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DETERMINACY IN STRONG CARDINAL MODELS

P. D. WELCH

Abstract. We give limits defined in terms of abstract pointclasses of the amount of determinacy available
in certain canonical inner models involving strong cardinals. We show for example:
Theorem A Det(Π1

1-IND)⇒there exists an inner model with a strong cardinal.
Theorem B Det(AQI)⇒there exist type-1 mice and hence inner models with proper classes of strong cardinals
where Π1

1-IND (AQI) is the pointclass of boldface Π1
1-inductive (respectively arithmetically quasi-inductive)

sets of reals.

§1. Introduction and Preliminaries. It is well known that determinacy of Gale-
Stewart games (cf [7]) beyond the Borel hierarchy requires strong axioms of infinity,
that are generally stated in terms of large cardinals, or embedding properties of the uni-
verse V of all sets of mathematical discourse. In the presence of such axioms canonical
constructions of inner models result in such models having a spectrum of properties,
depending on the strength of the axioms assumed. In general the stronger the axioms
the more involved the structure of the models can be become. One measure of that com-
plexity is that of the definability of the wellorder of the real continuum in the model. In
Gödel’s L this wellordering is ∆1

2 ([7] ). More complicated models require a more com-
plicated ordering. As is well known the full Axiom of Determinacy, AD, contradicts
the Axiom of Choice. However this works level by level: Choice at a certain level of de-
finability rules out the determinacy of games at roughly that level too. Hence, given an
inner model M , determining the complexity of the wellordering in that model (which
here is related to the complexity of the levels of the model - we work assuming that
certain strong axioms do not hold) gives us via Kechris’s Theorem 2 below, an upper
bound as to how much determinacy to expect to be available in that model. To state our
results in a contrapositive form here: if such and such amount of determinacy holds in
a canonical inner model then that model must have a wellordering sufficiently complex
to ensure that those strong axioms must hold in an inner model.

This note should be viewed as revisiting a paper of Steel [9], where he outlined all
of the above discussion and thereby sought to ascertain limits on the amount of deter-
minacy holding in the Mitchell style core models of that era, which contained coherent
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sequences of normal measures. They were thus of the form L[~U ] where ~U was such a
measure sequence. Thus (to quote just one of his results) we have:

THEOREM 1. (Steel) [9] If ~U is a sequence of coherent measures then in L[~U ] Γ0-
Determinacy fails.

We have to specify the pointclass Γ0 for the theorem to be meaningful. The point-
classes are meant to be strictly within ∆1

2, as it was well known that ∆1
2-Determinacy

fails in such L[~U ]-models. The nature of the pointclass is influenced by the means of
proof: he uses a Friedman style game of comparing two premice which disagree about
the ordering of their reals, inside a certain admissible set with certain reflection prop-
erties: the stronger the premice, the stronger the reflection properties of the admissible
set needed to realise their comparison. Thus for Theorem 1 he defines:

DEFINITION 1. Let Γ0 be the following pointclass of sets of reals: A ⊆ R is in Γ0 if
and only if there is a Σ1 formula ϕ(v0) so that

∀x(x ∈ A←→ Lα(x)[x] |= ϕ[x])

whereα(x) denotes the next x-admissible ordinal greater than the least Π4(x)-reflecting
ordinal.

The choice of α here is because he proves that the comparison of two countable pre-
miceM,N must terminate before the least ordinal which is Π4-reflecting in (a real code
for) M,N - this termination may well be because one of them is seen to be illfounded.
As he puts more conditions on ~U , so he can weaken the amount of reflection, and so
smaller ordinals than α can be chosen. He is thus implicitly proving results about how
much set theory is needed to prove comparison of certain classes of mice. We shall
need to consider reflection beyond models of KP: we thus denote by Σ2-KP, the usual
Kripke-Platek axioms which are augmented to allow for instances of ∆2-Separation,
and Σ2-Collection - and similarly for Σ3-KP. Underlying the proofs is the following
theorem:

THEOREM 2. (Kechris)[6] If there is a aΓ-wellorder ofR then Γ-Determinacy fails.

We use the following definition to delineate our pointclasses.

DEFINITION 2. For i ≥ 1 let Γi, be the following pointclasses of sets of reals:
A ⊆ R is in Γi, if and only if there is a Σ1 formula ϕ(v0) so that

∀x(x ∈ A←→ LΣ(i,x)[x] |= ϕ[x])(1)

where Σ(i, x) denotes the least ordinal Σ either x-admissible, or a limit of x-admissibles,
so that LΣ[x] has a proper Σi substructure Lζ [x] ≺Σi LΣ(i,x)[x]. (In each case we set
ζ(i, x) to be the ordinal height of this substructure.)

Note: Σ(1, x) is in fact (a successor) x-admissible; Σ(2, x) is always a limit of x-
admissibles, but is not itself x-admissible (Cor. 3.4 of [12]). For i > 2 Σ(i, x) is an x-
admissible, that is a limit of such (just note that the axioms of KP are Π3-formalisable,
hence ζ(i, x)’s being an admissible limit of admissibles goes up to Σ(i, x)).

We shall compare the first two of these pointclasses at least with pointclasses defined
via operators. Suppose we have a map Γ : P(N) → P(N). We say this is recursive,
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arithmetic, Σ1
1 etc. if the relation ‘n ∈ Γ(X)’ is definable in that manner. We may

define iterates:

Γ0(z) = z; Γα+1(z) = Γ(Γα(z)); Γλ(z) =
⋃
α<λ

⋂
α<β<λ

Γβ(z) (lim(λ) ∨ λ =∞)

.
If Γ is monotone (that is A ⊆ B → Γ(A) ⊆ Γ(B)) or simply progressive (that is

A ⊆ Γ(A)) one reaches a fixed point Γ∞(z), because in this case we have α < β →
Γα(z) ⊆ Γβ(z) (the limit stage being a simple union). Otherwise it can easily be seen
to have a countable stability point ζ so that Γζ(z) = Γ∞(z) (and indeed a proper class
of such with a fixed periodicity). We identify P(N) with R.

DEFINITION 3. A set A ⊆ R is Π1
1-IND iff there exists a Π1

1 function Γ : R × R →
R, so that for any x setting Γx(y) =df Γ(x, y)) defines an inductive operator (not
necessarily monotone) in x for which:

∀x ∈ R(x ∈ A←→ 0 ∈ Γ∞x (Ø)).(2)

DEFINITION 4. A setA ⊆ R is AQI iff there is some arithmetic operator Γ : R→ R,
so that:

∀x ∈ R(x ∈ A←→ 0 ∈ Γ∞(x)).(3)

Using [1] Theorems 1.19 and 10.7, one may show that a set a ⊆ N is Π1
1-inductive

(that is, it is (1-1) reducible to a fixed point of an inductive Π1
1-operator) if it is Σ1

definable over LΣ(1,Ø). The higher type definition above yields (generalising those
arguments) that Γ1 = Π1

1-IND. Moving up a level, Burgess coined the phrase ‘arith-
metically quasi-inductive,’ [2], and he proved (his Theorem 14.1) a set a ⊆ N to be AQI
iff a ∈ Σ2(LΣ(2,Ø)). The higher type definition of AQI just given widens this definition
to R, and the generalisation of his result is that AQI = Γ2.

If we define a pointclass by AQI operators reaching fixed points, i.e. where Γα(x) =
Γα+1(x) then this defines a slightly smaller class: reaching a fixed point is a Σ1 fact,
(when considered over LΣ(2,x)[x]) and thus the Σ2 ϕ in (1) can be replaced by a Σ1 for-
mula. We should point out that all the classes mentioned above are Spector pointclasses
in the sense of Moschovakis [7].

The proof of the Theorem 6 will show that the canonical wellordering on mice is
arithmetically quasi-inductive when restricted to a certain class of mice - the “type-0
mice.” (Indeed it is in the subclass of AQI sets defined by operators reaching fixed
points.) This represents a partial answer to a question raised in [13] as to how com-
plex the notion of ITTM higher type recursion can be, as the latter is an example of a
arithmetical quasi-induction which is complete for that pointclass.

Teasing these definitions apart we shall have that there is an arithmetic (indeed recur-
sive) Γ so that if z codes a pair of countable type-0 premice 〈M,N〉 then on comparison
either M E N , or M becomes illfounded before N does iff 0 ∈ Γ∞(z).

This brings us to defining the classes of premice we shall be considering. Apart from
the first which predates the others, these definitions come from [3].

DEFINITION 5. Let M be a premouse. We say M is a non-overlapping premouse,
if for every κ < OnM , if κ is the critical point of some extender on EM , then {τ <
κ | oM (τ) ≥ κ} = ∅. (Here oM (τ) =df {λ | there exists an extender E on the EM

sequence with crit(E) = τ and lh(E) = E(crit(E)) = λ}.)
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The least mouse that is overlapping, if it exists, is denoted 0¶. By iterating the mea-
sure of 0¶ that is so overlapped through all the ordinals, one generates an inner model
with a single strong cardinal, together with a closed and unbounded class of indis-
cernibles for it.

DEFINITION 6. Let M be a premouse. We say M is a type-0 premouse, if for every
κ < OnM , if κ is the critical point of some extender on EM , then κ is of type-0 in M ,
where we define:
κ is of type-0 in M ⇐⇒

∃ν ≤ OnM (κ = crit(EMων) ∧ {τ < κ | oM (τ) ≥ κ} is bounded in κ).

A type-0 mouse can thus generate an inner model with at most set-many strong car-
dinals. Feng and Jensen identify a stronger type:

DEFINITION 7. Let M be a premouse. We say M is a type-1 premouse, if for every
κ < OnM , if κ is the critical point of some extender on EM , then κ is of type-0 or
type-1 in M , where we define:
κ is of type ≥ 1 in M ⇐⇒

∃ν ≤ OnM (κ = crit(EMων) ∧ {τ < κ | oM (τ) ≥ κ ∧ τ is of type-0} is unbounded in
κ).
κ is of type ≥ 2 in M ⇐⇒

∃ν ≤ OnM (κ = crit(EMων)∧ {τ < κ | oM (τ) ≥ κ∧ τ is of type ≥ 1} is unbounded in
κ).
κ is of type-1 in M⇐⇒ κ is of type ≥ 1 but not of type ≥ 2.

We shall use the following facts about finding branches through normal iterations
trees for type-0 and type-1 mice. For type-0, if M is such a mouse and

〈〈Mi〉i<θ, 〈νi〉i<θ, 〈ηi〉i+1<θ, 〈πMi,j〉i≤j<θ, T 〉
is a normal iteration of M = M0 with underlying tree order <T on θ given by T ,
the ‘unique <T -predecessor’ function, then the iteration is “almost linear”: to find the
models on the unique cofinal branch, b say, one only has to put i ∈ b if i is maximal
amongst those possibly finitely many i′ which share the same T -predecessor with i:
i ∈ b ⇐⇒ i = max{i′ | T (i′) = T (i)} (where T (j) is defined as the immediate
T -predecessor of j). To put it another way i ∈ b ⇐⇒ ∀j > i(i <T j). This we can
formally express as follows:

THEOREM 3. Let M be a type-0 premouse, and suppose that T is a normal iteration
tree on M of limit length θ. Then T has a unique cofinal branch b = bT = {i < θ |
∀k < θ(k > i −→ i <T k)}.

For mice of type-1 the branching possibilities are slightly more complicated but Feng
and Jensen have:

THEOREM 4. ([3] Thm. 2.4) Let M be a type-1 premouse, and suppose that T is
a normal iteration tree on M of limit length θ. Then T has a unique cofinal branch
b = bT = {i < θ | ∀k < θ∃j > k(i <T j)}.

In an iteration tree based on type-0 premice, each point of the tree can have at most
finitely many immediate successors. Such iterations are almost linear. Type-1 premice
can have iteration trees that are infinitely branching from a single point (cf [3] Ex.2.1.)



DETERMINACY IN STRONG CARDINAL MODELS 5

We prove here the following onL[ ~E] models which admit strong cardinals, and strong
limits of such (but not much more).

THEOREM 5. Suppose V = L[ ~E] and 0¶ does not exist. Then Γ1-Determinacy fails.

THEOREM 6. Suppose V = L[ ~E] and there are only type-0 mice. Then Γ2-Determinacy
fails.

THEOREM 7. Suppose V = L[ ~E] and there are only mice of type ≤ 1. Then Γ3-
Determinacy fails.

In the first of these theorems we recall that all comparison iterations are truly linear,
and iteration trees are not needed. There are thus no problems in determining direct
limit models in limit length trees. For the latter two theorems the mice involved are still
very weak, and so defining cofinal branches can be, and ultimately is, still easy.

§2. The proofs.

LEMMA 1. Let A |= KP, with A transitive, and let M,N ∈ A be type-0 premice.
Let θ = OnA . Suppose M,N are coiterable for µ ≤ θ many steps (meaning that the
models are wellfounded on both sides for this length of coiteration). Then the iteration
trees arising in the comparison

T = 〈〈Mi〉i<µ, 〈νi〉i<µ, 〈ηi〉i+1<µ, 〈πMi,j〉i≤j<µ, T 〉
and

U = 〈〈Ni〉i<µ, 〈νi〉i<µ, 〈ηi〉i+1<µ, 〈πNi,j〉i≤j<µ, U〉,
are definable by a ∆A

1 ({M,N})-definable recursion, with the final branches b, c ⊆ θ
being ΠA

1 ({M,N})-definable.

Proof: We first make the remark that if T � k + 1,U � k + 1 have been defined inside
of A the choice of which extender(s) to use at the next stage is entirely effective from
a KP-point of view: it is a ∆1 process to look for the index νk of least difference in
EMk , ENk , and apply the extender to the relevant model to form its ultrapower.

At a limit stage, given the branch along which to form a direct limit, if the direct limit
is wellfounded, then its transitive isomorph is an element of A; it is then a ∆1 query
to check whether a given candidate transitive set Mλ or Nλ is isomorphic to that direct
limit. However defining the correct relevant branch(es) is also a ∆1 enquiry of the set
which is the tree ordering T � λ defined to date. Theorem 3 (and the remark just before
it) shows that we can define these branches in a Π1-manner over A if µ = θ. Q.E.D.

LEMMA 2. Let A |= KP, M,N ∈ A, θ be as above, excepting that M,N may be
type-1 premice. Then the iteration trees arising in the comparison are definable by a
∆A

1 ({M,N})-recursion, with b, c ⊆ θ the cofinal branches being ΠA
2 ({M,N}).

Proof: The only difference here is that additional complexity of the mice requires a
more sophisticated definition of cofinal branch. Here we have, for limit µ (see [3] Thm
2.4):
i ∈ b⇐⇒ ∀k < µ∃l < µ(k ≤ l ∧ i <T l)

(and similarly for c,U - we should perhaps remark that this is nothing to do with the
comparison process, this is just the only way to define the cofinal branch in a normal
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iteration tree of a type-1 mouse M - as [3] Thm 2.4 proves.) The displayed equivalence
gives our result. Q.E.D.

We now see how much set theory will be required to show that coiteration of mice up
to some ordinal θ yields clubs below θ of critical points moved in the same way on both
sides of the comparison.

LEMMA 3. Let A |= KP, with A transitive, and let M,N ∈ A be non-overlapping
premice. Let θ = OnA . Suppose M,N are coiterable for θ many steps (meaning that
the models are wellfounded on both sides for this length of coiteration). Let Mθ, Nθ be
the direct limit models. Suppose θ ∈ WFP(Mθ) ∩WFP(Nθ). Then there is C ⊆ θ,
closed and unbounded in θ, C ∈ ∆A

1 (M,N), with

i < j ∈ C −→ πMi,j(κi) = κj = j = πNi,j(κi) (1)

where κi is the critical point of the embeddings πMi,i+1 and πNi,i+1.

Proof: Although we have non-overlapping extenders here, this is just as for coherent
sequences of measures, which is proven in [9]. The reader may also simplify the proof
of the following Lemma. Q.E.D.

LEMMA 4. Let A |= Σ2-KP, with A transitive, and letM,N ∈ A be type-0 premice.
Let θ = OnA . Suppose M,N are coiterable for θ many steps (again meaning that the
models are wellfounded on both sides for this length of coiteration). Suppose b, c are the
cofinal branches on theM (respectivelyN ) side of the coiteration, and letMb, Nc be the
direct limit models. Suppose θ ∈WFP(Mb)∩WFP(Nc). Then there is C ⊆ θ∩ b∩ c,
closed and unbounded in θ, C ∈ ∆A

2 (M,N), with the equations of (1) above holding
(and the same definitions of the κi).

Proof: We adapt the argument of [9]. Let δ ∈ b be sufficiently large so that for some
α ∈ Mδ , πMδ,θ(α) = θ. Then, for γ ∈ b\δ, πMδ,γ(α) =df αγ ≥ κγ . We wish to find
C0 ⊆ θ ∩ b\δ, cub, for which αγ = κγ = γ. Let η > δ be chosen with η ∈ b. Suppose
ξ < αη . By definition of α, and thus αη , πMη,θ(ξ) < θ, and hence there is some ν > η,

ν ∈ b, with πMη,ν(ξ) < κν . By Σ2-admissibility, we can thus define a function f, into
b, so that if we have f(η) = ν, then (a) ν ∈ b; (b) for all ξ < αη π

M
η,ν(ξ) < κν . (We

need Σ2-admissibility because b, c ∈ Π1(A) not ∆1(A).) Thus f is total, and Σ2(A).
Hence there is a ∆2(A) cub set C0 ⊆ b ∩ c so that γ ∈ C0 −→ f“γ ⊆ γ. For such
γ ∈ C0 we have αγ = supη∈b∩γ κη: if µ < αγ then µ = πMη,γ(µ′) for some η < γ and
µ′ < αη; by the closure of γ under f , we have that for some ρ < γ πMη,ρ(µ

′) < κρ. As
crit(πMρ,γ) ≥ κρ we have that µ < κγ as required.

Then we further refine C0 to a cub C ⊆ b ∩ c by reasoning similarly on the N side
of the coiteration. Q.E.D.

Straightforwardly generalising:

LEMMA 5. The above Lemma holds for type-1 premice providing A |= Σ3-KP, and
in the conclusion, C is then ∆A

3 (M,N).

LEMMA 6. Let M,N be countable type-0 premice. Let z ⊆ ω code M,N . Then the
comparison iteration with trees T ,U on M,N respectively has length < ζ(2, z).
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Proof: Suppose otherwise, set ζ = ζ(2, z) and let T ,U be the trees defined inside
A = Lζ [z], with lengths on both sides at least ζ.

(1) The comparison can be continued without termination until Σ(2, z).
Proof: Otherwise LΣ[z] |=“∃γ(Mγ , Nγ are terminal models in a successful compari-
son, or, γ = γ′ + 1, and one of Mγ , Nγ is illfounded; or Lim(γ), and if e, f are the
cofinal branches up to γ, then one of Me, Nf is illfounded)”. However any of these
alternatives would reflect down to Lζ [z]. Q.E.D.(1)

Suppose then that the comparison trees T ′,U ′ are the result of continuing the com-
parison to stage Σ.

(2) Let b, c, be the respective cofinal branches to ζ of the M,N sides respectively.
Similarly let b′, c′ be the cofinal branches of T ′,U ′. Then b′ ∩ ζ = b, c′ ∩ ζ=c. Hence
ζ ∈ b′ ∩ c′.

Proof: By our assumption on Σ2-elementarity, if b, c are the Π1(Lζ [z]) cofinal branches
through T ,U , then they will be initial segments of b′, c′. Q.E.D.(2)

Let C ⊆ b ∩ c come from Lemma 4. By our properties of C:

(3) ξ ∈ b ∩ c ∩ C −→ crit(πMξ,ζ) = crit(πNξ,ζ) = ξ.

We may also define C ′ in a ∆2 fashion over LΣ[z] from M,N just as C was defined
over Lζ [z]: although LΣ[z] is not admissible for Σ2 formulae for all choices of param-
eters, it is so admissible for choices of parameters (here M,N ) in Lζ [z] itself, which is
all we require here. Just as for the branches b′, c′ we have that C ′ ∩ ζ = C, using the
Σ2 elementarity of Lζ [z] in LΣ[z].

Consider the following definitions about any ξ which is a limit point of b ∩ c ∩ C.

Let µ, η be such that the b (respectively c) successors of ξ are µ+ 1, respec-
tively η + 1. Further let ν = νµ = νη be the index of the least difference
of the EMµ ,ENη hierarchies, and let some a ∈ [ν]<ω be chosen least with
some leastA ∈ P([ξ]|a|)∩(EMµ

ν,a ∆ENην,a). Then let δ = δ(ξ) ∈ C∩ξ be suffi-
ciently large so that there exist a(M), ν(M), A(M)(a(N), ν(N), A(N)) ∈
Mδ (respectivelyNδ) with πMδ,ξ(ν(M)) = ν = πNδ,ξ(ν(N)) and πMδ,ξ(a(M)) =
a = πNδ,ξ(a(N)) ∧ πMδ,ξ(A(M)) = A = πNδ,ξ(A(N)).

Now, in the above take ξ = ζ and δ = δ(ζ). Hence the following holds:

LΣ[z] |= “∃λ ∈ b′ ∩ c′ ∩C ′∃µ′, η′[µ′+ 1, η′+ 1 are the T,U successors of
λ = κλ = πMδ,λ(δ) = πNδ,λ(δ) ∧ (letting ν = νµ′ = νη′ and a ∈ [ν]<ω be
least so that there is some A with

πMδ,λ(A(M)) = A = πNδ,λ(A(N)) ∈ EMµ′
ν,a ∆E

Nη′
ν,a

with crit(E
Mµ′
ν ) = crit(E

Nη′
ν ) = λ, we have that πMδ,λ(a(M)) = a =

πNδ,λ(a(N)))].”

Namely, take λ = ζ.
This is a Σ2 statement (coming just from the outer quantifier “∃λ ∈ b′∩c′∩C ′”) about

M,N, δ, a(M), a(N), A(M), A(N) and b′,c′, C ′, and hence goes down to Lζ [z] about
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those same objects and the branches to ζ, b, c andC. Let λ, µ′, η′, ν, a, A instantiate this
in Lζ [z]. Then as (i) δ ∈ C, (ii) λ ∈ b∩c∩C, and (iii) λ = κλ = πMδ,λ(δ) = πNδ,λ(δ) we
have then πMλ,ζ(λ) = πNλ,ζ(λ). Hence A = πMλ,ζ(A ∩ [λ]|a|) = πNλ,ζ(A ∩ [λ]|a|), whilst
at the same time a ∈ πMλ,ζ(A ∩ [λ]|a|)←→ a /∈ πNλ,ζ(A ∩ [λ]|a|) which is absurd.

Q.E.D.

LEMMA 7. Let M,N be countable type-1 premice. Suppose z codes M,N . Then
the comparison iteration with trees T ,U on M,N respectively have length < ζ(3, z).

Proof: The argument is identical to the last Lemma, where instead we appeal to Lemma
5, and show that Lζ [z] is a Σ3-KP model, and we substitute Σ3-reflection for Σ2.

Q.E.D.

We now finish off the theorems by running Steel’s argument directly. The reader fa-
miliar with this will find no novelty in what follows.

Proof of Theorem 6. Suppose V = L[E] and there are only type-0 premice. We
show that the <L[E] wellorder of the reals is aΓ2. For x, y ∈ ωω players I and II
play a game Gx,y producing integers n0, n1, . . . alternately, and constructing reals u =
(n0, n2, . . . , n2n, . . . ), v = (n1, n3, . . . , n2n+1, . . . ), and thus a z = u⊕v in the usual
way.

Rules: I’s real u must code a premouse M = M0 |=“x <M y” in the standard order
of construction of the M = L[EM ] hierarchy. If he fails at this he loses. If he succeeds,
then II’s real v must similarly code a premouse N = N0 |=“y ≤N x” (or else she will
lose).

If both players have passed these tests, then we form the coiteration of M,N to
ζ = ζ(2, z). Player I wins Gx,y iff ∃ξ ≤ ζ(Mξ is wellfounded, but Nξ is not).

This is then a Γ2 relation of x, y, u, v, the winning conditions for I being express-
ible in a Σ1 way over Lζ [z] (or equivalently over LΣ(2,z)). It is now easy to see that
if x <L[E] y then I has a winning strategy which is to play out u, a code for the least
countable level M=Lα[E] witnessing this. He can ignore II’s efforts. On the one hand
we can never have a properly terminating coiteration (meaning with both terminating
models wellfounded) of the two modelsM,N as they disagree fundamentally about the
ordering of their reals. By Lemma 6 however, the comparison must terminate before ζ.
However, it can only terminate through one of the models being illfounded. This has to
be II’s model. Thus I wins the game. If y ≤L[E] x the argument is symmetrical with
II winning. Q.E.D.

The proof of Theorem 7 is entirely similar m.m. If Det(Π1
1-IND) holds in V then a

fortiori we have Det(Π1
1). This yields, by work of Martin, and a final theorem of Har-

rington [5] that for any real x x# exists. From this we know by [11] that, assuming there
is no inner model with a strong cardinal, that the core model K is Σ1

3-absolute. Since
Det(Π1

1-IND) can be written as a Σ1
3 sentence it must be true in K which is a model

of the form L[E]. However this contradicts Theorem 5. hence there is such an inner
model and Theorem A holds. Theorem B is similar, but we do need a little more than
∀x x# currently to establish this (we believe it is still an open problem as to whether
this extra is needed); Schindler has shown (unpublished) that Steel’s result on the Σ1

3
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correctness of K (which required an assumption of two measurable cardinals see [10])
can be effected using an assumption of only that ∀x ((x†)# exists). This is equivalent
by an unpublished theorem of Martin to Det(ω2 + 1-Σ1

1). This is the pointclass formed
from the ω2 + 1-st level of the Hausdorff difference hierarchy on analytic sets. This
level of determinacy is weaker than both that of Π1

1-IND and AQI. Hence the same
argument proves Theorem B.

It is possible to envisage other kinds of quasi-inductive process generalising the op-
erators Γ mentioned above. These operators use limit rules that are Σn (rather than
the Σ2 used above for AQI). The “stability sets” Γ∞(z) derived from these processes
stabilize then at, or by, the ordinals ζ(n, z) above. Examples of such operators can be
found in [4]. Let us call AQIn the abstract pointclass where such a Σn rule is used and
AQIn the boldface counterpart. (We are deliberately being somewhat vague here as we
do not wish to go into the complexities of the definitions from [4]. Suffice it to say we
are imagining some form of Σn-limit rule modelled along the lines of the “Σn-rule”
defined there.) Using these, abstract versions of the above for mice requiring iteration
trees with Πn definable branches and Σn reflection, are provable but what kind of mice
or iteration trees are these?

There is then a Theorem C which runs as follows.

Theorem C Det(AQI3)⇒ there exist type ≥ 2 mice.

Clearly the above proofs generalise if one has a natural class of premice whose itera-
tion trees have Πn definable cofinal branches, and which can be used in generalisations
of the above proofs for Γn for n > 3.

On seeing the above arguments Ralf Schindler suggested to check the mice below 0n!

of [8] Def. 2.10. These are the “n-hand-grenades.” We repeat Schindler’s definition,
but leave this matter open here.

DEFINITION 8. Let M be a premouse, and let µ < κ ≤ OnM . We call µ < κ-0-
strong in M if µ is a measurable cardinal in M as witnessed by EM , i.e, there is an
extender EMων with critical point µ and such that ν > (µ+)M .
For n < ω we call µ < κ-(n + 1)- strong in M if µ is < κ-strong in M as witnessed
by EM and there are arbitrary large γ < µ such that γ is < µ-n-strong in M .

DEFINITION 9. Let M be a premouse, and let n ≥ 1. M is said to be below 0n! if
there is no κ which is the critical point of an extender EMν 6= Ø, with the property that
{µ < κ | µ is < κ-n-strong in M} is unbounded in κ.

Then mice below 0! = 01! correspond to type-0 in the Feng-Jensen definition above,
and comparison of such premice results in almost linear iteration trees.

Question 1: Is there a characterisation of premice of type-n as having branches
of complexity Πn+1 through their iteration trees? Conversely, are the premice whose
branches are at this level of complexity those below 0n+1!?

Conjecture 1: Let n > 3. Then V = L[E]∧ Det(AQIn) implies the existence of 0n!.
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(The cases n = 2, 3 come from the correspondence between the Feng-Jensen mice
and the hand-grenades, and Theorems 6,7 above.)

Schindler mentions another mouse, let us call it for the nonce, of “stationary strong
type”: this is a premouse M with a top extender F with crit(F ) = κ where

M |= “ {µ < κ | µ is < κ-strong as witnessed byEM} is stationary.”

It is then easy to see that for every nM is beyond 0n!. Suppose the answer to the last
part of Question 1 is affirmative; let Z2 be the theory of analysis, then we should have a
proof of the following conjecture:

Conjecture 2: Z2 cannot prove that any two premice of stationary strong type are
comparable.

Even with the above analysis we do not know the answer to:

Question 2: Are these estimates of the amount of determinacy available in the cor-
responding inner models L[E] given by the above theorems anywhere near the best
possible?

We should finally caution that all of the above discussion only scratches the surface of
the levels of determinacy obtainable in the Steel core model K ([10]) below a Woodin
cardinal.
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