
A first course on logic

P.D. Welch

April 1996

Contents

Page

1 Introduction 1

2 Propositional Languages 5
2.1 Atoms, formulae and connectives 5
2.2 Truth functional equivalence and tautologies 8
2.3 A formal definition of propositional languages 12
2.4 The Compactness Theorem for L! 16
2.5 Normal Forms and Truth Functional Completeness 19

3 First order languages and their Structures 23
3.1 First order structures 23
3.2 Relations between structures 25
3.3 First order Languages 27
3.4 The Definition of Truth 34

4 A formal system for predicate calculus 43
4.1 Predicate calculus 43
4.2 The Soundness Theorem 54

5 The Completeness Theorem 59

6 The Compactness and Löwenheim Skolem Theorems 65

7 The Incompleteness of Number Theory 73
7.1 Arithmetisation of Syntax : Gödel’s numbers, Diagonalisation 73
7.2 Q revisited 78
7.3 The Second Incompleteness Theorem 85

2

Introduction

Since the earliest times people have tried to analyse how they reason, and how secure conclusions can be
obtained from a premiss or premisses, and logic may be crudely defined as this science. Attempts were
made to abstract formal schemes of deduction from everyday reasoning practice. Aristotle’s study of the
Syllogism was a paradigm for what was to follow. It was noted that many arguments were considered
true quite independently of the material facts about which statements were made, but were considered
“true” arguments merely by virtue of some “internal” structure of the reasoning involved, and the study
of “logic” is the study of that internal structure. The original realisation that some statements were “true”
not because the statement referred to somematerial fact about the world that was palpably true to others
(“It is raining”) but because some “correct reasoning” had been employed (“All men are mortal, Socrates
is a man, therefore Socrates is mortal”), and this must have been the starting point of this enquiry. We
should now say that the first statement is true (or false if it is not raining) whereas the second statement
is a “valid” argument. What constitutes a valid argument is part of logic’s domain.
But it could be said that not until the nineteenth century were there any further material advances in
logic. Boole realised that some deductive laws of logic were algebraic in nature; Frege invented a system
of symbolism that is the basis of what we today call predicate calculus, and formalised the theory of
quantification which used symbols to represent individuals and properties. The system of predicate logic
is the most useful logical system to date.
By mathematical logic sometimes two things are meant: firstly, the application of mathematical types of
analysis to these languages and their rules, or secondly, the application of the discoveries of logic back to
mathematics itself. Under the first heading, we are able to apply mathematical reasoning to these logical
systems, because the languages in which they are expressed, and the rules that they employ are simple
enough and regular enough to be construed as mathematical objects themselves and so are amenable to
mathematical analysis. As regards the second heading, we should perhaps not be surprised that logic
should have something to say about mathematics, after all mathematics is often held up as the “logical
science” par excellence, but mathematics was not always considered a coherent body of logical thought,
of theorems derived logically from one set of axioms or other. However twentieth century discoveries in
mathematical logic have had a profound effect on how we can regard mathematics as a whole, and also
have contributed many purely mathematical theorems.
Both these aspects will occur in this course. We shall first look at a system for dealing simply with propo-
sitions: we shall define a class of formal languages suitable for the study of statements about propositions
and the logical interrelationship between them. We shall be particularly interested in those statements
are always true, merely by virtue of the structure of the statement, and not because of the truth or falsity
of the basic or “atomic” propositions they contain, the “tautologies”. We shall then consider far more
expressive languages, the “first-order” languages (or “predicate” languages) in which we can express the

1

idea of individuals having certain properties or relationships to one another. Such a first order language
can be interpreted as saying something about a certain structure and a main object of this course is to
provide a generalised theory of the internal properties of certain kinds of structures, and the languages
with which to describe them. By a structure we mean a set of objects together with a collection of rela-
tions and functions on that set. A standard example drawn frommathematics is that of a group, together
with the group’s operations of multiplication, inverse, an identity element and so on. An example of “in-
ternal” property is that of commuiativity. We call it internal since we only have to look “inside” the group
to check if the commutative law holds.
The group we could display as G = ⟨G , ○G , −G , eG⟩ where G is the underlying set of elements, ○G the
group multiplication etc. Internal properties turn out to be those that can be expressed in sentences of
a formal language. We shall be looking at such languages in general. In this case we can use a language
containing symbols such as @, x , y, ○, (,)), and = to express commutativity as

@x@y(x ○ y = y ○ x)

and we say G is commutative if that expression is “true in” G.
The formal languages we shall consider are themselves susceptible to mathematical analysis. They are
simple enough and concrete enough (as they can usually be written down) so that their features are open
to inspection, and proofs concerning them sometimes involve no more than making observations on
the way they are built.
One strand to our investigation is semantic. That is, it is to do with meaning. This was already alluded
to above when I said that the string of symbols “expressing” commutatively was “true in” G. What does
it mean to say a symbol string is true in G? We shall give a precise definition of truth-in-a-structure,
(due to the polish logician Tarski) and see how we can give definite meaning to what is otherwise just a
symbol string. The other strand is syntactic and is to do with symbols of the languages themselves: the
languages are defined in an “inductive” or “recursive” way just as are most computer languages. (Indeed
this is exploited to the full in Gödel’s First Incompleteness Theorem.) When we come to consideration
of “rules of proof ” for deriving theorems in our formal language we shall see that they only involve
mechanical symbol manipulation. In the example of our group, we find we can write down the three or
four axioms which we usually associate with groups and by our rules of proof we can manipulate these
axioms, perform “deductions” and finally deduce as a theorem that in a group the identity element is
unique. These are purely syntactic operations on formulae in the language: we didn’t need at all to look
at the groups themselves to discover this. The symbols of our languages will be given to us in a simple
straightforward manner, so that we may, for example, use natural numbers as code numbers for the
symbols; then using a further simple coding for sequences of symbols, we can think of formulae in our
language as given to us by sequences of numbers. Further we have an effective procedure for deciding
whether a string of numbers codes a formula. By “effective procedure” here, we mean a mechanical
algorithm, or if we wish to be more specific, something we could write a computer program for. Thus
we can write a program that, when fed in a sequence of numbers, will return 1 if the sequence codes
a formula or 0 otherwise. It turns out that all the syntactic manipulations we perform on formulae in
our language can be performed by computer programs on their code numbers. The axiom system for
groups above consisted only of a finite number of axioms. We shall also want to consider where we allow

2

1. Introduction

infinitely many axioms that have been given to us in some “effective” way. That is, we have a programme
to test whether (a code number of) a formula is one of our list of allowed axioms.
There are two main goals in this course: to show how truth in structures relates to being derivable by
syntactic operations, i.e. to being “provable”. Gödel’s CompletenessTheorem shows roughly that what is
provable is precisely what is true in all structures of the same type. The second goal relates to the limits
of the axiomatic method in mathematics: it turns our that axiom systems to do with number theory, if
they’re given to us in an effective ormechanical way, cannot provide all the true statements of arithmetic.
So, for example, there is no finite list of axioms (or indeed an infinite list given to us in recursive way)
for number theory so that everything that is true of the natural numbers is provable from them. This
remarkable result is Gödel’s First Incompleteness Theorem, and we can regard this as a mathematical
result that comes from applying some of the logical discoveries about first order reasoning back tomath-
ematics itself.

Some preliminaries
Sets There are no preferred letters for sets. We write “x P y” or “x P A” to mean the set x is a member
of y, or of A. Sets are often specified by writing {x∣ . . . x . . .} meaning the set of all x such that . . . x . . .
holds, or by listing its members, as in N below. � denotes the empty set; N = {, , , . . .}; in logic it is
convenient to think of the natural number k as the set of its predecessors, thus k = {, , , . . . , k − };
under this convention then is the same as the empty set.
⟨a, b⟩ denotes the ordered pair of elements a and b. So ⟨a, b⟩ ≠ ⟨b, a⟩.
We define by induction:
⟨a, a, a⟩ = ⟨⟨a, a⟩, a⟩, . . . ⟨a, . . . , an⟩ = ⟨⟨a, . . . , an−⟩, an⟩. For sets A, . . .An

A ˆ . . . ˆ An = {⟨a, . . . , an⟩∣a P A& . . . &an P An}
This is often written An . By convention A = .
Relations and Functions. If A is a set a binary relation on A, R, is a subset of A. So we write ⟨a, a⟩ P

R, or R(a, a). An n-ary relation is accordingly a subset of An and we write ⟨a, a, . . . , an⟩ P R or
R(a, . . . , an). A function from A to B is a subset f of Aˆ B with the properties
(i) for all x P A there is y P B with ⟨x , y⟩ P f [we write f (x) = y].
(ii) for all x P A, all y, y′, ⟨x , y⟩ and ⟨x , y′⟩ P f implies y = y′.
We write f ∶ AÐ→ B.

We write f ∶ A
(−)
Ð→ B, or f is one-to-one, or (1- 1), or injective if f (x) = f (x′) implies x = x′ and f is

onto if for all y P B there is x P Awith f (x) = y.
We write ran f = {y∣ there exists x so that ⟨x , y⟩ P f }
and dom f = {x∣ there exists y so that ⟨x , y⟩ P f }
For functions f , g we say g extends f and write g Ě f if the set g contains the set f . This implies that
dom f Ě g and g agrees with f on f ′s domain as you would want.

Order Relations

1. An equivalence relation R on a set A is a binary relation with the properties
(i) (Reflexivity) R(x , x)

3

(ii) (Symmetry) if R(x , y) then R(y, x)
(iii) (Transivity) if R(x , y) and R(y, z) then R(x , z).
If R is an equivalence relation on A then the equivalence class of x , [x]R, is the set {y∣R(x , y)}.

2. A binary relation R on A is a strict partial order if for all x , y, z P A
(i) (Irreflexivity) not R(x , x)
(ii) (Transitivity) if R(x , y) and R(y, z) then R(x , z) >

When we’re thinking of relations as orders we usually write xRy in the above, or even take over the <
symbol to write x < y.
A strict total order on A is a partial order R so that for all x , y in A R(x , y) or R(y, x).
A well order on A is a strict total order so that for all B Ď A if B ≠ ffl then B has an R-least element, i.e.
there is x in B so that for all y in B, y ≠ x , R(x , y).
Countability
A set A is countable if there is an onto map f ∶ N → A. [This includes the case of A being finite]. Notice

that if g ∶ A
(−)
Ð→ N then A is also countable. We denote the size, or cardinality of a set A by ∣A∣.

Finally, expressions such as “Lemma 2.3” refer to Lemma 3 of Chapter 2. “Ex 2.3” will abbreviate Exercise
3 of Chapter 2, “Ex.3” and “Lemma 3” will refer to Exercise 3 and Lemma 3 of the current chapter.

4

Propositional Languages

2.1 Atoms, formulae and connectives

We shall first consider a class of languages simpler than outlined in the introduction, the class of lan-
guages suitable for handling propositions. We think of a sentence such as “The room is warm” together
with such information about the meaning of the words in it, and the circumstance of its utterance which
are sufficient to determine what definite statement is being made as a proposition. We shall describe a
calculus for handling propositions where we assume every proposition is either true or false. This is one
of the basic assumptions of classical logic and is referred to as the Principle of Bivalence. Actually we shall
not be concerning ourselves with anything about the proposition other than whether it is true or false
and so we shall simply speak of the truth value (T or F).
We shall define in general terms a language formanipulating propositions; thismay be specified by 1) and
2) below. We shall discuss some of the features of the language and then later give a more ‘mathematical’
definition of such a language to bring it more into line with the more expressive first order languages to
come.
1) We assume the language is built up from a set (finite or infinite) of symbols called propositional atomic
formulae or more simply propositional atoms which we shall denote by

P,Q , R,⋯ or P, P, P,⋯etc.

The set of these ‘atomic’ symbols we shall call!. We can, if we wish, think of these propositional atoms as
propositional “variables” that can range over propositions, and we use the propositional atoms to build
up compound formulae. We confine our attention in classical logic to ways of compounding propo-
sitional atoms which permit us to calculate the truth value of the built up proposition simply from a
knowledge of its components. (This is known as the Principle of Extensionality which requires that the
truth value of the whole formula should not depend on how the truth values of the parts are determined
but only on what they are. Other logics are possible, for example logics that assign intermediate truth
values to indicate “probability” of being true).
We think of the truth value of the whole formula as thus being a function of the truth values of the com-
ponetns and so the permitted methods of forming compound formulae are said to be truth functional.
We build up these using truth functions which are more usually called propositional connectives. Using
these we shall be able to build up the whole class of formulae, which we shall individually denote by
letters such as � and so on with or without subscripts.
2) The two principal propositional connectives or truth functions are negation and implication which
we denote by the symbols ¬,→ (read as “not” and “implies” respectively.)
Using 1) and 2) we define the class of formulae inductively as follows:

5

Atoms, formulae and connectives

(i)The propositional atoms P,Q , R,⋯ etc. are formulae.
(ii) If � and are formulae then so are

(¬�) (�→)

For something to be a formulae it must then be built up by using finitely many applications of (i) and
(ii). The ideas of a propositional connective is that it is a function from the truth values of the formulae
it connects to the set of truth values {T,F }. Negation, ¬, only “connects” one formula, we say that it is a
“one place truth function”. And we specify the way the connectives work with the following truth tables
for the functions.

� ¬ �
T F
F T

� (�→)
T T T
T F F
F T T
F F T

The tables are really displaying how two functions F¬ and F→ work. For example F¬(F) = T , F→(T , F) =
F . And of course we have designed the tables and the accompanying functions to reflect what we usually
think when we say “for ¬A to be true Amust be false” and so on. But notice that we have specified that
(�→) is always true unless �′s true and false.
We can use the truth table format to calculate how the truth value of a built up formula depends on the
truth values of the atoms it contains.

Example 1 Consider the following table:

� (¬ �) (¬(�→))
T T F T
T F F T
F T T T
F F T F

This demonstrates how the built up formula ((¬�)→) gets one of the truth values depending on how
the components (¬�) and (and ultimately � and) are awarded truth values. But notice further that
((¬�) →) is true precisely when either � or is true. This shows that what we ordinarily think of as
“eitheror” can be defined just by using ¬ and→ alone. Accordingly we make the following definition:
(∨ �)(“�or ′′) will be an abbreviation for ((¬�)→). Further (� ∨ ′′)(“�and ′′) will abbreviate
(¬(�→ (¬))).The justification for this is the following table:

� (¬) (�→ (¬) (¬ (�→ (¬)))
T T F F T
T F T T F
F T F T F
F F T T F

Again, (¬(�→ (¬))) is true precisely when both � and are true. The point of these two examples is
that when we come to formally define our language we can be economical with our basic set of propo-

6

2. Propositional Languages

sitional connectives, since we can define “and” and “or” in terms of negation and implication. We make
a further abbreviation: (� ←→) is short for (� →) ∨ (→ �) (which of course is itself already an
abbreviation.) ←→ is called bi-implication. You should check that (�←→) comes out T if both � and
 are T or both � and are F.

� (� ∨)
T T T
T F T
F T T
F F F

� (�←→)
T T T
T F F
F T F
F F T

Here is an example of a truth table of a more complicated expression. Notice here we incorporate ∨ into
our table directly, saving space by not writing it out in terms of ¬ and→ .

Example 2 (� ∨ (¬))→ �)

� � ¬ (� ∨ (¬)) (� ∨ (¬)) → �)
T T T F F T
T T F F F T
T F T T T T
T F F T T F
F T T F F T
F T F F F T
F F T T F T
F F F T F T

Remarks: if�, , and� had been the propositional atoms, P,Q and R, say (so that we are dealingwith the
formula (P ∨ (¬Q) → R)) we can think of the table as giving us precisely which alternative conditions
on the atoms make the formula come out true (if any). We see here that every line bar one of the table
comes out T . Naturally any other formula with propositional atoms in it would also require a truth table
with lines to look at all the possible alternatives; and with k atoms k lines would be necessary. Notice
also that assigning T to U and F to V say makes no difference to the truth or falsity of our formulat: the
atomsU and V do not occur there and so their truth value is irrelvant. We think of an assignment of T ′s
and F′s to the atoms of the language as a valuation of the language.

Definition 2.1 A valuation of a propositional language L! is an assignment, w, of truth values to the
propositional atoms in the set !. A valuation of a formula � is an assignment of truth values to the propo-
sitional atoms occurring in the formula �.

We thus think of w as a function whose domain is ! and whose range is contained in the set {T , F}.
Notice that a formula can belong to many different languages: if � contains only the atoms P,Q, and R
then � will be a formula of any language L! where {P,Q , R} Ď !. A valuation of L! when restricted to
{P,Q , R} can then be considered a valuation of !. What this amounts to is that valuation of ! corre-
spond simply to lines in the truth table associated with �. The import of the remarks above is that if w

7

Truth functional equivalence and tautologies

and w’ are two valuations of L! that happen to agree on all the propositional atoms of a formula � then
both w and w’ make � have the same truth value.

Exercise 1 Draw truth tables for the formulae below
a) (¬((¬�) ∧ (¬))) b) ((�→)→) c) ((→ �) ∧ (¬�))
d) (¬(� → (¬�))) e) ((�→) ∨ (�→ (¬)))
f) ((�→ (�→)) ∨ (¬(�→ (∧ (¬ ∧ (¬�)))) Exer-

cise 2 Define a ternary (three-place) connective # so that #(�, ,�) is T precisely when at least two of �, , and �
are assigned T . Draw a truth table for #.

2.2 Truth functional equivalence and tautologies

In example 2 above suppose �, and � are the propositional atoms R,Q , R respectively. Consider now
the table for the formula � where � is P → (Q ∨ R))) ∶

P Q R (Q ∨ R) (P → (Q ∨ R))
T T T T T
T T F T T
T F T T T
T F F F F
F T T T T
F T F T T
F F T T T
F F F F T

This table has a final column precisely that for the table for ((P ∨ (¬Q))) → R); or in other words the
formula ((P ∨ (¬Q))) → R); is true under precisely the same conditions as (P → (Q ∨ R)). This is
important enough to warrant a definition:

Definition 2.2 Two formulae � and of a propositional language L! are truth-functionally equivalent
if for every valuation w of the propositional atoms occurring in � and then � comes out true under w if
and only if � does.

Example 3
(¬(¬�)) is truth functionally equivalent to � itself

(P ∨ (Q ∨ (¬Q)) is truth functionally equivalent to P alone
(P → (Q → (¬P))) is truth functionally equivalent to (¬(P ∨ Q)).

The usefulness of truth functional equivalence is the following: if � is truth functionally equivalent to
 and occurs as a “subformula” of � say, then we can replace the occurrence of by � to get a new
formula �′ which is true under precisely the same conditions as � was (in other words � and �′ are also
truth functionally equivalent). If, for example, �were simpler than then we should have a simplication

8

2. Propositional Languages

of � to �′.
It is convenient to make some abbreviations when writing out formulae: it is not necessary to write the
exterior parentheses each time around negoatiions or plorations we thus abbreviate (¬�) simply by ¬�.
We can also remove brackets around the other formulae if we agree to the convention that ¬ “binds
tighter” than ∧ and ∨ which in turn bind tighter than ↔ which in turn binds tighter than → . Thus
¬�∨ is ((¬�)∨) not ¬(�∨) and �∧ → � is short for (�∧)→ �, and → �↔ � is short for
 → (�↔ �), although when there is any possible source of confusion it is better to leave some brackets
in. These conventions do not allow us to leave out all brackets (what would �∨ ∧� be an abbreviation
of for example?) but makes reading easier in most cases.
The second example of Example 3 included as a subformula the formula (Q ∨ ¬Q).The reason that the
formula was truth functionally equivalent to P itself was simply that Q ∨¬Q is true under any valuation.
Such formulae which are always true by the nature of their construction alone are important.

Definition 2.3 A formula � of a propositional language which is true under every valuation of that lan-
guage is called a tautology.

Thus a tautology is simply a formula that when analysed via a truth table always comes out T i.e. the last
column is simply a column of T ′s.

Example 4 1 � ∨ ¬�
� ¬� � ∨ ¬�
T F T
F T T

2 (�→)←→ (¬ → ¬�)

� �→ ¬ → ¬� (�→)↔ (¬ → ¬�)
T T T T T
T F F F T
F T T T T
F F T T T

3 ¬(� ∧ �)↔ (¬� ∨ ¬�)
¬(� ∨ �)↔ (¬� ∧ ¬�) (De Morgan’s Laws)

4 ¬¬�↔ �

5 � ∧ �←→ �;�←→ � ∨ �; (� ∧ kl)←→ (∧ �); (� ∨)↔ (∨ �)

6 ((� ∧ �) ∧)↔ (� ∧ (� ∧)); ((� ∨ �) ∨)↔ (� ∨ (� ∨))

7 �→ (�→ (� ∧ �));� ∧ �→ �;�→ (� ∨ �)

8 (�→ �)→ ((�→)→ (�→))
(�→ (�→))→ ((�→ �)→ (�→))
((�→ �)→ �)→ �

(¬�→ �)→ ((¬�→ ¬�)→ �)

9

Truth functional equivalence and tautologies

9 (� ∧ ¬�)→ �

Definition 2.4 A formula that comes out F under every valuation is called a contradiction.

So � is a tautology iff ¬� is a contradiction.

Example 5 (� ∧ ¬�), (�←→ ¬�) are contradictions.

Truth tables give us an effective procedure for testing for tautologyhood. “Effective procedure” here
means a mechanical algorithm, or to put it another way, a process that we could write a program to do.
The following outlines the process for the given �

1 List all propositional variables occurring in � as P, P, . . . , Pn .

2 Construct a truth table of T ′s and F′s amongst the Pi(≤ i ≤ n).

3 For reach of the n lines of the table, which we can consider as valuations w from P, . . . , Pn to
{T , F}, build up successive columns of the table using rules given by the truth tables for the con-
nectives ¬ and→, building up successively from the values assigned to the Pi , through the various
subformulae of � until we have computed the last column of the table.

4 If for each of the nw, the entry in the last column is T we say � was a tautology. Otherwise � is
not a tautology.

We just want to say enough to convince the reader that this is an effective procedure.
In particular cases the following process can be quicker. We illustrate with an example. We wish to check
whether � is a tautology where � is as follows:

((P → R) ∧ (Q → R)) → ((P ∨ Q) → R)
T F F
() () ()

T T T F
() () () ()

T T
() ()

T T
() ()

Step 1We argue by contradiction and assume that the formula can be false. This means
Step 2The left hand side (LHS) is T and the RHS F
Step 3The LHS is a conjunction, so both conjuncts must be T
Step 4 If RHS F then P ∨ Q must be T and RF
If P ∨ Q is T we have a choice:
Step 5 Suppose P is T . By our assumption at Step 3 ...
Step 6 R must be T ; but this contradicts RF at Step 4 so we go back to (4) and suppose instead
Step 7 Q is T since at Step 3 Q → R is T we have

10

2. Propositional Languages

Step 8 R is T again contradicting (4).
There are now no more alternatives: it’s really impossible for the whole formula to be F, so it’s a tautol-
ogy.
Not only is this kind of method usually quick (with practice) since a formula with four propositional
atoms needs a = line truth table, but if the formula isn’t a tautology this method is extremely useful
in revealing a valuation s of the propositional atoms in � to {T , F} that will make � come out F . In other
words if you wish, if you wish to find a valuation that makes a formula come out T , try and show that
(¬) is not a tautology.

Exercise 3 Replace the omitted brackets in the following formulae:

� ∧ ¬ ;� ∧ ¬ → �;�→ ∨ ¬��→ ↔ � ∧ �

Exercise 4 Show the following: if � and �→ � are tautologies so is �
Determine whether the following are tautologies, contradictions or neither.

a (P → Q)→ ((P → ¬R)→ (¬R → Q))

b (P → Q)↔ ¬(P ∧ ¬Q)

c (P → Q)→ ((Q → R)→ (P → R))

d (P → (Q → R))↔ ((P ∧ Q)→ R)

e (P ∧ (Q ∨ R))↔ ((P ∧ Q) ∨ (P ∧ R)) (Distributive laws)
(P ∨ (Q ∧ R))↔ ((P ∨ Q) ∧ (P ∨ R))

f ((P → Q)→ P) ((P↔ (P → Q))→ Q
(((P ∧ Q)→ R)→ ((P ∨ ¬Q)→ R)) ((P → (Q ∨ ¬P))→ (¬Q ∧ ¬P))

Exercise 5We saw that the truth functions ∨ and ∧ could be defined using→ and ¬, show a) how to define→ in
terms of ¬ and ∨ and b) how to define→ in terms of ¬ and ∧.
Exercise 6The following binary connective ∣ is defined by means of the following table. Show that→ and ¬ can be
defined using this connective alone.

(This shows that our original choice of two basic connectives could have reduced to one by using ∣.)

� �∣
T T F
T F T
F T T
F F T

now repeat the exercise for the connective ↓∶

� � ↓
T T F
T F F
F T F
F F T

Exercise 7 Show that there are infinitely many tautologies. Invent some more of your own.

11

A formal definition of propositional languages

2.3 A formal definition of propositional languages

The languages we wish to study, both propositional and first order, are sufficiently simple that they are
amenable to mathematical analysis. But to do that we need to give a mathematical definition of what
these languages are. (We shall see that everything in the language is capable of being encoded by natural
numbers and actually all the associated manipulations that we shall introduce can also be thought of as
manipulations of those code numbers, very much as computers manipulate symbols of a programming
language.) We shall emphasis this mathematical nature of the languages by giving the definitions that
follow inductively. Just as in a proof by induction we assume that if a property P has been proven for
all k < n and then proceed to prove P for n itself, we shall make our definitions such that we give the
definition for formulae of simplest complexity, complexity , and then wemake a definition for formulae
of complexity n assuming that we know the definition for all formulae of lesser complexity. We thus have
the task now of defining inductively the class of formulae and for any formula the associated natural
number which is a measure of its complexity. There are many ways of doing this, we choose one which
is rather economical in terms of the number of clauses in the definitions. The advantage of having this
complexity measure is the following: suppose we wish to prove that all formulae have a certain property,
then we now have a natural way of doing this, we simply use ordinary mathematical induction on the
complexity of formulae. We prove the property is good for all formulae of complexity, we then prove it
for a formula � assuming that it is proven for all formulae where the complexity of is less than that
of �.
We give a formal definition for the formulae of a propositional language given a set of ! of propositional
atoms. The definition below doesn’t assume that ! is countable, but in our applications this will always
be the case. We’ll commonly use P, P, . . . ,Q , R, . . . to range over members of !. We think of Pi ,Q etc.,
as standing simply for propositions that are either T or F .

Definition 2.5 Let ! be a set of propositional atoms. We define by recursion the formulae of L! and
simultaneously, their complexity which for a formula � we write as comp(�).
(i) If P P ! then P is a formula of complexity
(ii) If � is a formula then (¬�) is a formula of complexity that comp(�) + .
(iii) If �, are formulae then (�→) is a formula of complexity max{comp(�), comp()} + .
(iv) Nothing is a formula except by (i) - (iii) above.

Notice that (i) - (iii) don’t allow any way of forming “infinitely long formulae”, thus every formula has
only finitely many symbols in it and has a finite complexity. The definition given here is consistent with
one we shall use for first-order languages; notice here that comp (�) equals the “depth of nesting” of the
brackets within �. An alternative measure of complexity is the number of basic propositional connec-
tives in �. An official formula also can only have the same number of left brackets in it as right brackets.
(Why? It is pretty obvious given the way formulae are constructed, but if we required a proof, we should
argue as follows: It is vacuously true for all formulae of complexity ; let � be a formula and suppose we
have proven this for all formulae with complexity less than comp (�), there are two cases a) � is (¬) for
some formula , now comp(< comp(�) so by inductive hypothesis has the same number of left as
right brackets, but since � is (¬) it is true for too; b) � is (→ �); again we apply the inductive hy-
pothesis to and � since comp(), comp(�) < comp() and the symbol string → � (not an official

12

2. Propositional Languages

formula) has the same number of left brackets as right brackets, therefore so must �.This is a somewhat
trivial example but it illustrates themethod.)That done we introduce the abbreviation∧,∨,←→ as before
with similar conventions concerning bracketing.

Example 6 comp((¬P)) =
comp ((Q → (¬P))) = max{comp(Q), comp((¬P))) + = max{, } + =
comp(((¬P)→ (Q → (¬P))) = max{comp((¬P)), comp((Q → (¬P)))} + = max{, } + =
comp(P ∨ Q → R ∧ ¬Q) = comp((((¬P)→ Q)→ (¬(R → (¬(¬Q))))) = .

Notice if comp() = then comp(∨ P) = but comp(P ∨) = , because ∨ is an abbreviation
whereas comp((→ �)) = comp((�→)) for any �.
We can now give a mathematical definition of a valuation of the propositional atoms of a language and
its extension to the formulae of that language.

Definition 2.6 A valuation of a propositional language is a map w ∶ ! → {T , F} which assigns to each
propositional variable in ! a truth value T or F .We then define by induction on complexity of � a formula
of L! the valuation of !˚ of �

(i) if ' is P w∗(') = w(P)

(ii) if ' is (¬) then w∗(') is given by
w∗ (') w∗ (')

T F
F T

(iii) if ' is ('→ �) then w∗(') is given by

w∗(') w∗(�) w∗(')
T T T
T F F
F T T
F F T

Of course these are just the truth tables of p. 7. The point is that we have given a formal definition
of the truth value of a formula ', w∗('), given a valuation w ∶ ! → {T, F}. We have then w∗ ∶
{ Formulae of L!} → {T, F}. This is a prototypical example of a definition by induction on the com-
plexity of a formula. Notice here the advantage of only having two propositional variables as primitive:
if we had also taken ∨ and ∧ say, then Definition 2.6 would have had an extra two clauses. We can couch
the definition of a tautology in this terminology:

Definition 2.7 If under every valuation w ∶ ! → {T, F}, w∗(') =T, then we say ' is a tautology.

Definition 2.8 We say a valuation w satisfies a formula ' in L! if w∗(') =T. A formula ' is satisfiable
if there is a valuation w so that w∗(') =T; otherwise ' is said to be unsatisfiable. If Γ is a set of formulae,
then we say w satisfies Γ if for all P Γ, w∗() =T; and Γ is satisfiable if there is some valuation w that
satisfies Γ. Γ is unsatisfiable if no w satisfied Γ.

13

A formal definition of propositional languages

A tautology is thus a formula that is satisfied by every valuation. Note that ∅ is satisfiable. There is some
notiaiton that is useful for representing the relationship between sets of formulae in terms of satisfiability.

Definition 2.9 Let Γ ∪ {'} be a set of formulae in L! . Then Γ ⊧ ' means that every valuation that
satisfies Γ satisfies '.

To say that ' is a tautology is now the same as writing ∅ ⊧ ' (because every valuation satisfies ∅) and
we abbreviate this to simply ⊧ '. For not (Γ ⊧ �) we write Γ /⊧ '. We write Γ, ⊧ ' rather than
Γ ∪ { } ⊧ '. We allow here the possibility that Γ is infinite.
Another way to write that Γ is unsatisfiable is to write Γ ⊧ '∧¬' (Why?). Similarly the list of properties
of ⊧ in the following lemma can all be checked as simple ramifications of this definition.

Lemma 2.10 Let Γ, ∆, {�, ,�} be sets of formulae in L!

a) Γ ⊧ ' implies Γ ∪ ∆ ⊧ '

b) If ' P Γ then Γ ⊧ '

c) If Γ ⊧ ' and Γ,' ⊧ then Γ ⊧

d) If ' ⊧ and ⊧ � then ' ⊧ �

e) Γ ⊧ ¬' iff Γ,' ⊧ ∧ ¬

f) Γ ⊧ ' and Γ ⊧ iff Γ ⊧ � ∧

g) Γ,' ⊧ and Γ,� ⊧ iff Γ,' ∧ � ⊧

h) Γ,' ⊧ iff Γ ⊧ '→

i) Γ,' ⊧ and Γ, ⊧ ' iff Γ ⊧ '↔

j) '→ , ' ⊧

k) If Γ,' ⊧ and Γ,¬' ⊧ then Γ ⊧

Proof For example g). (⇒) Suppose Γ,' ⊧ and Γ,� ⊧ . Now let w be any valuation that satisfied
Γ ∪ {' ∨ �}, since “w∗(' ∨ �) =T either w∗(') =T or w∗(�) =T; suppose the former then w satisfies
Γ ∪ {'} and since by hypothesis Γ,' ⊧ we have w∗(); similarly if w∗(�) =T, we’d have w∗() =T
andhence Γ,' ∨ � ⊧ ⋅ (⇐) Suppose Γ,' ∨ � ⊧ and let w be a valuation that satisfies Γ ∪ {'}; in
particular w∗(') =T and so therefore w∗(' ∨ �) =T. But then by hypothesis w∗() =T.Thus Γ,' ⊧ .
The argument supposing w satisfied Γ ∪ {�} is the same. QED

The reader should check that he or she can verify each of the above. Note that (d) is merely a special
case of (c); and (e) - (j) really just reflect the natural properties of the connectives. Notice that if ' is
truth-functionally equivalent to we can write this as “' ⊧ and ⊧ '”, and this is the same as saying
that '←→ is a tautology equivalently or ⊧ '←→ (this is Lemma 2.10.i)

14

2. Propositional Languages

A set of formulae may be unsatisfiable without any member of the set being a contradiction as this ex-
ample shows:

Example 8 If Γ = {P ∨ Q , P ∨ ¬Q , ¬P ∨ Q , ¬P ∨ ¬Q} then Γ is unsatisfiable, but every proper subset
of Γ is satisfiable. (Check!)
Notice the following: if Γ Ď ∆ are sets of formulae in L! then

a) if Γ is unsatisfiable then ∆ is unsatisfiable, or to put it another way

b) if ∆ is satisfiable then Γ is satisfiable

The reader should check this and also see the the implication in a) (or in b)) cannot be reversed. (Just
look around for a counterexample.)
We’ve already mentioned that if ' and are truth-functionally equivalent and if � is a formula in which
 occurs then replacing by ' will not affect which valuations satisfy �. We finish off this section by
giving a fomral definition of this idea of “replacing subformulae” and then state a result.

Definition 2.11 The relation “�′ comes from � by replacing some (or all) occurrences of by '”, which
we shall write as Rep(', ,� �′), is defined by induction on complexity of �:
Rep(', ,�,�′) holds iff � is an atom and �′ is �

or � is and �′ is ' or
or � is � → � and �′ is �′ → �′ and
Rep(', ,�,�′) and Rep(', ,�,�′)

or � is (¬�),�′ is (¬�′) and Rep(', ,�,�′)

Lemma 2.12 (The Principle of Substitution) If' and are truth-functionally equivalent andRep(', ,�,�′)
then � and �′ are truth functionally equivalent. Further for any Γ, Γ ⊧ � iff Γ ⊧ �′.

Proof The first sentence is contained in the remark following Exmaple 3. And from this, since precisely
the same valuations make � true as make �′ true, the second sentence is obvious. QED

We remark also that if ! is countable (say ! is enumerated as {Pk ∣k P N}) then the formulae of L! from
a countable set: we could consider coding up strings of symbols using digits in the following manner:

Symbol () → ¬ Pk
Code 1 2 3 4 588...88 (k eights)

Then any symbol string (whether or not it is a proper formula) can be coded into a number. This already
shows that there is a (1-1) map of strings into N, thus the set of all strings is countable and hence so is
the set of all formulae. Since the rules for forming formulae are inductive we can check, given a number
whether it is the code of a proper formula or not. Indeed we could easily write a computer program that
would do this for us. So we say there is an algorithm or an “effective procedure” for checking whether “n
is the code number of a formula”. We’ve also remarked that it is not hard to see that checking whether a
formula is a tautology or not is an effective procedure: we could have a program which given (the code

15

The Compactness Theorem for L!

number of) a formula will draw up its truth table. Thus putting these two processes together we can say
that checking whether a number of codes a tautology is an effective procedure. There will be more on
this in Chapter 6.

Exercise 8 Use truth tables to find out which of the following entailments is correct
a) ((' ∧)→ �) ⊧ ('→ �) b) ((� ∧ ¬�)→ ') ⊧ ¬'
c) ('→), (¬'→) ⊧ (� ∧ ¬�) d) ⊧ (→)
e) ¬� ⊧ (� → �) f) '→ , → ¬' ⊧ '
g) ¬('→),¬(→ ') ⊧ ' ∧ ¬' h) ⊧ (� → �)↔ (¬�→ ¬�)

Exercise 9 (The Principle of Duality) Let ' be a formula whose only connectives are ¬,∧ and ∨. Let �∗ be the
result of interchanging ∧ and ∨ and replacing each propositional atom by its negation. Prove that �∗ is truth
functionally equivalent to ¬'. (A few examples should convince you that it is true; look at De Morgan’s Laws.)
[Hint: to prove this requires an induction on the number of occurrences of ¬,∨, and ∧ in '.]
Exercise 10 a) Prove that a formula that only contains the connective ↔ is a tautology iff each propositional
atom occurs an even number of times. b) Prove that a formula that contains ¬ and↔ as its only connectives is a
tautology iff ¬ and each atom occurs an even number of times. [Hint for a): first consider the case when' contains
a single atom P say; then use the fact that (P↔ (Q ↔ R)) is truth functionally equivalent to (P↔ Q)↔ R).]
Exercise 11 Let ! = {Pn ∣n P N} and let Γ be the set of formulae of L! as follows

Γ = {Pn → Pm ∣m, n P N, n < m}(i) is Γ ∪ {P} satisfiable?
(ii) is Γ ∪ {¬P , P} satisfiable?
(iii) determine whether Γ ⊧ Pn → Pm for each of the three possibilities n < m, n > m, n = m.
(iv) is {(¬')∣' P Γ} satisfiable?
(v) is it possible to decide for an arbitrary formula of L! , whether Γ ⊧ or not?

2.4 The Compactness Theorem for L!

Suppose ! is a countable collection of propositional variables. Then L! is countable; we can ask: when
is a set Γ of formulae of L! satisfiable? We’ve seen how to ascertain this for a single formula, and by
extension we can do this for a conjunction of a finite set of formulae. [Just perform the process on p.???
to test whether ¬' is a tautology - if it isn’t, the valuation thrown up shows that ' is satisfiable with that
valuation.] The CompactnessTheorem shows remarkably enough, that to test whether an infinite set of
formulae is simultaneously satisfiable, it’s enough to test all finite subsets separately. We use the following
lemma, of interest in its own right in the proof.
Let S be a set of finite sequences of 0’s and 1’s. We can think of a typical element t of S as a finite function,
so that if the sequence is of length n then we can write t out as (t(), t(), t(), . . . , t(n −)). We call S
a tree on {, } if it has the property that if t P S then any initial segment of t is in S. Thus for t above for
any i with ≤ i ≤ n− (t(), . . . , t(i)) P S. (The empty sequence is an initial segment of every sequence
and so is also in S.)

Theorem 2.13 (König’s Tree Lemma) Suppose S is a tree on {, } and it has infinitely many members.
Then there is an infinite sequence (s(), s(), . . . , s(n), . . .) so that:

@n ≥ (s(), s(), . . . , s(n)) P S .

16

2. Propositional Languages

Proof A sort of proof by induction. The conclusion of the lemma is that there is an infinite “branch”
through the tree. Since S is infinite, either infinitely many sequences begin with a 0 or with a 1 (or both).
Select a 0 or 1 for which this is true, and call it i say. Set s() = i. Now infinitely many sequences must
begin (i,) or (i,). Suppose infinitely many start (i, i). Set s() = i. Then further, infinitely many
must start (i, i,) or (i, i,). Suppose it’s i and set s() = i. We continue in this way inductively
defining s.
(Notice that this is not a straightforward induction: at each stage we may have to make a choice between
ik being 0 or 1 if infinitely many start (i, . . . , ik−,) and (i, . . . , ik−,). We thus potentially have to
make infinitely many choices; in our underlying theory of sets we have to have a (rather weak) axiom
that allows us to make infinitely many choices in this way.) The notion of a tree on any set rather than
{, } is defined similarly. We use Lemma 2.13 to show:

Theorem 2.14 (Compactness Theorem for L!) Let L! be a countable propositional language, and let
Γ be a set of formulae in L! . Then Γ is satifsiable iff every finite subset of Γ is satisfiable.

Proof If Γ is satisfiable by some valuation w, then trivially every finite subset of Γ is simultaneously
satisfied by that samew. Conversely if Γ is finite then the result is also trivial so suppose that Γ is infinite.
Let Γ be enumerated ',',', . . . ,'n , We wish to show that Γ is satisfiable. Let k be '∧ . . .∧'k .
Then k is satisfiable iff', . . . ,'k are simultaneously satisfiable.This mans it would be enought to show
that Γ∗ = { k ∣k P N} is satisfiable, since then if w satisfies Γ∗, w will satisfy all of Γ. The hypothesis
clearly implies every finite subset of Γ∗ is satisfiable: let ∆ Ď Γ∗ be finite, let k be largest so that k P ∆,
then if u satisfies ', . . .'k , u satisfies ∆.
We now define a tree S on {T, F}. Since ! is countable let’s suppose the propositional variables are
enumerated as P, P, . . . , Pk , We think of a finite valuation u of just the first n + , say, propositional
atoms alone as a finite sequence of T’s and F’s u(), . . . , u(n). Let nk be least such that the atoms of k
are amongst {P, . . . , Pnk}. Notice that k ≤ k′ implies that nk ≤ nk′ , since k′ essentially “contains” k .
We put all possible u into S if, for some k, u is a sequence of length nk and u∗(k) = T .
Remark Notice also that if u∗(k) =T, then u∗(l) =T for all l < k because as above, l is “contained”
in k .
If we put u into S, we also put all initial segments of u into S. This makes S into a tree and then every
formula in Γ∗ is satisfied by some finite valuation in S. [If S is finite then there is a maximal length to
any sequence in S , n say. But that means that for all k k ’s atoms are always amongst {P, . . . Pn}. Since
there are at most 2n sequences in S of length n, and Γ∗ is infinite there must be some n P S of length n so
that u satisfies infinitely many k ’s. But that means u satisfied all the k ’s and so all of Γ∗. If S is infinite
then notice that since we have put sequences into S of arbitrary length S is infinite. By the Tree Lemma
there is an infinite sequence (w(),w(), . . .) of T’s and F’s, so that for all n ≥ (w(), . . . ,w(n)) P S.
Let k be arbitrary; we shall show that w∗(k) = T . Since there are sequences in S of arbitrarily length,
let v P S be a finite initial segment of w of length greater than nk ; then v is an initial segment of some u
that satisfied some k , or other (or v is itself such a u); now this u has length nk′ > nk ; this means that
k′ > k. But as u∗(k′) =T we have as in the remark above that u∗(k) =T. But since u and v (and hence
w) agree on the valuation of the propositional atoms occurring in k , this means that w∗(k) =T too!
As k was arbitrary, we have that w satisfies all of Γ∗ and so all of Γ. QED

17

The Compactness Theorem for L!

We give some examples involving the CompactnessTheorem. Consider the following:

Example 9 Let Γ ∪ {'} be formulae in L! .
(∗) If Γ ⊧ ' the there is a finite Γ Ď Γ so that Γ ∪ {¬'} is unsatisfiable. By the CompactnessTheorem
there must be some finite Γ Ď Γ so that Γ ∪ {¬'} is unsatisfiable. That is Γ ⊧ '
Example 10 Let ∆ be a set of formulae in a language L! . Suppose every valuation satisfies at least one
formula of ∆. Prove that there are ', . . . ,'n P ∆ so that ' ∨ . . . ∨ 'n is a tautology.
Proof: ∆ = {¬'∣' P ∆} is unsatisfiable. So by the CompactnessTheorem some finite ¬ Ď ∆ is unsatis-
fiable. Let ∆ = {¬', . . . ,¬'n} say. Then every valuation makes ¬' ∧ . . . ∧ ¬'n false. But then every
valuation makes ' ∧ . . . ∧ 'n true.
The CompactnessTheorem has some socially useful applications.

Theorem 2.15 (TheMarriage Problem) Suppose we have an infinite set W of women w,w,w, . . .,
each of whom has at most a finite number of male special friends. If for each n, any n of the women have
between them at least n boyfriends, then it is possible for each woman to marry (heterosexually) without
anybody committing bigamy (or biandry).

Proof: We shall need the following:

Lemma 2.16 If U is a set of M women and for each k ≤ m, any k of the women have at least k boyfriends be-
tween them, then it is possible for each woman to marry one of her boyfriends without anybody committing
bigamy or biandry.

This is just the finite case of the theorem to be proved and can be proven by induction on m. We leave it
to the reader. LetM = {m j∣ j P N} be the men in question all of whom have at least one of the women as
a girlfriend. Choose a set ! of propositional atoms double-indexed as follows: ! = {Pi j∣i , j P N}. Let Γ
be the set of formulae in Γ! consisting of all the formulae specified by:

(A) For each i the formula
Pi j ∨ Pi j ∨ . . . ∨ Pi jk

where m j , . . .m jk are all the boyfriends of wi .

(B) For each i P N and each pair j, j′ in N the formula

¬(Pi j ∧ Pi j′)

(C) For each j P N and each pair i , i′ in N the formula

¬(Pi j ∧ Pi′ j).

Let Γ be a finite subset of Γ. We show Γ is satisfiable. Let V be the finite set of wi such that for some
jPi j occurs in a formula in Γ. The hypotheses of the theorem imply that whatever the size of V there are
enough boyfriends to apply the lemma tomarry off thewi ofV with somem j without bigamy, etc. being

18

2. Propositional Languages

committee. We define a valuation by u(Pi j) =T if wi P V and wi marries m j by this process, u(Pi j) =F
otherwise.
The clearly u satisfies Γ. So we conclude by the compactness theorem that there is a valuation v that
satisfies all of Γ simultaneously. Now letwi nowmarrym j iff v(Pi j) =T. Since Γ contains all the formulae
in (A) each woman marries one of her boyfriends and bigamy (respectively biandry is not committed
since Γ contains all of (B) (respectively (C)). QED

Exercise 12 Formulate and prove König’s Tree Lemma for trees on any fixed finite set of symbols. What if the set
was infinite?
Exercise 13 Show that (∗) of Example 9 implies the Compactness Theorem (so that (∗) is equivalent to this
theorem).
Exercise 14 Suppose Γ Ď L! is satisfiable, let ∆ = Γ ∪ {¬(P ∨ . . . ∨ Pn)∣n P N}. if ∆ is unsatisfiable show that for
some n Γ ⊧ P ∨ . . . ∨ Pn .
Exercise 15 A graph is structure ⟨A, R⟩ where R is a symmetric relationon a set A. Let us say that two elements
a, b of A are connected if aRb. A graph is k-coloured if A can be partitioned into k disjoint subsets so that no
two connected elements are in the same subset. Show that if A is countable, ⟨A, R⟩ is k-colourable iff every finite
subgraph is k=colourable. [Hint: let A be enumerated a , a , . . . , an , . . . n P N; choose ! = {P i

j ∣i < k, j P N} ∪
{Q i j ∣i , j P N}; think of a valuation u giving u(P i

j) =T if a j is coloured with colour i, and u(Q i j) =T iff a jRa j ;
then choose a suitable set Γ; argue similarly to the Marriage Problem]
Exercise 16 Show that if A is a finite set and R a partial ordering on A then there is a total ordering R∗ on A
extending R, [i.e R∗ Ě R, or in other words aRb ⇒ aR∗b for all a, b P A]. Hence deduce that any countable
partially ordered set ⟨A, R⟩ can be totally ordered by some R∗ extending R. [Hint: the first part asks you to prove
the “finite case”; assuming that done choose an enumeration of the countable A as in Ex. 15 and take! as {Q i j ∣i , j P

N}].

2.5 Normal Forms and Truth Functional Completeness

It is often useful to know that a formula can be written out in some uniform, or canonical way, usually
called “normal form”.

Definition 2.17 A formula of the form (¬') is called a negation; a conjunction is a formula of the form
 ∧ ∧ . . . ∧ n for some formulae , . . . , n; a disjunction is a formula of the form ∧ ∧ . . . ∧ n
for some formulae , . . . , n.

Definition 2.18 A formula ' is in disjunctive normal form, (dnf), if it is a disjunction ∨ ∨ . . .∨ n,
where each i(l ≤ i ≤ n) is a conjunction of propositional atoms or negations of propositional atoms.

We give an example of a formula which is in dnf in the proof of the following theorem

Theorem 2.19 (Disjunctive Normal Form Theorem) Every formula is truth functionally equivalent
to one in dnf.

Proof We illustrate by means of an example. Let ' be the formula P → (Q ∧ R). Consider the truth
table for ':

19

Normal Forms and Truth Functional Completeness

P Q R (Q ∧ R) (P→ (Q ∧ R))
T T T T T
T T F F F
T F T F F
T F F F F
F T T T T
F T F F T
F F T F T
F F F F T

We simply read off from the final column those lines where ' comes out true and see what assignments
are necessary for this to happen. Thus ' is then truth functionally equivalent to:

(P ∧ Q ∧ R) ∨ (¬P ∧ Q ∧ R) ∨ (¬P ∧ Q ∧ ¬R) ∨ (¬P ∧ ¬Q ∧ R) ∨ (¬P ∧ ¬Q ∧ ¬R)

The convenience of this normal form is that it displays precisely the alternative truth conditions that
are necessary to make ' true. Notice that if ' had been a contradiction then ' is truth functionally
equivalent to S ∧ ¬S which is also in dnf. QED

Definition 2.20 A formula is in conjunctive normal form, (cnf), if it is a conjunction ∧ ∧ . . .∧ n,
where each i(≤ i ≤ n) is a disjunction of propositional atoms or negations of propositional atoms.

Theorem 2.21 (Conjunctive Normal Form Theorem) Every formula is truth functionally equivalent
to one in conjunctive normal form.

Proof Using the same example as for the Disjunction Normal Form Theorem, we now look at those
lines where ' comes out F. So ' is equivalent to none of them holding, i.e.

'←→ ¬((P ∧ Q¬R) ∧ (P ∧ ¬Q ∧ R)) ∧ (P ∧ ¬Q ∧ ¬R))

Using De Morgan’s Laws (and the Principle of Substitution, Lemma 2.12) we get

'←→ ¬(P ∧ Q ∧ ¬R) ∧ ¬(P ∧ ¬R) ∧ ¬(P ∧ ¬Q ∧ R) ∧ ¬Q ∧ ¬R)

and again
'←→ (¬P ∨ ¬Q ∨ ¬¬R) ∧ (¬P ∨ ¬¬Q ∨ ¬R) ∧ (¬P ∨ ¬¬Q ∨ ¬¬R)

We now use the tautology of Example 4 (4) (and Lemma 2.12 again) to get

'←→ (¬P ∨ ¬Q ∨ R) ∧ (¬P ∨ Q ∨ ¬R) ∧ (¬P ∨ Q ∨ R)

QEDWe can use the DNFTheorem to show that the set {¬,→} is complete in the following sense.

Definition 2.22 A set G of truth functions is truth functionally complete, or simply complete, if every
truth function is a composition of functions from the set G.

20

2. Propositional Languages

We are thinking of a truth function here as a function from {T, F}n to {T, F} for some n. (Thus the
propositional connective→ is essentially a function F→ ∶ {T, F} → {T, F} given by the relevant table;
so for example F→(T, F) =F). We saw that the tables for the two place connectives ∧, ∨, and→ required
 lines. In general for a table representing a two place truth function lines are necessary, each with a
choice of T of F in the final column, thus giving

 = possible such tables altogether. A truth table cor-
responding to a three place truth function would have lines, and there are

 = such tables; and
similarly there are

n
n-place truth functions. We say by means of tables how ∧ and ∨ can be expressed

in terms of ¬ and→. And the idea in the proof of the DNFTheorem shows how any truth function can
be expressed using ∨, ∧, and ¬.

Example 11 A three place connective or truth function, � , is defined by the table

' � �(', ,�)
T T T T
T T F F
T F T F
T F F F
F T T F
F T F F
F F F T

�(', ,�) is equivalent to ('∧ ∧�)∨(¬'∧¬ ∧¬�). Since we can express ∧, and ∨ in terms of ¬ and
→, we can do the same for � . And this approach would work for any other 3 or n place truth fucntion.
We have thus shown

Theorem 2.23 (Truth Functional Completeness Theorem) The set {¬,→} is truth functionally com-
plete.

Exercise 6 showed that in fact ¬,→ could be defined in terms of either ∣ or ↓. We thus have that both
the sets {∣} and {↓} are complete. Exercise 5 showed that→ could be defined in terms of ¬ and ∧. This
means that {¬,∧} is also a complete set.

Example 12 The set {→,∨} is incomplete. The reason being that any formula built up using only these
connectives will have a truth value T whenever the atoms within it are assigned T.Thus there can be no
way that we can represent the one place negation function F¬.
In general showing that a set is incomplete is harder than showing completeness: one has to notice some
feature of the functions built up from the given set that precludes defining e.g., ¬, as in the last example.
These examples show that our choice of→ and ¬ as primitive is arbitrary to a certain extent; the choice is
a balance between economy so as not to have too many clauses in inductive definitions and proofs, and
over zealous economy (formulae built up from ↓ alone rapidly become unreadable.)

Exercise 17 Express '→ (∨ �))←→ (�→ (∨ �)) in cnf.
Exercise 18 Express the majority connective �(', ,�) in both cnf and dnf (See Exercise 2).

21

Normal Forms and Truth Functional Completeness

Exercise 19 Call a formula ' full cnf if it is in cnf and there is a natural number k and distinct propositional atoms
P , . . . , Pk so that every conjunct in ' is of the form ∨ ∨ . . .∨k where each i is either Pi or ¬Pi . (So every
conjunct mentions the same set of atoms.) Show that any formula , if is not a tautology, then it is equivalent to
some ∗ in full cnf. Show that any which is not a tautology is a contradiction iff ∗ (containing the same atoms)
has n distinct conjuncts.
Exercise 20 Show that the following are incomplete sets: {→,∧}, {�(', ,�)}, {←→,¬}.
Exercise 21 (i) Show that {→,↛} where↛ is “does not imply” (its truth table is that for→ with the final column
having T’s and F’s reversed), is a complete set.
(ii) Show that the 3 place truth function F defined by F(X, Y, Z) = “the value in the final column of the truth table
for (' ∨)→ ¬� corresponding to the line X Y Z” forms a complete set by itself.
Exercise 22 Show that ∣ and ↓ are the only binary connectives that are complete by themselves. [Hint: Suppose
G(X, Y) is a binary truth function; argue that G(T, T) must be F and G(F, F) must be T (or ¬would be indefinable)
and then deduce that the truth table for G(X, Y) must correspond to one of the two alternatives]
Exercise 23 Show that only half the truth functions can be built up using the set {¬,∧,∨}.

22

First order languages and their Structures

We intend to give a definition of a class of languages that are considerably more expressive than the
propositional languages, the so called first order languages. The atoms of our propositional languages
were essentially variables that stood in for any proposition we cared to substitute in for them. We shall
have variables in these new languages, but they will range over individuals. And these individuals will be
considered to be elements of the domain of some structure, the domain of discourse so to speak. So first
we must specify what kinds of structures we are referring to, and then we shall give inductive definitions
of the terms and formulae of our languages, and then give tha all important definition of the Satisfaction
Relation, which shows how we intend to give meaning to our syntactic formulae.

3.1 First order structures

The goal of this section is to define what kind of structures our languages will be able to refer to. The
definition is sufficiently all encompassing that almost any structure of mathematics and indeed many
in the world of computer science or the real world can be considered as first order structures. It is this
fact that makes our theorems relating languages to these structures have the widest possible applicability.
Further, the logic associated to such languages is much developed and is probably the most successful of
all logics.

We want to give a general definition of structure that covers a very wide class of the objects we ever
meet in mathematics or elsewhere. Obviously mathematical structures can be very dissimilar and the
languages we need to talk about these different structures, albeit having many common features, will
also be different. In particular what relations or functions occur in the structure will be a differentiating
factor. What the idea of a similarity type (to be defined presently) does is indirectly collect together all
structures with similar kinds of functions and relations.

We think of an n-ary relation on a set A as a set of ordered n-tuples, that is a subset of An. Likewise an
n-ary function on a set A is a map h ∶ An → A. We allow here the idea of a 0-ary function, h ∶ A → A,
but actually this is just a way of picking an element, or in other words a constant from A. (This is because
in set theory we have the convention that X = = {}, so that then if h ∶ X → X there is only one
element in the domain of X, namely 0, so h picks out a unique element of X , h().)
F as a constant symbol if f (F) = . We often use c, d , . . ., etc. as constant symbols rather than 0-ary
F ,G ,

23

First order structures

Definition 3.1 A similarity type is an ordered pair Ω = ⟨r, f⟩ where r and f are functions with range
contained in N. The elements of dom r are called the relation symbols of Ω, those of dom f the function
symbols. We say R is an n-ary relation (or F an n-ary function symbol) if r(R) = n (or f(F) = n); if
f(F) = we call F a constant symbol.

The idea is thus that Ω specifies the kind of structures we can use the symbols in dom r and dom f to
talk about. Referring to the discussion above when we allow F to be 0-ary function symbol, (and so are
thinking of it as a constant symbol) we use the letters c, d , e, and os on instead. Usually there will not be
any ambiguity in simply saying “R is an n-ary relation symbol” rather than themore pedantic “R P dom r
and r(R) = n”, and similarly for functions. It is worth emphasising that the R’s and F’s in this discussion
are not relations and functions, they are simply syntactic symbols that we shall later interpret as relations
and functions; alternatively we could say that they will be used to denote relations or functions. This is
just analogous with the idea that “2” is not a number, it is merely a numeral that we interpret as ther
number two.

Definition 3.2 Let Ω = ⟨r, f⟩ be a similarity type. An Ω-structure is an ordered triple

A = ⟨A, ⟨RA⟩RPdomr, ⟨FA⟩FPdomf⟩

where A is a non-empty set; for each R P dom r, RA is an r(R)-ary relation on A, and FA is an f(F)-ary
function on A. A is called the domain of A and members of A are elements of A. The cardinality of A is
that of A, and in particular we say A is infinite if A is an infinite set.

When we have an Ω-structure in mind we often simply write it out as

A = ⟨A,H,H,H, . . .⟩

where the Hi are the various relations and functions RA, FA.

Examples
Groups

1. Take r as empty and f as the function with dom f = {●}with f(●) = . Every group is then an ⟨r, f⟩
structure:
tmstrongG = ⟨G , ●G⟩ where the elements of the group G is the set of G and ●G is the group
multiplication.

2. Groups havemore than just amultiplication action in them. Take r as empty, but f nowhas dom f =
{●,− , e} with f(●) = , f(−) = , f(e) = . Notice here that e is an 0-ary function symbol, or in
other words a constant symbol.

Then again a group is an ⟨r, f⟩ structure. G = ⟨G , ●G, −G , eG⟩where ●G is as before, −G is the inverse
function, and eG is the identity element.

24

3. First order languages and their Structures

3. The following way of presenting groups illustrates a general fact of structures: n-ary functions can
be thought of as n + -ary relations. Let f be empty but r have dom r = {●}. Then if r(●) =
we can represent Example 1 as G = ⟨G , ●G⟩ where now ● is a ternary relation where if a, b, c P

G , ●G(a, b, c) holds if the group multiplication of a followed by b results in c.

Thus structures can be presented in a variety of ways depending on the similarity type chosen,
some with more, some with less information in the form of displayed functions or relations.

Number systems

4. Wemay present a structureN = ⟨N, <N , N⟩which is an ⟨r, f⟩-structure where fom r = {<}, r(<
) = , dom f = {}, f() = . <N is the usual binary relation on N, and N is of course zero.

5. N = ⟨N,+N, ●N, ′N, N⟩ where now dom f = {+, ●, ′, } with f () = as before, f (+) = f(●) =
, f(′) = ;+N, ●N are the usual addition and multiplication, ′N is the successor function.

Other algebraic systems

6. Fields. Let dom f = {+,−, ●, −, } with f(+) = f(●) = f(−) = , f(−) = , f () = f() = , r is
empty; then any field is an ⟨r, f⟩-structure

f = ⟨F ,+f,−f, f, f⟩.

The careful reader will notice something wrong here: −f doesn’t exist but our definition of struc-
ture does not allow the possibility for functions that are not defined everywhere. Accordingly we
give −f some default value, f say, and then we are careful about statements we wish to make
concerning inverses in the field.

7. Binary relations. Let A be any non-empty set, R any binary relation on A (for example it might be
a linear order) then A = ⟨A, R⟩ can be thought of as Ω-structure where Ω = ⟨r, f⟩, f empty, r has
a symbol Ṙ in it and r(Ṙ) = , and we set ṘA = R.
The last example shows that given a structure A = ⟨A,H, . . .⟩ say we can look at H, . . . and think
ofA as an ⟨r, f⟩-structure by constructing r, f froma suitable stock of symbols. An easyway towrite
down such sym;bols being to place dots over the relations and functions of the given structure, that
is Ḣ, . . . , Ḣn , . . ., etc. We often do this implicitly, by talking about the language of A or of fields,
rings, etc., which we can obtainin this manner.

3.2 Relations between structures

The previous definition of structure in a very generalised sense encompasses any of the usual mathemat-
ical, and many non-mathematical, structures. Normally we look at certain classes of structures, groups,
fields, vector spaces, etc., and look at relationships between members of that class, i.e. between groups,
or between vector spaces. Further we are often interested when given a group say to look at all of its

25

Relations between structures

subsets which are in the same class of structures, i.e. at all of its subgroups. And similarly at subrings of
a given ring and so on. The first definition looks at a precise description of this idea of “subsets of the
same type” or a substructure. Later definitions will generalise between arbitrary structures the idea of
homomorphism.

Definition 3.3 Let A be a structure of similarity type Ω= ⟨r, f⟩. We say B is a substructure of A, B Ď A,
if B is an Ω-structure and

(i) B Ď A

(ii) For each R P dom r, if r(R) = n then RA ∩ Bn = RB

(iii) For each F P dom f , if f(F) = n then for any b, . . . , bn P B FB(b, . . . , bn) = FA(b, . . . , bn).

Remark 1 B an Ω-structure implies that it is closed under the functions FB for F P

dom f , so in (iii) above FB(b, . . . , bn) P B by definition.
2 When f (F) = then F is a constant symbol, (iii) then says that FA = FB

(and so is also in B by the first remark.)

We also say, if B is a substructure of A, that A is an extension of B.

Examples

8. Consider Example 1. Suppose G = ⟨G , ●G⟩ is a group and that H = ⟨H, ●H⟩ is a subgroup of G.
Then according to the above definitionH Ď G. On the other hand ifH Ď G, it’s not necessarily the
case thatH is a subgroup ofG. H will be closed under groupmultiplication, but will not necessarily
be closed under the group inverse function.

9. Example 2 gives a presentation of groups so that all substructures are subgroups: by including −

in dom f we ensure any substructure is closed under inverses.

10. Let E = ⟨{Evens}, <E , E⟩ and O = ⟨{Odds}, <O, O⟩. Then E Ď N = ⟨N, <N , N⟩ and
O Ď N. Indeed even = ⟨{}, <, ⟩ Ď N. But if N = ⟨N,+N , ●N ,

′
N
, N⟩ is the structure of

Example 5, the only substructure of N is N itself. (Why?)

Definition 3.4 let A and B be two Ω-structures, a map h ∶ A→ B is a homomorphism from A to B iff
(where Ω = ⟨r, f⟩)
(i) @R P dom r, @a, a, . . . , ar(R) P A ⟨a, . . . , ar(R)⟩ P RA ⇒ ⟨h(a), . . . , h(ar(R))⟩ RB;
(ii) @F P dom f, @a, a, . . . , af(F) P A FA(a, . . . , af(F)) = a⇒ FB(h(a), . . . , h(a f (F))) = h(a).

The idea is that such a mapping preserves structure. Note again when f(F) = , that this says simply
h(FA) = FB. If h is a homomorphism from A to B we write h ∶ A→ B.

Example 11 If G = ⟨G, ●G , eG⟩ and G = ⟨G, ●G , eG⟩ are groups and h a homomorphism between
them, then h is a group homomorphism in the usual sense. [Notice we don’t need − to be a function in
the similarity type for this to happen.]

26

3. First order languages and their Structures

Definition 3.5 If h ∶ A → B and h ∶ A→ B is one-to-one then h is called an embedding. If h ∶ A→ B is
(1-1), onto and in addition, in clause (i) of the previous definition we write

⟨a, . . . , ar(R)⟩ P RA⇔ ⟨h(a), . . . , h(ar(R))⟩ P RB .

Then h is called an isomorphism and write h ∶ A ≅ B. We write A ≅ B iff there’s an h so that h ∶ A ≅ B.

Example 12 N = ⟨N, <⟩ and N+ = ⟨N+, <⟩ where N+ = N/{} and < is the usual “less than” relation.
These two structures are isomorphic via the function h ∶ N → N+ defined by h(n) = n + . However
⟨N, <,+⟩ is not isomorphic to ⟨N+, <,+⟩ [since in N there is c so that c + a = a for all a P N, but in N+

there is no such thing.]

Exercise 1 If h ∶ A → B and if we write h[A] for the set of b in B in the range of h, is h[A] a substructure of B,
with the relations and functions on h[A], those inherited from B?
Exercise 2 In Ex 3 where group multiplication was represented by a ternary ●G , if G and G are two groups and
h ∶ G → G is a homomorphism, is h a group homomorphism?
Exercise 3 Check that “is isomorphic to” is an equivalence relation.
Exercise 4 Find an example of structures A and B of the same type, with h ∶ A → B, h ∶ A → B, (1-1) and onto,
but not A ≅ B.

3.3 First order Languages

We shall construct formal languages LΩ for talking about Ω-structures. Thus for each similarity type
we shall have a different language. We shall single out certain expressions of LΩ called terms, and then
define formulae of LΩ. The expressions themselves will be finite sequences built up from the symbols in
dom r∪ domf together with parenthesis (,), arrow→, negation symbol ¬ and the universal quantifier @.
To avoid ambiguities we shall assume the relation and function symbols different from these and from
each other, and are not themselves sequences of length greater than 1. At the same time as defining terms
and formulaewe shall again define a complexity function comp.This will assign to each term and formula
a natural number which is a measure of the complexity of the term or formula.

Definition 3.6 We simultaneously define the terms t of LΩ and their complexity comp(t) by recursion

(i) For n P N vn is a term of complexity . It is called a variable.

(ii) If F P dom f, f(F) = n, and t, . . . , tn are terms then

F(t, . . . , tn) is a term of complexity max{, comp(t), . . . , comp(tn)} +

(iii) Nothing is a term unless built up by clauses (i) and (ii).

Remark If f(F) = , i.e. F a constant symbol, then comp(F) = . Assume that dom f contains the
function symbols F (binary) and G (ternary) and the constant symbols a, b; then examples of terms are:
F(a, v) and comp(F(a, v)) = max{comp(a), comp(v)} + = max{, } + = . G(F(a, v), v, b)
whose complexity is max{comp(F(a, v)), comp(v), comp(b)} + = max{, , } + = .
G(F(a, F(a, v)), v, b) has complexity 4. G(a, b) and F(F , a) are not terms.

27

First order Languages

Definition 3.7 We simultaneously define formula ' of LΩ and comp(')

(i) If s and t are terms then s = t is a formula of complexity . We call this formula an equation.

(ii) If R P dom r, r(R) = n, and t, . . . , tn are terms then R(t, . . . , tn) is a formula also of complexity 0.

(iii) ' is a formula then (¬') is a formula and comp((¬')) = comp(') + .

(iv) If ', are formulae then ('→) is a formula and

comp(('→)) = max{comp('), comp()} + .

(v) If ' is a formula and vn a variable then @vn' is a formula of complexity comp(') + .

(vi) Nothing is a formula except as built up by clauses (i) - (v).

Formulae of complexity 0 are called atomic formulae.

Example 13 Let us suppose that dom r contains the relation symbols R (binary) and S (unary); then
R(F(a, v), a) is a formula of complexity 0. (R(v, v)→ @vS(v)) is a formula of complexity
max comp(R(v, v)), comp(@vS(v) + = max{, } + = @v(¬(R(v, v) → @vS(v))) has then
complexity 4; the following are not formulae:

v ; F(v, v) ; @v(¬(R(v, v → @vS(v))) ; Svk ; @bS(b).

Remark Clause (i) here shows that we are verymuch building the equality symbol = into every language
LΩ.This isn’t necessary, many authors would omit clause (i), and if they wanted an equality relation sym-
bol they would simple put = into dom r. Since equations are such a basic part ofmathematical experience
we decided to build it into the language so that it is there whenever we neet it, without having to make
any further specifications. It is worth pointing out that the complexity of a formula is nothing to do
with the complexity of any terms it may contain; (the complexity meansures the height of the implicit
tree structure from which the formula is built). As with propositional languages, no formulae can be
infinitely long.
The idea is that if A is an Ω-structure the terms of LΩ are nouns, a term names an element of A: a
constant symbol c names cA, a variable vk may name any element of A, and if t, . . . , tn are terms naming
a, . . . , an of A, then F(t, . . . , tn) names FA(a, . . . , an). The formulae of LΩ then express statement
about A. If s, t name a, b in A then s = t says a is the same element as b. If R is an n-ary relation symbol
then R(t, . . . , tn) says that ⟨a, . . . , an⟩ P RA (where we’re assuming that t names ai). If ' is a formula
built up from certain terms then'interpreted in a structure Awill say something about the objects in the
domain of the structure that the terms denote. The intention is that @vk' will say that for every possible
interpretation of vk as an element of A ' is true in A.
Again it will be convenient to extend our list of various abbreviations, we write

Dvk' for (¬@vk(¬')).

28

3. First order languages and their Structures

The binding rules for our defined connectives ∧, ∨, and ↔ remain in force. Thus @v' ∧ → � is
(@v' ∧)→ �, Dv¬'→ @v ∨ � is short for Dv¬'→ (@v ∨ �). Notice that (@v' ∧) is itself
shor for (¬(@v'→ (¬))). there is no sense of the quantifier @v having anything to do with . Note
again that to calculate the complexity of a formula wemust write it out in its official unabbreviated form.

Remark The set of expressions of LΩ is countable if dom f ∪ dom r is. For, suppose we can enumerate
dom r as R, R, . . . , Rn , . . . and dom f as F, F, . . . , Fn , . . . we can assign positive integers to the symbols
of the language as follows:

Symbol , () → ¬ = @ vk

Code 0 1 2 3 4 7 49 599...9 (k nines)

Rk Fk

788...899...99 (r(Rk) eights, k nines) 688...899...9 (f(Fk) eights, k nines)
Then, to each string of symbols we can associate a number (the “gödel number” or “gn”), for example
(R(v, v)→ ¬R(F(v), v)) is then coded by the sequence of digits
. So we can enumerate all formulae, (indeed all symbol strings) in the
order of these code numbers. In particular all the terms are countable, as are all the formulae. (The
method of coding here is totally unimportant; in fact the rather idiosyncratic choice of digits reflects a
coding we shall be using in a later chapter. But notice that a formula may be decoded in a completely
mechanical way from a code number. It is also completely mechanical to check whether any string of
digits does in fact code a term or a formula).

Examples

14. In Ex. 5 with Ω = ⟨r, f⟩ as there, we have the formulae of LΩ

@v¬v′ = @v@v v + v′ = (v + v)′ @v v ● = v

These formulae will be intended to express the two facts true in N that zero is not the successor
of any number, that the successor of b added to a, is the successor of (a plus b), and the false fact
that anything times zero is that thing itself. But actually we haven’t yet said anything about howwe
intend to interpret our formulae and terms in a structure. The same is true in the following three
examples.

15. Ex. 2 gave a presentation of groups.

@v@v@v(v ● v) ● v = v ● (v ● v) expresses the associative law whilst @v(@vv ● v = v →
v = e) expresses the fact that the identity is unique.

16. If A = ⟨A, RA⟩ is a structure with R binary, (i.e., where f is empty, dom r = {R}, r(R) =), then
we can specify in LΩ, that RA is a strict partial ordering by requiring

29

First order Languages

(i) @v¬R(v, v) (ii) @v@v@v[R(v, v) ∧ R(v, v)→ R(v, v)]
By further requiring (iii) @v@v[R(v, v) ∧ R(v, v) ∧ v = v] we specify R as a (strict) total
order.

17. We can specify that a structure has at least 3 elements in its domain:

DvDvDv(v ≠ v ∧ v ≠ v ∧ v ≠ v).

Notice in the above we have taken some further liberty with our expressions; we’ve included [,] and have
written ≠ as an abbreviation for ¬v = v. Where R is an ordering relation we often write aRb for R(ab)
If Ω is a similarity type with a constant symbol c andA is an Ω-structure the formula v = c has no fixed
meaning inA since the variable v can name any element of Awhilst c names cA. Such a variable is called
free. We give a precise definition by induction on complexity of terms and formulae of when a variable
is free in a term or formula.

Definition 3.8

FV(vn) = {vn}
FV(F(t, . . . , tn)) = FV(t) ∪ . . . ∪ FV(tn)
FV(s = t) = FV(s) ∪ FV(t)
FV(R(t, . . . , tn)) = FV(t) ∪ . . . ∪ FV(tn)
FV((¬')) = FV(')
FV(('→)) = FV(') ∪ FV()
FV(@vn') = FV(') − {vn}

Remark FV is then a function that is specified by recursion: it defines FV for terms (on the first two
lines, note that if F is a constant symbol that FV(F) = ∅), then FV for formulae of complexity 0 then
FV for formulae of complexity k + given the definition for formulae of complexity ≤ k. The reason we
bother defining complexityis that it makes definitions like the above simple and concise.

Definition 3.9 If FV(') = ∅ we say ' is a sentence. If FV(t) = ∅ we say t is a closed term.

Remark We can say informally that if @vk occurs in ' that vk is “bound” in '. In our original ex-
ample v = c, v P FV('), but in @vv = c v has been “bound” by the quantifier @v and the re-
sulting formula now has determinate meaning in any structure. Sentences are formulae which when
interpreted in a structure have a determinate meaning. A closed term likewise is completely speci-
fied and identifies a unique element of the domain. Notice that the definition of D too implies that
FV(Dvk') = FV(') − {vk}.

Example 18 Let R be binary, then in LΩ R(v, v) has v, v free variables;
FV(@v@vR(v, v)) = ∅
FV(@v(R(v, v)→ @vDvR(v, v))) = FV((R(v, v)→ @vDvR(v, v))) = {v} =
= {FV(R(v, v)) ∪ FV(@vDvR(v, v} − {v} = {{v, v} ∪ ∅} = {v} = {v}.

30

3. First order languages and their Structures

FV(@vR(v, v)→ @vR(v, a)) = FV(@vR(v, v)) = {v}. FV(@vR(v, v)→
@vR(v, a)) = FV(@vR(v, v)) = {v}.
Note that FV(@vR(v, v)) = {v, v}.

If ' is a formula and vk P FV(') then we think of ' as saying something about vk− whichever element
that is, for example if ' is ¬(@vv = vk). This says “there is something besides vk”. This clearly would
have the same effect as saying ‘there is something besides vk ’ as long as k ≠ since we shall obviously want
¬(@vv = v) to be interpreted as something that is always false. We want in general given a formula '
id about vk . The above example shows that it is not always safe to simply substitute a t such as v for vk :
the point being that the term t has a free variable in it when r equals v itself, namely v, that is ‘captured’
by the quantifier @v. The following definition says precisely when a term may safely be substituted for a
variable in a formula.

Definition 3.10 t is substitutable for vk in ' if

' is atomic
or: ' is (¬) and t is substitutable for vk in
or: ' is (→ �) and t is substitutable for vk in and �
or: ' is @vn where t is substitutable for vk in and

(if vn P FV(t) then vk /P FV(')).

Remark Again a definition by recursion on the complexity of '. Some author write ‘free’ rather than
‘substitutable’. Notice a couple of consequences of this definition. If a term is not substitutable for a vari-
able in a formula �, it won’t be be substitutable in any other formula in which � is a part; on the other
hand a term may be substitutable in � but may not be substitutable in a formula in which � is a part;
secondly, we allow ourselves to say t is substitutable for vk in ' whenever vk appears nowhere in '; the
intention of the definition is that it tells us when a termmay safely be substituted for a variable, which we
shall usually be thinking of as a free variable. However the definition also specifies some “defaults” when
vk appears but is not free. This leads to some peculiarities when vk is not free: just because a variable is
not free in a formula does notmean in general that a term is substitutable for it in that formula (see Exam-
ple 19(ii) and (vii) below.). But there are no oddities when vk is free and the definition functions perfectly.

Example 19 To check substitutability one can use the recursive clauses of Definition 18 with a little
practice one can “read off” from the formula when variables are free, and what is substitutable for what,
and you are advised to try the exercises below to develop this skill.

(i) v is substitutable for v, v, and v in R(v, v) and likewise in R(F(v, v), v)

(ii) v and v are both substitutable for v in @vR(v, v). However v, although not substitutable for
v (see also next item) is declared by default, but somewhat trivially, substitutable for v.

(iii) v is not substitutable for v in @vR(v, v) nor is any term t such as F(v) in which v is a free
variable: looking at the last clause of Def 3.10, although v and such t are substitutable for v in
R(v, v) both v P FV(v) (or more generally v P FV(t)), and v P FV(@vR(v, v)).

31

First order Languages

(iv) Since v is not substitutable for v in @vR(v, v) it will not be in @v@vR(v, v) either; nor will
it be in @v@vR(v, v) either; nor will it be in @vR(v, v)→ S(v, v)

(v) any constant symbol is substitutable for any variable in any formula

(vi) G(v, a, v) is substitutable for v and v in @vR(v, v) but not for v since v P FV(G(v, a, v))
(and v P FV(@vR(v, v))); but it is substitutable for v in @vR(v, v).

(vii) F(v, v) is not substitutable for v in@v@vR(v, v) [notwithstanding that v /P FV(@v@vR(v, v))]
since it is not substitutable in @vR(v, v).

The intention is that we only want to substitute terms for free variables for which they are substitutable
according to the above definition. It’s probably fairly clear what this means given any one formula but
we can give a precise inductive definition of what the result of performing the substitution of t for vk in
' is.

Definition 3.11 For x a formula or a term, Sub(t, vk , x) [“the result of substituting t for vk in x”] is
defined by induction on complexity of terms and formulae as follows:

(i) Sub(t, vk , vn) is
t if k = n
vn if k ≠ n

(ii) Sub(t, vk , R(t, . . . , tn)) is R(Sub(t, vk , t), . . . ,Sub(t, vk , tn)) (R P domr)
Sub(t, vk , F(t, . . . , tn)) is F(Sub(t, vk , t), . . . ,Sub(t, vk , tn)) (F P domf)

(iii) Sub(t, vk , t = t) is Sub(t, vk , t) = Sub(t, vk , t)

(iv) Sub(t, vk , (¬�)) is (¬Sub(t, vk ,�))

(v) Sub(t, vk , (→ �)) is (Sub(t, vk ,)→Sub(t, vk ,�))

(vi) Sub(t, vk ,@vn , @vn) is
@vn if k = n
@vnSub(t, vk ,) if k ≠ n

Note: The above definition is made without prejudice as to whether t actually is substitutable for vk
in ' (see Example 20(vi) below). But an induction on the complexity of x shows that if vk /P FV(x)
(even if vk occurs in x), then Sub(t, vk , x) = x (and see Exercise 10). But if t is substitutable for vk in
', and vk P FV('), then Sub(t, vk ,') does “the right thing” and returns the formula with the correct
substitution made without any clash of variables with quantifiers.

Example 20

(i) Sub(vn , vk , vk) = vn; Now consider Sub(F(v, v), v,') for various ':

(ii) ' is R(v, v): Sub(F(v, v), v,') = R(Sub(F(v, v), v, v), Sub(F(v, v), v, v))
= R(v, F(v, v))

32

3. First order languages and their Structures

(iii) ' is R(v, v)→ S(v): Sub(F(v, v), v,') =
= Sub(F(v, v), v, R(v, v))→ Sub(F(v, v), v, S(v)) = R(v, F(v, v))→ S(v)

(iv) ' is @vR(v, v): Sub(F(v, v), v,') = @vR(v, F(v, v))

(v) ' is @vR(v, v): Sub(F(v, v), v,') = '

(vi) ' is @vR(v, v): Sub(F(v, v), v,') = @vR(v, F(v, v))

Remark Again, the procedure of taking a formula and a term, and checking whether the term is sub-
stitutable for a particular occurrence of a variable and performing the substitutions are all effective pro-
cedures when considering their code numbers: we could feasibly write a programme which when fed in
a gn checked it was the gn of a formula and gave as output (in the form of a gn the result of the suitable
substitution.
As a shorthand for the Sub notation we write x(t/vk) instead of Sub(t, vk , x) (x a t or ').
One or more substitutions can be handled by writing x(t/v, . . . , tn/vn) for the result of successively
substituting t for v, . . . , tn for vn; so for example vk(v/vn) is v if n = k and is vk otherwise;
G(v, v)(F(v)/v) = G(F(v), v).

Exercise 5 For those of the following that are terms, calculate their complexity (a and b are constant symbols)

G(v , v ,G(v , v , v)) F(a, b) F(S(a), b) v G(F(b, F(G(a, v , v),)), b, t)

where t is a term with comp(t) = .
Exercise 6 In the following ', ,� have complexity 5, 7, 2; putting brackets back where necessary, calculate
the complexities of some or all of the following formulae: ¬¬' ∧ ; @v' → (∧ �) ; (Dv¬' ∧) → � ;
(¬' ∨ Dv)→ � ; (¬Dv@vP(v , v)→ Dv¬@vR(v , v) ∧ (Dv¬@vR(v , v)→ ¬Dv@vP(v , v))).
Exercise 7 LetN = ⟨N,+N ,ˆN , N , N⟩. Translate the following formulae into words and determine whether they
are true or false in N

a) @vDv(v = +(v , v) ∨ v = +(+(v , v),)))
b) @v@v(ˆ(v , v) = → v = ∨ v =)
c) Dv(ˆ(v , v) =)

Exercise 8 Find out FV(') for ' in the following cases

(i) @vR(v , v)→ R(v , v) (ii) @vP(v)→ @vR(v , v)
(iii)P(v)→ ¬@v@vQ(v , v , v) (iv) @vR(F(v , v), v)→ @vS(v ,G(v , v))

Exercise 9

(i) For which occurrences of v in the formulae of Exercise 8, is F(v , v) substitutable? Perform the suitable
substitutions.

(ii) Consider the formulae

a) @v@v(P(v)→ P(v)) b) @vQ(v , F(v), v)→ @vP(G(v , v))
c) @vP(F(v))→ @vQ(v , v , v)

Form Sub(G(v , v), v ,') for each of the formulae above. For which ' is G(v , v) substitutable for v?
Exercise 10 If x is a term or a formula prove that if vk /P FV(x) then for any term t, Sub(t, vk , x) = x.

33

The Definition of Truth

3.4 The Definition of Truth

We have defined languages LΩ and several syntactical operations on formulae and terms for the lan-
guages. In doing so we’ve alluded to the intention behind these purely syntactical LΩ: it is a language
suitable for describing features in structures of a particular type or signature. We use valuations to con-
nect formulae of a language LΩ to a structure of type Ω: a valuation is simply a function that maps
variables to elements of the domain A.

Definition 3.12 (valuations) WA = {w ∣ w is a function w ∶NÐ→ A}.

Weusew P WA to get such amapping by declaring that vk ismapped tow(k). We extend such valuations
to all the terms of the language;

Definition 3.13 (extended valuations) w˚
A(vk) = w(k);

w˚
A(vk) = FA(w˚

A(t), . . . ,w˚
Atk)) if F is k-ary, and t, . . . , tk are terms for which w˚

A has been defined.

If the A is given or understood, then we drop the subscript and simply write w˚ of u˚ etc. The following
definition is just a piece of notation:

Definition 3.14 Let w P WA, and let a P A. Then w(a/i) P WA is defined by
w(a/i)(j) = w(j) if j ≠ i
w(a/i)(i) = a if j = i

Thus w(a/i) is a valuation that assigns a to vi irrespective of what w did, but leaves all other values of w
unaltered; it thus differs from w only at the “i’th place”.

Example based on above
The following is the central definition of this section, which shows that we can give a precise definition
to truth in a structure.

Definition 3.15 (The Satisfaction Relation) Let A be an Ω-structure and ' a formula of LΩ. If w is
a valuation in A we define w satisfies ' in A (and write A ⊧ '[w]) by recursion on complexity of '

A ⊧ s = t[w] iff w∗
A(s) = w∗

A(t)
A ⊧ R(t, . . . , tn)[w] iff ⟨w∗

A(t), . . . ,w∗
A(tn)⟩ P RA for R P dom r with

r(R) = n, and t, . . . , tn terms of LΩ.
A ⊧ (¬)[w] iff it’s not the case that A ⊧ [w]
A ⊧ (→ �)[w] iff whenever A ⊧ [w] then A ⊧ �[w]
A ⊧ @vk'[w] iff for any a P A, A ⊧ '[w(a/k)]

Remark The last clause shows that we’re intending this as a simultaneous definition for all valuations
w.
The next example shows how the mechanics of this definition works.
Example 21 Let N = ⟨N,+N,ˆN, N,′N ⟩, let w P WN have the property that w() = , w() = .

a) Let ' be v + v = ′′. Then it is not the case that N ⊧ v + v = ′′[w] since w∗(′′) = , but
w∗(v + v) = w∗(v) +N w∗(v) = +N = ≠ .

34

3. First order languages and their Structures

b) Let ' be @v v + v = v + v. Then N ⊧ '[w] since this holds iff

@k P N(N ⊧ v + v = v + v[w(k/)]) iff @k P N(w(k/)∗(v + v) = w(k/)∗(v + v))

iff @k P N (k +N = +N k).

c) Let ' be @v@v v + v = v + v, now ' has no free variables. N ⊧ '[w] iff for all k P N
N ⊧ @v v + v = v + v[w(k/)] iff for all k, l P N N ⊧ v + v = v + v[w(k/, /)] iff for
all k, l P N w(k/, /)∗(v + v) = w(k/, /)∗(v + v). Notice that here what the values of the
original w were is irrelevant, we have that for this ' N ⊧ '[w] for any valuation w P WN. This
observation leads us to the following piece of shorthand: If FV(') = ∅ (so ' is a sentence) we
simply write

A ⊧ '⇐⇒ for any w P WA A ⊧ '[w].

For Γ a set of sentences we write A ⊧ Γ iff for all ' P Γ A ⊧ '.
Some facts are readily seen about the satisfaction relation:

(i) A ⊧ ¬'[w]R iff not (A ⊧ '[w]) (written A /⊧ '[w])

(ii) Not both A ⊧ '[w] and A ⊧ ¬'[w]

(iii) If A ⊧ '[w] and A ⊧ ('→)[w] then A ⊧ [w].

The same considerations as above immediately give the following

Lemma 3.16

a) A ⊧ (' ∧)[w] iff A ⊧ '[w] and A ⊧ [w]
b) A ⊧ (' ∨)[w] iff A ⊧ '[w] or A ⊧ [w]
c) A ⊧ ('↔)[w] iff A ⊧ '[w] if and only if A ⊧ [w]
d) A ⊧ Dvk'[w] iff for some a P AA ⊧ '[w(a/k)]

Proof The lemma is just a rewriting of the definition of ⊧ for these abbreviations. QED

The next observations says that essentially the truth of a formula in a structure, or the denotation of a
term only depends on the interpretation of the free variables: everything else is irrelevant.) In Example 21,
the interpretation of the term v′′ ˆ ′ should only depend on what a valuation assigns to v and nothing
else; likewise whether the formula v+v = v+v ends up being satisfied should only depend onwhat the
valuation assigns to v and v and nothing else. The mathematical nature of our definitions, in particular
that of the satisfaction relation allows us to actually prove that this is the case, and that is the content of
part a) of the next lemma. Further although ′′+v and v+(′+′) are different termsunder any valuation
they will both get interpreted as the same natural number; if I now substitute each of them separately for
the variable v in the term v ˆ v (to get (′′ + v)ˆ (′′ + v) and (v + (′ + ′))ˆ (v + (′ + ′))
respectively) then if my definitions are sound and I now interprete these two terms I ought to get the
same final interpretation; part b) below assures this. And lastly if I substitute these in for the variable v

35

The Definition of Truth

in any formula (note both these terms are substitutable for v in any formula) then the truth or falsity of
the resulting formulae are the same; this is what part c) says. So:
Remark b) and c) together show thatw∗ as defined in Definition 3.13 does the right things: substituting
different terms thatw∗ evaluates as the same object inAdoesn’t affect the valuation of terms or evaluation
of formulae in which we substitute those terms.

Lemma 3.17 Let A be a Ω-structure, t a term and ' a formula of LΩ

a) If w , u P WA and w(i) = u(i) whenever vi P FV(t) then w∗(t) = u∗(t). Similarly with ' in
place of t,A ⊧ '[w]⇐⇒ A ⊧ '[u].

b) Suppose also s, s are terms of LΩ such thatw∗(s) = w∗(s).Thenw∗(t(s/vk)) = w∗(t(s/vk)).

c) If in addition s, s are substitutable for vk in ' then
A ⊧ '(s/vk)[w] iff A ⊧ '(s/vk)[w].

Proof
a) By induction on the complexity of t or '. We let the reader do t as an exercise, assuming the results
for terms we do '.
A ⊧ s = t[w] iff w∗(s) = w∗(t) iff u∗(s) = u∗(t) iff A ⊧ s = t[u]
A ⊧ R(t, . . . , tn)[w] iff ⟨w∗(t), . . . ,w∗(tn)⟩ P RA

iff ⟨u∗(t), . . . , u∗(tn)⟩ P RA
iff A ⊧ R(t, . . . , tn)[u].

A ⊧ (¬')[w] iff it’s not the case that A ⊧ '[w]
iff (by the inductive hypothesis) it’s not the case that A ⊧ '[u]
iff A ⊧ (¬')[u].

A ⊧ ('→ �)[w] : Similar.
A ⊧ @vk'[w] iff for any a P A A ⊧ '[w(a/k)].

Now u(j) = w(j) for any v j P FV('). So, by inductive hypothesis, the line above holds iff for any a P A:

A ⊧ '[u(a/k)] i f f A ⊧ @vk'[u]

b) If t is vk then w∗(t(s/vk)) = w∗(s) = w∗(s) = w∗(t(s/vk))
If t is vi (i ≠ k) then w∗(t(s/vk)) = w∗(t) = w∗(t(s/vk))
If t is F(t, . . . , tn) then
w∗(t(s/vk)) = FA(w∗(t(s/vk)), . . . ,w∗(tn(s/vk)))

= FA(w∗(t(s/vk)), . . . ,w∗(tn(s/vk))) (by inductive hypothesis)
= w∗(t(s/vk)).

c) Again induction on complexity of ' using b):
A ⊧ t = t(s/vk)[w] iff A ⊧ t(s/vk) = t(s/vk)[w]

iff w∗(t)(s/vk)) = w∗(t)(s/vk)
iff w∗(t(s/vk)) = w∗(t(s/vk)) by b)
iff A ⊧ t(s/vk) = t(s/vk)[w]
iff A ⊧ t = t(s/vk)[w].

36

3. First order languages and their Structures

If ' is R(t, . . . , tn), → �, or ¬ . Similar.

If ' is @vk then A ⊧ '(s/vk)[w] iff A ⊧ '(s/vk)[w] since '(s/vk) is '.

If ' is @v j (j ≠ k) then A ⊧ @v j((s/vk))[w] iff for all a P A, A ⊧ (s/vk)[w(a/ j)]
Now by assumption s, s are substitutable for vk in '. This means either
(i) vk /P FV() or (ii) v j /P FV(s) ∪ FV(s)
If (i) holds: A ⊧ (s/vk)[w(a/ j)] iff A ⊧ [w(a/ j)]

iff A ⊧ (s/vk)[w(a/ j)]
since (s/vk) is just .
If (ii) holds: w(a/ j)∗(s) = w∗(s) = w∗(s) = w(a/ j)∗(s) by part a). Now (s/vk) has complexity
less than that of @v j' so our inductive hypothesis holds, so

for all a P A A ⊧ (s/vk)[w(a/ j)]

iff for all a P A A ⊧ (s/vk)[w(a/ j)] iff A ⊧ @v j (s/vk)[w] as required. QED

Definition 3.18 a) If ' is an LΩ formula, then ' is universally valid iff for all Ω-structures A and
valuations w P WA A ⊧ '[w]

b) If ' is an LΩ sentence, A an Ω- structure, then A is a model of ' iff A ⊧ '. If Γ is a set of sentences
and A ⊧ Γ, we say A is a model of Γ.

c) If ' is an LΩ is satisfiable if there is an Ω- structure A and w P WA so that A ⊧ '[w]. Otherwise
it’s unsatisfiable.

d) If Γ is a set of LΩ formulae, we say Γ is satisfiable if there’s an Ω-structure A and w P WA so that
A ⊧ '[w] for all ' P Γ. Otherwise it’s unsatisfiable.

Wemay also use the symbol ⊧ in exactly the same way that we did as a relation between sets of formulae
of some LΩ.

Definition 3.19 Let Γ ∪ {'} be a set of formulae in LΩ. Then Γ ⊧ ' means that for every Ω- structure,
every valuation in that structure that satisfies Γ must satisfy '.

We may now express some of Definition 16 in this notation: ' is universally valid now becomes simply
∅ ⊧ ' (which we write as ⊧ ') because every formula in ∅ is true in every Ω-structure (vacuously).
For not (Γ ⊧ ') we write Γ /⊧ '. Again we write Γ, ⊧ ' rather than Γ ∪ { } ⊧ '. We allow here the
possibility that Γ is infinite.

Lemma 3.20 Let Γ, ∆, {�, ,�} be sets of formulae in LΩ, then all the entailments of Lemma 1.1 hold for
LΩ.

Lemma 3.21 Let t be a term, and ', formulae of LΩ. Then

37

The Definition of Truth

(i) @vi'→ '(t/vi) is universally valid, if t is substitutable for vi in '

(ii) @vi('→)→ ('→ @vi) is universally valid if vi /P FV(').

Before proving the lemma let us see why the restrictions are necessary.
For (i) simply let ' be ¬@v jvi = v j and let t be v j; then t is not substitutable for vi in '. Now

(@vi(¬@v jvi = v j)→ (¬@v jv j = v j))

is then false in any Ω-structure A as long as A has at least two elements.
For (ii) suppose P is a unary relation symbol of the language; take both ' and as P(vi). Then vi P

FV(') and (ii) now reads

@vi(P(vi)→ P(vi))→ (P(vi)→ @viP(vi))

The antecedent of this is clearly universally valid, but the consequent isn’t: let A = ⟨N, PA⟩ where PA is
the set of even natural numbers. If w P WA has w(i) = say then A /⊧ P(vi)→ @viP(vi)[w].

Proof of Lemma 3.21

(i) Let A be an arbitrary Ω-structure and w an arbitrary valuation in WA. To show A ⊧ @vi' →
'(t/vi)[w] it’s enough to showA ⊧ @vi'[w] impliesA ⊧ '(t/vi)[w]. So suppose the former. We
have to be slightly careful since we may have vi P FV(t). Let vk be a variable that occurs nowhere
in ' or t. Let a = w∗(t). By assumption
A ⊧ '[w(a/i)] But this holds

⇐⇒ A ⊧ '[w(a/i , a/k)] (by Lemma 3.17 a) as k /P FV('))

⇐⇒ A ⊧ '(vk/vi)[w(a/i , a/k)] (by 3.17 c)

with s as vi , s as vk , but

substituting in here for vi in '. Note that vi is substitutable for vi in any formula, and vk is substi-
tutable for vi here because vk occurs nowhere in ', see Exercise 10)
⇐⇒ A ⊧ '(vk/vi)[w(a/k)] (by . a) again as now vi /P FV('(vk/vi))

⇐⇒ A ⊧ '(i/vi)[w(a/k)] (by . c) with s as vk , s as t
since w∗(a/k)(vk) = a = w∗(a/k)(t) by a))

⇐⇒ A ⊧ '(t/vi)[w] (again by a))
which was what we were after.

(ii) Again let A and w be arbitrary and suppose A ⊧ @vi(' →)[w] then for any a P A we have
A ⊧ '→ [w(a/i)]. The latter holds iffA ⊧ '[w(a/i)] implies A ⊧ [w(a/i)]. But vi /∋ FV('),
so by Lemma 3a) either for any a P Awhatsoever A ⊧ '[w(a/i)] or, in particular, it’s not the case
that A ⊧ [w]. If the first possibility holds, then by the above for any a P AA ⊧ [w(a/i)]; that is
A ⊧ @vi [w] and we conclude A ⊧ '→ @vi [w];
The second case is then trivial, we have A ⊧ '→ @vi [w] since A ⊧ ¬'[w]. QED

38

3. First order languages and their Structures

In general we should like to know how to determine whether a formula ' is universally valid or not.

Definition 3.22 Let ' be a formula in a first order language LΩ is an instance of if is a formula of
a propositional language LΩ and contains the propositional variables P, . . . , PN , and there are formulae
', . . . ,'n of LΩ such that ' is the result of substituting 'i for each occurence of Pi in ' for ≤ i ≤ n.

Example 22

(i) @v'→ (Dv'→ @v') is an instance of the tautology P → (P → P)

(ii) (@v@v' ∧ Dv@v')→ (@v@v' ∨ Dv�) is an instance of the tautology (P ∧ Q)→ (P ∨ R)

(iii) @v' can never be an instance of a tautology (although' itselfmay be). Nor can an atomic formula
of LΩ be an instance of a tautology.

The relevance of tautology instances in first order languages is the following.

Lemma 3.23 Every instance of a tautology is universally valid.

Proof Let ' be an instance of '′ in L! , where ' arises from '′ by substituting ', . . . ,'n in LΩ for
P, . . . , Pn- The propositional variables occuring in '′. Let A be an interpretation of LΩ, let w P WA.
Define a valuation of L{P ,...,Pn} by

w(Pi) = T if A ⊧ 'i[w]
= F if not A ⊧ 'i[w]

Claim A ⊧ '[w] ⇐⇒ w∗
 ('′) = T

Proof By induction on complexity of '′.
'′ is Pk then w∗

 (Pk) = T ⇐⇒ A ⊧ '[w]
'′ is ¬ ′ (and so ' is ¬ for some)

A ⊧ '[w] ⇐⇒ not A ⊧ �[w]
⇐⇒ w∗

 (′) = F (by Induction hypothesis)
⇐⇒ w∗

 (�′) = T
'′ is ′ → �′ (and so ' is → � some ,�)
A ⊧⇐⇒ '[w] ⇐⇒ whenever A ⊧ [w] then A ⊧ �[w]

⇐⇒ whenever w∗
 (′) = T then w∗

 (�′) = T (by the inductive hypothesis)
⇐⇒ w∗

 ('′) = T

This completes the proof of the claim. Now if our original ' was an instance of a tautology '′, but A
were an interpretation of LΩ , W P WA, so that A ⊧ ¬'[w] then we should have according to the
construction above w∗

 ('′) = F. But '′ is a tautology. A contradiction and so ' must be universally
valid. QED
If the only universally valid formulae were instances of tautologies life would be simple: we’ve already re-
marked that testing a formula of L! for “tautologyhood” is an effective procedure; we could then generate

39

The Definition of Truth

all universally valid formulae, by generating all the formulae of L! where! has variables P, P, . . . , Pn , . . . (n P

N), testing each in turn for tautologousness, and then substituting in each tautology all the possible sub-
stitutions of formulae in LΩ for the relevant Pi . An infinite process of course, but one for which a pro-
gramme could be written. Unfortunately, this isn’t the case.

Example 23 The formulae of Lemma 3.21(i) and (ii) are universally valid but are not instances of tau-
tologies. e.g. @vi'→ '(t/vi) can only be thought of as an instance of P → P which isn’t a tautology.

Definition 3.24 Let Ω Ď Ω′, that is, if Ω is ⟨r′, f⟩, Ω′ = ⟨r′, f′⟩ then dom r Ď dom r′, dom f Ď dom f′,
and for all R P dom r, F P dom f r(R) = r′(R) f (F) = f′(F). If A is an Ω′-structure, the reduct of A
to Ω, A∣Ω, is the structure obtained by discarding the relations RA and functions FA that are in domr′ -
tmopdomr and dom f′ - dom f.

Note that A stays the same, i.e. A and A∣Ω have the same domains. Example 1 is a reduct of Example 2.
Example 24 Let N = ⟨N,+N, ⋅N,′N , N⟩. Then N− is a reduct of N where N− = ⟨N,+N, ⋅N,′N ⟩

Lemma 3.25 LetΩ Ď Ω′ and letA be onΩ′-structure, t a term of LΩ andw P WA.Thenw∗
A(t) = w∗

A∣Ω(t).
Similarly if ' if a formula of LΩ , A ⊧ '[w] ⇐⇒ A∣Ω ⊧ '[w].

Proof By induction on complexity of t or '. The intuitive idea is simply that the valuation of a term
doesn’t depend on function symbols notmentioned in it. Nor is the truth of a formula affected by relation
symbols not in it.

Definition 3.26 a) If A is an Ω-structure then the theory of A, Th(A) is the set

{' P LΩ ∣ A ⊧ ', ' a sentence}

b) If A,B are Ω-structures, then A is elementarily equivalent to B, A ≡ B, ⇐⇒ Th(A) = Th(B)

For example number theorists study Th(⟨N,+N,ˆN, N,′N ⟩), another interesting theory is
Th(⟨R,+R,ˆR, R, R, eR⟩) where e is a two place function symbol and eR(n,m) is nm.

Lemma 7 a) ≡ is an equivalence relation;
b) If A,B are Ω structures and A ≅ B then A ≡ B.

Proof: Exercise. [Hint for b): if h ∶ A ≅ B show by an induction on complexity that for any ',w that
A ⊧ '[w] ⇐⇒ B ⊧ '[h(w)] where h(w) P WB is defined by h(w)(k) = h(w(k)); then deduce
Th(A) = Th(B).]
Warning: the converse is false, one can show that if < is the usual ordering of the reals that ⟨Q, <⟩ ≡ ⟨R, <⟩
but as Q is countable and R is uncountable they clearly can’t isomorphic. There is a theorem that states
that given any structure A there is a structure B with A not isomorphic to B, but A ≡ B. We shall see a
vivid example of this later.

Exercise 11

40

3. First order languages and their Structures

(i) ' is universally valid if ¬' is unsatisfiable

(ii) If FV(') Ď {v , . . . , vn} then ' is satisfiable iff Dv . . . Dvn' is satisfiable

(iii) With ' as in (ii) then ' is universally valid iff every Ω-structure is a model of @v . . .@vn'.

Exercise 12 Find interpretations for each of the following formulae in which they are not satisfied (thus showing
that they are not universally valid).

a) [@vP(v)→ @vQ(v)]→ [@v(P(v)→ Q(v))]

b) [@v(P(v) ∨ Q(v))]→ [@vP(v) ∨ @vQ(v)]

c) [DvP(v)↔ DvQ(v]→ @v(P(v , v) ∨ P(v , v)))→ Dv@vP(v , v))

Exercise 13

(i) Show that '(t/v i)→ Dv i' is universally valid if t is substitutable for v i in '

(ii) Show @v i'→ Dv i' is universally valid. Showing that a formula is not universally valid is usuallymost easily
done by thinking up a structure and a valuation in which it comes out false. To show ' /⊧ one must find
a structure and valuation in which ' is true but is false etc., as in the next exercise

(iii) Let ' be @v@v(R(v , v)→ (R(v , v)→ R(v , v))).
Let be @vDvR(v , v)→ Dv@vR(v , v)
Show that neither ' ⊧ nor ⊧ '.

(iv) Check whether the following sets of formulae are satisfiable:

a) {Dv@vR(v , v), @v@vDv(R(v , v) ∧ R(v , v))}
b) {@vDvR(v , v , @v@v(v ≠ v → (R(v , v)→ ¬R(v , v)))}.
c) {@v¬R(v , v), @v@v[v ≠ v → (R(v , v) ∧ R(v , v))], @v@v@v[(R(v , v) ∧ R(v , v)) →

R(v , v)]}
d) The same set as in c) with the addition of DvDvv ≠ v.

(v) Determine whether the following formulae are universally valid:

a) ¬Dv@v(v ≠ v → (R(v , v)↔ ¬R(v , v)))
b) [DvP(v)→ DvQ(v)]→ Dv(P(v)→ Q(v))
c) Dv(P(v)→ @vP(v))
d) @v(P(v) ∨ Q(v))→ @vP(v) ∨ DvQ(v).

Exercise 14 Find an interpretation for the following set of sentences
@v¬R(v , v) ; @v@v[v = v ∨ R(v , v) ∨ R(v , v)];
@vDvDv[R(v , v) ∧ R(v , v)] ∧ R(v , v] ; @v@v@v[(R(v , v) ∧ R(v , v))→ R(v , v)]
@v@v[R(v , v)→ Dv[R(v , v) ∧ R(v , v)]]
Exercise 15 Find an interpretation for the following sets of sentences

(i) @v¬R(v , v) ; @v@v@v[(R(v , v) ∧ R(v , v))→ R(v , v)] ; @vR(v , F(v));

(ii) @v¬R(v , v ; @v@v@v[(R(v , v) ∧ R(v , v)) → R(v , v)] ; @v[c = v ∨ ¬R(v , c)] @v(v ≠ c →
R(F(v , v)) ; @v@v[¬(R(v , v) ∧ R(F(v), v))] ; @vDv[v ≠ c → (v ≠ v ∧ F(v) = F(v)].

41

A formal system for predicate calculus

The last chapter considered generalised structures and the possibility of expressing in a first order lan-
guage propositions that might or might not be satisfiable in, or true in, those structures. We gave a
rigorous definition of what a formal language was depending on a set of relation and function symobls,
given by a similarity type Ω, and gave another rigorous definition of satisfiability or truth, in an inter-
pretation A of LΩ. A universally valid sentence was something true in every suitable interpretation. We
continue the search for a characterisation of universally valid formulae, and our study of mathematical
structures by looking at the idea of “proof ” itself. In §3.1 a formal deductive systemis defined whereby a
first order formula may be deduced or inferred according to a fixed set of rules of inference from a given
set of hypotheses. This formalisation is completely syntactic, that is it has nothing to do with “meaning”,
“truth”, etc., that is with any semantic concept. The rules of proof can be viewed as simple symbol ma-
nipulation procedures on strings of symbols, without any reference to intended interpretations. Again
something machines could (and indeed do) do. The formalisation we shall give is deceptively simple,
and in fact is actually rather restrictive in the kinds of rules of deduction we allow in the system. There
are many ways of formalising the system, but they all turn out to lead to the same set of provable for-
mulae (that is if the formalisation is a sensible one). We choose one that is useful for our purposes. In
fact we want to establish theorems about the system, rather than actually doing the symbol manipulation
procedures on strings of symbols, without any reference to intended interpretations. Indeed the system
is so chosen with a view to making these theorems about the system simpler but even at the expense of
making derivations within the system rather complicated.
The system is sound in that any formula ' that is derivable in the system from a set of axioms Γ Ď LΩ,
is such that Γ ⊧ '. In particular when Γ = ∅ if ' is derivable then ' is universally valid. Our system is
adequate in that we shall later be able to show (in the CompletenessTheorem) that every universally valid
formula ' is derivable. This gives us our sought after characterisation: the universally valid formulae are
precisely those provable in our system.

4.1 Predicate calculus

Definition 4.1 Given a first order language LΩ predicate calculus for LΩ consists of a set of axioms and
a set of rules of inference:
The (Logical) Axioms: Let ', , � be any formulae of LΩ then the following are axioms of PC

A1 ('→ (→ '))

A2 ('→ (→ �))→ (('→)→ ('→ �))

43

Predicate calculus

A3 (¬'→)→ ((¬'→ ¬)→ ')

A4 Let t be any term substitutable for vi in ' then

@vi'→ '(t/vi)is an axiom

A5 If vi /P FV(') then
@vi('→)→ ('→ @vi)is an axiom

A6
@v(v = v)

A7 Let s, t be any terms of LΩ substitutable for both v and v in '. Then

s = t → ('(s/v, s/v)→ '(s/v, t/v))is an axiom.

Remark Axioms A1-A3 are the propositional axioms, A6 and A7 the axioms for equality. As an example
of the latter 'might be the ternary atomic formula R(v, v, v). Then the axiom reads

s = t → (R(s, s, v)→ R(s, t, v))

Some authors treat predicate calculus us having axioms of the form A1-A5 only, and then deal with the
additional case of languages with an equality symbol. Since we’ve insisted that = be a symbol in the
languageweneed axioms to ensure that the symbol “behaves properly” in proofs; but it’s to be emphasised
that predicate calculus, theCompletenessTheorem and so on can be developedwithout this. To complete
the definition of PC we need to define the:
The Rules of Inference
R1 (Modus Ponens) For any two formulae ', of LΩ , is an immediate consequence of ' and ('→).
R2 (Generalisation) For any formula ' of LΩ and any variable vk @vk' is an immediate consequence of ' .

Lemma 4.2 All the axioms of PC are universally valid.

Proof A1-A3 are instances of tautologies and so universally valid by Lemma 2.6. A4-A5 by Lemma 2.5;
A6 and A7 by the actual definition of satisfaction (and Lemma 2.3) QED

Definition 4.3 Suppose Γ∪{'} Ď LΩ. A proof (or deduction, or derivation) of' from Γ (where possibly
Γ is empty) is a finite sequence of formulae ',', . . . ,'n = ' such that for each i ≤ n either

(i) 'i is an axiom
or (ii) 'i P Γ
or (iii) For some j, k < i 'i is an immediate consequence of 'm ,'k by R1
or (iv) For some j < i 'i is an immediate consequence of ' j by R2 and

where, if 'i is @vk' j, then vk /P FV(Γ).

If there is a proof of ' from Γ we write Γ ⊢ '
If Γ = ∅, then we write ⊢ ' for ∅ ⊢ ' and call ' a theorem of PC

44

4. A formal system for predicate calculus

Remark If Γ ⊢ ' and Σ Ě Γ then trivially Σ ⊢ '.
The restriction in the use of R2 comes from semantical considerations. Our aim is that if Γ ⊢ ' then
Γ ⊧ '. Suppose N and Ω are as in Example 1.4 (p.31). Let Γ = {vi = }. If the restriction of R2 were not
in place we’d have Γ ⊢ @vivi = but clearly N /⊧ @vivi = .
Similar reasons prompt the restrictions on A4 and A5: see Lemma 2.6.
Remark A proof of ' from Γ, being a finite sequenc eof formulae, can only quote a finite number of hy-
potheses from Γ, so if Γ Ď Γ is finite is such that Γ ⊢ A, we can loosen the restriction on R2 somewhat:
it need only apply to those free variables vk appearing in Γ. The comments following the next example
illustrate this.

Example 1 Let Γ = {'} where v /P FV('). consider the following proof

1 '→ (→ ') Instance of A1
2 ' Hypothesis from Γ
3 → ' R1 on 1, 2
4 @v(→ ') R2 on 3.

The application of R2 on A3 was correct since v /P FV('). But 1-4 should also count as a proof of
@v(→ ') from Γ Ě Γ where Γ = {',�} say, and possibly v P FV(�). This is simply because �
wasn’t quoted in the proof. We implicitly allow this relaxation of Def. 3(iii) in derivations that follow.
The following example shows that proofs of even rather trivial formulae are rather complicated in our
system.
Example 2 For any formula ' ⊢ '→ '

1 ('→ (('→ '))→ (('→ ('→ '))→ ('→ ') Instance of A2
2 '→ (('→ ')→ ') Instance of A1
3 ('→ ('→ '))→ ('→ ') R1 on 1, 2
4 '→ ('→ ') Instance of A1
5 '→ ' R1 on 3, 4

We quickly introduce some lemmas that enable us to speed up our proofs by deriving some additional
rules. Example 1 above shows ' ⊢ @v(→ '). Even proving ⊢ ' → @v(→ �) is rather difficult
using our minimal rules. The following theorem shows we can conclude it immediately.

Theorem 4.4 (Deduction Theorem) If Γ ∪ {', } Ď LΩ and Γ,' ⊢ then Γ ⊢ '→ .

Proof Let ', . . . ,'n = be a proof of from Γ ∪ {'}. By induction on i we show that Γ ⊢ 'i . i = n is
our desired result.
Suppose for j < i we have shown Γ ⊢ '→ ' j.
If 'i = ' then as in Example 2 ⊢ '→ ', so Γ ⊢ '→ '

If 'i is an axiom, or is in Γ, then as 'i → (�→ 'i) is an instance of A1, we have Γ ⊢ �i → ('→ 'i) and
we have Γ ⊢ 'i , and by R1, we get Γ ⊢ '→ 'i
If 'i followed from ' j and 'k by R1, so then 'k , say, was ' j → 'i . by our by inductive hypothesis

45

Predicate calculus

Γ ⊢ '→ ' j and Γ ⊢ '→ 'k .
But ⊢ ('→ (' j → 'i))→ (('→ ' j)→ ('→ 'i)) (Instance of A2)

Apply R1 twice, to get Γ ⊢ '→ 'i .
Lastly if 'i is @vn' j where j < i, by inductive hypothesis Γ ⊢ ' → ' j. Now 'i arose by applying R2 on
' j; by our restrictions on proof in Def 3(iii) vn /P FV('). So, we may apply

R2 to get Γ ⊢ @vn('→ ' j)
But ⊢ @vn('→ ' j)→ ('→ @vn' j) (Instance of A5)

So by applying R1 we have
Γ ⊢ '→ @vn' j as required.

So Γ ⊢ 'i and the i’th stage of the induction is complete. QED

Example 3 ⊢ @v@v'→ @v@v'

1 @v@v' Hypothesis
2 @v@v'→ @v' A4 t = v ' as @v'
3 @v' R1 on 1, 2
4 @v'→ ' A4 t = v
5 ' R1 on 3, 4
6 @v' R2 on 5
7 @v@v' R2 on 6.

Thus we’ve shown @v@v' ⊢ @v@v'. by the DeductionTheorem we conclude

⊢ @v@v'→ @v@v'

Lemma 4.5 a) (Particularisation Rule) If t is substitutable for v in ' then @v' ⊢ '(t/v)
b) (Existential or E-Rule) If t is substitutable for v in ' then '(t/v) ⊢ Dv'

Note In the above t can be v itself

Proof a) 1 @v' Hypothesis
2 @v'→ '(t/v) Instance of A4
3 '(t/v) R1 1, 2

b) We show ⊢ '(t/v)→ Dv', since then using R1 we get '(t/v) ⊢ Dv'.
1 @v¬'→ ¬'(t/v) A4
2 (@v¬'→ ¬'(t/v))→ ('(t/v)→ ¬@v¬') Taut. Instance
3 '(t/v)→ Dv' R1 on 1,2 QED

We need to explain the second line in the above. What we’ve done is introduce an instance of a tautology,
in face the tautology (→ ¬�) → (� → ¬). That we’re allowed to do this follows from the next
theorem.

46

4. A formal system for predicate calculus

Theorem 4.6 Every instance of a tautology is a theorem of PC.

If we grant the theorem, then line 2 above has a proof from the axioms. Instead of working out and
writing down that proof and inserting it in place of line 2, we’ve simply appealed to the theorem and
written down the justification on the right hand side. (We shall do this in other cases in the future when
we appeal to previous results.) Many authors take as axioms for PC all instances of tautologies. The
theorem then merely says there’s no advantage to doing this.
Proof. Let ' be an instance of a formula in L! where contains P, . . . , Pn say and ' comes from

by replacing Pi by 'i (≤ i ≤ n). Define, for any valuation w ∶ {P, . . . , Pn}→ {T , F}

'′i = 'i if w(Pi) = T
= ¬'i if w(Pi) = F

'′ = ' if w˚() = T
= ¬' if w˚() = F.

Claim 1With the notiation as above Γ = {'′, . . . ,'′n} ⊢ '′.
Proof of Claim By induction on comp():
 is ¬� and so' is of the form¬. ′ is ifw˚(�) = T and is¬ otherwise. By the inductive hypothesis
Γ ⊢ ′. If w˚(�) = F then ′ = ¬ = '′, so Γ ⊢ '′; if w˚(�) = T then ′ = and '′ = ¬' − ¬¬, since
Γ ⊢ ′ and ⊢ → ¬¬ (slightly tricky Exercise) we have Γ ⊢ '′ (using R1).
 is � → � and so ' is of the form → .
By inductive hypothesis Γ ⊢ ′ and Γ ⊢ ′ where

′ = if w˚(�) = T
= ¬ if w˚(�) = F

and similarly for ′
If w˚(�) = F we have Γ ⊢ ¬ and by Claim 2a) ⊢ ¬ → (→); so we have Γ ⊢ → . But
w˚(�) = F so w˚() = R and thus '′ is → , so Γ ⊢ '′.
If w˚(�) = T again '′ is → , ′,

′
 is and Γ ⊢ by the inductive hypothesis. But ⊢ →

(→) is an instance of A1 so by R1 Γ ⊢ → .
If w˚(�) = T and w˚(�) = F then '′ is ¬', ′ is , ′ is ¬ and by the inductive hypothesis Γ ⊢
and Γ ⊢ ¬. By Claim 2b) and two applications of R1 Γ ⊢ ¬(→).
Claim 2 For any formulae ', psi of LΩ

a) ⊢ ¬'→ ('→)
b) ⊢ '→ (¬ → ¬('→)).

Proof

a) 1 ' Hyp
2 ¬' Hyp
3 '→ (¬ → ') A1
4 ¬ → ' R1 1, 3
5 ¬ → ¬' A1

47

Predicate calculus

6 ¬ → ¬' R1 2, 5
7 (¬ → ')→ ((¬ → ¬')→) A3
8 R1 twice 4, 6, 7.

So ', ¬' ⊢ . Apply the DeductionTheorem twice.

b) Since ', '→ ⊢ the DeductionTheorem gives

(1) ⊢ '→ (('→)→). Now ⊢ (→ �)→ (¬� → ¬) (proof omitted) we have
(2) ⊢ (('→)→)→ (¬ → ¬('→)).

But → �, � → " ⊢ → " (easy application of DeductionTheorem); applying this to (1) and (2)
gives ⊢ '→ (¬ → ¬('→)). This finishes off the Claim.

Let' be an instance of the tautology , where has propositional variables P, . . . , Pn and' is the result
of substituting', . . . ,'n for P, . . . , Pn. With the notation above for any valuationw of the propositional
variables '′ is ' (since is a tautology).
If w(Pn) = T '′n = 'n and by Claim 1 {'′, . . . ,'′n− ⊢ ¬'n → '. Applying the theorem ⊢ 'n → ') →
((¬'n → ') → ') and R1 gives {'′, . . . ,'′n−} ⊢ '. Repeating the process another n − times yields
⊢ '.

Corollary 4.7 (to Lemma 3) ⊢ @v'→ Dv'

ProofWe show @v' ⊢ Dv' and then we use the DeductionTheorem.

1 @v' Hyp
2 @v'→ '(v/v) A4 with t = v
3 '(v/v) R1 on 1, 2
4 Dv' E-Rule on 3 (with r as v) QED

The following lemma lists some results of derivations which we can consider as derived rules which we
can later use as further justifications for lines in derivations.

a) Negation ¬¬' ⊢ '; ' ⊢ ¬¬'
b) Conjuction ' ∧ ⊢ '; ' ∧ ⊢

¬(' ∧) ⊢ ¬' ∧ ¬
', ⊢ ' ∧

c) Disjunction '→ , �→, ' ∧ � ⊢
¬(' ∧) ⊢ ¬' ∧ ¬
' ∧ , ¬' ⊢ ;' ∧ , ¬ ⊢ '
' ⊢ ' ∧ ; ⊢ ' ∧

d) Conditional '→ , ¬ ⊢ ¬'
¬('→) ⊢ '; ¬('→) ⊢ ¬

e) Biconditional '↔ , ' ⊢ ; '↔ , ⊢ '
'↔ , ¬' ⊢ ¬ ; '↔ ,¬ ⊢ ¬'

48

4. A formal system for predicate calculus

'↔ ⊢ '→ ; '↔ ⊢ → �

'→ , → ' ⊢ '↔

f) Proof by Contradiction Γ, ¬' ⊢ ∧ ¬ then Γ ⊢ '
g) Contraposition '→ ⊢ ¬ → ¬'; ¬ → ¬' ⊢ '→

h) Proof by cases Γ, ' ⊢ and Γ, ' ⊢ ¬ then Γ ⊢ ¬'

Proof All can be shown by using suitable instances of tautologies, for example we prove ' → , � →
 , ' ∧ � ⊢ .

1 '→ Hyp
2 �→ Hyp
3 ' ∧ � Hyp
4 ('→)→ ((�→)→ ((' ∧ �)→)) Tautology
5 R1 3 times on 1-4

The rest are similar and are left as an exercise. QED

Definition 4.8 a) We say ' and are provably equivalent if ' ⊢ and ⊢ '

b) “�′ comes from� by replacing some (or all or no) occurrences of by'”, Rep(', ,�,�′), is defined
by induction on complexity of 'Rep(', ,�,�′) holds

iff � is atomic and �′ is �

or � is ' and �′ is of '

or � is � → � and �′ is �′ → �′ and Rep(', ,�,�′) and Rep(', ,�,�′)
or � is ¬�, �′ is ¬�′ and Rep(', ,�,�′)
or � is @vn�,�′ is @vn�′ and Rep(', ,�,�′)

Notice that the definition of Rep is simply that of Definition 1.10 with an extra clause added to take
care of @vn'. Lemma 7c) below then is analogous to the Principle of Substitution for truth functional
equivalence, Lemma 1.2.

Lemma 4.9

a) Provable equivalence is an equivalence relation
b) ', are provably equivalent iff ⊢ '↔

c) ', provably equivalent and Rep(', ,�,�′) then �,�′ are provably
equivalent.

Proof

a) Reflexivity is trivial; transitivity follows from “' ⊢ and ⊢ � implies ' ⊢ �”; symmetry is
trivial

49

Predicate calculus

b) If ', are provably equivalent, by the Deduction Theorem we have ⊢ ' → and ⊢ → '. By
Lemma 6 e) we have ⊢ ' ↔ . Conversely ' ↔ ⊢ ' → and ' ↔ ⊢ → ' (again by
Lemma 6e)). So ⊢ ' ↔ yields ⊢ ' → and ⊢ → '. But ⊢ ' → implies ' ⊢ [because
⊢ '→ implies ' ⊢ '→ , which by R1 gives ' ⊢]. Similarly ⊢ '.

c) By induction on complexity of �. Only if � is � → � of is @vn� is it not trivial.

� is � → � and �′ is �′ → �′ and by definition Rep(', ,�,�′) Rep', ,�,�′). By induction hy-
pothesis � ⊢ � and � ⊢ �′. So

� → �,�′ ⊢ � (since �′ ⊢ � we can use R1 on �, and � → �). So
� → �,�′ ⊢ �′ (using � ⊢ �′)

So � → � ⊢ �′ → �′ using the DeductionTheorem. The converse is similar.
� is @vn� and �′ is @vn�′, and Rep(', ,�,�′)
@vn� ⊢ � (using ⊢ @vn� → �, and R1) and � ⊢ �′ by inductive hypothesis. So @vn� ⊢ �′. But
vn /P FV(@vn�) so apply R2 and get @vn� ⊢ @vn�′. The converse is similar. QED
Thus: if we can prove two formulae equivalent, then the above result shows that if we take any other
formula in which one of these formulae occur we can prove that it’s equivalent in our system to that with
the replacement made. A major use of Lemma 7 is that when developing proofs if ' is on line n and ' is
provably equivalent to , we allow ourselves to write on any later line.

Example 4 Suppose ⊢ '↔ , then ⊢ Dv(' ∧ �)↔ Dv(∧ �)
We collect together in the next few lemmas some useful theorem of our system.

Lemma 4.10

i) If vi R FV(') and vi is substitutable for v j in ' then
ii) a) ⊢ @v j'↔ @vi'(vi/v j) b) ⊢ Dv j'↔ Dvi'(vi/v j)
iii) a) ⊢ ¬@vi'↔ Dvi(¬') b) ⊢ DviDv j'↔ Dvi'

Proof i) 1 @v j'→ '(vi/v j) A4 using t = vi
2 @vi(@v j'→ '(vi/v j)) R2 1 since vi R FV(')
3 @vi(@v j'(vi/v j))→ (@v j'→ @vi'(vi/v j)) A5
4 @v j'→ @vi'(vi/v j) R1 2, 3.

Conversely 1 @vi'(vi/v j) Hyp
2 ' Particularisation [Note v j subst. for vi in '(vi/v j)]
3 @v j' R2, 2

We thus have @vi'(vi/v j) ⊢ @v j' and above ⊢ @v j' → @vi'(vi/v j) and so the result follows by the
DeductionTheorem and Lemma 6 e).
ii a) Dvi¬' is by definition of D an abbreviation of ¬@vi¬¬'. But ⊢ '↔ ¬¬' (Lemma 6a)) so by
Lemma 7 ⊢ ¬@vi¬¬'↔ ¬@vi' as required. ii b) Similar

50

4. A formal system for predicate calculus

iii) 1 @vi@v j' Hyp
2 @v j' Part. (with t = vi)
3 ' Part. (with t = v j)
4 @vi' R2
5 @v j@vi' R2.

So @vi@v j ⊢ @v j@vi'. The other deduction is identical.

Lemma 4.11

i a) ⊢ @vi(' ∧)↔ @vi' ∧ @vi
b) ⊢ Dvi(' ∧)↔ Dvi' ∧ Dvi
c) ⊢ @vi' ∧ @vi → @vi(' ∧)
d) ⊢ Dvi(' ∧)→ Dvi' ∧ Dvi

ii If vi R FV(') then
a) ⊢ ' ∧ Dvi ↔ Dvi(' ∧)
b) ⊢ ' ∨ @vi ↔ @vi(' ∨)
c) ⊢ '↔ Dvi' ⊢ '↔ @vi'
d) ⊢ ('→ Dvi)↔ Dvi('→)
e) ⊢ (Dvi → ')↔ @vi(→ ')
f) ⊢ ('→ @vi)↔ @vi('→)
g) ⊢ (@vi → ')↔ Dvi(→ ')

ProofWe do some samples.

i a) 1 @vi(' ∧) Hyp
2 ' ∧ Part.
3 ' Lemma 6 b) Conjunction
4 Similarly
5 @vi' R2, 3
6 @vi R2, 4
7 @vi' ∧ vi Lemma 6 b)

Thus @vi(' ∧) ⊢ @vi' ∧ vi . Converse not too dissimilar.
i d) We prove ⊢ ¬(Dvi' ∧ Dvi)→ ¬Dvi(' ∧) and use contraposition, Lemma 6 b).

1 ¬(¬@vi¬' ∧ ¬@vi¬) Hyp
2 ¬¬@vi¬' ∨ ¬¬@vi Lemma 6 b) Conjunction
3 @vi¬' ∨ @vi¬ Provably equivalent to 2 by Lemmas 6 a) and 7 c)
4 @vi(¬' ∨ ¬ Lemma 9 i c).
5 @vi¬(' ∧) Lemma 7.
6 ¬¬@vi¬(' ∧) Provably equivalent ot 5 using Lemma 6 a)

ii e) 1 ¬@vi¬' ∧ ¬@vi¬) Hyp

51

Predicate calculus

2 ¬¬@vi¬' ∨ ¬¬@vi Lemma 6b) Conunction
3 @vi¬' ∧ @vi¬ Provably equivalent to 2 by Lemmas 6a) and 7c)
4 @vi(¬' ∧ ¬) Lemma 9 i c).
5 @vi¬(' ∧) Lemma 7.
6 ¬¬@vi¬(' ∧) Provably equivalent to 5 using Lemma 6a)

ii e) 1 ¬@vi¬ → ' Hyp
2 @vi¬ ∨ ' Prov. equiv. to 1 using def. of ∨ and Lemma 6a)
3 @vi(¬ ∨ ') By Part ii b)
4 @vi(→ ') Definition of ∨.

Since each step here is a provable equivalence or a definition, it is reversibly giving the required equiva-
lence.

ii b) 1 @vi(' ∨) Hyp
2 @vi(¬'→) Def. of ∨.
3 @vi(¬'→)→ (¬'→ @vi) A5 vi R FV(')
4 ¬'→ @vi R1 2, 3
5 ' ∨ @vi Def. of ∨.

Thus @vi(' ∨) ⊢ ' ∨ @vi
Conversely

1 ' ∨ @vi Hyp
2 ¬'→ @vi Def. of ∨
3 ¬' Hyp
4 @vi R1 on 2, 3
5 Part

Thus ' ∨ @vi , ¬' ⊢ By DeductionTheorem
' ∨ @vi ⊢ ¬'→

But vi R FV(') so we can apply R2 to get
' ∨ @vi ⊢ @vi(¬'→) as required. QED

None of our lemmas have yet said much about the equality symbol.

Lemma 4.12

a) ⊢ @vn(vn = vn) For any terms s, t, u:
b) ⊢ s = t → t = s
c) ⊢ (s = t ∧ t = u)→ s = u

Proof a) 1 @v(v = v) A6
2 vn = vn Part. (t = vn)
3 @vn(vn = vn) R2 on 2.

52

4. A formal system for predicate calculus

b) Let ' be the formula v = v
1 @v(v = v) A6
2 s = s Part. (t = s)
3 s = t → (s = s → t = s) A7 with ' as above.
4 s = t Hyp
5 t = s R1 twice on 2, 3, 4.
Thus s = t ⊢ t = s. Now use the DeductionTheorem

c) 1 s = t Hyp
2 t = u Hyp
3 s = t → t = s Lemma 10 b)
4 t = s R1 on 1, 3.
5 t = s → (t = u → s = u) A7 with ' as v = u
6 s = u R1 twice 2, 4, 5

Thus s = t, t = u ⊢ s = u. So (Lemma 6) s = t ∧ t = u ⊢ s = u, and again the result follows from the
DeductionTheorem. QED

Lemma 4.13 Suppose v does not occur anywhere in '. Show

a) ⊢ @v['↔ Dv(v = v ∧ '(v/v))]

b) ⊢ @v['↔ @v(v = v → '(v/v))].

Proof a) 1 @v ¬(v = v ∧ '(v/v)) Hyp
2 ¬(v = v ∧ ') Part. t = v.
3 v = v Part. from Lemma 10 a)
4 ¬' Taut. P → (¬(P ∧ Q)→ ¬Q)) and R1 twice on 3, 2

So @v¬(v = v ∧ '(v/v)) ⊢ ¬'. Or by contraposition, Lemma 6 g) and R1.
' ⊢ Dv(v = v ∧ '(v/v)) and by DeductionTheorem
⊢ '→ Dv(v − v ∧ '(v/v)) Now use R2 on v.

Conversely

1 v = v ∧ '(v/v) Hyp
2 ' Exercise 5 and R1 on 1

So v = v ∧ '(v/v) ⊢ ' Or again using Lemma 6
¬' ⊢ ¬(v = v ∧ '(v/v)) Now apply R2, knowing v R FV('):
¬' ⊢ @v¬(v = v ∧ '(v/v)) Or as above
⊢ Dv(v = v ∧ '(v/v))→ ' Hence by Lemma 6 e)
⊢ '↔ Dv(v = v ∧ '(v/v)) Thus result follows applying R2 again on v.

53

The Soundness Theorem

QED
Remark Given a sequence s, . . . , sn of gödel numbers of formulae it’s a mechanical matter to check
whether there is i or j so that si and s j code formulae 'i ,' j such that we can apply R1 to them. Given
si say we look and see if s j codes a formula beginning ('i → and we know that applying R1 to 'i and ' j
would then result in when s j codes ('i →).
Suppose then we have a finite set Γ of formulae, with gn’s t, . . . , tk . And suppose that we are provided
with a list of gn’s s, . . . , sn. I claim that it’s a mechanical procudre to checkwhether s, . . . , sn constitutes
a proof in PC from Γ. Each si must equal some t j or it must be an instance of a tautology (I’ve already
argued that we can mechanically generate code numbers of such formulae) or si must “follow from” two
earlier code numbers by begin the result of an application of R1 on the two formulae so coded, or lastly si
codes @vℓ' where ' has a code s j for some j < i; we can further check that we apply Def 3(iii) properly,
and that vℓ is not a free variable of the s j′ in the list where s j′ is one of the t’s.
Thus: Checking a proof is an effective procedure. Furthermore, we can expand this idea and allow Γ to
be an infinite set of formulae and still check effectively whether s, . . . , sn is a proof from Γ as long as we
have an effective method to check whether si codes a formula in Γ.

4.2 The Soundness Theorem

We’ve said little so far about relating proof procedures to meaning. Lemma 1 stated that all axioms of
PC are universally valid and Theorem 4 claimed that all instances of tautologies are provable. The next
theorem shows that our purely symbolic manipulations have a “sensible” meaning: the rules of inference
preserve universal validity; in other words the system is sound. In fact it shows more than this; it shows
that the rules of inference cannot lead to a formula which is not satisfiable in any structure in which the
hypotheses of the derivation are true. [In fact it showsmore than this, it shows that our rules of inference
cannot lead to a formula which is not satifiable in any structure in which the hypotheses are true].

Theorem 4.14 (The Soundness Theorem) Let Γ ∪ {'} Ď LΩ. Then

Γ ⊢ ' Ô⇒ Γ ⊧ '.

Proof Let Γ Ď Γ be finite so that Γ ⊢ '. Let ', . . . ,'n = ' be a proof of ' from Γ. We show by
induction on i ≤ n that Γ ⊧ 'i whence Γ ⊧ '. Suppose this is proven for j < i.

(i) 'i an axiom: then ⊧ 'i by Lemma 1, so Γ ⊧ '

(ii) 'i P Γ: again trivially Γ ⊧ '

(iii a) 'i follows from ' j and 'k(j, k < i) by R1. Then by our inductive hypothesis Γ ⊧ ' j and Γ ⊧ 'k .
Suppose'k is' j → 'i . LetA be any interpretation of LΩ ,w any valuation inWA so thatA ⊧ [w]
for all P Γ. By inductive hypothesis

A ⊧ ' j[w] and A ⊧ 'k[w], so by Def . .,A ⊧ 'i[w].

Hence Γ ⊧ 'i .

54

4. A formal system for predicate calculus

Definition 4.15 a) A theory T is deductively closed, if for any sentence ' if T ⊢ ' then ' P T .
b)The deductive closure of a theory T, is the smallest theory T ′ Ě T so that T ′ is deductively closed.

HenceThe deductive closure of a theory T is the set of all sentences
derivable from T in PC. (Warning being deductively closed is not the same as being complete.)

Definition 4.16 a) Let T be a theory. T ′ is an axiomatisation of T if for all sentences'T ′ ⊢ ' i f f T ⊢ '.
b) A theory T is finitely axiomatisable if there is an axiomatisation T ′ of T with T ′ a finite set.

Clearly 8 a) is only going to be interesting when there’s something special about T ′ ∶ T axiomatises itself!
3 b) gives one way for it to be interesting. Alternatively the members of T ′ could be given to us in some
effective way.
We look at some examples of theories and their axiomatisations.

Example 5 TheTheory of groups is the deductive closure of the following three axioms in LΩ

(i) @v@v@v[(v ○ v) ○ v = v ○ (v ○ v)]

(ii) @v(v ○ e = e ○ v = v)

(iii) @vDv(v ○ v = v ○ v = e)

where Ω = ⟨r, f⟩, dom r empty, and f has a two place and a constant symbol only. The theory of groups is
obviously finitely axiomatisable, because we have defined it to be the set of sentences provable from the
three axioms above! But it is not complete since some groups are commutative and others are not.
Example 6 TheTheory of dense linear order without endpoints is the deductive closure of the sentences
in Exercise 2.14. Here the language contains just the 2-place relation symbol R.
Example 7 TheTheory of strict partial order has axioms

(i) @v¬R(v, v)

(ii) @v@v[R(v, v)→ ¬R(v, v)]

(iii) @v@v@v[R(v, v) ∧ R(v, v)→ R(v, v)]

in the same language as Example 6. Formally speaking the theory is again the set of sentences deducible
from these two.
Example 8 TheTheory of graphs is the deductive closure of @v@v(R(v, v) → R(v, v)). (A graph is
simple a set with a symmetric relation.)
Example 9 TheTheory of commutative fields
Let Ω = ⟨r, f⟩ with dom r empty, dom f with two constant symbols 0, 1, two one-place function symbols
−, −, and two binary function symbols +, . ; commutative fields are then Ω-structures (where we give
− the default value 0) which satisfy the following axioms

(i) Three axioms as in Ex. 5 that say + is a group operation

(ii) Three axioms saying that . is a group oeration on F/{F}:

55

The Soundness Theorem

a) @v@v@v[v, v, v ≠ → (v.v).v = v, (vcv)]
b) @v[v ≠ → v. = .v = v]
c) @v[v ≠ → v.v− = v− .v =]

(iii) (Commutativity) @v@v[v + v = v + v ∧ v.v = v.v]

(iv) A sentence expressing distributivity of muliplication over addition (Exercise).

(v) ¬ = (non-triviality)

Let �F be the conjunction of (i)-(v). Then the theory of commutative fields is the deductive closure of
�F .
Example 10 Commutative fields of characteristic p.
Let p > . In the language of Example 9, let px abbreviate x + x + . . . + x (p x’s) [It’s to be emphasised
that the symbol strings ‘p’ and ‘px’ are themselves not in LΩ.] A field f is of characteristic p if p is the least
integer such that for all x P F , px = F . One can show that there are fields of characteristic p precisely
when p is prime. We can express the above condition by

p ∶ @vpv = ∧ ¬[@vv = ∨ @vv = ∨ . . . ∨ @v(p −)v =].

Then the theory of fields of characteristic p are axiomatised by �F ∧ p.
A field is of characteristic 0 if it’s not of any prime characteristic. The theory of such fields is characterised
by �F ∪ {¬p∣p P N}
Example 11 Theory of groups where all elements have order less than some fixed p. Use the language of
Example 5. An element has order n if

�n ∶ e = v ○ v ○ . . . ○ v(n v′s)

The theory of such groups is axiomatised by (i)-(iii) of Ex. 5 plus: @v[� ∨ � ∨ � . . . ∨ �p−].
Example 12 Peano’s Axioms
These are expressed in the language with symbols for 0 and the successor operation ′ and has axioms

(i) @v¬v′ =

(ii) @v@v(v′ = v′ → v = v)

(iii) If ' is any formula with v P FV(') then

['() ∧ @v('(v)→ '(v′))]→ @v'(v)

The latter induction scheme is clearly an infinite group of axioms, one for each such formula '.
Example 13 Formal number theory: the system Q
This is an important axiomatisation of a number theory. The language contains in addition to , ′, sym-
bols for + and ˆ. The axioms are

Q1 @v@v(v′ = v′ → v = v)

56

4. A formal system for predicate calculus

Q2 @v(v′ ≠)

Q3 @v(v ≠ → Dv(v = v′)

Q4 @v(v + = v)

Q5 @v@v(v + v′ = (v + v)′)

Q6 @v(v ˆ =)

Q7 @v@v(v ˆ v′ = (v ˆ v) + v)

The difference between Q and Peano’s axioms is that Q only has a finite number of axioms. The axioms
of Q are all true in the standard interpretation of this language:
N = ⟨N, +N, ˆN, N, ′N⟩ the natural numbers, and those of PA in ⟨N, N, ′N⟩.
Example 14 Arithmetic
Arithmetic is the set of sentences true in N above i.e. Th(N).
Is there a reasonable axiomatisation of arithmetic? We shall see that the answer is no. Given a set of
sentences Γ (such as Q above) is there Γ′ Ě Γ which is complete? We shall see how we can find such
a complete extension. Of course if Γ is inconsistent, there’s a trivial way to make Γ complete according
to the definition of complete: throw in all sentences. We want to do this in a way that preserves Γ’s
consistency. Given a consistent set of sentences is it possible to fina a model for it? We shall answer this
too in the next chapter.

Exercise 1 Prove some (or all) of the following

(i) ⊢ @v@v(P(v , v)→ @vP(v , v)

(ii) ⊢ ¬Dv'↔ @v¬'

(iii) ⊢ @v'→ @v(' ∧)

(iv) ⊢ @v@v[P(v , v)→ ¬P(v , v)]→ @v¬P(v , v)

(v) ⊢ @vP(v , v)→ DvP(v , v)

(vi) ⊢ Dv[Q(v)→ @vQ(v)]

Exercise 2 Prove Lemma 8 iii b).
Exercise 3 Prove the remaining cases of Lemma 9.

Exercise 4 a) @v(R(v)→ S(v)), @v(S(v)→ T(v)) ⊢ @v(R(v)→ T(v)))
b) @v@v(R(v , v)→ ¬R(v , v)) ⊢ @v¬R(v , v)

Exercise 5 a) Let ', s, t be as in A7. Show
⊢ (s = t ∧ '(x/v , t/v))→ '(s/v , s/v)

b) Let u, s, t be terms. Show ⊢ s = t → u(s/v) − u(t/v)
Exercise 6 a) Prove Lemma 11 b).

b) Show ⊢ @vDv)(v = v)

Exercise 7 a) Show that ⊢ ' iff ⊢ @v i'
b) Does this mean ⊢ '↔ @v i'?

57

The Soundness Theorem

Exercise 8 Suppose c is a constant that appears nowhere in Γ ∪ {'}. If Γ ⊢ '(c/v). Show that Γ ⊢ @v i'(v i/v)
where v i is a variable not appearing on any line of such a proof. [Hint: This is to be shown, by looking at the proof
of '(c/v) from Γ. The constant c can’t play any dynamical role, so if v i doesn’t appear in any part of the proof,
replace c by v i . This is then a derived rule of a slightly different kind from those previous considered.]

Exercise 9 a) The empty set is consistent
b) If Γ is inconsistent, then for every P LΩ Γ ⊢ and Γ ⊢ ¬ .
c) {'} is consistent iff {DvDv . . . Dvn'} is consistent. [Hint: for (⇐): suppose
' ⊢ and ' ⊢ ¬ for some sentence .]

d) Γ is consistent iff for every finite Γ Ď Γ is consistent.
e) Suppose Γ,' are formulae, and Γ /⊬ ¬'. Show that Γ ∪ {'} is consistent.

Conclude that for every consistent Γ, and every ' either Γ ∪ {'} or Γ ∪ {¬'}

is consistent.
Exercise 10 a) Let T = Th(A) for some structure A. Show that T is complete.

b) Show that T is complete iff for every pair of sentences ',� if T ⊢ ' ∧ � then
T ⊢ ' or T ⊢ �.

Exercise 11 a) Let T be a theory, then the deductive closure of T is simply {'∣T ⊢ ','
a sentence}.

b) If T = Th(A) for some A then T is deductively closed.
Exercise 12 Try and write down axiomatisations for all groups which have in addition the
property that

a) they have less than n elements;
b) no elements have finite order [“Torsion-free groups”];
c) all elements have finite order [“Torsion groups”].

Note Your answers in a), b) may require infinite sets of axioms. The question is, can we find
finite sets that will also do the job? [Actually there is no axiomatisation for torsion groups
(see Exercise 5.5), but it is instructive to try.]
Exercise 13 Show that the theories in Examples 7 - 9 are incomplete. [However the theory
of Example 6 is complete.]

58

The Completeness Theorem

It’s now, at last, possible to prove the first major theorem. It is a converse to the SoundnessTheorem, but
more than that, it implies that in a language, the universally valid formulae are precisely those provable
in our deductive calculus. If in the statement of the theorem, you take Γ to be any of the sets of axioms
i the examples of the last section of §3, what you have is, e.g., if Γ is the axioms for groups, that every
sentence that is true in every group is provable in PC from the group axioms. As a preliminary we prove
the following lemma that shows that any consistent theory can be enlarged to a complete theory which
is still consistent.

Lemma 5.1 (The Lindenbaum Lemma) Let Γ Ď LΩ be a consistent theory. Then there is Γ′ Ě Γ, which is
a complete, consistent theory.

Proof LΩ is countable. So let ',', . . . ,'n , . . . (n P N) enumerate all sentences of the language. We
define
Γ Ď Γ . . . Ď Γn Ď . . . by recursion:

Γ = Γ

Γn+ = Γn ∪ {'n+} if ⊬ ¬'n+

= Γn otherwise

Let Γ′ = ∪nΓn .
Claim 1 Each Γn is consistent.
Proof By induction on n: Γ is consistent, assume Γk consistent but Γk+ not consistent. Then Γk+ =
Γk ∪ {'k+}. By Exercise 3.9e) Γk+ is consistent. Contradiction.
Claim 2 Γ′ is consistent.
Proof If not then for some finite ∆ Ď Γ′, ∆ is inconsistent (Exercise 3.9d)). But for some k∆ Ď Γk . But
then Γk is inconsistent.
Claim 3 Γ′ is complete.
Let ' be an arbitrary sentence. Then ' is 'i+ some i. So if Γi ⊬ ¬'i+, then 'i+ P Γ′. So Γ′ ⊢ 'i+
But if Γi ⊢ ¬'i+, then Γ′ ⊢ ¬'i+. So Γ′ is complete. QED

Theorem 5.2 (The Completeness Theorem for countable languages with equality) Let Γ∪{'}
be a set of sentences in LΩ , and Ω contains (as we’ve always specified up to now) at most a countable col-
lection of predicate and function symbols. Then

Γ ⊧ ' implies Γ ⊢ '.

59

We establish this as a corollary of the following theorem.

Theorem 5.3 Any consistent set of sentences Γ Ď LΩ has a model.

Wemake a couple of definitions and then outline how the proof goes.

Definition 5.4 We say that LΩ, is an extension by constants of LΩ if Ω′ is Ω together with a collection
of new constant symbols alone. We write LΩ Ďc LΩ′ .

Definition 5.5 If Γ Ď LΩ is a set of sentences, LΩ Ďc LΩ′ , LΩ′ is also a set of sentences, then Γ′ is a full
extension of Γ in LΩ′
if a) Γ Ď Γ′ b) For all ' P LΩ with FV(') = {vi} (for some i) and such that Γ ⊢ Dvi', there is a constant
symbol c P dom f ′ so that '(c/vi) P Γ′

(ii) Γ Ď LΩ , Γ a set of sentences, is full, if Γ is a full extension of itself in LΩ .

Thus if Γ′ is a full extension of Γ in LΩ′ and ' and c are as in b) Γ′ ⊢ Dv' → '(c/v). The constant
symbol c is called a Henkin witness or constant.

Example 1 @v(v = v is an axiom, A6, so ⊢ Dv(v = v) by the E-Rule, so if a theory is to have the
chance of being full in any language, that language must contain a constant symbol.
Example 2 Let Γ be a theory true inN =< N,+,ˆ, > . LetN˚ =< N,+,ˆ, , , , . . . > . If Γ ⊢ Dv' then
by Soundness Γ ⊧ Dv'. ButN˚ ⊧ Γ soN˚ ⊧ Dv'. Suppose n P N is such thatN˚ ⊧ '(m/v. From this
we see that if we extend the language for N to L′ say, by adding in the constant symbols , , . . . and let
Γ′ be the Th(N˚), then Γ′ contains things like '(n). Hence Γ′ is a full extension of Γ in L′.
Example 3The Γ′ from Example 2 is not just a full extension of Γ in Γ′, but is itself full in L′.

The steps we take in the plan for provingTheorem 3 are:

(A) For any consistent set of sentences ∆ Ď LΩ, there is ∆′ Ě ∆, where ∆′ is a consistent full extension
of ∆ in LΩ′ , where LΩ Ďc LΩ′ .

(B) (The Lindenbaum Lemma) For any consistent set of sentences Γ Ď LΩ there is Γ′ Ě Γ, where
Γ′ Ď LΩ is a consistent, complete set of sentences.

(C) Use (A) and (B) alternately to show for any Γ Ď LΩ, a consistent set of sentences, there is a com-
plete, consistent, and full Γ+ Ď LΩ+, Γ+ Ě Γ where LΩ Ďc LΩ+ Ě Γ+.

(D) Show that a complete, consistent, full Γ+ Ď LΩ+ has a model.

(E) Using (D) and (C) we conclude if Γ Ď LΩ is a consistent set of sentences then Γ has a model.

Lemma 5.6 Let ∆ be a consistent theory in LΩ .Then there is a consistent full extension of ∆, ∆′, in LΩ Ďc
LΩ′ .

60

5. The CompletenessTheorem

ProofWe wish to add constant symbols to dom fΩ which will be Henkin witnesses for existential state-
ments of LΩ .The problem is just to check that we can do this in a way to preserve consistency. Suppose
⟨'i ∣i P !⟩ is an enumeration of all formulae in LΩ with one free variable; suppose that the free variable
of 'i is vn i . Now let

∆ = {'i ∣∆ ⊢ Dvn i'i}

For each 'i P ∆ add a constant symbol ci to dom fΩ . (This defines our new language Ln′). Let ∆′ =
∆ ∪ {'(ci/vn i)∣'i P ∆}. Trivially ∆ is a full extension of ∆ in LΩ′ .

Claim ∆′ is consistent.
Proof Suppose not and let ∆ Ď ∆′ be finite so that for some (any) ∆ ⊢ ∧¬ . Let ∆ = Γ ∪ ∆̄ where
Γ contains none of the new constants ci , but ∆̄ Ă {'i(ci/vn i)∣'i P ∆}. Let � be the conjunction of the
finitely many formulae in ∆̄
Then Γ,� ⊢ ' ∧ ¬
i.e. Γ ⊢ �→ (∧ ¬). DeductionTheorem

Γ ⊢ ¬� Taut. Instance (P → (Q ∧ ¬Q))→ ¬P
Suppose � is '(c/vn −) ∧ '(c/vnk) without loss of generality.
Since none of the ci appear in Γ we apply the derived rule of Exercise 3.8 k times using new variables
v′ , . . . , v

′
k not occurring in Γ or � to get

Γ ⊢ @v′ . . .@v
′
k¬['(v′/c) ∧ . . . ∧ 'k(v′k/ck)] we note that 'k(v′k/ck) is the same as 'k(v′k/vnk

or Γ ⊢ ¬Dv′ . . . Dv
′
k['(v′/vn) ∧ . . . ∧ 'k(v′k/vnk)]

or Γ ⊢ ¬Dvn . . . Dvnk(' ∧ . . . ∧ 'k) by changing variables as in Lemma 3.8(i)
or Γ ⊢ ¬[Dvn' ∧ Dvn' ∧ . . . ∧ Dvnk'k] Discarding unnecessary quantifier using Lemma 3.9 i (d) and
ii (c)
or Γ ⊢ ¬Dvn' ∨ . . . ∨ ¬Dvnk'k (˚)
But ∆ ⊢ Dvn i'i for all i ≤ k since each of the 'i here derives ultimately from ∆ This contradicts (˚)
since Γ Ď ∆ and this in turn means that our original assumption of ∆′ being inconsistent was false.

QED
This completes (A), we now do (C).

Lemma 5.7 Let Γ Ď LΩ be a consistent set of sentences. There is LΩ˚ so that LΩ Ďc LΩ˚, and there is
Γ˚ Ď Γ, so that Γ˚ is a consistent, full, complete set of sentences of LΩ˚.

ProofUse Lemmas 5.1 and 5.6 alternately, countably often, constructing languages LΩn Ďc LΩn+ , sets of
sentences Γi Ď ∆i+ Ď Γi+ with Γi+ ∪ ∆i+ sentences in LΩ i+ . Let Ω = Ω, Γ = Γ. Suppose Ωn , Γn are
defined. By lemma 4 choose LΩn+ Ěc LΩn and ∆n+ a consistent, full extension of Γn in LΩn+ . By the
Lindenbaum lemma, choose Γn+ a consistent, complete set of sentences containing ∆n+, in LΩn+ .
Let LΩ˚ = ⋃nLΩn , and Γ˚ = ⋃nΓn. Clearly LΩ Ďc LΩ˚, Γ Ď Γ˚. Each Γn is consistent, and so, as in the
proof of the Lindenbaum Lemma, is Γ˚.
Γ˚ is complete: for if ' is a sentence of LΩ˚, and so either Γn ⊢ ' or Γn ⊢ ¬'. So Γ˚ is complete.

61

Γ˚ is full: Suppose Γ˚ ⊢ vi' where ' P LΩ˚ with only free variable vi . For some m, then Γm ⊢ Dvi', so
there is some new constant c of Ωm+ so that '(c/vi) P ∆m+ Ě Γ˚. QED

This now completes (A), (B), & (C) of our plan. We now have a complete, full, consistent set of sentences
Γ˚ containing our original consistent Γ. We need a model. Where should we find it? The neat trick here
is that we build the model out of the terms of the language LΩ˚ itself.

Definition 5.8 Let Γ Ď LΩ be a consistent set of sentences such that Ω contains at least one constant
symbol. The canonical interpretation determined by Γ is

Ir = I = ⟨I, ⟨P⟩PPdomr,⟨F⟩FPdom f ⟩ (Ω = ⟨r, f ⟩)

where I is the set of equivalence classes of closed terms, [t]− of LΩ for the equivalence relation ∼.

t ∼ t ⇐⇒ Γ ⊢ t = t.
P([t], . . . , [ti]) ⇐⇒ Γ ⊢ P(t, . . . , ti) (P P domr)

F([t], . . . [ti]) = [t] ⇐⇒ Γ ⊢ F(t, . . . , ti) = t (F P dom f)

The properties of completeness and fullness are just what’s required to show that the canonical structure
determined by Γ is amodel of Γ. Notice that if there are no closed terms in the language I would be empty;
that is why we stipulate that Ω contain at least one constant symbol. Note also that the ∼ is well-defined:
we should show that if t j ∼ t′j(≤ j ≤ i) then Γ ⊢ P(t, . . . , ti) iff Γ ⊢ P(t′ , . . . , t′i) (and similarly for
functions) but this follows by A7 and the definition of ∼ .

Lemma 5.9 Let Γ Ď LΩ be a complete, full and consistent set of sentences. Then for each sentence ' of
LΩ IΓ ⊧ '⇐⇒ Γ ⊢ '.

Proof Note that as ⊢ Dv(v = v) for any R P Ω, fullness of Γ implies there is at least one constant in Ω.
Proof is by induction on the complexity of the sentence.
' atomic This is then just part of the definition of canonical interpretation since the denotation of t in
IΓ is [t]; for example Γ ⊢ t = t iff t ∼ t iff [t] = [t] iff IΓ ⊧ t = t.
' is ¬ IΓ ⊧ ¬ iff it’s not the case that I ⊧
iff not Γ ⊢ by Inductive Hypothesis.
iff Γ ⊢ ¬ as Γ is complete
' is → � Similar.
' is @vm Case 1 vm /P FV(.Then is a sentence and by Ind.Hyp:
IΓ ⊧ vm iff IΓ ⊧ iff Γ ⊢ iff (by Lemma 3.9iic)) Γ ⊢ @vm
Case 2 FV() = {vm}. then
IΓ ⊧ ' iff for all valuations wIΓ ⊧ @vm [w]

iff for all [t] P I and valuations wIΓ ⊧ [w([t]/m]
iff for all closed terms t in ΓΩ and all valuations w

IΓ ⊧ (t/vm) (since every [t] P I is the denotation of such a term t in ΓΩ)
iff for all closed terms t in LΩ

Γ ⊢ (t/vm) by Inductive Hypothesis (since now (t/vm) is a sentence).

62

5. The CompletenessTheorem

Suppose not Γ ⊢ '.Then by completeness Γ ⊢ ¬'or Γ ⊢ Dvm¬ . Γ is full so for some c P LΩΓvdash¬ (c/vm).
By the equivalence above not I ⊧ '. Conversely if Γ ⊢ ' then by A4 for all closed terms without variables
Γ ⊢ (t/vm) so again by the above I ⊧ '.This completes Case 2 and induction. QED

Proof of Theorem 5.3: Let Γ Ď LΩ by a consistent set of sentences. By Lemma 5.6 DΓ′ Ě Γ, Γ Ď LΩ′
where Γ′ is a consistent, complete, full set of sentences. By Lemma 5 IΓ′ is a model Γ′. The reduct of IΓ′
to the language LΩ is a model of Γ of similarity type Ω. QED

Proof ofTheorem 5.2 Let Γ,', Ω be as stated in the theorem. Suppose not Γ ⊢ '. Then not Γ ⊢ ¬¬'.
By 3.9e) Γ ∪ {¬'} is consistent and byTheorem 5.2 has a model. thus not Γ ⊧ ' QED

PuttingTheorem 5.2 and the SoundnessTheorem together gives

Theorem 5.10 Let Γ ∪ {'} be sentences on LΩ, where LΩ is a countable language. Then

Γ ⊧ '⇐⇒ Γ ⊢ '

Thus formal provability from a set of sentences is as strong a concept as semantic entailment.

Corollary 5.11 TheTheorems of PC are precisely the universally valid formulas.

Proof Let Γ = fi and ' a formula with FV(') Ď {v, . . . , vn}.Then @v . . .@vn' is a sentence. Theorem
6 gives ⊧ @v . . .' iff ⊢ @v . . .'. But ' is universally valid iff @v . . .@vn' is universally valid Ex. 2.4)
and ⊢ ' iff ⊢ @v . . .@vn' (by R2 and, A4 with R1). QED

Theorem 5.12 Since Γ be a consistent set of sentences in LΩ, a countable language. Then Γ has a countable
model.

Proof In Lemma 5.6 each of the languages LΩn+ was obtained by adding countably many constants to
dom f; thus by induction each LΩn is countable. Thus LΩ˚ = ∪LΩn is also countable. The canonical
interpretation uses equivalence classes of terms of LΩ˚, of which there are only countably many, and so
is itself countable. QED

Remark (1)There are generalisations of theorem 3.3 to uncountable languages, but then the models may
have to be uncountable too.
Remark (2)Theorems 5.2, 5.3 are due to Gödel (1930). The proof here is due to Henkin.
Exercise 1 Let T and Ti be theories in LΩ such that for any interpretation A of LΩ .
A ⊧ T iff A /⊧ T . Show that both T and T are finitely axiomatisable.
Exercise 2 (Very similar to Ex.1). Let T and T be theories such that nothing is a model of both T and T . Show
that there is a sentence ' so that

@A[(A ⊧ T ⇒ A ⊧ ') ∧ (A ⊧ T ⇒ A ⊢ ¬')].

63

The Compactness and Löwenheim Skolem Theorems

The theorems of the title are corollaries of the CompletenessTheorem.

Theorem 6.1 (The Downward Löwenheim-Skolem Theorem) Let Γ Ď LΩ be a set of sentences in a
countable language with equality. If Γ has a model then Γ has a countable model.

Proof If Γ has a model then Γ is consistent. Theorem 4.8 gives the conclusion. QED

Example 1 Let R = ⟨R,+R,ˆR,−R, R⟩ be the fields of the reals. Let Γ = Th(R). Then Γ is countable.
ByTheorem 4.9 Γ has a countable modelR˚, and by design Th(R˚) = Th(R). Conclusion: any theorem
about the reals as a field doesn’t depend in any essential way on the uncountability of R.
In the above we can in fact arrange for R˚ Ď R (althoughTheorem 1 doesn’t give us this).
Example 2 The underlying foundation of mathematics is the theory of sets. This is expressed using a
countable set of axioms, called ZF, in a countable language with equality and a single binary relation
symbol which is used to denote set membership. From these axioms any theorem about sets that math-
ematicians (normally) need can be devised: e.g. the usual construction of the reals from the rationals
can be couched in terms of this basic set theory. Amodel for the axioms is a collection,M, of sets which
satisfy the axioms.
Theorem 1 then gives us the following ”paradoxical” fact: IfM is a model of the axioms, then the axioms
are consistent. So there is a countable model M˚ of the axioms. But then as the existence of the set of
reals is a theorem of ZF
ZF⊢ (Dx)(x is the set of real numbers). Further ZF ⊢ (the reals are uncountable), since the axioms
prove also that the reasl are uncountable (our usual Cantor diagonal argument). This was the so-called
Skolem Paradox. M˚ thinks its collection of real numbers is uncountable. ButM˚ is itself countable! The
point is simply that the interpretationM˚ does not have a function f P M˚ which is a bijection between
its reals and its natural numbers. We know “from outside” there is an f outsideM˚!The next theorem is
probably the most important result for applications in mathematics, and the theory of models that we’ve
been developing.

Theorem 6.2 (The Compactness Theorem; Mal’cev, 1936) Let LΩ be a countable language. Let Γ Ď

LΩ be a set of sentences. Γ has a model iff every finite Γ Ď Γ has a model.

Proof (→) If Γ has a model then trivially so does every finite Γ Ď Γ. (→) Suppose however Γ has no
model. By Theorem 4.3 Γ is inconsistent. So some finite subset Γ Ď Γ is also inconsistent; and thus
cannot have a model QED

65

Remark (1) Note the theorem as stated is formulated using only semantic concepts. Although the proof
via the CompletenessTheorem relates semantic and syntactic concepts, purely semantic proofs without
reference to deductive systems are possible. Note also that the proof is entirely non-constructive k(as
opposed to that for propositional languages): given models for all finite subsets, there’s no way to string
them together to get a model for all of Γ.
Remark (2) Again the theorem is true even if LΩ doesn’t have equality. It is also true if we have uncount-
able languages.
The applications of Compactness are legion. The following shows that elementary equivalence, ≡, and ≅,
isomorphism are different, in a very striking way.

Definition 6.3 Let A,B be two Ω-structures, and h ∶ A → B an embedding. Then h is an elementary
embedding if for all formulae all valuations w P WA

A ⊧ '[w] ⇐⇒ B ⊧ '[h(w)]

where h(w) P WB is such that h(w)(j) = h(w(j))

Remark If h ∶ A→ B is an elementary embedding then A ≡ B. Note that h is not necessarily onto

Theorem 6.4 (Elementary Extension Theorem) Let Abe a countable interpretation of LΩ .Then there
is h,B such that h ∶ A→ B is an elementary embedding, but h is not onto.

Proof Since A is countable let a, a, . . . enumerate it’s elements. Expand fΩ to fΩ+ by adding new con-
stant symbols c, c, . . . and let A+ be the structure A with now each element ai of A interpreting ci .
Th(A+) now contains all the “facts” true of any element in A. Th(A+ is a countable consistent theory in
LΩ+ . Now enlarge fΩ+ to FΩ by adding another new constant d . Let Γ = Th(A+) ∪ {cn ≠ d∣n P N}
Claim Every finite subset of Γ has a model.
Proof Since if Γ Ď Γ is finite, there is a largest m − so that cm− occurs in Γ. We claim

A = ⟨A, ⟨RA⟩RPdom r, ⟨FA⟩FPdom f , a, a, . . . , am⟩ ⊧ Γ

All the sentences of Th(A+) in Γ are true in this structure, and by interpreting d as am we ensure all
the “cn ≠ d′′ formulae in Γ are also true. QED Claim
By the Claim, and the Compactness Theorem, Γ has a model B′. Let B′ have domain B. Let B+ be the
reduct of B′ to LΩ+, let bn interpret cn .
Let h be given by sending an to bn P B

h(an) = bn

Since B+ ⊧ Th(A+), for every sentence ' of Th(A+)B+ ⊧ '
'mentions constants c, . . . , cn say (which in A+ were interpreted as a, . . . , an). Thus, everything that
in A was true of a, . . . , an is true in B of b, . . . , bn; the ideas is that {bi ∣i P N} is a subset of B that is
isomorphic to A. Formally we
Claim h ∶ A+ → B+ is an embedding.
Proof Check the clauses of the definitions 2.4 and 2.5, e.g. for f P dom fΩ+

66

6.The Compactness and Löwenheim SkolemTheorems

FA+(a, . . . , af(F)) = FB++(h(a), . . . , h(af(F))) = h(a) et cetera

Claim h is not onto.
This is because B contains a constant to interpret d and for all nB′ ⊧ cn ≠ d′′
Claim h is an elementary embedding of A→ B
Let w P WA and let us suppose A ⊧ '[w]. Suppose w(i) = a j i(≤ i ≤ n) then '(c j/v), . . . , (c jn/vn)
is a sentence of LΩ+ , true in A+ and so true in B+. Since h(a j i) = b j i we have B ⊧ '[h(w)] QED
What the impact of the theorem is, is that h[A] is a substructure of B, isomorphic to A, but such that
B nothing is true of elements of h[A] that wasn’t already true in h[A] itself. If as is usual we identify A
with h[A] we can think of B containing A.
A particular example illustrates this technique.
Example 3 A non-standard model of arithmetic.
Let N = ⟨N,+N, N,′ ⟩ be the standard natural numbers. We construct N˚ ⊧ Th(N) but N˚ ≇ N.
Notice that in N by good luck every element of the domain happens to be definable by a term in the
language, for example is the interpretation of ′′. Let Ω′ Ě Ω be given by adding one new constant
symbol c to dom f

Ω
.

'n be the sentence in LΩ′ ∶ ′′ . . .′
±
n times

≠ c

Let Γ = Th(N) ∪ {'n∣n P N}
Claim Any finite subset Γ Ď Γ is consistent.
Proof Given Γ pick m sufficiently large so that any ′′ . . .′

±n
appearing in Γ has n < m.

Then: N′ = ⟨N,+N,ˆN, N,′N ,m⟩ ⊧ Γ where now m interprets c ∶ m is large enough so that any
'n P Γ is satisfied with c interpreted as m. QED Claim.
By the CompactnessTheorem Γ has a model N˚ say.
Let N˚ = N˚∣Ω i.e. N˚ = ⟨N˚,+N˚ ,ˆN˚ , N˚ ,′N˚ ⟩
Claim N˚ ≇ N.
ProofThis is because every element of N is of the form ′′⋯′

N.
but this is false in N˚: the element that interpreted c, cN˚ , differs from all the
′′⋯′

N˚

but N˚ ⊧ Th(N). i.e. every statement of arithmetic is true in N˚.

Definition 6.5 For n P N, let n abbreviate ′′ . . .′
±n

.

Notice that we can define < by the formula v < v ←→ Dv(v = v + v ∧ v ≠). Call an element of N˚

standard if it is of the form nN˚ . Otherwise call it non-standard.
The Compactness Theorem also tells us much about how the cardinalities of models can or cannot be
characterised.

Theorem 6.6 Let Γ Ď LΩ be a theory with arbitrarily large finite models then Γ has an infinite model.

67

Proof Find a sentence �n so that A ⊧ �n i f f ∣A∣ ≥ n
Let ∆ = {�n∣n P N} ∪ Γ.
Claim Every finite subset ∆ Ď ∆ has a model
Proof ∆ can only contain finitely many �′ns. Let m be larger than any n so that �n P ∆.
Let A′ be a model of Γ of size ≥ m.Then A′ ⊧ ∆. QED Claim
by Compactness ∆ has a model B say. Since for all nB ⊧ �n∣B∣ is infinite. QED
Thus finiteness alone cannot be characterised by any set of sentences. In particular there is no set of
sentences Σ such that G is a finite group i f fG ⊧ Σ.
Theorem 4 shows that finiteness cannot be characterised by a set of sentences, but the set {�n∣n P N}
does show that an infinite set of sentences suffices to characterise being infinite.

Definition 6.7 We say a property P of models is finitely axiomatisable if there is a finite set of sentences
in a language, Σ, say so that

A ⊧ Σ iff A has P.

Remark This ties in with Definition 3.8b) of a theory being finitely axiomatisable; let T be a theory
then suppose the property of being a model of T is axiomatisable by the finite T say. Then the mod-
els of T are precisely the models of T . Then T is also finitely axiomatisable by the same T ∶ since
T ⊢ � ⇔ T ⊧ T ⊧ � ⇔ T ⊢ �, using Completeness and Soundness Theorems. Conversely if a the-
ory T is finitely axiomatisable by some finite T say, then the property of being a model of T is finitely
axiomatisable by the same T ∶ since T ⊢ � for all � P T and T ⊢ � for all � P T , we have just by
Soundness,A ⊧ T⇔ A ⊧ T .Thus:The property of being amodel of a theory T is finitely axiomatisable
iff the theory is finitely axiomatisable. Thus the property of being a group, or a field of p , or of being a
strict partial order are all finitely axiomatisable [see Examples 3.5, 10, 7].

RemarkWe have shown here that two theories T , T ′ axiomatise each other precisely when they have the
same models.
Example 4The property of being a strict total order, is finitely axiomatisable.
Let � be the conjunction of the two sentences of Example 3.7 together with

@v@v[v = v ∨ R(v, v) ∨ R(v, v)]

Example 5The property of being a strict total order, with a largest element, and such that each element
with a “<-predecessor” has an immediate predecessor is finitely axiomatisable.
Let � be � of Example 4 together with

@v[DvR(v, v)→ Dv(R(v, v) ∧ @v(¬(R(v, v) ∧ R(v, v))))]∧

∧Dv@v[v ≠ v → R(v, v)]

Lemma 6.8 The property of being a well-ordered set is not characterised by any set of sentences.

68

6.The Compactness and Löwenheim SkolemTheorems

Proof The � of Example 5 has arbitrarily large finite well ordered models but no infinite well ordered
models. but � must be true in any finite well ordered model. Suppose Σ were such that A ⊧ Σi f fA was
well ordered by RA.Then Σ ∪ {�} has arbitrarily large finite models and hence byTheorem 4 an infinite
one! Contradiction. [Since if c P Awere the largest element cmust have infinitelymany RA predecessors.
but � ensures that RA an isomorphic copy of the negative integers.] QED
The remark after example 3.10 shows that the theory of fields of characteristic has an inifinite set T of
axioms. That doesn’t settle the question of whether perhaps there is some finite set T of axioms such that
for all sentences ' in that language T ⊢ '⇔ T ⊢ ' (or equivalent ' is true in every such field i f f'
is true in every model of T - note the use of Completeness and Soundness to state these equivalences).
The following lemma essentially shows that this theory is not finitely axiomatisable.

Lemma 6.9 Let ' be a sentence of the language of fields, and suppose T is as above. If T ⊧ ' then there is
an n such that ' is true in every field of characteristic ≥ n. Hence the theory of fields of characteristic is
not finitely axiomatisable.

Proof before proving the first sentence let us see how this kills off any hope of finitely axiomatising fields
of characteristic . Suppose T is finite but is such that T and T have the same consequences. Let ' be
the conjunction of T. ' is true in fields with non-zero characteristic by Lemma 6! Let F be such a field.
Since every P T is such that T ⊢ (T and T have the same consequences) F ⊧ T . So F has
characteristic! Contradiction. So let us turn to the first sentence.
(1st Proof) Let T ⊧ ' but suppose for no n is ' true in all fields of characteristic ≥ n. Then let S be any
finite subset of T ∪ {¬'} S only mentions finitely many of the formulae ¬p . Let p be greater than any
of these p′s. Then S is true in some field of characteristic ≥ p. by the CompactnessTheorem T ∪ {¬'}
has a model. This contradicts T ⊧ ' (2nd Proof) [The first proof showed the existence only of such an n,
this proof shows how to compute such an n].
Since T ⊧ ' by the CompletenessTheorem T ⊢ '. Look at a proof of ' from T . This only uses a finite
number of the formulae ¬p . Let n be the least integer strictly greater than these p′s. Then ' is true in
any field of characteristic ≥ n ∶ Since �F , {¬p∣p < n} ⊢ ' which implies �F , {¬p∣p < n} ⊧ ' by the
SoundnessTheorem. QED

Example 4 Let T be the theory that contains the three axioms for groups plus the set {∧v¬[�∨� . . .∨
�n]∣n P N}, where �n is the formula that “says” v has order ≤ n. Models of this theory are the torsion-
free groups (and so must be infinite (why?).) This theory is also not finitely axiomatisable: Suppose T is
finite and both T and T have the same consequences, for a contradiction. By the remark after Example
3 this is equivalent to T and T having the same models. However:

Claim If ' is a sentence in the language of group theory and T ⊧ ' then there is an n P N so that ' is
true in every group G whose elements all have order greater than or equal to n.
If the claim is true then T cannot axiomatise T ∶ let be the conjunction of the finitely many axioms
of T, then ⊧ (since T and T have the same consequences.) By the claim, for some n is true in any
group G all of whose elements have order ≥ n and such groups exist which are finite: for example, let
p be a prime ≥ n, then the cyclic group Zp has every element of order precisely p. So Zp ⊧ , but no

69

element of Zp has infinite order. To prove the claim let T ⊧ ' be any finite subset of T ∪ {¬'}; S only
mentions finitely many of the formulae @v¬[�∨� . . .∨�n]. Let k be a number greater than any of the
n’s occurring here. By supposition there is a group G all of whose elements have order ≥ is false. Then S
is true in G. by the CompactnessTheorem T ∪ {¬'} has a model. This contradicts T ⊧ '.

Exercise 1Think a bit more about what the ordered structure of N˚ looks like: let a P N˚ be the interpretation of
the named constant c. Clearly for every n ′′ . . .′

±
n

< c is true in N˚ .

(a) Prove that for any non-standard d P N˚ there exists a smaller non-standard c < d , . (The first part shows that,
unlike N,N˚ will have an infinite <-descending chain of elements.)
b) Prove that the elements of N˚ are linearly ordered.
Define an equivalence relation ∼ on N˚ by c−d i f f c = d+ e where e is a standard element, or d = c+ e .Thus
elements in the same equivalence class or “block” are only a “finite” distance from each other, and can be obtained
one from the other by a finite number of applications of ’. Thus the standard elements are all in one block,
c) Prove that the blocks are linearly ordered by [c] ≤ [d] i f f we define [c] ≤ [d] by c + e = d for some element
e . [To argue that this is a good definition you have to show that if c′ P [c] and d′ P [d] that c′ + e′ = d′ for some
e′, i.e. if one element of our block [c], is less than one element of another block [d], then the same is true for all
elements in [c] and in [d].]
d) Show that there is no <-least non-standard block.
[Hint: Let d be non-standard and even. Then d = c + c. Show that c is non-standard and [c] < [d].]
e)˚ Show that if [c] and [d] are two different blocks, then there is a block [e] with [c] < [e] < [d].
[Hint: Either c + d or c + d + is even; suppose c + d is and consider (c + d)/]
N˚ thus consists of the standard block, order isomorphic toN, followed by countably many blocks, [c] above, such
that each block is order-isomorphic to Z, but such that the blocks are linearly ordered, without least (Part d)) or
greatest (similar to d)) element, and such that the ordering is dense (part e); i.e. the ordering of blocks looks like
the rationalsQ.
RemarkThe existence of such anN˚ was shown by Skolem (1934). Much studied in contemporary logic are similar
nonstandard models of the Peano Axioms.

Exercise 2 Let � be a sentence true in all infinite models of a theory Γ. Show that there exists k P N so that for any
model A, if ∣A∣ ≥ k and A ⊧ Γ then A ⊧ �.
Exercise 3 Find a language, and a sentence � in that language so that if A ⊧ � then ∣A∣ is infinite.
Exercise 4 Show that the property of having an infinite domain is not finitely axiomatisable. [Note this doesn’t
contradict Ex.3.]
Exercise 5 Show that the theory of torsion groups is not axiomatisable. [Hint: Suppose Γ axiomatised this theory
and show Γ ∪ T (where T is as in Example 4 p.89) has a model.
Exercise 6* Show that the theory of algebraically closed fields of characteristic is not finitely axiomatisable.
Exercise 7* Show that the theory of algebraically closed fields of characteristic p > is not finitely axiomatisable.
[Hint (Exercises 6 and 7) A field is algebraically closed if every polynomial in one indeterminate x , say with coef-
ficients in the field, has a root. We thus need to have solutions to anxn + . . . + ax + a = . So consider, for Ex.6,
in addition to �F ∪ {¬p ∣p P N}, all sentences of the form

@v@v . . .@vnDvn+[vn .vnn+ + vn−vn−n+ + . . . v .vn+ + v =]

where as always vn i abbreviates v i .v i .v iv i (n times). Then give the fact (which you shouldn’t prove) that for a
given characteristic p, for any n there is a non-algebraically closed field of characteristic p in which all polynomials
of degree ≤ n have a root. 7 follows in the same way as 6.]

70

6.The Compactness and Löwenheim SkolemTheorems

Exercise 8 Let LΩ be the language of fields, but with an extra binary predicate R added to domrΩ . The theory of
ordered fields is the deductive closure of �F together with

(i) @v@v[R(v , v) ∨ R(v , v) ∨ v = v]

(ii) @v@v@v[R(v , v) ∧ R(v , v)→ R(v , v]

(iii) @v¬R(v , v
(iv) @v@v@v[R(v , v)→ R(v + v , v + v)]

R is thus intended to be a strict linear order with an additivity property (iv). Show that there are non-Archimedean
models of this theory: i.e. there aremodels with elements c, d such that for no natural number n is d < c+c+ . . .+c
(n times), writing < for R.
Exercise 9*The theory of ordered abelian groups is the deductive closure of axioms for abelian groups plus (i)-(iv)
of Exercise 8. One can show that every such group is torsion free. [Suppose c ≠ in the group, then c < or c > .
Suppose c > then c + c > c + = c > similarly c + C + c > c + c > etc. Likewise if c < then n.c. <].
Show that if a countable abelian group is torsion free then it can be ordered. i.e. we can find a relation < to add to
the group structure so that < obeys (i)-(iv) above.
[Hint: First show a finitely generated torsion free abelian group can be so ordered. Such groups, if they have n
generators, look like Z⊕Z⊕ . . . ⊕Z (n times) i.e. every element is of the form
x = mg +mg + . . . +mn gn (m i P Z) where {g , . . . gn} is the set of generators for the group. If
y = m′g + . . . +m′n gn put x < y if ⟨m , . . .mn⟩ < ⟨m′ , . . . ,m′n⟩
lexicographically (i.e. the least i ≤ n so that m i ≠ m′i has mI < m′i). Check that this works. Now let A be any
countable torsion free abelian group.
Let Ω be a similarity type for the language of ordered groups togetherwith an infinite set of constants c , c , . . . , cn . . . (n P

N) to name all the elements a , a , . . . , an , . . . of A (as A is countable). Then

A+ = (A,+A ,−A , A , ⟨a i⟩i P N⟩ interprets LΩ

Let T = {� P Th(A+)∣� atomic } in this language and let Γ be T together with (i)-(iv) above and the group axioms.
Then every finite subset of Γ has a model.]
Exercise 10* (This involves some topological concepts) LetM be the class of all interpretations of LΩ for some
fixed Ω. For each sentence ' in LΩ . LetU� = {A PM∣A ⊧ '}. LetM generated by the basis {U�∣' a sentence of
LΩ}. Show that ⟨M,U⟩ being a compact space is equivalent to the CompactnessTheorem for LΩ.

71

The Incompleteness of Number Theory

This chapter deals with two particular theories, arithmetic and the formal number theory Q . Arithmetic
is defined as the set of all sentences true in the structure N = ⟨N,+N,ˆN, N,′N ⟩(Th(N) in our earlier
notation). We shall see that there is no formula which defines in N the set of code numbers of arith-
metic. This is Tarski’s theorem on the undefinability of truth. We shall prove something much stronger
by showing that arithmetic is “essentially unaxiomatisable”, that is there is no finite or even effectively
decidable set of axioms T so that every statement of arithmetic is provable from T . We shall do this by
showing that the theory Q is “essentially incomplete”. It is incomplete in the sense that here is a sentence
in the language of number theory ' say so that neither Q ⊢ ' nor Q ⊢ ¬'. This is quite easy to show.
What is remarkable is the result of Gödel that says for any finite set of axioms T Ě Q if T is consistent,
there will always be some ' (depending on T) so that T neither proves ' nor ¬'. But Q is essentially
incomplete in the sense that there is no effectively decidable, consistent set of axioms T Ě Q such that
for every , T ⊢ or T ⊢ ¬ . Thus for every such set of axioms T Ě Q there will be sentences of
arithmetic which are not provable from T . To phrase it more loosely: no effectively given axiom system
constaining Q is sufficient to deduce all the truths about N.
As spinoff from this result we obtain that there can be no computable “algorithm” for deciding which
statements of number theory are true.
In the first section we discuss the notions of computability and recursiveness, essentially to continue our
argument that all the notions of our formal deductive system could be carried out on a computer, (or,
more explicitly using recursive functions). We also look at the “diagonalisation” of a formula, this will be
used to build a self referential statement rather like Epimenides’ Liar Paradox “This statement is false”.
In §7.2 we look against at Q, show that it too has very concrete non-standard models, and argue that
every recursive function is “representable in Q”. §7.3 gives the heart of Gödel’s arguement, the diagonal
lemma that will yield Incompleteness.

7.1 Arithmetisation of Syntax : Gödel’s numbers, Diagonalisation

We have made a number of remarks concerning the possibility of “making effective” various of the syn-
tactic notions we’ve discussed. The purpose of first part of this section is to tie some of these remarks
together. For the particular language of the formal number theory Q (this is the language of Example
2.5 which we shall call L for the rest of this chapter) we give a set of code numbers for the syntax of the
language, and in this context they are known as Gödel numbers (or gn).

Definition 7.1 (Gödel numbers of symbols)

73

Arithmetisation of Syntax : Gödel’s numbers, Diagonalisation

Symbol () → ¬ @ ′ + ˆ =
gn
Symbol x y z v v
gn . . .

Given this system formulae may be coded as numbers, and a number may be decoded into a formula.
Notice that if we wanted to consider countable languages with additional relation or function symbols
we can use the and series to code these up. For readability we use x , y, and z as shorthand for v, v,
and v.

Example 1 Dxy = (x + x) is officially

(¬@x(¬y = (x + x)))

and so has code 1449514597156885222.

Example 2 4951449591414597568886222 codes @x(¬@y(¬(¬(y = (xˆ))).

Now the terms t in our language L are built up from our constant symbols, variables and function sym-
bols, namely, , vi ,+,ˆ,′ . We claim there would be no problem to write a programme to test whether a
number was the gn of a term. We simply test that it is built up in the correct way from the correct com-
ponents, has the right number of left and right brackets etc., etc. For examplke 166868886682688 doesn’t
code a term, whilst the same string with another 1 at the front and 668682 appended to the rear does.
We say that being a term of L is effectively decidable, because we we have effective (=computerisable)
algorithm for testing whether its gn codes a term or not.
As we have noted in earlier chapters all of our syntactic concepts of our formal system are also effectively
decidable. From testing numbers to see whether they are gn’s of terms it’s a short step to testing numbers
to see if they’re gn’s of formulae L, sentences of L, to see whether “the gn of '′ comes from the gn of '
by replacing some (possibly none) occurrences of in ' by �′′. i.e. to test whether Rep(,�,','′). So

Proposition 7.2 Being a term/formulae/sentence of L is effectively decidable as is Rep(,�,','′).

The following is somewhat more sophisticated but the ideas are essentially no different: we can test
whether a formula is one of the axioms A1-A7. For A1-A3, A6, A7 this isn’t so hard: first test whether the
components are formulae (or in the case of A7 atomic formulae). For A4 we have to write a programme
to test whether a term is substitutable in a formula, but given the recursive nature of Definition 2.6 this
isn’t problematic. We then test our putative instance of A4 to see if it’s right shape, test that t has been
properly substituted etc. A5 is no different, even easier.
Given that we can test a formula for being an axiom of PC, and given also that we can test whether a
formula is one of Q1-Q7 (this is easy: there are finitely many axioms of Q) we now have the possibility of
testing whether a string of formulae, ', . . . ,'n is a properly constituted proof of 'n from Q; we test first
if ' is a formula, then if it’s one of A1-A7 or Q1-Q7; do the same for ', or see if ' arose by applying
R2 to '; then test ', . . . at each stage testing for formulahood, axiomhood, or being derived from an
earlier formula on the list. And so on right through to 'n . Thus given a purported proof of 'n we can

74

7.The Incompleteness of NumberTheory

indeed check effectively whether 'n is a theorem of Q . Note this is not the same as being given 'n out
of the blue and being asked “is 'n” a theorem of Q?” (or in other words “is Q ⊢ 'n true?”). This latter
situation lies at the heart of our problem, we shall be able to see that there’s no effective way in general
to test whether an arbitrary ' is a theorem of Q or not. We can only check a “proof ’s” correctness when
given one. All in all, by working with gn’s:

Proposition 7.3 We can effectively decide whether a given formula is an axiom of Q or is one of A1-A7.
We can effectively decide given a list of strings of symbols, if it constitutes a properly constructed proof from
Q of the last string in the list.

Actually we can be far more precise about this idea of effectively decidable through the notion of “recur-
sive function”

Definition 7.4 (Recursive functions) The basis functions are: ()S(n) = n + ; ()z(n) = (all n)
() for each i , jU i j(n, n, . . . ni) = n j < j ≤ i .
The basis functions are recursive functions. The recursive functions are built up as follows:
If g ∶ NK+ → N, for some k ≥ , and g is recursive then so is

f ∶ Nk+ → N, where we define:

f (, y, . . . , yk) = p some p in N

f (x + , y, . . . , yk) = g(f (x , y, . . . , yk) (Recursion)

If g ∶ Nk+ → N, and g is recursive then so is f ∶ Nk+ → N where we define
f (x , y, . . . , yk) = least z such that g(z, y, . . . , yk) = if such exists

= undefined if there’s no such z. (Minimalisation)
If g ∶ Nk → N, and g , f, . . . , fk are recursive then so is g(f, . . . , fk) (Composition).

A function is recursive then, only if it can be built up from the basis functions by finitelymany application
of “recursion” and “minimalisation”, and composition.
Note Because of the minimalisation operation a recursive function f ∶ Nk → N need not be total, i.e.
dom f Ď Nk , not necessarily dom f = Nk .
It turns out that any function on N (or Nk) to N in everyday computational use is recursive. One can
also prove

Proposition 7.5 Any recursive function is “computable” i.e. there is a program which will calculate the
function.

More relevant to us, is that all of the effectively decidable concepts such as “formula”, “axiom of PC” and
“proof ” can be formulated using recursive functions. That is: there are recursive functions
F f orm ∶ N→ N so that
F f orm(x) = if x is gn of a formula

= if not.
FAx(x) = if x is gn of an axiom A1-A7 or of Q1-Q7

= if not.

75

Arithmetisation of Syntax : Gödel’s numbers, Diagonalisation

Similarly if n, n, . . . , nk is a list of gn’s of strings of symbols, there is a recursive Fp f , so that if x =
nnn . . . pnkk (pk = k

′th prime number)
FP f (x) = if x codes a list of strings in the above manner, and the list

is a proof of the last formula in the list
= if not

[The point of coding lists of strings of symbols in the above fashion is that given x, we can decode its
prime factors, look at the powers of the primes and decode what the individual formulae in the list are.]

Definition 7.6 If X Ď N, X is decidable if there’s a recursive function

f ∶ N→ N so that f (n) = if n P X
= if n R X .

The impact of the above discussion concerning decidability of testing for formulae/terms/proofs/etc., is
that the set of gn’s of formulae/terms/proofs/etc., are decidable sets of natural numbers. Thus

Proposition 7.7 The sets of gn numbers of the following sets are decidable (also known as recursive): for-
mulae, terms, axioms of PC + Q, codes of proofs in PC + Q (coded using prime powers).

It’s not too important whether you have inmind the notion of recursive function as the basic concept (and
hence decidable sets of numbers or the rather more informal idea of computable/programmable func-
tions and being able to effectively decide a question through a program. [In fact nobody has thought of
any definition of “computable” that doesn’t produce precisely the recursive functions.] What is important
is the realisation that the concepts of formula, axiom, proof etc., are “codable using simple functions”.
We shall later quote a theorem that all of these functions are definable in, and their properties that we
need, provable in, the system Q .
Notation To make reading easier we introduce abbreviations for some of the terms of Q ∶ we write

 instead of ′ instead of ′′.

These are not new terms of L, merely abbreviations for terms. We write x ≠ y rather than ¬(x = y)
(although we revert to the latter for the purpose of our official Gödel number coding). Thus n is to be
considered the numeral which will denote the number n when interpreted inN.The recursive functions
are indeed about the numbers of N and are indeed “true in N′′ in the following sense:

Proposition 7.8 If F is a k-place recursive function then there is a formula'F with FV(') = {v, v, . . . , vk}
so that F(n, . . . , nk) = mi f fN ⊧ 'F(n, . . . , nk ,m).

The formula 'F is built up in an analogous way to how the recursive function F is constructed; I don’t
wish to go into this construction, but it is not unreasonable to suppose that from the very concrete way
recursive functions are built that such a formula could be found.
We should thus have for example that n is the prime power code of a list of formulae that codes a proof
from the axioms of Q of the last formula in the list, i.e. FP f (n) = , i f fN ⊧ 'FP f (,n). This is indeed
just what we should want.

The Diagonalisation of a formula

76

7.The Incompleteness of NumberTheory

Consider the formula Dyx = ((.y)+) of L. Interpreted inN, this says “(the valuation of) x ≡ mod.′′

In other words the last digit of the number assigned to x, as a decimal number, is . But notice that if we
consider x as a gn of a symbol string we could reinterpret this as saying the string with gnx ends with
the symbol).

Definition 7.9 If is any formula of L, that is with no many ′′ ′′ after it.

Definition 7.10 If P L the diagonalisation of is the formula in L

Dx(x = ⌈ ⌉ ∧)

[or officially (¬@x(x = ⌈ ⌉→ (¬)))].

Example 3
' gn(') diagonalisation of ' True or False in N

y = 676 Dx(x = ∧ y =) F unless y is the term and

x = 576 Dx(x = ∧ x =) F since⋉ ⊧ ≠
x ≠ 145762 Dx(x = ∧ x ≠) T since ≠

Dy(x = ((ˆ y) +) suppose this has gnn
Dx(x = n ∧ Dy(x = ((ˆ y) +)) T since gn(') ends with a , or, ' ends with a).

Lemma 7.11 There is a recursive function [computable function] diag, so that if n is the gn of a formula
', diag(n) is the gn of the diagonalisation of '. Thus by Proposition 5 there is a formula Ψdiag so that
N ⊧ Ψdiag(n,m) iff m = diag(n).

Proof Let lh (for length) be the function l h(n) = least m(< m ∧ n < m.
Then l h is a recursive [computable] function: l h(n) is just the number of digits in the usual decimal
arabic numeral for n. So l h() = ; l h() = etc.
Define ˚ by m˚n = m.lh(n)+n - also recursive [computable]
If m ≠ ,m ∗ n is the number whose decimal numeral is formed by writing the decimal numeral for m
before the decimal numeral for n So ∗ is

Define num (n) as the gn of n i.e.

ntimes
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
 . . .

num(n) is defined by recursion as

num(0) = 6
num(n+1) = num(n) * 68

So num is recursive [computable].
Define diag by diag(n) = 144951414157* (num(n)*(34*(n*2222)))
diag is then recursive [computable]. QED

Lemma 7.12 If ' is a formula of L and FV(') = {x} and is the diagonalisation of ' then

N ⊧ iff N ⊧ '(⌈'⌉)

77

Q revisited

Proof '(⌈'⌉) is precisely what the diagonalisation says. QED

Theorem 7.13 (Tarski’s Theorem on the Undefinability of Truth) There is no formula ' so that
for any sentence �, N ⊧ � iff N ⊧ Ψ(⌈�⌉)

Proof Suppose there were such a formula Ψ with FV(Ψ) = {y} say. Then let '(x) be Dy('diag(x , y) ∧
¬ (y)). Now let � be the diagonalisation of '. � is then a sentence. We get a contradiction. By Lemma
7 N ⊧ �i f fN ⊧ '(⌈'⌉), but writing this out we get this happens iff N ⊧ Dy(Ψdiag(⌈'⌉, y) ∧ ¬ (y)).
But � is the diagonalisation of '! So gn(�) = diag(gn(')) soN ⊧ Ψdiag(⌈'⌉, ⌈�⌉)∧)¬ (⌈�⌉). Putting
this together we have N ⊧ �i f fN ⊧ ¬ (⌈�⌉). But by our supposition on this happens iff N ⊧ ¬�! So
there can be no such . QED
What Tarski’sTheorem shows is that there is no short-cut to finding out the truths of arithemetic: there is
no conceivable formula which is only true inN at those integers that are themselves codes of statements
that are true in N.

Exercise 1a) Determine which formulae, if any have the following as Gödel numbers
(i) 11459978862359976682 (ii) 491595975357668682 (iii) 495575
b) Code up the following formulae
(i) z = ((y ˆ ′′) + x) ∧x(x′ = ←→ x =)
Exercise 2 If n = n = , n = and x = nnn would FP f (x) =
 or ?

7.2 Q revisited

Gödel’s First IncompletenessTheorem formalised this argument, not about sentences that are true inN,
but about what things are provable from the axiom system Q, or any set of axioms extending Q . (The
argument in Tarski’s theorem above is based on an idea of Gödel’s.) An important point in the last section
was Proposition 5 asserting that all recursive functions and defining formulae in N; we shall also need
to assert at some point that all such functions are representable in some sense in the theory Q too. We
need to prove a few things about what we can prove using the axiom of Q first.
Proofs in Q follow our usual format
Example 4a) Q ⊢ ≠
1 @x@y(x′ = y′ → x = y) Q
2 @x(x′ ≠) Q
3 ≠ Partic.
4 ≠ Standard using s = t → t = s, R, and
5 = → = Partic. on
6 = Hyp
7 = r,

So Q , = ⊢ = and ≠ so by Lemma 36e) q ⊢ ≠
Example 4b Q ⊢ + =

78

7.The Incompleteness of NumberTheory

1 @x@y(x + y′) = (x + y)′ Q5
2 + ′ = (+)′ Partic. on 1
3 + ′ = (+)′ Partic on 1
4 @x(x +) = x Q
5 + = Partic. on x =
6 + ′ = ′(=)
7 + ′ = ′ Similarly using ,
8 (+) = Rewriting

The axioms of Q look natural enough (they are) and fairly innocuous theorems as above can be proved
from them. But that doesn’t mean that every sentence we normally think true in N = ⟨N, =,+,ˆ,′ , ⟩ is
provable in Q . We illustrate by means of some non-standard models of Q that this isn’t the case. N we
can think of as the standard interpretations of the axioms Q . But there are others.
Example 5N˚ = ⟨N∪{∞}.+N˚ ,ˆN˚ ,′N˚ , N˚⟩, i.e. Nwith an extra element∞ added to the domain. We
have to specify how to extend +,ˆ,′ to this new domain. We do this so that, appropriately,∞ is “bigger”
than all the n of N.
Thus:∞′ =∞ ; n +∞ =∞ =∞+ n for any n P N ∪ {∞}.
n ˆ∞ =∞ =∞ˆ n but ˆ∞ˆ =
Claim All the axioms of Q are true in N˚

The only difficulty is in verifying the axioms when∞ is used to substitute for v P N, and also if v =∞
itself.

Lemma 7.14 Q ⊬ @x(x′ ≠ x).

Proof By the SoundnessTheorem it’s enough to show there’s a model of Q in which @x(x′ = x) is false.
N˚ is such a model, as∞′ =∞ in N˚ QED
Example 6N˚˚ =< N∪{ , }, +N˚˚ ,ˆN˚˚ ,′N˚˚ , N˚˚ >where we now add two elements , . We specify
that ′ = , ′ = and + and ˆ are given by

x +N˚˚ y 0 1 n
0 0 1 ...n ...
1 1 2 ... + n ...
m m m + ... m + n ...

... ...

...

x ˆN˚˚ y 0 1 2 n
0 0 0 0 ... 0 ...
1 0 1 2 ... n ...
2 0 2 4 ... 2n
m 0 m m2 ... mn ...

0
0

Lemma 7.15 None of the following are theorems of Q (although they are true in the standard interpreta-
tion)

@x + x = x @x@yx + y = y + x

@xxx = @x@yx ˆ y = y ˆ x

Proof Exercise. QED

79

Q revisited

You might at this point think that the system Q is useless for any practical purpose. But the contrary
is true. The Representability Theorem below corrects this impression. As a prelude to explaining its
contents we look at some examples of what we can do in Q.

Lemma 7.16 For all natural numbers m, n

a) If m = n then Q ⊢ m = n b) If m ≠ n then Q ⊢ m ≠ n

Proof

a) If m = m we can use simply

1 @x x = x A6
2 @x(x = x)→ m = m A4 m = t
3 m = m R1 on 2,3

b) We already showed Q ⊢ ≠ and Q ⊢ ≠ (as an exercise). This can be generalised to any
m ≠ n. The details are uninteresting. QED

Lemma 7.17 If i + j = k then Q ⊢ i+ j = k

Proof By induction on j ∶ j = Q ⊢ i+ = k is essentially Q4 j = m + : so for some n, k = n + and
i + m = n. So by Inductive Hypothesis Q ⊢ i+m = n and this Q ⊢ (i+m)′ = n′ (using A7 and some
more). But Q ⊢ (i+m′) by Q5. So, Q ⊢ i+ j = k. QED

Corollary 7.18 If i + j ≠ k then Q ⊢ i+ j ≠ k

Proof Let i + j = n ≠ k. By the last lemma Q ⊢ i+ j = n and lemma 3 gives Q ⊢ n ≠ k

Lemma 7.19 If i j = k then Q ⊢ iˆ j = k and i j ≠ k implies Q ⊢ iˆ j ≠ k

Proof Similar to the above, exercise.
Sincewehave that i+ j = k⇔ Q ⊢ i+ j = kwe can say that the formula v+v = v of L represents addition
[meaning the common addition on N]. In general we have the following more general definition.

Definition 7.20 Let f ∶ Nk → N. f is representable in Q if there is a formula '(v, . . . , vk , vk+) [with
free variables precisely as shown] such that if p, . . . , pk , j P N and f (p, . . . , pk) = j then

(1) Q ⊢ '(p, . . . , pk , j)

(2) Q ⊢ @vk+['(p, . . . , pk , vk+)→ vk+ = j]

Example 6The projection function U i
j is represented by the formula

v = v ∧ ∧ vi = vi ∧ vi+ = v j

80

7.The Incompleteness of NumberTheory

ProofThis works because of any k, . . . , ki

⊢ (k = k ∧ . . . ∧ ki = ki ∧ vi+ = k j)↔ vi+ = k j

Example 7We have shown (Lemmas 12-14) that addition and multiplication are represented in Q by the
formulae v + v = v and v ˆ v = v

Theorem 7.21 Every recursive function is representable in Q.

[Every computable function needed to settle whether strings of symbols are
formulae/axioms/proofs/etc are representable in Q’
Proof Omitted: see Boolos & Jeffrey: Computability and Logic Ch.14. The details of the formal proofs
are rather tedious, and anyway going into recursive functions is not a part of this course.
RemarkThe converse ofTheorem 7 is also true.The recursive functions are precisely those representable
in Q. Since Q seems so weak it might be thought that adding extra axioms to Q would increase the
number of representable functions. But if Q′ Ě Q , Q′/Q is finite and every new axiom of Q′/Q is true
in N, one may show that the functions representable in Q′ are still those that are recursive.
Conclusion diag is representable in Q.

Lemma 7.22 For any formula '(x) P L, any n P N Q ⊢ Dx(x = n∧')↔ '(n /x)

ProofThis is just Exercise 3.11e)

Corollary 7.23 ' P L and be the diagonalisation of '. Then

Q ⊢ ↔ '(⌜'⌝)

Proof Use Lemma 7.22 Dx(x = n∧') is , if n is the gn of '; '(n/x) is then '(⌈'⌉)
Notice that this is analogous to Lemma 7.

Lemma 7.24 For any formulae �, ,� of L

(�↔ Dy(�(n, y) ∧ (y))), @y(�(n, y)↔ y = k) ⊢ �↔ Dy(y = k∧ (y)))

Proof Uninteresting and omitted.
This is the meat:

Lemma 7.25 (The Diagonal Lemma (Gödel)) Let T be a theory (in any language L′ Ě L) in which
diag is representable (e.g. Q). Given any formula (y) with FV() = {y}, there is a sentence � in L′

with T ⊢ �↔ (⌜�⌝)
Thus � is equivalent to the expression resulting from inserting the numeral for its own gödel number into
 .

Proof Informally: (1) Define '(x) to be Dy(y = diag(x) ∧ (y))

(2) Define � to be the diagonalisation of ', i.e. � is Dx(x = ⌜'⌝ ∧ ')

81

Q revisited

(3) By Corollary 7.23 Q ⊢ �↔ '(⌜'⌝)

But from the definition of '(x) this then gives

Q ⊢ �↔ Dy(y = diag(⌜'⌝) ∧ (y))

But � is the diagonalisation of ', so that the y above can be replaced by ⌜�⌝. So Lemma 7.22 allows us to
conclude

Q ⊢ �↔ (⌜�⌝)
Formally: Let �(x , y) represent “y = diag(x)” in T . Then for any n, k P N if diag((n) = k T ⊢
@y(�(n, y) ↔ y = k). Let '(x) be Dy(�(x , y) ∧ (y)) and let n be the gn of '. Let � be Dx(x =
m∧Dy(�(x , y) ∧ (y))). Since n = ⌜'⌝, � is the diagonalisation of '. By Lemma 7.22 we get

T ⊢ �↔ Dy(�(n, y) ∧ (y))

Let k be the gn of �. Then diag(n) = k and k = ⌈�⌉.

So as T ⊢ @y(�(n, y)↔ y = k)
T ⊢ �↔ Dy(y = k∧ (y)) By Lemma 7.24.

So T ⊢ �↔ (k) i.e. T ⊢ �↔ (⌜�⌝) QED
The diagonal lemma allows to build self-referential statements just as in Tarski’s theorem. This we do
now. First (as always) a definition.

Definition 7.26 A set X Ď N is definable in a theory T in L′ if there’s a formula
B(y) P L′ so that for any k P N

k P X ⇒ T ⊢ B(k) k /P X ⇒ T ⊢⌉B(k)

X Ď N is definable if there’s B(y, z) P L′ so that for any

k, l P N⟨k, ⟩ P X ⇒ T ⊢ B(k,)⟨k, ⟩ /P X ⇒ T ⊢ ¬B(k,)

Example 7 (in Q)

Formula defines
x = ∧ x = {, }
Dy(y + y = x) Evens
Dz(z + x = y) Set of pairs ⟨x , y⟩ so that x ≤ y.

Lemma 7.27 If T Ě Q and is consistant then the set of gn’s of theorems of T is not definable in T.

Proof diag is representable inQ and so in T . Suppose �(y) is a formula in language of T so that � defines
those integers that are gn’s of theorems of T . By the Diagonal Lemma, there is a sentence � so that.

T ⊢ �↔ ¬�(⌜�⌝) (putting ¬� for)

Let k = gn(�) then

(˚) T ⊢ �↔ ¬�(k)

We get a contradiction: suppose T /⊢ �, then k isn’t the gn of a theorem of T and so

82

7.The Incompleteness of NumberTheory

T ⊢ ¬�(k) (because � defines the set of gn’s of theorems of T)

Using the equivalence (˚) we get T ⊢ �; supposing in turn k is the gn of a theorem of T , � defines the set
of such k so T ⊢ �(k). But by (˚) then T ⊢ ¬�!! Contradiction; so there’s no such formula �(y). QED
We can now prove Tarski’sTheorem as a corollary of the above.

Corollary 7.28 (Tarski’s indefinability theorem) The set of gn’s of sentences true in N is not defin-
able in arithmetic.

ProofThe (N) is a consistent extension of Q. Apply the last lemma. QED
This is already a profound result. But Gödel’s Theorem (of which Tarski’s Theorem above was just a
corollary) shows much more: it shows that arithmetic is essentially unaxiomatisable.

Definition 7.29 A theory T is axiomatisable if there’s an [effectively] decidable subset T so that the
deductive consequences of T are precisely those of T. i.e. for any sentence, T ⊢ �⇐⇒ T ⊢ �.

This is thus a generalisation of the idea of finitely axiomatisable. If we can’t have a finite aximoatisation
of a theory, perhaps we can have an infinite one, but one in which we can effectively decide whether
a given formula is an axiom. PC already has infinitely many axioms, but we argued in §3.1 tht it was
axiomatisable in the above sense.
Example 7The theory of algebraically closed fields, or torsion free groups, is axiomatisable. We can write
a computer programme that would give us (potentially) all the axioms of fields and the axioms that say
“every polynomial of degree n has a root”, etc. The theory of algebraically closed fields is then the set of
sentences derivable from these axioms. This shows that the theory can be axiomatised by an “effectively
decidable” set of axioms. One can further show that the set of gn’s of such axioms form a decidable set
using recursive functions.
Example 8 Q is axiomatisable since it only has 7 axioms, and it’s trivial to write a program that tests
whether a number is then a gn of one of Q − Q.
The importance of axiomatisable theories is:

Proposition 7.30 Let T be an axiomatisable theory in L. Then there is a computable algorithm for gen-
erating the theorems deducible from T. i.e. there is a computer programme tha outputs gn’s of sentences �
so that T ⊢ �.

Proof Informally: we are told that there’s a computer program, P, that defines aT so that for any sentence
� T ⊢ � iff T ⊢ �, i.e. the programme outputs 1 if given a number which is a gn of a member of T, and
outputs otherwise. As in Prop 4 where we argued that we could effectively decide whether a number
was a code of a proof Q, we can now reason in the same way to say we can effectively decide whether
we have the code number of a proof from T (that ends in a sentence), where we have to make use of our
programme P as a “subroutine” to check for uses of axioms of T. The algorithm is then simple: we go
through all numbers n and check whether n codes a proof in T of a sentence, if so, we output the gn of
that sentence. QED
[Again: this does not say there is a programme P such that given the gn of sentence �, P will output 1 if
T ⊢ � and otherwise; indeed we shall see there can be no such programme.]

83

Q revisited

Lemma 7.31 If the set, S of sentences deducible from a consistent and axiomatisable set of axioms T is
complete, then it is decidable [effectively decidable].

Proof: We show effective decidability: By the last lemma let R be the programme that when fed in n,
outputs the gn of the sentence at the end of the proof in T which n codes, [where T is the decidable
set, which axiomatises T], and outputs if n doesn’t code such a proof. Now, S is complete so for any
sentence � of L, either T ⊢ � or T ⊢ � or T ⊢ ¬� (or equivalently T ⊢ � or T ⊢ ¬�). Thus as we
run the program R, after a finite number of steps in the program either R outputs the gn of � or that of
¬� (but not both as T is consistent). So, our algorithm is essentially that of Proposition 21; that, together
with completeness of S gives an algorithm for testing ‘theoremhood’ from T . QED

Theorem 7.32 (Gödel’s First Incompleteness Theorem) There is no T Ě Q, such that T is consis-
tent and completely axiomatisable.

Proof Theorem 7 stated that every recursive [computable] function is representable in Q; that is if for
example f ∶ N→ N is recursive [computable] there is a formual �(x , y) so that if f (n) = m

Q ⊢ �(n,m)

If T Ě Q then also T ⊢ �(n,m). Since � represents f we have too that if f (n) ≠ k T ⊢ ¬�(n, k). Thus
� defines the function f . Lemma 22 says that the set of consequences of T is a decidable, [effectively
decidable] set of gn’s. i.e. there’s a recursive function [computable function] f so that

f (m) = if m is the gn of a sentence provable from T
= if not.

But then if �(x , y) is the formula that defines f as above then the formula �(x) ≡ �(x ,) defines in T
the set of theorems of T . Since

if T ⊢ ' f (gn(')) = ⇒ T ⊢ �(⌜'⌝)
if T /⊢ ' f (gn(')) = ⇒ T ⊢ ¬�(⌜'⌝)

This contradicts Lemma 19. So if T Ě Q is axiomatisable, it is either incomplete or inconsistent.
QED

Remark 1) Since Q is a very weak theory the theorem is a very strong one: it includes all consistent
theories extending Q
2) This is one of the most significant theorems in logic; one can paraphrase it as saying that no matter
how we effectively extend the axiom system Q there will be truths of arithmetic that are not provable
from it.

Corollary 7.33 Arithmetic (= Th(N)) is not axiomatisable.

Proof Th(N) is itself complete and consistent. But Th(N) Ě Q. So there’s no effective set of axioms for
it. QED
Remark 3) Gödel’s Second Incompleteness theorem says something about consistency in systems extend-
ing Peano arithmetic (PA - a stronger theory thanQ). In PA (or any consistent extension T of PA) we can

84

7.The Incompleteness of NumberTheory

find a formula �(v, v) which represents the relation P f (y, n) : “y is the prime power code of a proof
of the formula ' with gn n”. If PA were inconsistent we would have PA ⊢ = . gn(−) = .
So, if PA is consistent we cannot have DyP f (y,). The theorem says PA /⊢ ¬Dy�(y,). To
paraphrase this, PA cannot prove that it itself is consistent. And similarly for any system T containing
PA. This is sometimes stated rather loosely as arithmetic cannot use arithmetical means to establish its
own consistency.

Exercise 3 Show Q ⊢ ≠ Hint: follow the format of Example 4
Q ⊢ ≠ Hint: this is easier, only use Q2
Q ⊢ + = Hint: copy Example 4
Q ⊢ . = Hint: don’t do it. Examples involving muliplication

rapidly become awkward.

However Q ⊢ @xDy(x ˆ y = y) and Q ⊢ @xDy(x + y = x) are not so hard.
Exercise 4 Convince yourself that the other axioms of Q are true in N˚.
Exercise 5 Show that Q6 is not provable from the other axioms of Q [Hint: Make a small modification to the
interpretation of ˆ in N˚.]
Exercise 6 Let T be as in Lemma 19; check the following sets for definability in such a T

(i) {gn(')∣T /⊢ ¬'}
(ii) {gn(')∣T /⊢ ¬'}
(iii) {gn(')∣T ⊢ ' or T /⊢ '}

Exercise 7 Let T Ě Q be consistent as above. Show that there is no R Ď N, definable in T , so that if T ⊢ ' then
gn(') P R, but if T ⊢ ¬' then gn(') /P R.

7.3 The Second Incompleteness Theorem

The First Incompleteness Theorem was proven by contradiction. In it we showed that any T Ě Q if
consistent and axiomatisable was incomplete. The proof by contradiction hides the fact that given T
one can explicitly find a sentence � such that T /⊢ � and T /⊢ ¬�. We proceed now to construct such a
sentence and show that it has the right properties. Assume from now on T Ě Q is axiomatisable.
Remark 3 asserted the existence of a formula �(v, v) which represents in T P f (y, n) “y is the prime
power coce of a proof of the formula ' with gn(') = n”. Thus

if P f (y, n) then T ⊢ �(y, n) and
if not P f (y, n) then T ⊢ ¬(y, n).

Further, the function f (n) = ˚n˚ is computable and so there is a formula �(v, v) so that

if f (n) = m T ⊢ �(n,m)
if f (n) ≠ m T ⊢ ¬�(n,m)

85

The Second Incompleteness Theorem

f (n) is gn(¬') if n = gn('). Thus � represents the function which returns the gn of the negation of
the formula whose gn is n.
Consider now the formula with free variable v

"(v) ∶ @v[�(v, v)→ @v(≠ (v, v)→ Dv(v ≤ v ∧ �(v, v)))]

“if there’s a proof of (the formula with gn) v then there’s a proof with smaller code number of the
negation of (the formula with gn) v”. Now apply the Diagonal Lemma. There’s a sentence � so that

T ⊢ �↔ "(⌜�⌝)

Intuitively now, "(v) asserst that if gn(') is vo, then ' is not provable. [Since we’re assuming T consis-
tent, because if T ⊢ ', "(v) says there’s a proof of ¬'with a smaller code number which is a contradic-
tion; so T /⊢ '.] But �↔ "(⌜�⌝) by R1. So, as in the last sentence � is not provable. Contradiction. But
T ⊢ ¬� implies by R1 T ⊢ ¬"(⌜�⌝). Btu notice that assuming T consistent T /⊢ �. I.e. there’s no proof of
� i.e. “for all y not P f (y, r)” (where r = gn(�)) so the antecedent of "(v) is always false. So T ⊢ "(⌜�⌝).
Contradiction! So neither T ⊢ � nor T ⊢ ¬�. So, we’ve provided a � that illustrates T ’s incompleteness.
� depends on � of course, and � in turn depends on our formula that represents the gn’s of axioms of T ,
but apart from that the procedure for obtaining � is uniform.
Actually the argument under the “converse” assumption T ⊢ ¬� had a large hole in it: I went from
assuming T /⊢ � to saying “for all natural numbers y not P f (y, r)” and therefore T ⊢ @v¬�(v, r). Then
I used the latter to say therefore T ⊢ "(⌜'⌝). But just because T ⊢ ¬�(y, r) for any y P N, doesn’t mean
T ⊢ @v¬�(v, r). � only represents P f . We put this right below.

Theorem 7.34 (Gödel-Rosser 1936) With T , ", � as above neither R ⊢ � nor T ⊢ ¬�.

Proof Let r = gn(�). Let q = gn(¬�). Let � represent the “negation” function as above. We first give an
informal proof and then a formal one.
(Informal proof). Suppose T ⊢ �. Since T ⊢ �↔ "(⌜�⌝) we have

(1) T ⊢ "(⌜�⌝).
Let k be the code number of proof of � from T . So P f (k, r) and thus

(2) T ⊢ �(k, r).
As q = gn(¬�) we have

(3) T ⊢ �(r, q).
By using Particularisation and R1 a couple of times (1) - (3) give

(4) T ⊢ Dv(v ≤ r ∧ �(v, q)).
But we’re assuming T consistent; so T /⊢ ¬�, i.e. for all n P N

(5) T ⊢ ¬�(n, q) (as � represents P f)

which contradicts (4)!

Conversely suppose T ⊢ ¬�. Let m be a code of a proof of ¬� from T so P f (m, q) and

86

7.The Incompleteness of NumberTheory

(6) T ⊢ �(m, q)

Now T ⊢ ¬"(⌜�⌝) i.e. T ⊢ ¬"(r). That is

(7) T ⊢ Dv[�(v, r) ∧ Dv[�(r, v) ∧ ¬Dv(v ≤ v ∧ �(v, v)))]].

Now from thiswe can certainly deduceT ⊢ Dv�(v, r). Why arewe not finished? Becausewe can’t
deduce from this alone that there’s some natural number n with T ⊢ �(n, r) [and so P f (n, r) and
so T ⊢ � - a contradiction.] This is the point alluded to above. But T ⊢ �(r, q) and as � represents
a function we can show

T ⊢ �(r, q) ∧ �(r, v)→ v = q, so we may use substitutability of equals and some R1 to get

(8) T ⊢ Dv[�(v, r) ∧ @v(v /≤ v ∧ ¬�(v, q))]

Using Particularistion with v = m we get

(9) T ⊢ Dv[�(v, r) ∧ (m /≤ v ∧ ¬�(m, q))]

But (6) implies then

(10) T ⊢ Dv[�(v, r) ∧m /≤ v]

So not from T we can deduce the existence of an n ≤ m so that T ⊢ �(n, r). If not P f (n, r) then
T ⊢ ¬�(n, r); so assuming T consistent P f (n, r) holds. That is, T ⊢ �. Thus T is inconsistent!

Actually some rather annoying details have again been swept under the carpet in both parts of the
above proof. What I should have used is the following proofs: for any natural number m

Q ⊢ v ≤ m ∧m ≤ v
(˚)

Q ⊢ v ≤ m → v = ∧ v = ∧ . . . ∧ v = m

I needed these facts especially just after (10) above - but in fact also implicitly used them in the
first half too.

(Formal proof). Suppose T ⊢ �. Actually everything in the informal proof is good enough as it
stands apart from the very last claim that (5) contradicts (4). Since T Ě Q we can use (˚) above
and prove T ⊢ v ≤ r→ v = ∧ v = ∧ . . . ∧ v = r.

Since we can also prove according to (5)

T ⊢ ¬�(, q) ∧ ¬�(, q) ∧ . . . ∧ ¬�(r, q)

we can with help of a suitable tautology get

T ⊢ @v¬(v ≤ r ∧ �(v, q))

which contradicts (4).

87

The Second Incompleteness Theorem

The converse, supposing T ⊢ ¬�, requires some more work. We simply rewrite the whole proof.
So assume T ⊢ ¬� and P f (m, q). Thus

T ⊢ �(m, q).But

T ⊢ �(m, q)→ @v(m ≤ v → Dv(v ≤ v ∧ �(v, q))) or

T ⊢ @v[�(m, q)→ (m ≤ v → Dv(v ≤ v ∧ �(v, q)))]
and by Particularisation

T ⊢ �(m, q)→ (m ≤ v → Dv(v ≤ v ∧ �(v, q))).
By R1 we then get

(11) T ⊢ �(q)).
Since T is consistent T /⊢ � so T ⊢ ¬�(n, r) for any n P N. Since T Ě Q, by (*) above

T ⊢ v ≤ m → v = ∧ v = ∧ . . . ∧ v = m.

By use of a suitable tautology this gives

(12) T ⊢ v ≤ m→ ¬�(v, r).

Now construct a formal proof from T ∪ {�(v, r), �(r, v)}

1 �(v, r) Hyp
2 �(r, v) Hyp
3 v ≤ m ∧m ≤ v (*)Theorem
4 m ≤ v → Dv(v ≤ v ∧ �(v, q)) (11) above
5 v ≤ ¬�(v, r) (12) above (replacing v by v)
6 ¬�(v, r) ∧ Dv(v ≤ v ∧ �(v, q)) 3, 4, 5 using R1 and tautology

P ∧ Q → [((P → R)→ (Q → S))→ R ∧ S]
7 Dv(v ≤ v ∧ �(v, q)) 1,6 using R1 and tautology

P → ((¬P ∧ Q)→ Q)
8 �(r, q) As � represents negation
9 �(r, q) ∧ �(r, v)→ v = q Likewise
10 v = q 2, 8, 9 using R1 and a tautology
11 Dv(v ≤ v ∧ �(v, v)) Using 7, 10 and an Equality Axiom.

Thus T ,�(v, r), �(r, v) ⊢ Dv(v ≤ v ∧ �(v, v))
or T ,�(v, r) ⊢ @v(�(r, v)→ Dv(v ≤ v ∧ �(v, v)))
using the DeductionTheorem and R2; and doing the same again

T ⊢ @v(�(v, r)→ @v(�(r, v)→ Dv(v ≤ v ∧ �(v, v))))

88

7.The Incompleteness of NumberTheory

i.e. T ⊢ �. Contradiction. QED

We have thus seen that the sentence � above (known appropriately enough as a Rosser sentence) whilst
true, is neither provable nor disprovable from T (although �↔ "(⌜�⌝) is provable.) � is rather compli-
cated and depends on notions of coding, gn’s, provability and so on. It is thus somewhat “metamath-
ematical” in content, whereas Q, for example, is a simple mathematical theory. It is possible to find
“undecided” strictly mathematical statements, although it wasn’t until 1976 that one was found.
We describe below what the statement is. The statement is true in so far that it is provable from set
theory, ZF, but it is not provable in Peano Arithmetic, PA. Recall that although PA has an infinite set of
axioms, the gn’s of the axioms form an effectively decidable set and every axiom of Q is provable from
PA. Thus PA Ě Q. The theory ZF Ě PA, and so since the statement is provable from ZF, it’s negation
can’t be proven from PA (unless ZF is inconsistent.) It is thus neither provable nor disprovable from PA.
Actually the statement is provable from Ramsey’s Theorem which is in turn provable from ZF. In the
following

[X]e = {Y Ď X∣Y contains e elements}}.

A partition into n disjoint pieces of [X] is a set, Xi(≤ i ≤ n), of n subsets of [X]e , so that Xi ∩ X j = ∅
is i ≠ j, and whose union is all of [X]e .

Theorem 7.35 (Ramsey’s Theorem) Let X be an infinite set and let e , n P N. If [X]e is partitioned into
n disjoint pieces then one of the Xi is infinite.

The unprovable statement in PA is a finite-version of this theorem. [Recall a natural numberm is the set
of its predecessors.]
A homogeneous subset ofm for a given partition is a subsetH Ď m so that all of [H]e ends up in precisely
one of the Xi . Let (+) be the following statement.
(+) For every e , n, k P N there is m P N, so that for every partition of [m]e into n pieces, there’s a
homogeneous subset of m for the partition of size at least k.
One can show that PA ⊢ (+). But now if we add the further simple requirement that the homogeneous
subset H must satisfy size(H) ≥min(H) and call this statement (++) then we have the following

Theorem 7.36 (Paris-Harrington Theorem; 1976) (++) can be proved from Ramsey’sTheorem thus
ZF ⊢ (++) but PA /⊢ (++).

The significance of the fact that (++) can’t be proved from PA but can from a slightly stronger theory
resides in the fact that (1) PA is a rich theory in which many theorems of number theory can be proven
and that (2) (++) is a simple statement about finite sets of natural numbers. Much simpler than the
Rosser sentence � above. The existence of “undecided” statements in PA was known since the Gödel-
Rosser result of 1936. But it took 40 years to find a purelymathematical sentence which was not provable
nor disprovable from PA.

Exercise 8 Let T Ě PA, then is the following set definable in T?

{gn(') ∣ T ⊢ ' or T ⊢ ¬', ' a sentence }

89

The Second Incompleteness Theorem

[Hint: Suppose this is definable by �(y) and take the conjunction of � with �(y) where the latter is @z[�(y, z) →
(Dx�(x , z)→ Dv ≤ x �(v , y))[; show that this defines {gn(') ∣ T ⊢ ', ' a sentence}.
Exercise 9 N ⊧ PA so does N ⊧ � or N ⊧ ¬� ?

90

