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Abstract

This article explores ways in which the Revision Theory of Truth can
be expressed in the object language. In particular, we investigate the
extent to which semantic deficiency, stable truth, and nearly stable
truth can be so expressed.

1 New questions for the Revision Theory of Truth

The Revision Theory of Truth is a class of models for the language of truth
(LT). This language of truth is intended to be a toy model for a natural
language such as English. It is intended to contain all the features that
are relevant for the logical properties of the notion of truth, and no more
than that. LT contains the first-order language of arithmetic (LPA), so as to
enable sentences to talk about themselves relative to some coding scheme.
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AH/H039791/1. The work of the third author was supported by the Alexander von
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In addition, LT contains a truth predicate T. This predicate is intended
to be a truth predicate not only for the language of arithmetic, but for the
whole of LT.

The revision theory defines formal notions of truth, falsehood, and se-
mantic deficiency (“paradoxicality”) for LT. These notions are intended to
be the analogues for LT of the notions of truth, falsehood, and semantic
deficiency of natural languages.

The basic facts about the revision theory are described in [Gupta & Belnap 1993],
which has become the locus classicus on this subject. Detailed information
about the complexity of the revision theoretic notions of truth is given in
[Welch 2001].

The aim of this article is to contribute to the deeper analysis of the
revision theory in the light of recent developments in the field of theories
of truth. This analysis is inspired by an overall standpoint that is different
from that of [Gupta & Belnap 1993].

Since the revision theory is a class of models, it belongs, like [Kripke 1975],
to the category of semantic theories of truth. The revision theory is defined
in a richer metalanguage: the language of set theory. For familiar Tarskian
reasons this is essentially so: the revision theory cannot be defined in LT
itself. A standard complaint against semantic truth theories is that they
are expressed in an “essentially richer metalanguage”. If we want to con-
struct a truth theory for English, so the argument goes, this theory has to
be formulated in English: we cannot jump outside our language. So one
of the constraints on the construction of a truth theory of our toy language
LT is that it should be formulated in LT itself.

Gupta and Belnap agree with Kripke that the notions of semantic defi-
ciency, truth, and falsehood for LT “correspond to a later stage in the de-
velopment of the language” [Kripke 1975]. This amounts to the position
that, while a language user can use the concept of truth to make correct
statements about her own language, it exceeds her powers to formulate a
correct truth theory for her own language.

Today, many authors regard the Kripkean point of view as unsatisfac-
tory.1 In their view, the models forLT that are defined in the metalanguage
are secondary. They argue that, in order not to fall prey to revenge prob-

1This critique of the Kripkean position is discussed in [Horsten 2011, chapter 2] and in
[Halbach 2011, Part I]. For the debate between the different points of view, see the essays
in [Beall 2007].
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lems, the final theory should be expressed in the object language. This
entails a shift in attention to the notions that can be expressed and the
theorems that can be proved in LT. Much of the recent work in truth theo-
ries is more in agreement with Field’s view (c.f. [Field 2008]) than with the
Kripkean view.

The new perspective can be adopted to semantic theories that origi-
nally were proposed from the Kripkean point of view. For Kripke’s own
theory of truth, this was done, in different ways, in [Feferman 1991] and
in [Halbach & Horsten 2005]. In this article, we want to do the same for
the Revision Theory of Truth.

One of the questions that Field has brought to the foreground is [Field 2008]:

Question 1. To what extent can a given theory of truth expressing the notion of
semantic deficiency be expressed in the object language?

This is a question that is just as relevant for the Revision Theory of
Truth as for Field’s own theory of truth. In [Welch 201?], the situation for
Field’s theory of truth is investigated. The main theme of the first part
of the present article is that, from a semantic point of view, the Revision
Theory is very similar to Field’s theory of truth. Field argues that seman-
tic deficiency is an irrevocably fragmented notion. He has developed a
hierarchy of deficiency predicates [Field 2008]. [Welch 201?] shows that
the maximal length of this hierarchy is exactly the first recurring ordinal ζ
of the revision sequence of models. Moreover, there are “super-liar” sen-
tences (there called “ineffable liar” sentences) which escape the Fieldian
hierarchy of deficiency predicates altogether. In the first part of this article
it is shown that the situation for the revision theory is exactly the same.
And this means that the revision theory, like Field’s truth theory, is un-
able to fully capture semantic deficiency even with a hierarchy of object
language concepts.

A second question that emerges from the new perspective is:

Question 2. To what extent does the revision theory give rise to attractive ax-
iomatic truth theories formulated in the object language?

Attempts have been made to capture the spirit of versions of the se-
mantic truth theory in [Kripke 1975] in axiomatic theories formulated in
the object language ([Feferman 1991], [Halbach & Horsten 2006], [Feferman 2008].)
Of course Kripke’s semantic account cannot be captured completely. For
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one thing, all Kripke’s fixed point models are based on the standard nat-
ural number structure; thus this class is not recursively axiomatisable.
Nonetheless, Feferman’s axiomatisation KF (for ‘Kripke-Feferman’) cap-
tures Kripke’s account in a weaker sense. Every model of KF that is based
on the natural numbers is a fixed point of Kripke’s construction [Halbach 2011,
p. 211]. Moreover, for large stages α before the minimal fixed point is
reached, the system KF proves sentences that first become true in the
model that is constructed at stage α.

To some extent, versions of the revision theory of truth have also been
connected with laws of truth ([Halbach 1994], [Gupta & Belnap 1993], [Horsten 2011]).
In the second part of this article, this research will be carried further. But
our attempts will only succeed to a limited extent. We will see that we
are not able axiomatically to capture the spirit of the revision theory to the
extent that Kripke’s theory has been captured.

The axiomatic system FS of [Friedman & Sheard 1987] is nearly stably
true. But we will argue that, from a truth theoretic point of view, FS is ulti-
mately not very attractive. The problems for FS relate to the phenomenon
(discussed in [Halbach & Horsten 2005]) that reflection principles cannot
be added to FS in a natural way, which in turn derives from the fact that
FS is ω-inconsistent.

Instead, we will concentrate on a system, which we will call PosFS
(“Positive FS”), and which is stably true. We will argue that PosFS is a
much more natural truth theory. PosFS is compositional to a high degree,
its inner logic coincides with its outer logic, and reflection principles can
be added to it in a completely straightforward way.

2 Two Revision Theoretic notions of truth

The general idea of the Revision Theory of Truth is the following. We start
with a classical model for LT. This model is transformed into a new model
again and again, thus yielding a long sequence of classical models for LT,
which are indexed by ordinal numbers. The official notion of truth for a
formula of LT is then distilled from this long sequence of models.

We only consider models that are based on the standard natural num-
ber structure. So all models that we will consider will be of the form
〈N, S〉, where N specifies the domain of discourse and the interpretation
of the arithmetical vocabulary, and S specifies the extension of the truth
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predicate.
For simplicity, let us start with the model

M0 = 〈N, ∅〉 :

the model which regards no sentence whatsoever as true. Suppose we
have a model Mα. Then the next model in the sequence is defined as fol-
lows:

Mα+1 = 〈N, {φ ∈ LT |Mα |= φ}〉.
In other words, the next model is always obtained by putting those sen-
tences in the extension of the truth predicate that are made true by the last
model that has already been obtained.

Now suppose that λ is a limit ordinal, and that all models Mβ for β < λ
have already been defined. Then

Mλ = 〈N, {φ ∈ LT | ∃β∀γ : (γ ≥ β ∧ γ < λ)⇒Mγ |= φ}〉.

In words: we put a sentence φ in the extension of the truth predicate of
Mλ if there is a ‘stage’ β before λ such that from Mβ onwards, φ is always
in the extension of the truth predicate. The sentences in the extension of
the truth predicate of Mλ are those that have ‘stabilised’ to the value True
at some stage before λ.2

This yields a chain of models that is as long as the chain of the ordinal
numbers. Elementary cardinality considerations (Cantor’s theorem) tell
us that there must be ordinals α and β such that Mα and Mβ are identical.
In other words, the chain of models must be periodic.

On the basis of this long sequence of models, one can then define the
notion of stable truth for the language LT. A sentence φ ∈ LT is said to
be stably true if at some ordinal stage α, φ enters in the extension of the
truth predicate of Mα and stays in the extension of the truth predicate in
all later models. A sentence φ ∈ LT is said to be stably false if at some
ordinal stage α, φ is outside the extension of the truth predicate of Mα

and stays out forever thereafter. A sentence that is neither stably true nor
stably false is said to be paradoxical.

Revision theorists have tentatively proposed to identify truth simpliciter
with stable truth and falsehood simpliciter with stable falsehood, whilst

2So we disregard, in this article, all other limit rules for revision sequences that have
been thought of in the literature.

5



sentences that never stabilise, such as the liar, are classified as paradoxi-
cal. But they hesitate to endorse this identification. Another strong con-
tender for identification with truth simpliciter (falsehood simpliciter) is the
slightly more complicated notion of nearly stable truth (nearly stable false-
hood). A sentence φ ∈ LT is said to be nearly stably true if for every stage
α after some stage β, there is a natural number n such that for all natural
numbers m ≥ n, φ is in the extension of the truth predicate of Mα+m. And
a sentence φ ∈ LT is said to be nearly stably false if for every stage α after
some stage β, there is a natural number n such that for all natural numbers
m ≥ n, φ is outside the extension of the truth predicate of Mα+m. In other
words, for this notion of truth we do not care what happens before any
fixed finite number of steps after any limit ordinal.

The notions of stable truth and nearly stable truth do not coincide.
Consider, for instance, the sentence

∀φ ∈ LT : ¬T(φ)↔ T(¬φ).

This sentence is false only at limit stage models in the chain of revision
models. Therefore it is nearly stably true, but not stably true.

3 Determinateness

3.1 Field’s determinacy predicates

It was observed in passing in [Welch 2008] that it is possible to effect Field’s
notion of determinateness for his theory of truth cf [Field 2003], [Field 2008]
for the set of truths in a Herzberger revision sequence. We expand on this
observation here.

We first summarise Field’s notions. Field seeks to express the defective-
ness of a simple liar sentence Q0 by the use of a determinateness operator. He
defines D(A) ≡ A∧¬(A→ ¬A). In [Field 2003] and [Field 2008] the con-
struction permits this to be A −→ (> −→ A). From the evaluations one
gives to the→ operator one can see that we can think of this as “A is true
now and was so at the previous stage”. This D operation is iterated, and
moreover transfinitely. Field in his papers has some difficult discussion
on the lengths of these possible hierarchies as iterated along ‘independent
paths’. It was shown in [Welch 201?] how to make sense of this in terms of
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the internally defined prewellorderings of where his sentences’ truth val-
ues stabilize before his ‘first acceptable point.’ (See the discussion also in
[Welch 2011].) The latter he calls ∆0 but we adopt the notation of ζ for this
point. It was shown in [Burgess 1986] that for a Herzberger sequence start-
ing from the empty hypothesis, that the sequence would repeat at the least
ζ for which there was a larger ξ with Lζ ≺Σ2 Lξ . Indeed this ordinal pair
occurs in Field’s theory as the first two acceptable points ([Welch 2008]).
We now enunciate some of Field’s desiderata for his determinateness op-
erator, really so as the reader may check that our operator will meet them,
and how very close the two behaviours are. An understanding of this
discussion is not necessary for our definitions, so the reader may with im-
punity skip ahead to 3.2 if they wish.

Field argues for the desirability of a notion of determinate truth as a way
of expressing within the language the feeling that somehow the liar is “de-
fective” and that we should have a way of expressing this. Then for him,
we see that the simple liar Q0 has ultimate value ||Q0|| = 1

2 . (We use Q’s
to avoid confusion with the levels of the Lα hierarchy, which will become
relevant soon.) DQ0 however has ultimate value 0 and so the determinate
truth value of this liar is certainly 0. In terms of D we can form by diag-
onalisation a second liar Q1 which is stronger. For this liar ||DQ1|| = 1

2 ,
but we have ||DDQ1|| = 0. This is generalisable: determinateness opera-
tors Dn are created hand-in-hand with strengthened liars Qn, and on into
the recursive transfinite forming Qα and Dα sequences, and the natural
question is how far this can go.

Field’s desiderata for such determinateness hierarchies ([Field 2008],
p256) are (using single bars for semantic values) summarised as:

• |A| = 1⇒ |DA| = 1

• |A| = 0⇒ |DA| = 0

• 0 ≺d |A| ≺d 1⇒ |DA| ≺d |A|

• |A| �d |B| ⇒ |DA| �d |DB|

In Field’s principle construction of a model, the above ≺d is the order
on the de Morgan algebra of semantic values given by the functional valu-
ations in the first ‘period’ [∆0, ∆1) between the first two acceptable points
(see his Ch 17.1.) For the most part he considers, and we will too, the
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three valued ordering of {0, 1
2 , 1}. We also have the same periodicity phe-

nomenon (indeed the same period!) in the Herzberger revision sequence
as he has for his standard construction over the usual model of arithmetic.
We shall just simply think of semantic value 1

2 as being the ‘unstable truth
value’ and write |A| = ↑ for such, but again for the purposes of compari-
son with Field’s ordering, still think of ↑ as of intermediate value between
0 and 1.

We have the liar hierarchy:
Q0 = ¬TQ0
Q1 = ¬DTQ1
Q2 = ¬DDTQ2 etc.

And by various possible devices, into the transfinite:
Qσ = ¬DσTQσ.

Then he has:

• For any σ ||Dσ+1Qσ|| = 0 6= ||DσQσ||.

Further (top of p.255) if we analyse the values of Qσ at stages, then
|Q0|α = 1

2 for every α and more generally, Qσ will have cycles consisting
of a 1

2 followed by a σ-sequence of 1’s. however for example for finite k
DkQσ has cycles of the same length but first as 1

2 then followed by k 0’s,
then 1’s.

3.2 Determinacy predicates for the revision theory

It is the aim of this section to demonstrate that these determinateness no-
tions can be decoupled from Field’s conditional →, and defined within
the Herzbergerian style theory. We shall see that we easily get similar phe-
nomena if we define for a Herzberger sequence setting a determinateness
operator Dh:

Dh A = A∧TA; Dσ+1
h A = Dh(Dσ

h A); Dλ
h A ≡ ∀σ < λ(TDσ A) f or Lim(λ)

(using again some as yet unspecified means of formally coding the infini-
tary conjunction in the limit case of the right hand side above; we shall
defer doing this properly until we see how to do it for all possible α < ζ).

8



The Liar hierarchy Qσ can be defined as above. The reader can calculate
for themselves the behaviour of these liars in a typical revision sequence
starting out with all sentences having value 0. For example DQ0 is 0 at
every stage. Again for k < ω the periodicity of Qk is k + 1 - it just simply
flips back and forth in value every k + 1 steps.

One might also point out that after limit stages various levels of the Dk
h

are equivalent: let Lim(λ), then we have Dk
h A ∈ Hλ+23 ⇔ Dm

h A ∈ Hλ+23
for any 23 < k ≤ m ≤ ω. (Again this is not special to Herzberger, but
occurs in the Fieldian principal construction too.) The reader may also
verify that the desiderata listed for D above hold also for Dh (either in the
simplified three valued form described above, or in the de Morgan algebra
form described in [Field 2008, chapter 17.1].

One may then ask how long such determinateness hierarchies can be
sensibly extended, and we can answer this in entirely analogous manner to
that for the Fieldian hierarchy, as was done in [Welch 201?]. Although the
successor stages of the two processes, Herzbergerian and Fieldian are com-
pletely different, the common liminf process at limit stages (being some
form of strong infinitary rule), means that the analyses are, up to a change
in notation, identical in spirit. As the reader may perhaps be loathe to go
through the details, we perform this task in Section 3.2.1. However those
seeking the full provenance of the arguments and ideas should consult
[Welch 201?].

We shall see the length for such hierarchies, as for Field, is ζ. The key
to doing this are the following uniform definability results:

Lemma 1. ([Welch 201?]) Wellordering Lemma) There is a single uniform
recursively enumerable method of defining a wellordering wβ of order type β from
Hβ for any limit β < Σ. This method is uniform in the sense that it is independent
of β.

This is amplified as follows:

Lemma 2. ([Welch 201?] ‘Uniform Definability’) There is a single uniform
method of arithmetically defining (a set of integers coding) the whole sequence
〈Hγ | γ < β〉from Hβ for any β < Σ. Again this method is uniform in the sense
that it is independent of β.

In the case of a successor β = γ + 1 < Σ we may even assert that there
is a single recursive function (thus independent of β) F : N2 −→ N, so
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that if we set

H =
{
〈pAq, u〉 ∈N2 | F(〈pAq, u〉) ∈ Hβ

}
then with wβ the well ordering of type β from the Wellordering Lemma
above, and u ∈ wβ, then, if u has rank γ in wβ then Hu =d f {pAq |
〈pAq, u〉 ∈ H} is nothing other than Hγ itself. Thus for such β we have a
way not only of defining simply a wellorder of type β from Hβ, but we may
recursively recover the whole prior sequence 〈Hγ | γ < β〉 from knowledge
of Hβ. Again the method is independent of β. Hence we may think of Hβ

as always encoding the whole revision sequence up to β.
The idea is that since we can recover the previous sequence from the

truth set Hβ, we in fact at stage β have a knowledge about when particular
sentences stabilize before stage β. This allows us (with the uniformity
above) to build a formula P≺(v0, v1) which when evaluated at stage β, will
be true of pAq, pBq if A has stabilized below β before B has. Of course
this evaluation, |P≺(pAq, pBq)|β, then may change later, but the eventual
values (in Field’s notation ||P≺(pAq, pBq)||) will tell us whether we really
do have this stabilization or not. We may paraphrase the above as saying
that we may work “as if” there were predicate letters Ḣα in the language
at stage β for any α < β: we can refer to the extensions of these predicates
with ease. In effect we are using the sentences that stabilize as notations
for the ordinal which is the rank of their order of stabilization.

More formally: for a sentence A we may define ρ(A) to be the least
ordinal ρ (if it exists) in a revision sequence so that the semantic value
of A is constant from stage ρ onwards. We let “ρ(A) ↓” abbreviate the
assertion that ρ(A) is defined.

We may define in the language LT a prewellordering ≺ of sentences of
stabilizing truth value: we set P≺(pAq, pBq) if and only if ρ(A) < ρ(B),
where pAq is an integer Gödel code for A. (It has to be shown that we can
do this and that P≺ is given by an LT formula.) The ordering � derived
from ≺ is a prewellordering since many sentences A may stabilize at the
same ordinal. We shall continue to use the notation of ‖A‖ but now for
the stable semantic value of the sentence A (if it exists). Thus ||A|| =
1 (or 0)↔ pAq (respectively p¬A)q ∈ Hζ .

Lemma 3. There are formulae P�(v0, v1), P≺(v0, v1) in LT so that for any sen-
tences A, B ∈ LT, we have
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‖P≺(pAq, pBq)‖ = 1 iff ρ(A) ↓, ρ(B) ↓ and ρ(A) < ρ(B);
= 0 iff ρ(A) ↓, ρ(B) ↓ and ρ(A) ≥ ρ(B);
= ↑ otherwise.

(And similarly for the formula P�.)

We abbreviate A ≺ B for ‖P≺(pAq, pBq)‖ = 1 etc. Then, if ‖A‖ = 1 (or
0) say, then {B : B ≺ A} = {B : ‖P≺(pAq, pBq)‖ = 1} is a prewellorder-
ing of order type some ordinal ξ < ζ. It is less than ζ since, recall, a
sentence’s eventual status as stably false/true or unstable is decided by,
and is reflected precisely at, ordinal stage ζ. The ordinal is highly closed
(very “admissible”) and this ensures the length of the prewellorder is no
greater than ζ (by analogy with the recursive ordinals as all having length
less than the height of the least admissible set containing ω + 1, namely
ωck

1 ). We let Field(≺) denote the set of sentences stabilizing on 0 or 1. The
next lemma shows how long these prewellorderings can be:

Lemma 4. For any ξ < ζ there is a sentence A = Aξ in Field(≺) with the order
type of {B | B ≺ A} equalling ξ.

However this is the extent of the internally definable hierarchies:

Lemma 5. Let Q(v0, v1) be a formula of LT. Define n ≺Q m if ‖Q(n, m)‖ = 1.
Suppose ≺Q is a prewellordering, and further that for any m ∈ Field(≺Q), for
any n ∈ N Q(n, m) has a stabilized value. Then ot(≺Q) ≤ ζ.

We may now define internal hierarchies of iterated determinateness
along initial segments of ≺ given by the sets {B : B ≺ A}. We may define
for any sentence C:

DC
h A ≡ ∀B ≺ C∀y(y = pDB

h Aq→ Ty).

For C ∈ Field(�) this defines a ‘genuine’ internal determinateness hierar-
chy of length ρ(C).

The definition makes sense for a general C whether or not it is in Field(�
). However if C ∈ Field(�) we may show:

Lemma 6. If C ∈ Field(�) then for all B either “B � C”or “¬B � C” is in
Hζ .
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3.2.1 Proofs of the Lemmata

First Lemma 3. This is similar to the proof offered in [Welch 201?]. By the
Uniform Definability Lemma there is a single arithmetical formula Φ that
defines over any 〈N, Hβ〉 (β < Σ) a wellorder of type β together with the
associated previous H-sets 〈Hα | α < β〉.

Thus whether a particular sentence A is stably 0, is then translatable
into a two valued arithmetic statement in the language of arithmetic aug-
mented by a symbol for Hβ, that is, or is not, true in 〈N, Hβ〉. Let |pAq|α
denote the 0/1 value that sentence A has at stage α, ie, as to whether pAq ∈
Hα or not. Let X(x) be the set-theoretic statement: “∀α∃β > α|x|β 6= |x|α”
which expresses that x is te gödel number of a sentence which has an un-
stable semantic value. Now translate this, using our Uniform Definability
Lemma, as a one place arithmetic predicate AX(v0). We assume this is
effected in such a way so that {pBq | 〈N, Hβ〉 |= AX(pBq)} is the set of
sentences unstable below β.

Note that ‖AX(x)‖ = 0↔ ρ(x) ↓. If β = δ + 1 then trivially 〈N, Hβ〉 |=
¬ÃX(n) for any sentence with code n. However if Lim(β) then 〈N, Hβ〉 |=
AX(n) will occur if n is unstable below β. In that case

|AX(n)|β = 1∧ |TpAX(n)q|β+1 = 1.

In conclusion:

ρ(x) ↓↔ ‖TAX(x)‖ = 0↔ ‖AX(x)‖ = 0

Just as in [Welch 201?], let Ψ�(x, y) be:
X(x) ∨ [¬X(x) ∧ ¬X(y)∧ if αx, αy are least so that

∀β ≥ αx∀γ ≥ αy

(
|x|β = |x|αx ∧ |y|γ = |y|αy

)
then αx ≤ αy].

Let AΨ�(v0, v1) be the translation of Ψ�(x, y) and let P�(x, y) ≡ AΨ�(x, y)
be the corresponding LT formula. We check that P� is as demanded by the
Lemma.

Claim:
‖P�(pAq, pBq)‖ = 1 iff ρ(A) ↓, ρ(B) ↓ ∧ρ(A) ≤ ρ(B)

= 0 iff ρ(A) ↓, ρ(B) ↓ ∧ρ(A) > ρ(B)
= ↑ otherwise.

Proof of Claim: Note that the first line is straightforward:
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‖P�(x, y)‖ = 1 ↔ ‖AΨ�(x, y)‖ = 1↔‖AX(x)‖ = ‖AX(y)‖ = 0 ∧
ρ(x) ≤ ρ(y).
For the second line suppose first ‖P�(x, y)‖ = 0. Then x is stable since
otherwise ‖x‖, ‖AX(x)‖ = ↑, and this would imply ‖P�(x, y)‖ =↑. Then
for arbitrarily large γ ∈ (ρ(x), ζ) we have that, if Ãα(y) is the translate
of “αy exists” then 〈N, Hγ〉 |= Ãα(y). (Consider for example any succes-
sor γ = δ + 1, then α(y) is defined below γ and is ≤ δ - it may only be
δ itself if y changed semantic value unboundedly in δ with Lim(δ).) If
〈N, Hγ〉 |= Ãα(y) and also αy as defined over 〈N, Hγ〉were greater than or
equal to ρ(x) we should have 〈N, Hγ〉 |= ÃΨ�(x, y). However ‖AΨ�(x, y)‖
is supposed to be 0, i.e. to have a zero value on a final segment below ζ.
So for such γ we always must have αy < ρ(x). However that implies
ρ(y) ↓ ∧ ρ(y) < ρ(x).

The converse is straightforward. Hence ‖P�(x, y)‖ =↑ in the remain-
ing cases. The definition of P≺(x, y) is done analogously. QED Lemma 3.

Proof of Lemma 4 It suffices to show that ζ0 =d f ot(≺) = ζ. Note first
that ζ0 ≤ ζ since by definition of ζ it is the least point where the revision
sequence starts to cycle, i.e. any sentence that is going to stabilize will do
so by stage ζ. We show that ζ0 ≥ ζ. We summarise the idea as follows:
since we have a recursive function G : N → N with the Σ2-Theory of
Lζ the preimage under G of Hζ , part of that theory contains the sentences

“n ∈ Field(wζ)” and “n <wζ
m” where wζ is the uniformly Σ

Lζ

2 well order
of type ζ. Since such set-theoretic sentences “settle down” in order type ζ
the corresponding arithmetical sentences G(pn ∈ Field(wζ)q) settle down
into Hζ also in the same order type. This is worked out in detail below.

As intimated, we have a canonical Σ
Lζ

2 definable partial function gζ ; ω −→
ζ which is onto, for any α if nα is such that gζ(nα) = α, the statement Φα:
“nα ∈ dom(g)” is part of the Σ2-theory of Lζ , which itself is true in some
Lρ(α) onwards. We shall show that there is a ζ-long sequence, S, of α so that
for α < α′ ∈ S, ρ(α) < ρ(α′). Assuming for the moment this is shown, T2

ζ ,
the Σ2-theory of Lζ is recursive in Hζ , (Lζ being a model of Σ1-Separation);
let G be (1-1) and recursive witnessing that T2

ζ ≤1 Hζ . There is then some
Aα ∈ Hζ so that G(Φα) = Aα. The value of |Aα|β is then stable from
ρ(α) onwards. As the ρ(α)’s form a ζ-sequence unbounded in ζ, this will
establish that ζ0 ≥ ζ as required.
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We take S = S1
ζ =d f {α | Lα ≺Σ1 Lζ}. By the reflection property that

defines ζ as the least such that there is Σ > ζ with Lζ ≺Σ2 LΣ, one may
show that S is unbounded in ζ and has order type ζ. We use the definition
of ρ(α) from Φα, in the last paragraph.

Claim For α ∈ S, α′ > ρ(α) ≥ α where α′ is the least element of S above α.
Hence for α < α′ ∈ S, ρ(α) < ρ(α′).

Proof of Claim: Let α, α′ be as asserted in the Claim. We reemphasise:
(1) The definition of gζ is uniform in ζ, meaning that gβ (for limit β)

is defined over Lβ by the same definition. There is thus some Ψ(v0, v1) ≡
∃u∀vχ(u, v, v0, v1) with χ Σ0, so that Lβ |= Ψ(n, β) iff gβ(n) = β, with the
same Ψ(v0, v1) defining a partial function gβ over each such β for Lim∩Σ.

Moreover:
(2) Lα |=“gα(n) = β” =⇒ Lζ |=“gζ(n) = β” .
Proof of (2): This is because α ∈ S1

ζ , and so the Σ2 formula Ψ(n, β) ≡
gα(n) = β persists up to Lζ . Q.E.D.(2)

This directly implies:
(3) gζ ∩ (ω× α) = gα (for α ∈ S).

If gζ(nα) = α, then this statement cannot have become true before α (since
Lα |= “gα(nα) is undefined”. Hence ρ(α) ≥ α. However by (3)

Lα′ |= “gα′(nα) = α“

and by (2) this is stabilized. Hence α′ > ρ(α). Q.E.D.(Claim) & Lemma 4

Proof of Lemma 6: (This proof is almost verbatim that of [Welch 201?], Lemma
16 but is again included for completeness.) Note that B � C0 implies

‖“¬∃σ∃ρ[σ > ρ = ρ(C0) ∧ |B|σ 6= |B|σ+1]”‖ = 1,

whilst B � C0 implies that this stable value is 0. Using our translations
outlined above, the statement within quotes in the last displayed line, has
a translation into arithmetic about the 〈N, Hβ〉. Thus, “ρ = ρ(C0)” can be
written out using the ‘stability’ formula X(v0) and corresponding AX(v0).
Then questions concerning whether B � C0 or not can be answered by
consulting Hζ . Q.E.D.

It is tedious to check, but not very hard to verify, that the same results
hold for the revision theoretic notion of nearly stable truth. This was to be
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expected, given the fact that the complexity of the notion of nearly stable
truth is the same as the complexity of the notion of stable truth.

3.3 Beating the determinateness hierarchy

The foregoing may suggest that there exists a situation of “Mutual As-
sured Destruction” between strengthened liar sentences on the one hand,
and the hierarchy of indeterminateness predicates on the other hand. But
this is not quite correct. There are super-liar sentences such that their para-
doxicality is not stably attested by any of the indeterminacy predicates in
the revision-theoretic hierarchy. Intuitively, what happens is this. Liar-
like sentences change their truth value periodically. Liar-like sentences
that have a large period can only be “caught” by indeterminacy predi-
cates higher up in the hierarchy. But there are liar-like sentences of which
the period is so long that they escape the revision-theoretic indeterminacy
hierarchy altogether.

In the Fieldian setting, the situation is similar. Even though every time
a super-liar “diagonalises out” of a given indeterminacy predicate, it is
captured by an indeterminacy predicate of the next higher order. Nonethe-
less, an ineffable liar exists that escapes all predicates in the Fieldian inde-
terminacy hierarchy. This reinforces our conclusion that as far as the treat-
ment of super-liar sentences is concerned, Field’s theory does not hold any
advantages over the revision theory of truth.

Now, as we have said earlier, the mathematical models that Field pro-
duces should not be identified with his theory of truth. Nonetheless, his
models are intended to serve as models in which we see the logical be-
haviour of truth and determinacy in action. One of the two selling points
of Field’s truth theory is that it claims to solve the problem of the strength-
ened liar paradox. (The other is that it specifies a way in which the unre-
stricted Tarski-bicondationals can be taken to hold.) The phenomenon of
ineffable liars therefore does show that Field has more work to do before
we can be convinced that the problem of the strengthened liar has been
laid to rest.3

Here we analyse the situation in the simpler but relevantly similar set-
ting of the revision theory. There exist also in the revision theory no “pe-
riodic” sentences with periods less than Σ that escape the indeterminacy

3For more on the analogue in the Fieldian setting, see [Welch 201?].
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hierarchy. This is because any “course-of-values-periodic” sentence with a
period < Σ actually has one with period < ζ (by the reflecting properties
of Lζ).) But there is a sentence σ so that for any δ < Σ there are γ > ρ > δ
with σ having the same value in the interval [γ, γ + ρ) and the opposite
value in [γ + ρ, γ + ρ.2). Such a sentence can not be dominated ( = made
“determinately 0 ”) by any determinateness predicate in the internal hi-
erarchy: it is too “sporadic”. (Although it does have a period: namely Σ
itself.) Hence these sporadic sentences form a subclass of the unstables not
in Hζ which outwit all the determinateness predicates as defined above. In
a precise sense it is these sporadic sentences that “diagonalise out” of the
sets internally definable by using 〈N, Hζ〉: for C ∈ Field(�) those A with
||DC

h (A)|| = 0 form an internally definable class (meaning that there is
a formula ϕ(v0) which has stable value 1 for ϕ(A) iff “DC

h (A) = 0” has
stable value 1 — this is only repeating the text). So even though such A
are unstable, we can internally categorise them so to speak. The sporadics
ineffably defy such definable defectiveness categorisations.

Let us now look at the details.

Proposition 1. There are sentences C ∈ LT so that for any determinateness
predicate DB with B ∈ Field(�) ‖DB(QC)‖ =↑, that is DB(QC) is unsta-
ble. Thus the defectiveness of QC is not measured by any such determinateness
predicate definable within the LT language.

Proof: Further, as N ∈ Lω+1 and the successive levels of the revision
construction are performed using very absolute processes, we may con-
sider running the construction ‘inside of’ the L-hierarchy. The ordinals
ζ, Σ are highly closed, and in fact highly admissible. We set ADM+ =
ADM∩ ADM∗ to be the class of admissible limits of admissible ordinals,
We may define predicates in the language of set theory that give us the
range of semantic values of sentences along the Herzberger iteration. So
that, if τ ∈ ADM+ then (|A|γ = i)Lτ ↔ |A|γ = i, (in other words that
A ∈ Hγ ↔ (A ∈ Hγ)Lτ . Thus the construction is absolute to Lτ. We can
see readily what happens for small ordinal iterations of D: if α < σ then
Dα(Qσ) cycles through an α-sequence of 0’s, and then a tail of 1’s mak-
ing a σ-sequence altogether, before looping around again. Dσ(Qσ) will
cycle through a σ-sequence of 0’s before repeating; finally Dσ+1(Qσ) will
be always 0. Hence ‖Dσ+1(Qσ)‖ = 0, and thus the ‘defectiveness’ of Qσ

is affirmed by this sentence. Essentially the same picture is intended for
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these extended operators, where now α, σ etc. are replaced by sentences
B, C, · · · as notations.

(1) There are ordinals Σ > γ > ξ > ζ and a sentence C with γ ∈ ADM+

and
Lγ |=“ρ(C) = ξ.”

Proof: If not, then the following is true in LΣ:

y = ζ ↔ y ∈ ADM+ ∧Ly |=“∀ξ∃C(ρ(C) = ξ)”∧
∧∀y′ ∈ ADM+(y′ > y −→ Ly′ |=“∀C(ρ(C) ↓−→ ρ(C) ≤ y).”

Being in ADM+ is a ∆1 notion, as are the satisfaction relations involv-
ing Ly, Ly′ . We note that ζ ∈ ADM+, The second conjunct holds since
rk(�) = ζ, and all B ∈ Field(�) have stabilized by stage ζ. The last con-
junct is our hypothesis. However this would imply that ζ is Π1 definable
(by the above definition) without using any other parameters in LΣ). But it
is not: only sets in Lζ can be Σ2 definable without parameters in LΣ (since
Lζ ≺Σ2 LΣ). It particular ζ itself is not so definable. Q.E.D.(1)

Let C be as guaranteed in (1). Let ζ̄ < ζ be arbitrary. Then we have (as
a restatement, and weakening, of the above):

(2) LΣ |=“∃γ ∈ ADM+(Lγ |= ρ(C) > ζ̄) .”

By Σ1-elementarity then:

(3) Lζ |=“∃γ ∈ ADM+(Lγ |= ρ(C) > ζ̄) ”.

But ζ̄ was arbitrarily large below ζ, thus, in fact:

(4) Lζ |=“∀ζ̄∃γ > ζ̄(γ ∈ ADM+ ∧Lγ |= ρ(C) > ζ̄) ”.

The claim is that, staying with this C, that it satisfies the proposition.
Pick any B ∈ Field(�). It suffices to show that

(5) ∀τ̄ < ζ∃τ > τ̄(τ < ζ ∧ |DB(QC)|τ 6= 0).
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Proof (5): Taking τ̄ any ordinal greater than ρ(B), then by (3) (with τ̄
as ζ̄ there) there is γ ∈ ADM+ with Lγ |= ρ(C) > ρ(B). By choice, γ is
an admissible limit of admissibles, so γ iterations of the Fieldian construc-
tion can be effected inside Lγ. But then inside Lγ we see the usual pic-
ture of the cycling semantic values of 0, 0, , . . . (for ρ(B) steps) and 1’s for
ρ(C)− ρ(B) steps, then repeating this pattern. Consequently, with τ = γ
we see |DB(QC)|τ 6= 0. Q.E.D.(5) & Proposition.

In fact we can say a little more about such a C: (4) is a Π2 sentence
about C, true in Lζ and so goes up to be true in LΣ. So for such a C, it has
arbitrarily large �-rank, but locally in varying Lγ. One may call such a C
sporadic. The non-stabilizing sentences in Field’s model are of two kinds:
those that exhibit a periodic behaviour with some fixed period ξ < ζ, (and
for every ξ < ζ there will be such) and the sporadics like C, which have
no periodic behaviour at all below Σ: if we want to assign a ‘period’ to C
it has to be Σ itself.

4 Principles of nearly stable truth

Now we turn to the sentences which the Revision Theory regards as true.
We have seen before that the Revision Theory offers two alternatives. Ei-
ther truth is to be identified with stable truth, or truth should be identified
with nearly stable truth. We first consider the second alternative.

Friedman and Sheard have proposed an axiomatic theory of self-referential
truth which is called FS [Friedman & Sheard 1987]. Friedman and Sheard
gave a slightly different list of axioms (and they did not call their system
FS), but the following list is equivalent to their system:4

FS1 PAT, which is Peano Arithmetic with occurrences of T allowed in the
induction scheme;

FS2 ∀ atomic φ ∈ LPA : T(φ)↔ val+(φ),
where val+ is formula of val+ that defines the atomic arithmetical
truth;

4This formulation of FS is due to Halbach: see [Halbach 1994]. In the interest of read-
ability, we are somewhat sloppy with notation here. The correct notation is explained in
[Halbach 2011, Part I, section 5].
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FS3 ∀φ ∈ LT : T(¬φ)↔ ¬T(φ);

FS4 ∀φ, ψ ∈ LT : T(φ ∧ ψ)↔ T(φ) ∧ T(ψ);

FS5 ∀φ(x) ∈ LT : T(∀xφ(x))↔ ∀tT(φ(t/x)).

Moreover, FS contains two extra rules of inference, which are called Neces-
sitation (NEC) and Co-Necessitation (CONEC), respectively:

NEC From a proof of φ, infer T(φ);

CONEC From a proof of T(φ), infer φ.

Let us consider the axioms and rules of FS. The compositional axioms
of FS show that it seeks to reflect the intuition of the compositionality of
truth in a type-free setting. In this sense, FS can be seen as a natural ex-
tension of the typed compositional theory of truth. In fact, the axioms are
exactly like the axioms of the typed compositional theory of truth,5 except
that in FS the compositional axioms quantify over the entire language of
truth instead of only over LPA. But if we disregard the rules of inference
NEC and CONEC, this does not help us in any way in proving iterated
truth statements. The reason is that the truth axiom for atomic sentences
only quantifies over atomic arithmetical sentences.

FS is the result of maximising the intuition of the compositionality
of truth. Nevertheless, the truth of truth attribution statements is in FS
only in a weaker sense compositionally determined than the truth of other
statements. For FS only claims that if a truth attribution has been proved,
then this truth attribution can be regarded as true (and conversely), whereas
for a conjunctive statement, for instance, FS makes the stronger hypothet-
ical claim that if it is true, then both its conjuncts are true also (and con-
versely). But it is necessarily that way. If we replace NEC and the CONEC
by the corresponding axiom schemes, an inconsistent theory results.

Proposition 2. The theorems of FS are all nearly stably true.

Proof. This is established by first showing that all the axioms of FS are
nearly stably true, and by subsequently showing that the nearly stable
truths are closed under the inference rules φ ⇒ T(φ) and φ ⇒ T(φ). This
is routine.

5See [Horsten 2011, chapter 6].
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Proposition 2 itself is proved in [Gupta & Belnap 1993, p. 222]. It entails
that FS is consistent (for the nearly stable truths are consistent) and indeed
arithmetically sound (all the models in the nearly stable truth-sequence are
based on the natural numbers). These facts are not new: the former fact
is already proved in [Friedman & Sheard 1987]; a proof of the latter fact is
given in [Halbach 1994]. [Halbach 1994] in fact gives an exact computation
of the arithmetical strength of FS:

Theorem 1. The arithmetical theorems of FS coincide with the first-order arith-
metical consequences of ramified analysis up to stage ω (RA<ω).

It follows from the main result of [McGee 1992] that FS is ω-inconsistent.
To this end, we consider the sentence γ such that

PA ` γ↔ ∃n > 0 : ¬Tnγ,

which is obtained as an application of the diagonal lemma. We see that:

Lemma 7. FS ` Tγ→ γ

Proof. We reason in FS. Suppose Tγ, i.e., T∃n > 0 : ¬Tnγ. By the compo-
sitional axioms of FS, this entails ∃n > 0 : ¬TTnγ, i.e. ∃n > 0 : ¬Tn+1γ.
And this in turn entails ∃n > 0 : ¬Tnγ.

Using this lemma, it is easy to see that:

Theorem 2 (McGee). FS is ω-inconsistent.

Proof. We reason in FS. Suppose ¬γ. Then ∀n > 0 : Tnγ. Therefore
Tγ, and by the previous lemma, we obtain γ. So FS ` ∃n > 0 : ¬Tnγ.
But by repeated application of the Necessitation rule, FS then also proves
Tγ, T2γ, T3γ, . . ..

Combining this with proposition 2, this yields [Gupta & Belnap 1993,
p. 225–227]:

Corollary 1. The class of nearly stable truths is ω-inconsistent.
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It is often said that when one accepts a theory T, then one is implicitly
committed to accepting the soundness of T. In other words, when one ac-
cepts T, then one is implicitly committed to the global reflection principle
for T.

It goes virtually without saying that the arithmetical global reflection
principle

∀φ ∈ LPA : BewFS(φ)→ Tφ

can be consistently added to FS (and it increases the arithmetical strength
of FS). Indeed, this reflection principle is made true by all models in revi-
sion sequences, except perhaps for the initial model. And this process of
adding an arithmetical reflection principle can be iterated in the familiar
way.

But, somewhat remarkably, its truth-theoretic generalization

∀φ ∈ LT : BewFS(φ)→ Tφ,

which is called the global reflection principle for FS, cannot be consistently
added to FS [Halbach & Horsten 2005, p. 213]:

Proposition 3. FS plus the global reflection principle for FS is inconsistent.

Proof. We have seen how FS ` ∃n¬Tnγ. Now FS (indeed, already PA)
proves also that ∀n BewFS Tnγ. So, by the global reflection principle, FS
concludes that ∀nTTnγ. From this, FS obtains ∀nTnγ, a contradiction.

This means that FS is a theory that is not naturally extendible by means
of reflection principles. One can consistently extend it by means of the
modified reflection principle

∀φ ∈ LT∃n : Tn[BewFS(φ)→ Tφ]

As the reader can readily verify, this modified reflection principle is nearly
stably true. But it is not a very natural principle. So it is hard to escape the
conclusion that the system FS is not open-ended in desirable ways. This
makes FS rather unattractive as a truth theory, despite the defence that
[Halbach & Horsten 2005] have tried to give of this system.
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5 Principles of stable truth

The compositional axioms fail at limit stages in the sequences that build
up nearly stable truth, so FS does not belong to the nearly stable truths
[Gupta & Belnap 1993, p. 222]. Instead, the stable truths contain a T-positive
theory, which we will call PosFS [Horsten 2011, chapter 8]:6

PFS1 PAT;

PFS2 ∀ atomic φ ∈ LPA : T(φ)↔ val+(φ);

PFS3 ∀ atomic φ ∈ LPA : T(¬φ) ↔ val−(φ), where val−(φ) is an arith-
metical formula that defines the atomic arithmetical falsehoods;

PFS4 ∀φ, ψ ∈ LT : T(φ ∧ ψ)↔ (T(φ) ∧ T(ψ));

PFS5 ∀φ, ψ ∈ LT : (T(¬φ) ∨ T(¬ψ))→ T(¬(φ ∧ ψ));

PFS6 ∀φ, ψ ∈ LT : (T(φ) ∧ T¬(φ ∧ ¬ψ)→ T(ψ);

PFS7 ∀φ(x) ∈ LT : ∃tT(¬φ(t/x))→ T(¬∀xφ(x));

PFS8 ∀φ ∈ LT : ¬(T(φ) ∧ T(¬φ)) (CONS);

NEC;

CONEC.

It is clear that PosFS is a subtheory of FS. It is also clear that PosFS is not
a sub-theory of Feferman’s theory KF: the sentence T(λ ∨ ¬λ), where λ is
the liar sentence, is provable in PosFS but is not a theorem of KF.

An induction on the length of proofs teaches us that [Horsten 2011,
chapter 8]:

Theorem 3. PosFS is stably true.

Indeed, we have seen in section 2 that the axiom stating that negation
commutes with the truth predicate (FS3) is not stably true. This motivates
us to ‘positivise’ FS in the same way as KF can be seen as resulting from a
‘positivisation’ of the unrestricted type-free compositional theory of truth

6For an early attempt to axiomatise stable truth, see [Turner 1990].
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(which is of course inconsistent). However, we see that not all of the ‘pos-
itive’ FS-axioms are stably true. In particular, the converse directions of
PFS5 and PFS7, as well as the principle FS5 are not stably true. Therefore
they are not included in the list of axioms of PosFS.

Theorem 4. PosFS proves no more arithmetical statements than PA.

Proof. PosFS is a sub-theory of the theory of truth E analysed in [Leigh 201?],
which is a conservative extension of PA.

5.1 Reflection principles

Unlike FS, PosFS is consistent with its global reflection principle: Since
PosFS is stably true, so to is the statement

∀φ ∈ LT : BewPosFS(φ)→ Tφ;

it becomes true at stage ω. In order to gauge the strength of this principle
over PosFS, we should compare it to arithmetical reflection principles.

Over arithmetical theories there are two natural candidates for reflec-
tion principles:

• Local Reflection RfnL(S): BewS φ→ φ for each sentence φ of L;

• Uniform Reflection RFNL(S): ∀x(BewSpφ(ẋ)q → φ(x)) for each φ
from L.

Provided S is a consistent theory, neither principle is derivable in S for
regular choices of L (e.g. L contains Πn for some n > 0). Moreover, the
uniform reflection principle is proof-theoretically stronger than local re-
flection in that S+RFNL(S) ` Consis(S+RfnL(S)) for any theory S. Other
forms of reflection include the schema (∀x BewSpφ(ẋ)q) → ∀xφ and the
rule from a proof of ∀x : BewSpφ(ẋ)q, infer ∀xφ both of which are equivalent
to uniform reflection. 7

Let GRPL(S) be the global reflection principle for the theory S over L,
that is

∀φ ∈ L : BewS(φ)→ Tφ. (GRPL(S))

7For a detailed presentation of arithmetical reflection principles we refer the reader to
[Beklemishev 2005].
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While the global reflection principle (stated for a theory S) is the natu-
ral truth-theoretic version of the local reflection principle, under mild as-
sumptions it is also a generalisation of uniform reflection. For example,
let OutL denote the schema Tφ(ẋ) → φ(x) for φ from L, and Out−L the
restriction to the case φ is a sentence. Then

S + Out−L + GRPL(S′) ` RfnL(S′)
S + OutL + GRPL(S′) ` RFNL(S′)

for any theories S, S′. A more conservative approach would be to replace
OutL by CONEC; again whether or not parameters are permitted makes
an important difference.

Let CONEC+ denote the rule of co-Necessitation with parameters, that
is, the rule

CONEC+ From a proof of ∀x : Tφ(ẋ), infer ∀xφ.

Proposition 4. Suppose S is any theory formulated in the language LT ∪ L.
Then S + CONEC+ is a sub-theory of S + CONEC + FS5 and

S + CONEC+ + GRPL(S′) ` RFNL(S′).

Proof. The first part is straightforward as FS5 allows applications of CONEC
with parameters to be replaced by applications of parameterless CONEC.

For the second part let S+ denote the theory S+CONEC+ +GRPL(S′)
and suppose S+ ` ∀x : BewS′ φ(ẋ). Then S+ ` ∀x : Tφ(ẋ) and so S+ ` ∀xφ
by CONEC+. Therfore the rule from BewS′ φ(ẋ) infer φ(x) for φ in L is
admissible in S+ and S+ ` RFNL(S′).

Contrary to the case with Out−L , the addition of CONEC alone does not
necessitate the derivation of new arithmetical theorems.

Proposition 5. Consis(PA) is not derivable in PAT + GRPLT(PA) + CONEC.

Proof. Define ∗ : LT → LPA to be the interpretation that commutes with
all connectives and quantifiers, leaves arithmetical formulae unchanged
and maps Tφ to BewPA φ. It should be clear that if φ is a theorem of PAT +
GRPLPA(PA) +CONEC then φ∗ is provable in PA augmented with the rule
from BewPA φ infer φ. However, the rule from BewT φ infer φ is admissible
in T whenever T is Σ1-sound, so φ∗ is derivable in PA. On the other hand,
Consis(PA) is not a theorem of PA.
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That said, with CONS at hand, the global reflection principle does yield
new arithmetical theorems.

Proposition 6. S + CONS + GRPLS(S) ` Consis(S).

Proposition 4 shows that over FS5 (and hence over FS), the rules CONEC
and CONEC+ are equivalent. With PosFS as a base theory though, there is
a stark difference between the two rules.

The real interest with global reflection principles is not in their sin-
gle application but rather in iterating them. As we have seen, PosFS +
GRPLT(PosFS) is stably true and hence so is its own global reflection prin-
ciple, τ1 ≡ GRPLT(PosFS + GRPLT(PosFS)). But then so is the global re-
flection principle τ2 ≡ GRPLT(PosFS + τ1) and so on.

In the following we shall analyse iterated global reflection over two
theories: PosFS and PosFS + CONEC+.

Definition 1. Let PosFS+ denote PosFS + CONEC+. We define, for each ordi-
nal λ, two formulae expressing iterated global reflection over respectively PosFS
and PosFS+:

τλ ≡ GRPLT(PosFS + {τκ | κ < λ}).
τ+

λ ≡ GRPLT(PosFS+ + {τ+
κ | κ < λ}),

We abbreviate the theories PosFS+ τκ and PosFS+ + τ+
κ by PosFSκ and PosFS+

κ

respectively.

It should be clear that both PosFSκ and PosFS+
κ are stably true for all κ;

they become true at stage ω× (1+ κ). Moreover, as corollaries of proposi-
tions 4 and 6 we immediately obtain lower bounds on the proof-theoretic
strength of the two theories in terms of iterated consistency and reflec-
tion over arithmetic. As we shall see, however, the latter result can be
improved upon.

Definition 2. Let PAκ denote the expansion of PA by κ-times iterated uniform
reflection. Explicitly, for each ordinal κ, PAκ is defined as the theory PA +⋃

λ<κ RFNLPA(PAλ). By PA−κ , we refer to the sub-theory of PAκ in which only
uniform reflection for Π0

2 formulae is iterated. That is, for each κ, PA−κ = PA +⋃
λ<κ RFNΠ0

2
(PAλ).
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Proposition 7. PA−
ω×(κ+1) is a sub-theory of PosFSκ and PAκ+1 is a sub-theory

of PosFS+
κ for every κ.

Proof. The second claim, namely that PAκ+1 is a sub-theory of PosFS+
κ is a

consequence of iterating proposition 4. To see the first part, observe that
by the axioms of PosFS,

PosFS ` ∀x : Tpφ(ẋ)q→ φ(x) (1)

if φ is a Σ0
0. Moreover, PosFS ` GRPL(IΣ1), where IΣ1 is the sub-theory

of PA which consists of the induction schema for Σ0
1 formulae only. By

formalising the Σ1 soundness of of IΣ1 we therefore obtain PosFS ` ∀φ ∈
Σ0

1∃x : T(∃xφ → φ(ẋ)), so (1) holds for φ ∈ Σ0
1. But then, trivially, it

also holds for φ ∈ Π0
2, so PosFS + τ0 ` RFNΠ0

2
(PA). However, RFNΠ0

2
(S)

is expressible as a single Π0
2 formula (using a partial truth predicate), so

by NEC, PosFS + τ0 ` GRPL(PA−1 ) and hence RFNΠ0
2
(PA−1 ) is derivable

in PosFS + τ0. Iterating the argument yields PosFS + τn ` RFNΠ0
2
(PA−n )

for every n. From this it is easy to deduce that in general PA−
ω×(κ+1) is a

sub-theory of PosFS + τκ.

5.2 Reflecting on positive truth

We seek to determine upper bounds on the arithmetical strength of PosFSκ

(and PosFS+
κ ) for each κ (bounded, say, by Γ0). This occurs in three steps.

We first stratify the construction of PosFSκ, dropping the rule co-necessitation
and distinguishing applications of necessitation, to obtain a hierarchy of
theories Pα for α < ω × (κ + 1). Then, it is proven that co-necessitation is
admissible in each Pα, whence we deduce that all theorems of PosFSκ are
derivable in Pλ for some λ < κ× (ω + 1). Finally, we prove that each level
of the hierarchy can be interpreted in a suitable extension of PA, whereby
we obtain an embedding of PosFSκ into arithmetic that preserves truth-free
formulae.

We begin with the theories PosFSκ, that is κ-times iterated global reflec-
tion over PosFS. Define a transfinite hierarchy of theories Pn

α for α, n < Γ0
as follows. P0

0 is the theory whose axioms are those of PosFS. Note that P0
0

is not by definition closed under either of the rules NEC or CONEC. For
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each α > 0 and n we then set

Pn+1
α = Pn

α + {Tψ | Pn
α ` ψ}

P0
α = P<α + GRPLT(PosFS<α),

where P<α is the collection of axioms of Pn
β for each β < α and each n.

Notice that if Pn
α ` φ then Pn+1

α ` Tφ, so for each κ, P<κ forms a theory
closed under NEC. If we establish that Pn

α is also closed under CONEC for
every α < κ and n < ω, then clearly PosFSκ is a sub-theory of P<κ+1.

In essence, the reduction of the PosFSα hierarchy to the Pn
α hierarchy

will proceed by formalising the model-theoretic proof that PosFSα is sta-
bly true. In place of the semantic predicate Mα |= φ we will use the formal
predicate Sα ` φ†α, where S is some suitably chosen arithmetical theory
and †α is an interpretation from LT into L, both depending on α. As in
the consistency proof for PosFSα, we argue by transfinite induction, show-
ing that all theorems of PosFS<α are stably true, whence deducing that
GRPLT(PosFS<β) is too.

We can now fix the interpretations †α and target theory Sα that we shall
work with. These will turn out to be the natural choices for carrying out
the proof (Sα will not only be the target theory, but also the background
theory for the reduction). For Sα we choose PA−α . The interpretation †α is
defined so that

a) †α commutes with all connectives and quantifiers;

b) φ†α = φ if φ is in LPA;

c) (Tψ)†α is the formula ∃γ∃n : ω× γ + n < α ∧ BewPn
α

ψ.

A crucial part of the proof outlined above is the use of transfinite induc-
tion. In formal systems the schema of transfinite induction up to κ < Γ0,
denoted TIn(κ), is the axiom schema

(∀α : ∀β < αφ(β)→ φ(α))→ ∀α < κ̄ : φ(α)

for each Π0
n formula φ. An important point to note is that the schema

TI2(β̄) for all β < α is provable in PAα [Schmerl 1979]. The proof of the
next lemma is straightforward.

Lemma 8. For every κ, PA−κ+1 ` ∀γ∀n : ω× γ + n < κ̄ → Consis(Pn
α).
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Lemma 9. Let κ = ωλ with λ > ω. Then the following are derivable in PA−κ for
each α < κ.

1. ∀β ≤ ᾱ∀n∀φ : Pn
β ` φ→ (∀γ ≥ ω× β + n)PA−γ ` φ†γ.

2. ∀β ≤ ᾱ∀n∀ψ : Pn
β ` Tψ→ Pn

β ` ψ.

3. ∀β ≤ ᾱ∀φ : PosFS−β ` φ→ P<β+1 ` φ.

Proof. We proceed by (meta-)transfinite induction on κ arguing within PA−κ .
Each of 1, 2 and 3 will be proved by formal transfinite induction on β ≤ α
and, in the case of 1, 2 with a subsidiary induction on n. Notice that in
each case, the formula we are applying transfinite induction to is Π0

2.
We begin with 1. Let γ ≥ ω× β + n be arbitrary. The case β = n = 0 is

straightforward given lemma 8. We prove the case β > 0 by induction on
n. Suppose Pn

β ` φ. There are four prevailing cases to consider:

a) n = 0 and P<β ` φ;

b) n = 0 and φ = GRPLT(PosFS−<β);

c) n = m + 1 > 0 and φ is an axiom of Pm
β ;

d) n = m + 1 > 0 and φ = Tψ with Pm
β ` ψ.

Suppose case (a) applies. Then φ is an axiom of the theory Pp
δ for some δ <

β and p < ω, whence γ > ω × δ + p and the induction hypothesis for 1
yields PA−γ ` φ†γ as desired. Case (c) is similar. (b) is a consequence of the
main induction hypothesis for 3, which implies PA−β ` ∀φ : PosFS−<βφ →
P<β ` φ. Finally, to see (d) suppose Pm

β ` ψ for some m < n. Then
PA ` BewPm

β
ψ, so PA−γ ` (Tψ)†γ for every γ ≥ ω × β + n. The case that φ

is not an axiom of Pn
β is standard an hence omitted.

We now address 2. Suppose Pn
β ` Tψ for some n. Let δ = ω × β + n.

By 1, PA−δ ` (Tψ)†δ. Since ω× β + n < ωκ, reflection on Sδ can be applied
to yield (Tψ)†δ, and hence Pn

β ` ψ.
Given 2, Pβ+1 forms a theory closed under both NEC and CONEC.

Moreover, by definition, P<β contains GRPLT(PosFS−<β), whence PosFS−β
is clearly a sub-theory of P<β+1.
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The decision to include GRPLT(PosFS<α) as an axiom of P0
α and not

GRPLT(P<α) is technically motivated. If the reflection principle for P<α

was chosen, difficulties would arise in the embedding of PosFS<α into P<α:
In order to prove that PosFSα is a sub-theory of P<α+1, we must establish
P<α+1 ` BewPosFS<α

φ → BewP<α φ. To achieve this the induction hypoth-
esis of lemma 9(3) needs to be derivable in P<α+1. By our choice of P0

α,
however, this induction hypothesis can be kept external to P<α+1.

As a consequence of lemma 9, an upper bound on PosFSκ is obtained.

Corollary 2. All arithmetical theorems of PosFSκ are provable in PA−
ω×(κ+1).

Now we turn our attention to the theories PosFS+
κ . We cannot hope to

embed PosFS+
κ into P<λ for any λ as P<λ is not in general closed under

CONEC+ (if it were it would derive λ-times iterated uniform reflection
and hence would not be interpretable in PA−ω×λ via †λ). Therefore the in-
termediate hierarchy must be altered, as must the target theory.

Suppose a hierarchy of theory Qn
α is defined in a similar fashion to

Pn
α; that is Tψ is an axiom of Qn+1

β whenever Qn
β ` ψ. Moreover, sup-

pose we fix a similar interpretation, namely Tψ is interpreted in Qn+1
β as

provability in Qn
β. For Qn+1

β to be closed under CONEC+, we must have

Qn+1
β ` ∀xφ(ẋ) whenever Qn+1

β ` ∀x : T(φ(ẋ)). However, by assumption

Qn+1
β ` ∀x : T(φ(ẋ)) implies that φ(n̄) is provable in Qn

β for every n, so

it follows that Qn+1
β must be closed under some form of ω-logic. This is

exactly the additional requirement that we place on the construction of Qn
β.

Given S (a theory or a set of formulae), let ω(S) denote the set of theo-
rems of S where one use of the ω-rule is permitted. That is, if S ` φ(n̄) for
every n, then ∀xφ is in ω(S).

We can now define the theories Qn
α:

Q0
0 = P0.

Qn+1
α = ω(Qn

α) + {Tψ | Qn
α ` ψ}.

Q0
α = ω(Q<α) + GRPLT(PosFS+

<α).

We also introduce a new interpretation ∗α as indicated above. ∗α com-
mutes with all connectives and quantifiers, leaves arithmetical statements
untouched, and

(Tψ)∗α = ∃γ∃n : BewQn
γ

ψ ∧ω× γ + n < α.
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By a straightforward induction on κ, we obtain the following result.

Lemma 10. For every κ, PAκ+1 ` ∀γ∀n : ω× γ + n < κ̄ → Consis(Qn
α).

Lemma 11. Let κ = ωλ where λ is a limit ordinal. Then for each α < κ, the
following is derivable in PAκ.

1. ∀β ≤ ᾱ∀n∀φ : Qn
β ` φ→ (∀γ ≥ ω× β + n)PAγ+1 ` φ†γ.

2. ∀β ≤ ᾱ∀n∀pψ(x)q : Qn
β ` ∀xTψ(ẋ)→ Qn

β ` ∀xψ(x).

3. ∀β ≤ ᾱ∀φ : PosFS+
β ` φ→ Q<β+1 ` φ.

Proof. The proof proceeds analogously to lemma 9. We will outline the
main differences. In establishing 1, the equivalent sub-cases (a) and (c)
must be amended to cover applications of the ω-rule. For case (a) the new
reasoning is as follows (case (c) is similar).

a) If n = 0, φ = ∀xψ and Q<β ` ψ(n̄) for each n, the induction hypothe-
sis implies ∀x : PAγ ` ψ∗γ(ẋ) and so, by reflection, PAγ+1 ` (∀xψ)∗γ

for every γ ≥ ω× β.

The argument for 2 is the same as before: Suppose Qn
β ` ∀xTψ(ẋ); by

1, PAω×β+n ` Tψ(ṅ) for every n, so Π0
2 reflection yields ∀x : Qm

γ ` ψ(ẋ) for
some γ, n with ω× γ+m < ω× β+ n, and hence Qn

β ` ∀xψ by definition.
Given 1 and 2, 3 is immediate.

Combining the the previous lemma with the earlier results on PosFS,
we can characterise the strength of iterated global reflection over PosFS.

Theorem 5. Let κ = ωλ where λ > ω. Then

1. PosFS+ + {τ+
λ | λ < κ} and PAκ have the same arithmetical theorems.

2. PosFS + {τλ | λ < κ} and PA−κ prove the same arithmetical statements.

Proof. By proposition 7, PA+
κ and PA−κ are sub-theories of PosFS+

<κ and
PosFS<κ respectively, while lemmata 9 and 11 entail PosFS+

<κ and PosFS<κ

are sub-theories of PA+
ω×κ and PA−ω×κ. However, ω × κ = ω1+λ = κ, since

λ > ω.
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5.3 Hierarchies of stable truth

Strengthening PosFS by adding reflection principles is not the only way.
The liar sentence L can be used to form sentences that have a similar effect.
Let σ0 be the sentence ¬TL ∧ ¬T¬L ∧ T(0 = 0). It is not hard to see that
the sentence ∃nTnσ0 becomes true for the first time at stage ω and stays
nearly stably true forever after. Thus we are lead to construct the following
hierarchy:

σ0 = ¬TL ∧ ¬T¬L ∧ T(0 = 0),
σκ+1 = ¬TL ∧ ¬T¬L ∧ Tσκ

σλ = ∀κ < λ : ∃nTnσκ for λ a limit ordinal.

Using the techniques of section 3, the required liar-like sentences σα can
be found for all α < ζ. Then, as before with the reflection principles τκ, the
sentence ∃nTnσκ becomes stably true at stage ω× κ.

This means that semantic deficiency can be asserted by axiomatisa-
tions of nearly stable and of stable truth without introducing a new non-
truthfunctional connective as is done in [Field 2008]. But the sentences
of the σ-hierarchy are not natural candidates for basic truth axioms. We
leave it as an open problem whether natural axioms describing stable or
nearly stable truth can be found that entail the semantic deficiency of a
large collection of paradoxical sentences.

In contrast with Feferman’s system KF, the theory FS only proves finite
truth-iterations [Horsten 2011, p. 109, proposition 48]. In fact, FS proves
only nearly stable truths that become nearly stably true already before
stage ω in the sequence of revision models. Similarly, PosFS proves only
stable truths that become stably true at some finite stage in the revision
process. This is an indication that FS and PosFS are very far from captur-
ing the spirit of the notions of nearly stable and of stable truth.

In an attempt to find natural candidates for strengthening FS and PosFS,
we may wonder if we can strengthen our axiomatisation of the revision-
theoretic truths by strengthening the inference rules NEC and CONEC to
their infinitary cousins. This would of course enable the resulting systems
to prove transfinite truth-iterations.

For the nearly stable truths, this idea does not work:

Proposition 8. The nearly stable truths are not closed under the inference rules

φ⇒ ∀n : Tn(φ)
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and
∃n : Tn(φ)⇒ φ.

Proof. We know that McGee’s sentence γ is nearly stably true. We also
know that γ↔ ∃n : Tn(γ) is true everywhere by the fixed point property.
So ∀n : Tn(γ) cannot be nearly stably true.
¬T(L) ∧ ¬T(¬L) is only true at limit stages, so it is not nearly stably

true. But ∃n : Tn(¬T(L) ∧ ¬T(¬L)) is stably true and hence nearly stably
true.

This confirms earlier results by Gupta and Belnap that the truth itera-
tion laws of nearly stable truth are somewhat unnatural [Gupta & Belnap 1993,
p. 221].

For the stable truths, this strategy does meet with some degree of suc-
cess:

Proposition 9. The stable truths are closed under the inference rule

φ⇒ ∀n : Tn(φ).

Proof. Straightforward.

Proposition 10. The stable truths are not closed under the inference rule

∃n : Tn(φ)⇒ φ.

Proof. First, we note that the revision theory classifies γ, Tγ, T2γ, . . . as
paradoxical. McGee’s sentence γ is made true by successor models. But
at limit models, γ is always false. This shows that γ is paradoxical, but it
also shows that each Tnγ is paradoxical.

Second, we see that the sentence ∃nTnγ is a stable truth. (∃nTnγ be-
comes a stable truth from stage ω onwards.)

Thus not only can we obtain new truth principles from the revision
theory, but it works also the other way round: we can learn more about
the revision theory of truth using axiomatic truth theories.

Question 3. What is the arithmetical strength of adding to PosFS or PosFS+ the
infinitary version of NEC?

32



We do not propose PosFS + NEC<Γ0 as a natural axiomatisation of sta-
ble truth. The reason is that the generalisation of the necessitation rule that
is involved explicitly mentions transfinite ordinals. Such a rule is not plau-
sibly taken to be a fundamental truth rule. The system PosFS + NEC<ω,
however, is a more natural theory of truth. After all, the natural numbers
are already presupposed in the background theory, and they are quanti-
fied over in some of the compositional axioms of FS and of PosFS—for
instance in the axioms that describe how the truth predicate commutes
with the quantifiers.

As was noted earlier, in contrast to PosFS, the system PosFS + NEC<ω

proves long truth iterations that are stably true. In this way, it fares better
as an axiomatisation of the concept of stable truth. Nonetheless, systems
such as KF capture more of the Strong Kleene fixed point construction
than PosFS + NEC<ω captures of the stable truth construction. The reason
lies in what happens at limit stages of the respective semantic construc-
tions. At limit stages of Kripke’s Strong Kleene construction, one merely
collects the determinate truths and determinate falsehoods that have been
recognised as such in previous stages. In the stable truth construction, the
Herzberger liminf rule is applied at limit stages. This rule has a distinc-
tively second-order flavour. There seems little hope of capturing its spirit
in a first-order axiomatic setting.
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