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Overarching Theorem
We use the following theorem to direct and anchor our discussion

Theorem
(ZF) TFAE
(a) ∃j : L −→e L.
(b) ∃γ(ω2 ≤ γ ∈ SingCard −→ (γ /∈ SingCard)L);
(c) Determinacy(Π1

1)

(a) is an example of an elementary embedding of an inner model. This
assertion is sometimes abbreviated as “0#exists.”
(b) is an example of the negation of a Covering Lemma, in this case over the
inner model L; the negation would assert that the cardinality structure of V is
deeply connected with that of L, in that every V-singular cardinal, is singular
in L.
(c) is an assertion that two person perfect information games played on Baire
space, ωω with (lightface) co-analytic payoff sets are determined.

This is a deep theorem. Why should these statements have anything to do
with one another?
((a)↔ (b) is Jensen (b)→ (c) is Martin, (b)← (c) is Harrington-Martin)



The Main Theorem: (a)↔ (b)

•We explore the background here.

• First we have to define some terms:

Definition (Inner Model of ZF)
IM(M)↔ Trans(M) ∧ On ⊆ M ∧ (ZF)M .

• IM(M) actually has a first order formalisation: it is well known that

ZF ` IM(M)↔ ∀u ⊆ M∃v ⊇ u(Trans(v) ∧ Def(〈v,∈〉) ⊆ M).



Definition (Elementary Embeddings)
Let M,N be inner models of ZF, j : M −→ N is an elementary embedding if
the function j takes elements x ∈ M to elements j(x) ∈ N is a ‘truth
preserving way’: for any formula ϕ(v0, . . . , vn−1) and any
~x = x0, . . . , xn−1 ∈ M, then

ϕ(~x)M ↔ ϕ(
−→
j(x))N

In this case we write: j : M −→e N and cp(j) for the critical point: the least
ordinal α with j(α) > α, if it exists.
(ii) If the above holds, but with the formulae restricted to a certain class, eg.
Σk formulae, then we write j : M −→Σk N.

• In the above scheme, we have assumed that the models M,N satisfy
IM(M), IM(N) above and are given by terms of our basic set theoretical
language, and the same holds true for j. Our embeddings will all have
critical points.
• It is an easy consequence of the ZF axioms (using the definition of the rank
function, the Vα hierarchy, and Replacement) that if j : M −→Σ1 N, then by
a (meta-theoretic) induction on k we may prove j : M −→Σk N for any
k ∈ ω.



Extracting ultrafilters from embeddings

If ∃j : L −→e L then we may define a measure U = Uj on κ = cp(j) and Uj

is a normal measure on P(κ)L as follows: we set

X ∈ Uj ↔ X ∈ P(κ)L ∧ κ ∈ j(X).

Much large cardinal theory is about which ultrafilters can or do exist on
(large) sets, in particular when those large sets are the power set of some
cardinal of some inner model, then there is usually an equivalent formulation
in terms of elementary embeddings of that inner model such as at (a).

More generally: Suppose we have j : M −→e N; cp(j) = κ, then we may
define U = Uj:

X ∈ Uj ↔ X ∈ P(κ)M ∧ κ ∈ j(X).



Measures (often) yield embeddings

• Given a measure (a non-principle ultrafilter) U on P(κ)M for some IM(M)
the ultrapower construction yields a map i : M → Ult(M,U) where

|Ult(M,U)| = {[f ]∼ : f ∈κ M ∩M}

and we define an equivalence as a pseudo-identity:

f ∼ g↔ {α : f (α) = g(α)} ∈ U

and on which we can define a pseudo-epsilon relation:

f E g↔ {α : f (α) ∈ g(α)} ∈ U.

If U = Uj has come from an embedding, we are guaranteed E is
wellfounded on Ult(M,U) and in fact we have: [Diag.]



•We can, and often do, have (M,∈) = (V,∈).
• Also starting from a κ-complete U on P(κ)M , (κ > ω), then we can
define Ult(M,U) as above. For M = V , we can then prove outright that
Ult(V,U) will be wellfounded. In wellfounded cases we may define by
recursion along E a transitivising collapse map π : Ult(M,U) −→ (N,∈)
isomorphism. By composition we then,

Theorem
(ZFC) TFAE: Let κ > ω: (a)There is a κ-complete non-principle ultrafilter
on P(κ).
(b) ∃j : V −→e M with cp(j) = κ.



An early result on L

Theorem (Scott)
(Scott) (ZF) ∃κ(κ a measurable cardinal)−→ V 6= L.

Proof: If V = L, let κ be the least such MC, form the ultrapower and so the
embedding above. Then from j : V −→e N, and elementarity we have:
(V = L)V −→ (V = L)N ; so (Trans(N)), and so N = V = L. But

“κ is the least MC”−→ “(j(κ) is the least MC)N”.

But N = V ∧ j(κ) > κ! Q.E.D.

• The assumption implies ∃j : V −→ N, but by Gödel LN = L, so
j � L : L −→e L. Note that no first order formula ϕ(v0) can differentiate
between κ and j(κ): ϕ(κ)L ↔ ϕ(j(κ))L. Ther are indiscernible.
•Work of Kunen shows that if ∃j : L −→ε L, then a number of
consequences follow:



Consequences of j : L→ L, j 6= id

(i) Then there is such a j: L −→ L with cp(j) < ω1. Moreover defining U0
from such a j with critical point κ0 least, we are guaranteed wellfoundedness
of iterated ultrapowers: that is we may define j01 : L −→e L by taking the
ultrapower of L by U0; define U1 on κ1 =df j01(κ0), and then Ult(L,U1) will
also be wellfounded. We thus may take its transitive isomorph and then have
the ultrapower map j12 : L −→ L with critical point κ1. The process may be
iterated without breaking down, forming a directed system
〈〈Mα〉, jαβ , κa,Uα〉α≤β∈On with (in this case) all Mα = L and elementary
maps into direct limits at limit stages λ, and the κa forming a class C of
L-inaccessibles, which is closed and unbounded below any uncountable
cardinal.

(ii) The iteration points of such ultrapowers enjoy full-blooded
indiscernibility properties in L: if ϕ(v0, . . . , vn) is any formula of L and ~γ ,~δ
any two ascending sequences from [C]n+1 then (ϕ(~γ)↔ ϕ(~δ))L.

• NB in (i) really all the action of jα,α+1 takes place where the subsets of κα
are in L: we don’t need the whole of L to make sense of this, only the Lκ+L

α
.

This leads to:



Mice!

Definition (Dodd-Jensen)
Let jαβ etc. be as above. Let M0 = 〈Lκ+L

0
,∈,U0〉. This is called the

“0#-mouse” which itself has iterated ultrapowers using maps that are the
restrictions of the

jαβ : Mα −→ Mβ where Mα = 〈Lκ+L
α
,∈,Uα〉 etc.

The viewpoint is shifted to that of the mouse (M0) generating the model (in
this case L). All of this is a paradigm for generalised constructible inner
models K - the core models.

By these means we argue for

Theorem (Kunen (a)→ (b))
(ZF) If ∃j : L −→ L then ∀γ((γ ∈ SingCard) −→ (γ Inacc)L).

Proof: The above implies that C ∩ γ is unbounded below γ. But C is closed,
so γ ∈ C. Each γ ∈ C is inaccessible in L. Q.E.D.



Weak Covering over L

Theorem (Jensen)
(ZF) Suppose γ ∈ SingCard but (γ ∈ Reg)L. Then ∃j : L −→ L, with j 6= id.

Proof: Suppose ¬∃j : L −→ L, but γ is chosen least with γ ∈ SingCard but
(γ ∈ Reg)L. Without loss of interest, we shall assume that (i) cf(γ) > ω (ii)
δ < γ −→ δω < γ. Let τ = cf(γ). By assumption then τ < γ and so we
may choose X0 ⊆ γ with |X0| = τ but X0 unbounded in γ. By (ii) we’ll
assume also that for some X ⊃ X0 we have (a) γ ∈ X ≺ Lγ+L (b) ωX ⊆ X (c)
|X| = τω < γ.
Let π : 〈X,∈〉 −→ 〈Lδ,∈〉 with π(γ) = δ say.



(1) cf(δ) = τ also, with |δ| = |Lδ| = |X| < γ.
Suppose we had P(δ)Lδ = P(δ)L. then we could define derive a measure
from π−1 let α = crit(π−1) and define U as usual by

X ∈ U ⇐⇒ X ∈ P(δ)M ∧ α ∈ π−1(X).
Then X would be a countably complete ultrafilter on P(δ)L (that is why we
chose ωX ⊆ X as this implies ωM ⊆ M), which implies that Ult(L,U) is
wellfounded. But that implies ∃j : L −→ L.
Hence we must have: P(δ)M ( P(δ)L. So:

(2) ∃β ≥ δ(Def(Lβ) ∩ P(δ))*Lδ .
Choose β least so that (2) holds. By Fine Structural methods Jensen showed
how there is a superstructure Lη for some η > γ+L and a sufficiently
elementary map π̃ ⊃ π−1, π̃ : Lβ −→ Lη, and definably over Lη there is also
a ‘new’ subset of γ = π−1(δ). But this is absurd as by L’s construction
(P(γ) ⊂ Lγ+)L. Q.E.D.

The assumptions (i) and (ii) can be dropped, but not without some difficulty,
and the format of the argument remains roughly the same.



Strong Covering Lemma

Theorem (Jensen)
(ZF + ¬0#) For any X ⊆ On, if |X| > ω then there exists Y ∈ L with (a)
|Y| = |X| and (b) Y ⊇ X.

Corollary
(ZF + ¬0#) (a) Let (τ ∈ Reg)L with τ ≥ ω2, then cf(τ) = |τ |.
(b) Let τ ∈ SingCard. Then τ+ = τ+L.

• The Corollary above is sometimes called WCL the Weak Covering
Lemma. For other inner models M we may have WCL(M) provable
(obtained by replacing L by M in the Corollary’s statements) whilst the
strong CL(M) is not.



Generalizations

If 0# = M0 exists as above, perhaps there is no non-trivial
j : L[0#] −→e L[0#] and then we have a CL(L[0#])? This is indeed the
case; if the assumption fails then we have “(0#)#”. We then get a theorem
along the lines of CL(L[0#]) iff ¬j : L[0#] −→e L[0#]. (0#)# is again a
countable object and we can repeat this process. After we have done this
uncountably often our #-like mouse objects are no longer countable and we
have to resort to uncountable M.

Theorem (Dodd-Jensen)
(ZF) if there is no IM with a measurable cardinal, then there is an inner
model KDJ, so that there is no non-trivial embedding j; KDJ −→ KDJand
CL(KDJ).

This was the first core model to go beyond L (if one discounts the models
L[0#] etc.)

Theorem (Steel)
(ZFC) If there is no IM for a Woodin cardinal, then there is a model KSteel,
which is again rigid, and over which WCL(KSteel) holds.


