1

-indescribable — see Abramson et al. (1977).

T������ 3.4 (N.). Every n-Ramsey  is ⇧1

2n`1

-indescribable for n † !.

P����. Let  be n-Ramsey and assume that it is not ⇧1

2n`1

-indescribable, witnessed by a ⇧
2n`1

-formula
'pvq and a subset X Ñ V, meaning that V`1

|ù 'rXs and, for every ↵ † , V↵`1

|ù  'rX X V↵s. We
will deal with the p2n ` 1q-many quantifiers occuring in ' in pn ` 1q-many steps. We will here describe the
first two steps with the remaining steps following the same pattern.
First step. Write 'pvq ” @v

1

 pv, v
1

q for a ⌃
2n-formula  pv, v

1

q. As we are assuming that V↵`1

|ù
 'rX X V↵s holds for every ↵ † , we can pick witnesses Ap0q

↵ Ñ V↵ to the outermost existential quantifier
in  'rX X V↵s.
Let M

0

be a weak -model such that V Ñ M
0

and ~Ap0q, X P M
0

. Fix a good M
0

-normal M
0

-
measure µ

0

on , using the 0-Ramseyness of . Form Ap0q :“ r ~Ap0qsµ0 P UltpM
0

, µ
0

q, where we without
loss of generality may assume that the ultrapower is transitive. M

0

-normality of µ
0

implies that Ap0q Ñ V,
so that we have that V`1

|ù  rX,Ap0qs. Now £oú’ Lemma,M
0

-normality of µ
0

and V ÑM
0

also ensures
that

UltpM
0

, µ
0

q |ù xV`1

|ù   rX,Ap0qsy. p1q

This finishes the first step. Note that if n “ 0 then   would be a �
0

-formula, so that p1q would be absolute
to the true V`1

, yielding a contradiction. If n ° 0 we cannot yet conclude this however, but that is what we
are aiming for in the remaining steps.

Second step. Write  pv, v
1

q ” Dv
2

@v
3

�pv, v
1

, v
2

, v
3

q for a ⌃
2pn´1q-formula �pv, v

1

, v
2

, v
3

q. Since
we have established that V`1

|ù  rX,Ap0qs we can pick some Bp0q Ñ V such that

V`1

|ù @v
3

�rX,Ap0q, Bp0q, v
3

s p2q

which then also means that, for every ↵ † ,

V↵`1

|ù Dv
3

 �rX X V↵, A
p0q
↵ , Bp0q X V↵, v3s. p3q

Fix witnesses Ap1q
↵ Ñ V↵ to the existential quantifier in p3q and define the sets

Sp0q
↵ :“ t⇠ †  | Ap0q

⇠ X V↵ “ Ap0q X V↵u

for every ↵ †  and note that Sp0q
↵ P µ

0

for every ↵ † , since V ÑM
0

ensures that Ap0q X V↵ P M
0

and
M

0

-normality of µ
0

then implies that Sp0q
↵ P µ

0

is equivalent to

UltpM
0

, µ
0

q |ù Ap0q X V↵ “ Ap0q X V↵,

8



which is clearly the case. Now letM
1

Ö M
0

be a weak -model such that Ap0q, ~Ap1q, ~Sp0q, Bp0q P M
1

.
Let µ

1

Ö µ
0

be anM
1

-normalM
1

-measure on , using the 1-Ramseyness of , so thatM
1

-normality of µ
1

yields that4~Sp0q P µ
1

. Observe that ⇠ P 4~Sp0q if and only if Ap0q
⇠ XV↵ “ Ap0q XV↵ for every ↵ † ⇠, so if ⇠

is a limit ordinal then it holds that Ap0q
⇠ “ Ap0q XV⇠ . Now, as before, form Ap1q :“ r ~Ap1qsµ1 P UltpM

1

, µ
1

q,
so that p2q implies that

V`1

|ù �rX,Ap0q, Bp0q,Ap1qs

and the definition of the Ap1q
↵ ’s along with p3q gives that, for every ↵ † ,

V↵`1

|ù  �rX X V↵, A
p0q
↵ , Bp0q X V↵, A

p1q
↵ s.

Now this, paired with the above observation regarding 4~Sp0q, means that for every ↵ P 4~Sp0q X Lim we
have that

V↵`1

|ù  �rX X V↵,Ap0q X V↵, B
p0q X V↵, A

p1q
↵ s,

so thatM
1

-normality of µ
1

and £oú’ lemma implies that

UltpM
1

, µ
1

q |ù xV`1

|ù  �rX,Ap0q, Bp0q,Ap1qsy.

This finishes the second step. Continue in this way for a total of pn`1q-many steps, ending with a�
0

-formula
�pv, v

1

, . . . , v
2n`1

q such that

V`1

|ù �rX,Ap0q, Bp0q, . . . ,Apn´1q, Bpn´1q,Apnqs p4q

and that UltpMn, µnq |ù xV`1

|ù  �rX,Ap0q, Bp0q, . . . ,Apnqsy. But now absoluteness of  � means that
V`1

|ù  �rX,Ap0q, Bp0q, . . . ,Apnqs, contradicting p4q. ⌅

Note that this is optimal, as n-Ramseyness can be described by a ⇧1

2n`2

-formula. As a corollary we then
immediately get the following.

C�������� 3.5 (N.). Every †!-Ramsey cardinal is �2

0

-indescribable. %

The second indescribability result concerns the normal n-Ramseys, where the n “ 0 case here is inspired by
the proof of ine�able cardinals being ⇧1

2

-indescribable — see Abramson et al. (1977).

T������ 3.6 (N.). Every normal n-Ramsey  is ⇧1

2n`2

-indescribable for n † !.

Before we commence with the proof, note that we cannot simply do the same thing as we did in the proof
of Theorem 3.4, as we would end up with a ⇧1

1

statement in an ultrapower, and as ⇧1

1

statements are not

9



upwards absolute in general we would not be able to get our contradiction.

P����. Let  be normal n-Ramsey and assume that it is not ⇧1

2n`2

-indescribable, witnessed by a ⇧
2n`2

-
formula 'pvq and a subset X Ñ V. Use that  is n-Ramsey to perform the same n ` 1 steps as in the proof
of Theorem 3.4. This gives us a ⌃

1

-formula �pv, v
1

, . . . , v
2n`1

q along with sequences xAp0q, ¨ ¨ ¨ ,Apnqy,
xBp0q, . . . , Bpn´1qy and a play xMk, µk | k § ny of Gnpq in which player II wins and µn is normal, such
that

V`1

|ù �rX,Ap0q, Bp0q, . . . ,Apn´1q, Bpn´1q,Apnqs p1q

and, for µn-many ↵ † ,

V↵`1

|ù  �rX X V↵,Ap0q X V↵, B
p0q X V↵, . . . ,Apn´1q X V↵, B

pn´1q X V↵, A
pnq
↵ s.

Now form S
pnq
↵ P µn as in the proof of Theorem 3.4. The main di�erence now is that we do not know if

~Spnq P Mn (in the proof of Theorem 3.4 we only ensured that ~Spkq P Mk`1

for every k † n and we only
defined ~Spkq for k † n), but we can now use normality7 of µn to ensure that we do have that 4~Spnq is
stationary in . This means that we get a stationary set S Ñ  such that for every ↵ P S it holds that

V↵`1

|ù  �rX X V↵,Ap0q X V↵, B
p0q X V↵, . . . , B

pn´1q X V↵,Apnq X V↵s. p2q

Now note that since  is inaccessible it is ⌃1

1

-indescribable, meaning that we can reflect p1q. Furthermore,
Lemma 3.4.3 of Abramson et al. (1977) shows that the set of reflection points of ⌃1

1

-formulas is in fact club, so
intersecting this club with S we get a ⇣ P S satisfying that

V⇣`1

|ù �rX X V⇣ ,Ap0q X V⇣ , B
p0q X V⇣ , . . . , B

pn´1q X V⇣ ,Apnq X V⇣s,

contradicting p2q. ⌅

Note that this is optimal as well, since normal n-Ramseyness can be described by a ⇧1

2n`3

-formula. In
particular this then means that every pn`1q-Ramsey is a normal n-Ramsey stationary limit of normal n-
Ramseys, and every normal n-Ramsey is an n-Ramsey stationary limit of n-Ramseys, making the hierarchy of
alternating n-Ramseys and normal n-Ramseys a strict hierarchy.

Downwards absoluteness to L
The following proof is basically the proof of Theorem 4.1.1 in Abramson et al. (1977).
7Recall that this is stronger than just requiring it to beMn-normal — we don’t require ~Spnq

P Mn.

10



T������ 3.7 (N.). Genuine- and normal n-Ramseys are downwards absolute to L, for every n † !.

P����. Assume first that n “ 0 and that  is a genuine 0-Ramsey cardinal. LetM P L be a weak -model
— we want to find a genuineM-measure inside L. By assumption we can find such a measure µ in V ; we
will show that in fact µ P L. Fix any enumeration xA⇠ | ⇠ † y P L ofPpq X M. It then clearly su�ces
to show that T P L, where T :“ t↵ †  | A⇠ P µu.

Claim 3.7.1. T X ↵ P L for any ↵ † .

P���� �� �����. Let ~B be the µ-positive part of ~A, meaning that B⇠ :“ A⇠ if A⇠ P µ and B⇠ :“  A⇠

if A⇠ R µ. As µ is genuine we get that 4 ~B has size , so we can pick � P 4 ~B with � ° ↵. Then
T X ↵ “ t⇠ † ↵ | � P A⇠u, which can be constructed within L. %

But now Lemma 4.1.2 in Abramson et al. (1977) shows that there is a ⇧
1

formula 'pvq such that, given any
non-zero ordinal ⇣ , V⇣`1

|ù 'rAs if and only if ⇣ is a regular cardinal and A is a non-constructible subset
of ⇣ . If we therefore assume that T R L then V`1

|ù 'rT s, which by ⇧1

1

-indescribability of  means
that there exists some ↵ †  such that V↵`1

|ù 'rT X V↵s, i.e. that T X ↵ R L, contradicting the claim.
Therefore µ P L. It is still genuine in L as p4µqL “ 4µ, and if µ was normal then that is still true in L
as clubs in L are still clubs in V . The cases where  is a genuine- or normal n-Ramsey cardinal is analogous. ⌅

Since pn`1q-Ramseys are normal n-Ramseys we then immediately get the following.

C�������� 3.8 (N.). Every pn`1q-Ramsey is normal n-Ramsey in L, for every n † !. In particular, †!-
Ramseys are downwards absolute to L. %

Complete ine�ability
In this section we provide a characterisation of the completely ine�able cardinals in terms of the ↵-Ramseys.
To arrive at such a characterisation, we need a slight strengthening of the †!-Ramsey cardinals, namely the
coherent †!-Ramseys as defined in 2.8. Note that a coherent †!-Ramsey is precisely a cardinal satisfying
the !-filter property, as defined in Holy and Schlicht (2018).
The following theorem shows that assuming coherency does yield a strictly stronger large cardinal notion.

The idea of its proof is very closely related to the proof of Theorem 3.6 (the indescribability of normal n-
Ramseys), but the main di�erence is that we want everything to occur locally inside our weak -models.

T������ 3.9 (N.). Every coherent †!-Ramsey is a stationary limit of †!-Ramseys.

P����. Let  be coherent †!-Ramsey. Let ✓ "  be regular and letM
0

† H✓ be a weak -model with
V ÑM

0

. Let then player I play arbitrarily while player II plays according to her coherent winning strategies
in Gnpq, yielding a weak -modelM † H✓ with anM-normalM-measure µ :“ î

n†! µn on .

11



Assume towards a contradiction thatX :“ t⇠ †  | ⇠ is †!-Ramseyu R µ. SinceX “ ì ~X and ~X P M,
where Xn :“ t⇠ †  | ⇠ is n-Ramseyu, we must have byM-normality of µ that  Xk P µ for some k † !.
Note that  Xk P M

0

by elementarity, so that  Xk P µ
0

as well. Perform the k ` 1 steps as in the proof
of Theorem 3.6 with 'p⇠q being x⇠ is k-Ramseyy, so that we get a weak -modelMk`1

† H✓ , anMk`1

-
normal Mk`1

-measure µ̃k`1

on , a ⌃
1

-formula 'pv, v
1

, v
2

, . . . , v
2k`1

q and sequences xAp0q, . . . ,Apkqy
and xBp0q, . . . , Bpk´1qy such that

V`1

|ù 'r,Ap0q, Bp0q,Ap1q, Bp1q, . . . ,Apk´1q, Bpk´1q,Apkqs p2q

and there is a Y P µ̃k`1

with Y Ñ  Xk such that given any ⇠ P Y ,

V⇠`1

|ù  'r⇠, Ap0q
⇠ , Bp0q X V⇠, A

p1q
⇠ , Bp1q X V⇠, . . . , A

pk´1q
⇠ , Bpk´1q X V⇠, A

pkq
⇠ s, p3q

where Apiq “ r ~Apiqsµi P UltpMi, µiq as in the proof of Theorem 3.4.
Since  in particular is ⌃1

1

-indescribable, Lemma 3.4.3 of Abramson et al. (1977) implies that we get a club
C Ñ  of reflection points of p2q. LetMk`2

Ö Mk`1

be a weak -model with Apkq P Mk`2

, where the
above pn` 1q-steps ensured that the Bpiq’s and the remaining Apiq’s are all elements ofMk`1

. In particular,
as C is a definable subset in the Apiq’s and Bpiq’s we also get that C P Mk`2

. Letting µ̃k`2

be the associated
measure on ,Mk`2

-normality of µ̃k`2

ensures that C P µ̃k`2

. Now define, for every ↵ † ,

S↵ :“ t⇠ P Y | @i § k : Apiq X V↵ “ A
piq
⇠ X V↵u

and note that S↵ P µ̃k`2

for every ↵ † . Write ~S :“ xS↵ | ↵ † y and note that since ~S is definable it is an
element ofMk`2

as well. ThenMk`2

-normality of µ̃k`2

ensures that4~S P µ̃k`2

, so that C X4~S P µ̃k`2

as well. But letting ⇣ P C X 4~S we see, as in the proof of Theorem 3.4, that

V⇣`1

|ù 'r⇣, Ap0q
⇣ , Bp0q X V⇣ , A

p1q
⇣ , Bp1q X V⇣ , . . . , A

pkq
⇣ s

since 4~S Ñ Y , contradicting p3q. Hence X P µ, and since M † H✓ we have that M is correct about
stationary subsets of , meaning that  is a stationary limit of †!-Ramseys. ⌅

Now, having established the strength of this large cardinal notion, we move towards complete ine�ability. We
recall the following definitions.

D��������� 3.10. A collection R ÑPpq is a stationary class if
(i) R ‰ H;
(ii) every A P R is stationary in ;
(iii) if A P R and B Ö A then B P R.

%
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D��������� 3.11. A cardinal  is completely ine�able if there is a stationary class R such that for every
A P R and f : rAs2 Ñ 2 there is an H P R homogeneous for f . %

We then arrive at the following characterisation, influenced by the proof of Theorem 1.3.4 in Abramson et al.
(1977).

T������ 3.12 (N.). A cardinal  is completely ine�able if and only if it is coherent †!-Ramsey.

P����. pq: Assume  is coherent †!-Ramsey, witnessed by strategies x⌧n | n † !y. Let f : rs2 Ñ 2 be
arbitrary and form the sequence xAf

↵ | ↵ † y as

Af
↵ :“ t� ° ↵ | fpt↵,�uq “ 0u.

LetMf be a transitive weak -model with ~Af P Mf , and let µf be the associatedMf -measure on  given
by ⌧

0

.8 1-Ramseyness of  ensures that µf is normal, meaning4µf is stationary in . Define a new sequence
~Bf as the µf -positive part of ~Af .9 Then Bf

↵ P µf for all ↵ † , so that normality of µf implies that 4 ~Bf is
stationary.
Let nowM1

f be a new transitive weak -model withMf Ñ M1
f and µf P M1

f , and use ⌧1 to get an
M1

f -measure µ1
f Ö µf on . Then 4 ~Bf X t⇠ †  | Af

⇠ P µfu and 4 ~Bf X t⇠ †  | Af
⇠ R µfu are both

elements ofM1
f , so one of them is in µ1

f ; set Hf to be that one. Note that Hf is now both stationary in 
and homogeneous for f .
Now let g : rHf s2 Ñ 2 be arbitrary and again form

Ag
↵ :“ t� P Hf | � ° ↵ ^ gpt↵,�uq “ 0u

for ↵ P Hf . LetMf,g Ö M1
f be a transitive weak -model with ~Ag P Mf,g and use ⌧2 to get anMf,g-

measure µf,g Ö µ1
f on . As before we then get a stationary Hf,g P µ1

f,g which is homogeneous for g. We
can continue in this fashion since ⌧n Ñ ⌧n`1

for all n † !. Define then

R :“ tA Ñ  | D~f : H~f Ñ Au,

where the ~f ’s range over finite sequences of functions as above; i.e. f
0

: rs2 Ñ 2 and fk`1

: rHfk s Ñ 2 for
k † !. This is clearly a stationary class which satisfies that whenever A P R and g : rAs2 Ñ 2, we can find
H P R which is homogeneous for f . Indeed, if we let ~f be such that H~f Ñ A, which exists as A P R, then
we can simply let H :“ H~f,g . This shows that  is completely ine�able.

pñq: Now assume that  is completely ine�able and letR be the corresponding stationary class. We show
that  is n-Ramsey for all n † ! by induction, where we inductively make sure that the resulting strategies
are coherent as well. Let player I in G

0

pq playM
0

and enumeratePpq X M
0

as ~A0xA0

↵ | ↵ † y such
8Technically we would have to require thatMf † H✓ for some regular ✓ °  to be able to use ⌧0, but note that we

could simply get a measure on HullH✓
pMf q and restrict it toMf . We will use this throughout the proof.

9The µ-positive part was defined in Claim 3.7.1.
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that A0

⇠ Ñ A0

⇣ implies ⇠ § ⇣ . For ↵ †  define sequences r↵ : ↵ Ñ 2 as r↵p⇠q “ 1 i� ↵ P A0

⇠ . Let †↵
lex be

the lexicographical ordering on ↵2. Define now a colouring f : rs2 Ñ 2 as

fpt↵,�uq :“
#

0 if r
minp↵,�q †minp↵,�q

lex r
maxp↵,�q æminp↵,�q

1 otherwise

LetH
0

P R be homogeneous for f , using that  is completely ine�able. For ↵ †  consider now the sequence
xr⇠ æ↵ | ⇠ P H

0

^ ⇠ ° ↵y, which is of length  so there is an ⌘ P r↵,q satisfying that r� æ↵ “ r� æ↵
for every �, � P H

0

with ⌘ § � † �. Define g :  Ñ  as gp↵q being the least such ⌘, which is then a
continuous non-decreasing cofinal function, making the set of fixed points of g club in  – call this club C .
Since H

0

is stationary we can pick some ⇣ P C X H
0

. As ⇣ P C we get gp⇣q “ ⇣ , meaning that
r� æ ⇣ “ r� æ ⇣ holds for every �, � P H

0

with ⇣ § � † �. As ⇣ is also a member ofH
0

we can let � :“ ⇣ , so
that r⇣ “ r� æ ⇣ holds for every � P H

0

, � ° ⇣ . Now, by definition of r↵ we get that for every ↵, � P H
0

XC

with ↵ § � and ⇠ † ↵, ↵ P A0

⇠ i� � P A0

⇠ . Define thus theM0

-measure µ
0

on  as

µ
0

pA0

⇠q “ 1 i� p@� P H
0

X Cqp� ° ⇠ Ñ � P A0

⇠q
i� pD� P H

0

X Cqp� ° ⇠ ^ � P A0

⇠q,

where the last equivalence is due to the above-mentioned property of H
0

X C . Note that the choice of
enumeration implies that µ

0

is indeed a filter. Letting ~B “ xB↵ | ↵ † y be the µ
0

-positive part of ~A0, it
is also simple to check that H

0

X C Ñ 4 ~B, making µ
0

normal and hence also bothM
0

-normal and good,
showing that  is 0-Ramsey.
Assume now that  is n-Ramsey and let xM

0

, µ
0

, . . . ,Mn, µn,Mn`1

y be a partial play of Gn`1

pq.
Again enumerate Ppq X Mn`1

as ~An`1 “ xAn`1

⇠ | ⇠ † y, again satisfying that ⇠ § ⇣ whenever
An`1

⇠ Ñ An`1

⇣ , but also such that given any ⇠ †  there are ⇣, ⇣ 1 P p⇠,q satisfying that An`1

⇣ P PpqXMn

and An`1

⇣1 P pPpq X Mn`1

q ´ Mn. The plan now is to do the same thing as before, but we also have to
check that the resulting measure extends the previous ones.
Let Hn P R and C be club in  such that Hn XC Ñ 4µn, which exist by our inductive assumption. For

↵ †  define r↵ : ↵ Ñ 2 as r↵p⇠q “ 1 i� ↵ P An`1

⇠ , and define a colouring f : rHns2 Ñ 2 as

fpt↵,�uq :“
#

0 if r
minp↵,�q †minp↵,�q

lex r
maxp↵,�q æminp↵,�q

1 otherwise

As Hn P R there is an Hn`1

P R homogeneous for f . Just as before, define g :  Ñ  as gp↵q being the
least ⌘ P r↵,q such that r� æ↵ “ r� æ↵ for every �, � P Hn`1

with ⌘ § � † �, and let D be the club of
fixed points of g. As above we get that given any ↵, � P Hn`1

X D with ↵ § � and ⇠ † ↵, ↵ P An`1

⇠ i�
� P An`1

⇠ . Define then theMn`1

-measure µn`1

on  as

µn`1

pAn`1

⇠ q “ 1 i� p@� P Hn`1

X D X Cqp� ° ⇠ Ñ � P An`1

⇠ q
i� pD� P Hn`1

X D X Cqp� ° ⇠ ^ � P An`1

⇠ q.
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Then Hn`1

XDXC Ñ 4µn`1

, making µn`1

normal,Mn`1

-normal and good, just as before. It remains to
show that µn Ñ µn`1

. Let thus A P µn be given, and say A “ An`1

⇠ “ An
⌘ , where ~An was the enumeration

of Ppq X Mn used at the n’th stage. Then by definition of µn we get that for every � P Hn X C with
� ° ⌘, � P An

⌘ . We need to show that

pD� P Hn`1

X D X Cqp� ° ⇠ ^ � P An`1

⇠ q

holds. But here we can simply pick a � ° maxp⇠, ⌘q with � P Hn`1

X D X C Ñ Hn X C . This shows that
µn Ñ µn`1

, making  pn`1q-Ramsey and thus inductively also coherent †!-Ramsey. ⌅

4 The countable case
This section covers the (strategic) �-Ramsey cardinals whenever � has countable cofinality. This case is special
because, as mentioned in Section 2, we cannot ensure that the final measure is countably complete and so the
existence of winning strategies in the G✓

�pq might depend on ✓, in contrast with the uncountable cofinality
case; see e.g. Question 6.3.

[Strategic] !-Ramsey cardinals
We now move to the strategic !-Ramsey cardinals and their relationship to the (non-strategic) !-Ramseys.
For this we define a new addition to the family of virtual cardinals from Gitman and Schindler (2015), the
virtually measurable cardinals.

D��������� 4.1. A cardinal  is virtually measurable if for every regular ⌫ °  there exists a transitive M
and a forcing P such that, in V P, there exists an elementary embedding j : HV

⌫ Ñ M with crit j “ . %

We’ll need the following well-known lemmata; see Lemma 7.1 in Holy and Schlicht (2018) and Lemma 3.1 in
Gitman and Schindler (2015) for their proofs.

L���� 4.2 (Ancient Kunen Lemma). Let M |ù ZFC´ and j : M Ñ N an elementary embedding with
critical point  such that ` 1 ÑM Ñ N . Assume that X P M hasM -cardinality . Then j æX P N . %

L���� 4.3 (Absoluteness of embeddings on countable structures). LetM be a countable first-order structure
and j : M Ñ N an elementary embedding. If W is a transitive (set or class) model of (some su�ciently
large fragment of) ZFC such thatM is countable inW and N P W , then for any finite subset ofM ,W has
some elementary embedding j˚ : M Ñ N , which agrees with j on that subset. Moreover, if both M and
N are transitive P-structures and j has a critical point, we can also assume that critpj˚q “ critpjq. %
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T������ 4.4 (Schindler-N.). Every virtually measurable cardinal is strategic !-Ramsey, and every strategic
!-Ramsey cardinal is virtually measurable in L.

P����. Let  be virtually measurable and fix a regular ⌫ ° , a transitive M , a poset P and, in V P, an
elementary embedding ⇡ : HV

⌫ Ñ M with crit⇡ “ . Fix a name 9µ and a P-condition p such that10

p,x 9µ is a 1-good Ȟ⌫ -normal Ȟ⌫ -measurey

We now define a strategy � for player II in G⌫
!pq as follows. Whenever player I plays a weak -model

Mn † HV
⌫ , player II fixes pn P P, an Mn-measure µn and a function ⇡n : Mn Ñ V such that p

0

§ p,
pn § pk for every k § n and that

pn ,x 9µ X M̌n “ µ̌n ^ ⇡̌n “ 9⇡ æ M̌ny. p1q

Note that by the Ancient Kunen Lemma 4.2 we get that ⇡ æMn P M Ñ V , so such ⇡n always exist in V .
The µn’s also always exist in V , by weak amenability of µ. Player II responds toMn with µn. It’s clear that
the µn’s are legal moves for player II, so it remains to show that µ! :“ î

n†! µn is good. Assume it’s not, so
that we have a sequence xgn | n † !y of functions gn :  Ñ M! :“ î

n†! Mn such that gn P M! and

Xn`1

:“ t↵ †  | gn`1

p↵q † gnp↵qu P µ! p2q

for every n † !. Without loss of generality we can assume that gn, Xn P Mn. Then p2q implies that
pn`1

,x 9⇡pǧn`1

qp̌q † 9⇡pǧnqp̌qy, but by p1q this also means that

pn`1

,x⇡̌n`1

pǧn`1

qp̌q † ⇡̌npǧnqp̌qy, p3q

so defining, in V , the ordinals ↵n :“ ⇡npgnqpq, p3q implies that ↵n`1

† ↵n for all n † !,  . So µ! is good,
making � a winning strategy and thus also making  strategic !-Ramsey since ⌫ was arbitrary.
Next, let  be strategic !-Ramsey and fix a winning strategy � for player II in G⌫

!pq for a regular ⌫ ° .
Let g Ñ Colp!, HL

⌫ q be V -generic and in V rgs fix an elementary chain xLn | n † !y of weak -models
Ln † HL

⌫ such that HL
⌫ Ñ

î
n†! Ln , using that ⌫ is regular and has countable cofinality in V rgs. Player

II follows �, resulting in a HL
⌫ -normal HL

⌫ -measure µ on .

Claim 4.4.1. UltpHL
⌫ , µq is well-founded.

P���� �� �����. Assume for a contradiction that UltpHL
⌫ , µq is illfounded, witnessed by a sequence

xgn | n † !y of functions gn :  Ñ ⌫ such that gn P HL
⌫ and t↵ †  | gn`1

p↵q † gnp↵qu P µ.
Now, in V , define a tree T of triples pf,Mf , µf q such that f :  Ñ ⌫ , Mf is a weak -model, µf is an
Mf -measure on  and letting f0 †T ¨ ¨ ¨ †T fn “ f be the T -predecessors of f ,
• xMf0 , µf0 , . . . ,Mfn , µfny is a partial play of G⌫

!pq in which player II follows �; and
10Recall that an M -measure µ is 1-good if it’s weakly amenable and UltpM,µq is well-founded.
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• t↵ †  | fk`1

p↵q † fkp↵qu P µk`1

for every k † n.

Now, the gn’s induce a cofinal branch through T in V rgs, so by absoluteness of well-foundedness there’s
a cofinal branch b through T in V as well. But b now gives us a play of G⌫

!pq where player II is following
� but player I wins, a contradiction. Thus UltpHL

⌫ , µq is well-founded. %

Let j : HL
⌫ Ñ UltpHL

⌫ , µq – M be the ultrapower embedding followed by the transitive collapse, so that
M “ L↵ for some ↵ by elementarity. Let now h Ñ Colp!,`LqL be L-generic, so that HL

⌫ is count-
able in Lrhs and (trivially) M P Lrhs. By Lemma 4.3 we then get that there’s an elementary embedding
j˚ : HL

⌫ Ñ M in Lrhs with critical point . Since we also have that M P L and as ⌫ was arbitrary, this
makes  virtually measurable in L. ⌅

We get the following immediate corollary.

C�������� 4.5 (Schindler-N.). Strategic !-Ramseys are downwards absolute to L, and the existence of a
strategic !-Ramsey cardinal is equiconsistent with the existence of a virtually measurable cardinal. Further,
in L the two notions are equivalent. %

Note also that the proof of Theorem 4.4 shows that whenever  is strategic !-Ramsey then for every regular
⌫ °  there’s a generic extension in which there exists a weakly amenable HV

⌫ -normal H⌫ -measure on .
We end this section with a result showing precisely where in the large cardinal hierarchy the strategic

!-Ramsey cardinals and !-Ramsey cardinals lie, namely that strategic !-Ramseys are equiconsistent with
remarkables and !-Ramseys are strictly below. Theorem 4.8 of Gitman and Welch (2011) showed that 2-
iterables are limits of remarkables, and our Propositions 2.6 and 4.13 shows that !-Ramseys are limits of
1-iterables, so that the strategic !-Ramseys and the !-Ramseys both lie strictly between the 2-iterables and
1-iterables. It was shown in Holy and Schlicht (2018) that !-Ramseys are consistent with V “ L. Remarkable
cardinals were introduced by Schindler (2000), and Gitman and Schindler (2015) showed the following two
equivalent formulations.

D��������� 4.6. A cardinal  is remarkable if one of the two equivalent properties hold:
(i) For all � °  there exist ⌫ ° �, a transitive set M with HV

� Ñ M and a forcing poset P, such that in
V P there’s an elementary embedding ⇡ : HV

⌫ Ñ M with critical point  and ⇡pq ° �;
(ii) For all � °  there exist ⌫ ° �, a transitive set M with �M Ñ M and a forcing poset P, such that in

V P there’s an elementary embedding ⇡ : HV
⌫ Ñ M with critical point  and ⇡pq ° �.

%

17



T������ 4.7 (N.). Let  be a virtually measurable cardinal. Then either  is either remarkable in L or
L |ù xthere is a proper class of virtually measurablesy. In particular, the two notions are equiconsistent.

P����. Virtually measurables are downwards absolute to L by Lemma 4.3, so we may assume V “ L.
Assume  is not remarkable. This means that there exists some � °  such that for every ⌫ ° �, transitive
M with HV

� Ñ M and forcing poset P it holds that, in V P, there’s no elementary embedding ⇡ : HV
⌫ Ñ M

with crit⇡ “  and ⇡pq ° �.
Fix ⌫ :“ �` and use that  is virtually ⌫-measurable to fix a transitiveM and a forcing poset P such that,

in V P, there’s an elementary ⇡ : HV
⌫ Ñ M . Note that because M |ù V “ L and M is transitive, M “ L↵

for some ↵ • ⌫ , so that HV
⌫ “ L⌫ Ñ M . This means that ⇡pq § � † ⌫ since we’re assuming that  isn’t

remarkable. Then by restricting the generic embedding to HV
 we get that HV

 † HM
⇡pq “ HV

⇡pq, using that
⇡pq † ⌫ and HV

⌫ “ HM
⌫ by the above.

Note that ⇡pq is a cardinal in HV
⌫ since ⇡pq † ⌫ , and as HV

⌫ †

1

V we get that ⇡pq is a cardinal. But
then, again using that H⇡pq †

1

V ,  is virtually measurable in HV
⇡pq since being virtually measurable is ⇧2

.
This means that for every ⇠ †  it holds that

HV
⇡pq |ù D↵ ° ⇠ : x↵ is virtually measurabley,

implying that HV
 |ù xThere is a proper class of virtually measurablesy. ⌅

Now Theorem 4.7 and Corollary 4.5 yield the following immediate corollary.

C�������� 4.8 (Schindler-N.). Let  be strategic !-Ramsey. Then either  is remarkable in L or otherwise
L |ù xthere is a proper class of strategic !-Ramseysy. In particular, the two notions are equiconsistent. %

Now, using these results we show that the strategic !-Ramseys have strictly stronger consistency strength than
the !-Ramseys.

T������ 4.9 (N.). Remarkable cardinals are strategic !-Ramsey limits of !-Ramsey cardinals.

P����. Let  be remarkable. Using property piiq in the definition of remarkability above we can find
a transitive M closed under 2-sequences and a generic elementary embedding ⇡ : HV

⌫ Ñ M for some
⌫ ° 2. We will show that  is !-Ramsey in M . Note that remarkables are clearly virtually measurable,
and thus by Theorem 4.4 also strategic !-Ramsey; let ⌧✓ be the winning strategy for player II in G✓

!pq for all
regular ✓ ° .
In M we fix some regular ✓ °  and let � be some strategy for player I in G✓

!pqM . Since M is closed
under 2-sequences it means that PpPpqq Ñ M and thus that M contains all possible filters on . We
let player II follow ⌧ , which produces a play � ˚ ⌧ in which player II wins. But all player II’s moves are in
PpPpqq and hence inM , and asM is furthermore closed under !-sequences, � ˚ ⌧ P M . This means that
M sees that � is not winning, so  is !-Ramsey inM .
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This also implies that  is a limit of !-Ramseys in H⌫ . But as  is remarkable it holds that H †

2

V , in
analogy with the same property for strongs and supercompacts, and as being !-Ramsey is a ⇧

2

-notion this
means that  is a limit of !-Ramseys. ⌅

This immediately yields the following corollary.

C�������� 4.10 (Schindler-N.). If  is a strategic !-Ramsey cardinal then

L |ù xthere is a proper class of !-Ramseysy. %

p!,↵q-Ramsey cardinals
A natural generalisation of the �-Ramsey definition is to require more iterability of the last measure. Of course,
by Proposition 2.6 we have that G�p, ⇣q is equivalent to G�pq when cof � ° ! so the next definition is only
interesting whenever cof � “ !.

D��������� 4.11 (N.). Let ↵,� be ordinals. Then a cardinal  is p↵,�q-Ramsey if player I does not have a
winning strategy in G✓

↵p,�q for all regular ✓ ° .11 %

D��������� 4.12 (Gitman). A cardinal  is ↵-iterable if for everyA Ñ  there exists a transitiveweak -model
M with A P M and an ↵-goodM-measure µ onM. %

P���������� 4.13. If � ° 0 then every p↵,�q-Ramsey is a �-iterable stationary limit of �-iterables.

P����. Let pM, P, µq be a result of a play of G`
↵ p,�q in which player II won. Then the transitive collapse

of pM, P, µq witnesses that  is �-iterable, since µ is �-good by definition of G`
↵ p,�q.

That  is �-iterable is reflected to some H✓ , so let now pN , P, ⌫q be a result of a play of G✓
↵p,�q in

which player II won. Then N † H✓ , so that  is also �-iterable in N . Since being �-iterable is witnessed by
a subset of  and � ° 0 implies12 that we get a -powerset preserving j : N Ñ P , P also thinks that  is
�-iterable, making  a stationary limit of �-iterables by elementarity. ⌅

We now move towards Theorem 4.17 which gives an upper consistency bound for the p!,↵q-Ramseys. We
first recall a few definitions and a folklore lemma.

D��������� 4.14. For an infinite ordinal ↵, a cardinal  is ↵-Erd�s for ↵ §  if given any club C Ñ  and
regressive c : rCs†! Ñ  there is a set H P rCs↵ homogeneous for c; i.e. that |c“rHsn| § 1 holds for every
n † !. %

11Note that an ↵-Ramsey cardinal is the same as an p↵, 0q-Ramsey cardinal.
12Recall that �-good for � ° 0 in particular implies weak amenability.
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D��������� 4.15. A set of indiscernibles I for a structureM “ pM, P, Aq is remarkable if I ´ ◆ is a set of
indiscernibles for pM, P, A, x⇠ | ⇠ † ◆yq for every ◆ P I . %

L���� 4.16 (Folklore). Let  be ↵-Erd�s where ↵ P r!,s and let C Ñ  be club. Then any structureM
in a countable language L with ` 1 ÑM has a remarkable set of indiscernibles I P rCs↵.

P����. Let x'n | n † !y enumerate all L-formulas and define c : rCs†! Ñ  as follows. For an increasing
sequence ↵

1

† ¨ ¨ ¨ † ↵
2n P C let

cpt↵
1

, . . . ,↵
2nuq :“ the least � † ↵

1

such that D�
1

† ¨ ¨ ¨ �kDm † ! : � “ xm, �
1

, . . . , �ky^
M*'mr~�,↵

1

, . . . ,↵ns Ø 'mr~�,↵n`1

, . . . ,↵
2ns

if such a � exists, and cpsq “ 0 otherwise. Clearly c is regressive, so since  is ↵-Erd�s we get a homogeneous
I P rCs↵ for c; i.e. that |c“rIsn| § 1 for every n † !. Then cpt↵

1

, . . . ,↵
2nuq “ 0 for every ↵

1

, . . . ,↵
2n P I ,

as otherwise there exists an m † ! and �
1

† ¨ ¨ ¨ �k such that for any ↵1

† . . . † ↵
2n P I ,

M*'mr~�,↵
1

, . . . ,↵ns Ø 'mr~�,↵n`1

, . . . ,↵
2ns. p:q

But then simply pick ↵
1

† . . .↵
2n † ↵1

1

† ¨ ¨ ¨ † ↵1
2n so that both t↵

1

, . . . ,↵
2nu and t↵1

1

, . . . ,↵1
2nu wit-

nesses p:q; then either t↵
1

, . . . ,↵n,↵
1
1

,↵1
nu or t↵

1

, . . . ,↵n,↵
1
n`1

, . . . ,↵1
2nu also witnesses that p:q fails,  . ⌅

T������ 4.17 (N.). Let ↵ P r!,!
1

s be additively closed. Then any ↵-Erd�s cardinal is a limit of p!,↵q-
Ramsey cardinals.

P����. Let  be ↵-Erd�s, ✓ °  a regular cardinal and � †  any ordinal. Use the above Lemma 4.16 to get
a set of remarkable indiscernibles I P rs↵ for the structure pH✓, P, x⇠ | ⇠ † �yq, and let ◆ P I be the least
indiscernible in I . We will show that player I has no winning strategy in G✓

!p◆,↵q, so by the proof of Theorem
5.5(d) in Holy and Schlicht (2018) it su�ces to find a weak ◆-modelM † H✓ and an ↵-goodM-measure on
◆. Define

M :“ HullH✓ p◆Y Iq † H✓

and let ⇡ : I Ñ I be the right-shift map. Since I is remarkable, I (“ I ´ ◆) is a set of indiscernibles for the
structure pH✓, P, x⇠ | ⇠ † ◆yq, so that ⇡ induces an elementary embedding j : M Ñ M with crit j “ ◆,
given as

jp⌧Mr~⇠, ◆i0 , . . . , ◆ik sq :“ ⌧Mr~⇠, ◆i0`1

, . . . , ◆ik`1

s,

with ~⇠ Ñ ◆. Since j is trivially ◆-powerset preserving we get thatM † H✓ is a weak ◆-model satisfying ZFC´

with a 1-goodM-measure µj on ◆. Furthermore, as we can linearly iterateM simply by applying j we get
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an ↵-iteration ofM since there are ↵-many indiscernibles. Note that at limit stages � † ↵ our iteration sends
⌧Mr~⇠, ◆i0 , . . . , ◆ik s to ⌧Mr~⇠, ◆i0`� , . . . , ◆ik`�s so here we are using that ↵ is additively closed.
This shows that player I has no winning strategy in G✓

!p◆,↵q. Since ◆ ° � and � †  was arbitrary,  is
a limit of ⌘ such that player I has no winning strategy in G✓

!p⌘,↵q. If we repeat this procedure for all regular
✓ °  we get by the pidgeon hole principle that  is a limit of p!,↵q-Ramsey cardinals. ⌅

As Theorem 4.5 in Gitman and Schindler (2015) shows that p↵`1q-iterable cardinals have ↵-Erd�s cardinals
below them for ↵ • ! additively closed, this shows that the p!,↵q-Ramseys form a strict hierarchy. Further,
as ↵-Erd�s cardinals are consistent with V “ L when ↵ † !L

1

and !
1

-iterable cardinals aren’t consistent
with V “ L, we also get that p!,↵q-Ramsey cardinals are consistent with V “ L if ↵ † !L

1

and that they
aren’t if ↵ “ !

1

.

[Strategic] p!`1q-Ramsey cardinals
The next step is then to consider p!`1q-Ramseys, which turn out to cause a considerable jump in consistency
strength. We first need the following result which is implicit in Mitchell (1979) and in the proof of Lemma 1.3
in Donder et al. (1981) — see also Dodd (1982) and Gitman (2011).

T������ 4.18 (Dodd, Mitchell). A cardinal  is Ramsey if and only if every A Ñ  is an element of a weak
-modelM such that there exists a weakly amenable countably completeM-measure on . %

The following theorem then supplies us with a lower bound for the strength of the p!`1q-Ramsey cardinals.
It should be noted that a better lower bound will be shown in Theorem 5.9, but we include this Ramsey lower
bound as well for completeness.

T������ 4.19 (N.). Every p!`1q-Ramsey cardinal is a Ramsey limit of Ramseys.

P����. Let  be p!`1q-Ramsey and A Ñ . Let � be a strategy for player I in G`
!`1

pq satisfying that
whenever ~M↵ ˚ ~µ↵ is consistent with � it holds that A P M

0

and µ↵ P M↵`1

for all ↵ § !. Then � isn’t
winning as  is p!`1q-Ramsey, so we may fix a play � ˚ ~µ↵ of G`

!`1

pq in which player II wins. Then by
the choice of � we get that µ! is a weakly amenableM!-measure on , and by the rules of G`

!`1

pq it’s also
countably complete (it’s even normal), which makes  Ramsey by the above Theorem 4.18.
Since  is Ramsey,M! |ù x is Ramseyy as well. Letting j : M! Ñ N be the -powerset preservering

embedding induced by µ! , we also get that N |ù x is Ramseyy by -powerset preservation. This then im-
plies that  is a stationary limit of Ramsey cardinals insideM! , and thus also in V by elementarity. ⌅

As for the consistency strength of the strategic p!`1q-Ramsey cardinals, we get the following result that
they reach a measurable cardinal. The proof of the following is closely related to the proof due to Silver
and Solovay that player II having a winning strategy in the cut and choose game is equiconsistent with a
measurable cardinal — see e.g. p. 249 in Kanamori and Magidor (1978).
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T������ 4.20 (N.). If  is a strategic p!`1q-Ramsey cardinal then, in V Colp!,2q, there’s a transitive class
N and an elementary embedding j : V Ñ N with crit j “ . In particular, the existence of a strategic
p!`1q-Ramsey cardinal is equiconsistent with the existence of a measurable cardinal.

P����. Set P :“ Colp!, 2q and let � be player II’s winning strategy in G`
!`1

pq. Let 9M be a P-name of an
!-sequence xMn | n † !y of weak -modelsMn P V such thatMn † HV

` and PpqV Ñ î
n†! Mn,

and let 9µ be a P-name for the !-sequence of �-responses to theMn’s in G`
!`1

pqV .
Assume that there’s a P-condition p which forces the generic ultrapower UltpV,î

n 9µnq to be illfounded,
meaning that we can fix a P-name 9f for an !-sequence xfn | n † !y such that

p, 9Xn :“ t↵ †  | 9fn`1

p↵q † 9fnp↵qu P
§

n†!

9µn.

Now, in V , we fix some large regular ✓ "  and a countable N † H✓ such that 9M, 9µ, 9f,HV
` ,�, p P N .

We can find an N -generic g Ñ PN in V with p P g since N is countable, so that N rgs P V . But the play
9Mg

n ˚ 9µg
n is a play of G`

! pqV which is according to �, meaning that în†! 9µg
n is normal and in particular

countably complete (in V ). Then
ì

n†!
9Xg
n ‰ H, but if ↵ P ì

n†!
9Xg
n then x 9fg

np↵q | n † !y is a strictly
decreasing !-sequence of ordinals,  . This means that UltpV,î

n µnq is indeed wellfounded.
This conclusion is well-known to imply that  is a measurable in an inner model; see e.g. Lemma 4.2 in

Kellner and Shelah (2011). ⌅

The above Theorem 4.20 then answers Question 9.2 in Holy and Schlicht (2018) in the negative, asking if
�-Ramseys are strategic �-Ramseys for uncountable cardinals �, as well as answering Question 9.7 from the
same paper in the positive, asking whether strategic fully Ramseys are equiconsistent with a measurable.

5 The general case

Gitman’s cardinals
In this subsection we define the strongly- and super Ramsey cardinals from Gitman (2011) and investigate
further connections between these and the ↵-Ramsey cardinals. First, a definition.

D��������� 5.1 (Gitman). A cardinal  is strongly Ramsey if every A Ñ  is an element of a transitive -
modelM with a weakly amenableM-normalM-measure µ on . If furthermoreM † H` then we say
that  is super Ramsey. %

Note that since the modelM in question is a -model it is closed under countable sequences, so that the
measure µ is automatically countably complete. The definition of the strongly Ramseys is thus exactly the
same as the characterisation of Ramsey cardinals, with the added condition that the model is closed under
†-sequences. Gitman (2011) shows that every super Ramsey cardinal is a strongly Ramsey limit of strongly
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Ramsey cardinals, and that  is strongly Ramsey i� every A Ñ  is an element of a transitive -model
M |ù ZFC with a weakly amenableM-normalM-measure µ on .
Now, a first connection between the ↵-Ramseys and the strongly- and super Ramseys is the result in Holy

and Schlicht (2018) that fully Ramsey cardinals are super Ramsey limits of super Ramseys. The following
result then shows that the strongly- and super Ramseys are sandwiched between the almost fully Ramseys
and the fully Ramseys.

T������ 5.2 (N.-W.). Every strongly Ramsey cardinal is a stationary limit of almost fully Ramseys.

P����. Let  be strongly Ramsey and letM |ù ZFC be a transitive -model with V P M and µ a weakly
amenableM-normalM-measure. Let � †  have uncountable cofinality and � P M a strategy for player I
in G�pqM. Now, whenever player I playsM↵ P M let player II play µ X M↵, which is an element ofM
by weak amenability of µ. AsM† ÑM the resulting play is insideM, soM sees that � is not winning.
Now, letting jµ : M Ñ N be the induced embedding, -powerset preservation of jµ implies that µ is

also a weakly amenable N -normal N -measure on . This means that we can copy the above argument to
ensure that  is also almost fully Ramsey in N , entailing that it is a stationary limit of almost fully Ramseys
in M. But note now that � is almost fully Ramsey i� it is almost fully Ramsey in a transitive ZFC-model
containing Hp2�q` as an element by Theorem 5.5(e) in Holy and Schlicht (2018), so that  being inaccessible,
V P M andM being transitive implies that  really is a stationary limit of almost fully Ramseys. ⌅

Downwards absoluteness toK
Lastly, we consider the question of whether the ↵-Ramseys are downwards absolute to K , which turns out
to at least be true in many cases. The below Theorem 5.4 then also answers Question 9.4 from Holy and
Schlicht (2018) in the positive, asking whether ↵-Ramseys are downwards absolute to the Dodd-Jensen core
model for ↵ P r!,s a cardinal. We first recall the definition of 0¶.

D��������� 5.3. 0¶ is “the sharp for a strong cardinal”, meaning the minimal sound active mouseM with
M | critp 9FMq |ù xThere exists a strong cardinaly, with 9FM being the top extender ofM. %

T������ 5.4 (N.-W.). Assume 0¶ does not exist. Let � be a limit ordinal with uncountable cofinality and
let  be �-Ramsey. Then K |ù x is a �-Ramsey cardinaly.

P����. Note first that `K “ ` by Schindler (1997), since  in particular is weakly compact. Let � P K be
a strategy for player I in G`

� pqK , so that a play following � will produce weak -modelsM † K|`. We
can then define a strategy �̃ for player I in G`

� pq as follows. Firstly let �̃pHq :“ HullH` pK| Y �pHqq.
Assuming now that xM̃↵, µ̃↵ | ↵ † �y is a partial play of G`

� pq which is consistent with �̃, we have two
cases. If µ̃↵ P K for every ↵ † � then let xM↵ | ↵ † �y be the corresponding models played in G`

� pqK
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from which the M̃↵’s are derived and let

�̃pxM̃↵, µ̃↵ | ↵ † �yq :“ HullH` pK|Y �pxM↵, µ̃↵ | ↵ † �yqq,

and otherwise let �̃ play arbitrarily. As  is �-Ramsey (in V ) there exists a play xM̃↵, µ̃↵ | ↵ § �y of G`
� pq

which is consistent with �̃ in which player II won. Note that M̃� XK|`
† K|` so let N be the transitive

collapse of M̃� X K|`. But if j : N Ñ K|` is the uncollapse then crit j is both an N -cardinal and also
°  because we ensured that K| Ñ N . This means that j “ id because  is the largest N -cardinal by
elementarity in K|`, so that M̃� X K|` “ N is a transitive elementary substructure of K|`, making it
an initial segment of K .
Now, since µ :“ µ̃� is a countably complete weakly amenable K|opN q-measure13, the “beaver argu-

ment”14 shows that µ P K , so that we can then define a strategy ⌧ for player II in G`
� pqK as simply playing

µ X N P K whenever player I plays N . Since µ “ µ̃� we also have that µ X M↵ “ µ̃↵ X M↵, so that �
will eventually play N , making ⌧ win against �.15 ⌅

Note that the only thing we used cof � ° ! for in the above proof was to ensure that µ was countably
complete. If now  instead was either genuine- or normal ↵-Ramsey for any limit ordinal ↵ then µ↵ would
also be countably complete and weakly amenable, so the same proof shows the following.

C�������� 5.5 (N.-W.). Assume 0¶ does not exist and let ↵ be any limit ordinal. Then every genuine- and
every normal ↵-Ramsey cardinal is downwards absolute toK . In particular, if ↵ is a limit of limit ordinals
then every †↵-Ramsey cardinal is downwards absolute to K as well. %

Indiscernible games
We now move to the strategic versions of the ↵-Ramsey hierarchy. The first thing we want to do is define
↵-very Ramsey cardinals, introduced in Sharpe and Welch (2011), and show the tight connection between
these and the strategic ↵-Ramseys. We need a few more definitions. Recall the definition of a remarkable set
of indiscernibles from Definition 4.15.

D��������� 5.6. A good set of indiscernibles for a structureM is a set I ÑM of remarkable indiscernibles
forM such thatM |◆ † M for any ◆ P I . %

D��������� 5.7 (Sharpe-W.). Define the indiscernible game GI
�pq in � many rounds as follows

I M
0

M
1

M
2

¨ ¨ ¨
II I

0

I
1

I
2

¨ ¨ ¨
13Here we use that N CK .
14See Lemmata 7.3.7–7.3.9 and 8.3.4 in Zeman (2002) for this argument.
15Note that ⌧ is not necessarily a winning strategy — all we know is that it is winning against this particular strategy �.
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HereM↵ is an amenable structure of the form pJrAs, P, Aq for some A Ñ , I↵ P rs is a good set of
indiscernibles forM↵ and the I↵’s are Ñ-decreasing. Player II wins i� they can continue playing through all
the rounds. %

D��������� 5.8 (Sharpe-W.). A cardinal  is �-very Ramsey if player II has a winning strategy in the game
GI

�pq. %

The next couple of results concerns the connection between the strategic ↵-Ramseys and the ↵-very Ramseys.
We start with the following.

T������ 5.9 (N.). Every p!`1q-Ramsey is an !-very Ramsey stationary limit of !-very Ramseys.

P����. Let  be p!`1q-Ramsey. We will describe a winning strategy for player II in the indiscernible game
GI

!pq. If player I playsM
0

“ pJrA
0

s, P, A
0

q in GI
!pq then let player I in G`

!`1

pq play

H
0

:“ HullH` pJrA
0

s Y tM
0

,, A
0

uq † H` .

Let player I now follow a strategy in G`
!`1

pq which starts o� with H
0

and ensures that, whenever ~M↵ ˚ ~µ↵

is consistent with player I’s strategy, then µ↵ P M↵`1

for all ↵ § !. Since player II is not losing in G`
!`1

pq
there is a play ~M↵ ˚~µ↵ in which player I follows this strategy just described and where player II wins – write
Hp↵q

0

:“ M↵ and µp↵q
0

:“ µ↵ for the models and measures in this play.

I Hp0q
0

¨ ¨ ¨ Hp!q
0

Hp!`1q
0

II µ
p0q
0

¨ ¨ ¨ µ
p!q
0

µ
p!`1q
0

By the choice of player I’s strategy we get that µp!q
0

is both weakly amenable, and it’s also countably complete
by the rules of G`

!`1

pq (it’s even normal). Now Lemma 2.9 of Sharpe and Welch (2011) gives us a set of
good indiscernibles I

0

P µ
p!q
0

forM
0

, asM
0

P Hp!q
0

and µp!q
0

is a countably complete weakly amenable
Hp!q

0

-normal Hp!q
0

-measure on . Let player II play I
0

in GI
!pq. Let nowM

1

“ pJrA
1

s, P, A
1

q be the
next play by player I in GI

!pq.

I M
0

M
1

II I
0

Since µp!q
0

“ î
n µ

pnq
0

we must have that I
0

P µ
pn0q
0

for some n
0

† !. In the pn
0

`1q’st round of G`
!`1

pq
we change player I’s strategy and let player I play

H
1

:“ HullH` pJrA
0

s Y tM
0

,M
1

,, A
0

, A
1

, xHpkq
0

, µ
pkq
0

| k § n
0

yuq † H`

and otherwise continues following some strategy, as long as the measures played by player II keep being
elements of the following models. Our play of the game G`

!`1

pq thus looks like the following so far.
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I Hp0q
0

¨ ¨ ¨ Hpn0q
0

H
1

II µ
p0q
0

¨ ¨ ¨ µ
pn0q
0

Now player II in G`
!`1

pq is not losing at round n
0

, so there is a play extending the above in which player
I follows their revised strategy and in which player II wins. As before we get a set I 1

1

P µ
pn1q
1

of good
indiscernibles for M

1

, where n
1

† !. Since I
0

P µ
pn0q
0

Ñ µ
pn1q
1

we can let player II in GI
!pq play

I
1

:“ I
0

X I 1
1

P µ
pn1q
1

. Continuing like this, player II can keep playing throughout all ! rounds of GI
!pq,

making  !-very Ramsey.
As for showing that  is a stationary limit of !-very Ramseys, letM † H` be a weak -model with

a weakly amenable countably completeM-normalM-measure µ on , which exists by Theorem 4.19 as 
is p!`1q-Ramsey. Then by elementarityM |ù x is !-very Ramseyy and since  being !-very Ramsey is
absolute between structures having the same subsets of  it also holds in the µ-ultrapower, meaning that  is
a stationary limit of !-very Ramseys by elementarity. ⌅

The above proof technique can be generalised to the following.

T������ 5.10 (N.). For limit ordinals ↵, every coherent †!↵-Ramsey is !↵-very Ramsey.

P����. This is basically the same proof as the proof of Theorem 5.9. We do the “going-back” trick in
!-chunks, and at limit stages we continue our non-losing strategy in G`

!↵pq by using our winning strategy,
which we have available as we are assuming coherent †!↵-Ramseyness. We need ↵ to be a limit ordinal for
this to work, as otherwise we would be in trouble in the last !-chunk, as we cannot just extend the play to
get a countably complete measure, which we need to use the proof of Theorem 5.9. ⌅

As for going from the ↵-very Ramseys to the strategic ↵-Ramseys we got the following.

T������ 5.11 (N.). For � any ordinal, every coherent †�-very Ramsey16 is coherent †�-Ramsey.17

P����. The reason why we work with †�-Ramseys here is to ensure that player II only has to satisfy a
closed game condition (i.e. to continue playing throughout all the rounds). If � “ � ` 1 then set ⇣ :“ � and
otherwise let ⇣ :“ �. Let  be ⇣-very Ramsey and let ⌧ be a winning strategy for player II in GI

⇣pq. Let
M↵ † H✓ be any move by player I in the ↵’th round of G⇣pq. Let A↵ Ñ  encode all subsets of  inM↵

16Here the coherency again just means that the winning strategies �↵ for player II in GI
↵pq are Ñ-increasing.

17Here a “coherent †�-very Ramsey cardinal” is defined from �-very Ramseys in the same way as coherent †�-Ramsey
cardinals is defined from �-Ramseys. When � is a limit ordinal then coherent †�-very Ramseys are precisely the same as
�-very Ramseys, so this is solely to “subtract one” when � is a successor ordinal — i.e. a coherent †p� ` 1q-very Ramsey
cardinal is the same thing as a �-very Ramsey cardinal.
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and form now

N↵ :“ pJrA↵s, P, A↵q,

which is a legal move for player I in GI
⇣pq, yielding a good set of indiscernibles I↵ P rs for N↵ such

that I↵ Ñ I� for every � † ↵. Now by section 2.3 in Sharpe and Welch (2011) we get a structure P↵ with
N↵ P P↵ and a P↵-measure µ̃↵ on , generated by I↵.18 Set µ↵ :“ µ̃↵ X M↵ and let player II play µ↵ in
G⇣pq.
As the µ↵’s are generated by the I↵’s, the µ↵’s are Ñ-increasing. We have thus created a strategy for

player II in G⇣pq which does not lose at any round ↵ † �, making  coherent †�-Ramsey. ⌅

The following result is then a direct corollary of Theorems 5.10 and 5.11.

C�������� 5.12 (N.). For limit ordinals ↵,  is !↵-very Ramsey i� it is coherent†!↵-Ramsey. In particular,
 is �-very Ramsey i� it is strategic �-Ramsey for any � with uncountable cofinality. %

We can now use this equivalence to transfer results from the ↵-very Ramseys over to the strategic versions.
The completely Ramsey cardinals are the cardinals topping the hierarchy defined in Feng (1990). A completely
Ramsey cardinal implies the consistency of a Ramsey cardinal, see e.g. Theorem 3.51 in Sharpe and Welch
(2011). We are going to use the following characterisation of the completely Ramsey cardinals, which is Lemma
3.49 in Sharpe and Welch (2011).

T������ 5.13 (Sharpe-W.). A cardinal is completely Ramsey if and only if it is !-very Ramsey. %

This, together with Theorem 5.9, immediately yields the following strengthening of Theorem 4.19.

C�������� 5.14 (N.). Every p!`1q-Ramsey cardinal is a completely Ramsey stationary limit of completely
Ramsey cardinals. %

The above Theorem 5.11 also yields the following consequence.

C�������� 5.15 (N.). Every completely Ramsey cardinal is completely ine�able.

P����. From Theorem 5.13 we have that being completely Ramsey is equivalent to being !-very Ramsey,
so the above Theorem 5.11 then yields that a completely Ramsey cardinal is coherent †!-Ramsey, which we
saw in Theorem 3.12 is equivalent to being completely ine�able. ⌅

Now, moving to the uncountable case, Corollary 5.12 yields that strategic !
1

-Ramsey cardinals are !
1

-very
Ramsey, and Theorem 3.50 in Sharpe and Welch (2011) states that !

1

-very Ramseys are measurable in the
18By generated here we mean that X P µ̃↵ i� X contains a tail of indiscernibles from I↵.
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core model K , assuming 0¶ doesn’t exist, which then shows the following theorem. We also include the
original direct proof of that theorem, due to Welch.

T������ 5.16 (W.). Assuming 0¶ doesn’t exist, every strategic !
1

-Ramsey cardinal is measurable in K .

P����. Let  be strategic !
1

-Ramsey, say ⌧ is the winning strategy for player II in G!1pq. Jump to V rgs,
where g Ñ Colp!

1

,`q is V -generic. Since Colp!
1

,`q is !-closed, V and V rgs have the same countable
sequences of V , so ⌧ is still a strategy for player II in G!1pqV rgs, as long as player I only plays elements of
V .
Now let x↵ | ↵ † !

1

y be an increasing sequence of regular K-cardinals cofinal in `, let player I in
G!1pq play M↵ :“ HullH✓ pK|↵q † H✓ and player II follow ⌧ . This results in a countably complete
weakly amenable K-measure µ!1 , which the “beaver argument”19 then shows is actually an element of K ,
making  measurable in K . ⌅

A natural question is whether this behaviour persists when going to larger core models. It turns out that the
answer is a�rmative: every strategic !

1

-Ramsey cardinal is also measurable in Steel’s core model below a
Woodin, a result due to Schindler which we include with his permission here. We will need the following
special case of Corollary 3.1 from Schindler (2006).20

T������ 5.17 (Schindler). Assume that there exists no inner model with a Woodin cardinal, let µ be a
measure on a cardinal , and let ⇡ : V Ñ UltpV, µq – N be the ultrapower embedding. Assume that N
is closed under countable sequences. Write KN for the core model constructed inside N . Then KN is a
normal iterate of K , i.e. there is a normal iteration tree T on K of successor length such thatMT

8 “ KN .
Moreover, we have that ⇡T

08 “ ⇡ æK . %

T������ 5.18 (Schindler). Assuming there exists no inner model with a Woodin cardinal, every strategic
!
1

-Ramsey cardinal is measurable in K .

P����. Fix a large regular ✓ " 2. Let  be strategic !
1

-Ramsey and fix a winning strategy � for player II
in G!1pq. Let g Ñ Colp!

1

, 2q be V -generic and in V rgs fix an elementary chain xM↵ | ↵ † !
1

y of weak
-modelsM↵ † HV

✓ such thatM↵ P V , !M↵ ÑM↵`1

and HV
` ÑM!1 :“ î

↵†!1
M↵.

Note that V and V rgs have the same countable sequences since Colp!
1

, 2q is †!
1

-closed, so we can
apply � to the M↵’s, resulting in an M!1 -measure µ on . Let j : M!1 Ñ UltpM!1 , µq be the ultrapower
embedding. Since we required that !M↵ Ñ M↵`1

we get thatM!1 is closed under !-sequences in V rgs,
making µ countably complete in V rgs. As we also ensured that HV

` ÑM!1 we can lift j to an ultrapower
embedding ⇡ : V Ñ UltpV, µq – N with N transitive.
Since V is closed under !-sequences in V rgs we get by standard arguments that N is as well, which

means that Theorem 5.17 applies, meaning that ⇡ æK : K Ñ KN is an iteration map with critical point ,
19See Lemmata 7.3.7–7.3.9 and 8.3.4 in Zeman (2002) for this argument.
20That paper assumes the existence of a measurable as well, but by Jensen and Steel (2013) we can omit that here.
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making  measurable in K . ⌅

6 Questions and answers
In this section we give an update on previously posed open questions in the area, as well as posing further
open questions. We provide answers for the following questions, which were posed in Holy and Schlicht
(2018).
(i) If � is an uncountable cardinal and the challenger does not have a winning strategy in the game G✓

�pq,
does it follow that the judge has one?

(ii) If ! § ↵ § , are ↵-Ramsey cardinals downwards absolute to the Dodd-Jensen core model?
(iii) Does 2-iterability imply !-Ramseyness, or conversely?
(iv) Does  having the strategic -filter property have the consistency strength of a measurable cardinal?

Here the “challenger” is player I and the “judge” is player II, so this is asking if every �-Ramsey is strategic
�-Ramsey, when � is an uncountable cardinal. Theorem 5.16 therefore gives a negative answer to (i) for all
uncountable ordinals �. Theorem 5.4 and Corollary 5.5 answer (ii) positively, for ↵-Ramseys with ↵ having
uncountable cofinality, and for †↵-Ramseys when ↵ is a limit of limit ordinals. Note that (ii) in the ↵ “ !

case was answered positively in Holy and Schlicht (2018).
As for (iii), it’s mentioned in Holy and Schlicht (2018) that Gitman has showed that !-Ramseys are not in

general 2-iterable by showing that 2-iterables have strictly stronger consistency strength than the !-Ramseys,
which also follows from Theorem 4.9 and Theorem 4.8 in Gitman and Welch (2011). Corollary 3.5 shows
that !-Ramsey cardinals are �2

0

-indescribable, and as 2-iterables are (at least) ⇧1

3

-definable it holds that any
2-iterable !-Ramsey cardinal is a limit of 2-iterables, so that in general 2-iterables can’t be !-Ramsey either,
answering (iii) in the negative. Lastly, Theorem 4.20 gives a positive answer to (iv).

Q������� 6.1. It’s not too hard to see that, for a regular uncountable �,  is strategic �-Ramsey i� there’s a
†�-closed forcing P such that, in V P, there’s a weakly amenable measure on with a wellfounded ultrapower.
Can we get similar characterisations of strategic ↵-Ramseys for ↵ countable? The proofs of Theorems 4.4 and
4.20 give plausible candidates.

Q������� 6.2. Are genuine n-Ramsey cardinals limits of n-Ramsey cardinals? We conjecture this to be
true, in analogy with the weakly ine�ables being limits of weakly compacts. Since “weakly ine�able = ⇧1

1

-
indescribability + subtlety”, this might involve some notion of “n-iterated subtlety”. The di�erence here is that
n-Ramseys cannot be equivalent to ⇧1

2n`1

-indescribables for consistency reasons, so there is some work to
be done.

Q������� 6.3. Fix some � with countable cofinality and an uncountable  “ †. For ✓ °  say that  is
p�, ✓q-Ramsey if player I has no winning strategy in G✓

�pq, so that  is �-Ramsey i� it’s p�, ✓q-Ramsey for
every ✓ ° . Do the p�, ✓q-Ramseys then eventually form a strict hierarchy? I.e. is there some ✓ °  such
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that ZFC ` xthere exists a p�, ✓
1

q-Ramsey cardinaly $xthere exists a p�, ✓
0

q-Ramsey cardinaly holds for every
✓
1

° ✓
0

• ✓? Or, at the opposite end of the spectrum, do the p�, ✓q-Ramseys become eventually equivalent?
I.e. is there a ✓ °  such that  is p�, ✓

0

q-Ramsey i� it’s p�, ✓
1

q-Ramsey, for all ✓
1

, ✓
0

• ✓?
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7 Diagrams

Consistency implications21

21Here dashed lines represent consistency implications which might be equiconsistencies.
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Direct implications22

22Here dashed lines represent provable direct implications which might be equivalences.
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