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Some Reflections on

Alan Turing’s Centenary
P. D. Welch (University of Bristol)

We review two of Alan Turing’s chief publications in mathe-

matical logic: the classic 1936 paper On Computable Num-

bers [9] and the less well known paper Systems of Logic

based on Ordinals [10]. Whilst the former has rightly received

enormous attention the latter is really only known amongst lo-

gicians. We outline some of the history and background to the

first, whilst emphasising a viewpoint often forgotten in discus-

sions of the so-called ‘Church-Turing thesis’; we sketch the

development of the second paper and see why its results were

equivocal and perhaps somewhat disappointing to Turing.

Early Life

Alan Mathison Turing was born on 23 June 1912 in London

to parents of whom his biographer Andrew Hodges [7] aptly

conjectures the English novelist George Orwell would have

described as “lower upper middle class”, his father holding

a position in the Indian Civil Service (ICS). This meant that

Turing, like many boys of this time and status, would be ed-

ucated in England either living with relatives or at boarding

school. His father eventually retired from the ICS at a rela-

tively senior position in the Presidency of Madras but then for

tax reasons continued to live in France.

Turing was thus sent to Sherborne School from the age

of 13, which, whilst not Eton or Harrow, would have pro-

vided the required respectable education. He seems to have

shown early interest in all matters mechanical, chemical and

biological and this persisted throughout his life. He showed

strong promise in mathematics and a strong ease and facility

but without any Gauss-like precocity. His mathematical abil-

ities won him a Scholarship to King’s College, Cambridge,

which he entered in the Autumn of 1931.

Alan Mathison Turing (1912 London – 1953 Manchester, England)

The intellectual atmosphere in Cambridge at that time, at

least in the areas of interest to Turing, would have been dom-

inated by G. H. Hardy and A. Eddington. Of his own peer

group he became friends with the future economist David

Champernowne. At Sherborne he had read Eddington’s “Na-

ture of the physical world” and at Cambridge Hardy and also

von Neumann’s “Mathematische Grundlagen der Quantum

Mechanik”.

He attended Eddington’s lectures entitled “The distribu-

tion of measurements in Scientific Experiments” and this must

have engaged him as he found for himself a mathematical

problem to work on, leading him to rediscover and prove the

Central Limit Theorem in February 1934. It seems to have

been typical of him to work things out for himself from first

principles and he was thus quite unaware that this had already

been proven in a similar form by Lindeberg in 1922.

Notwithstanding this his tutor, the group theorist Philip

Hall, encouraged him to write up this work as a Fellow-

ship Dissertation for the King’s College competition in 1935,

which was done, being entitled On the Gaussian Error Func-

tion. This was accepted 16 March 1936, Hall arguing that the

rediscovery of a known theoremwas a significant enough sign

of Turing’s strength (which he argued had not yet achieved its

full potential). Turing thus won a three-year fellowship, re-

newable for another three, with £300 per annum with room

and board. He was 22 years old.

His first published work was in group theory and was fin-

ished in March 1935,1 this being a contribution to the theory

of almost periodic functions, improving a result of von Neu-

mann. By coincidence von Neumann arrived the very next

month in Cambridge and proceeded to lecture on this subject,

and they must have become acquainted from this time.

Probably more decisive than meeting von Neumann was

his contact with Max Newman. In Spring 1935 he went on

a Part III course of Newman’s on the Foundations of Math-

ematics. (Part III courses at Cambridge were, and are, of a

level beyond the usual undergraduate curriculum but prepara-

tory to undertaking a research career.) Newman was a topol-

ogist and interested in the theory of sets. Newman attended

Hilbert’s lecture at the 1928 International Congress of Math-

ematicians. Logic at this time had disappeared at Cambridge:

Russell was no longer present, having left in 1916, and Frank

Ramsey had died in 1931. Wittgenstein had moved on from

his logical atomistic days and the concerns of the Tractatus to

other things (although Turing did attend a Wittgenstein semi-

nar series and conversedwith him). Hence Newman was more

influenced by Hilbert and Göttingen.

Hilbert had worked on foundational matters for the pre-

vious decades and would continue to do so. His aim to ob-

tain a secure foundation for mathematics by finding proofs of
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consistency of large parts (if not all) of mathematics by a pro-

cess of systematic axiomatisation, and then showing that these

axiomatisations were safe by providing finite consistency

proofs, looked both reasonable and possible. By systematic

effort Hilbert and his school had reduced the questions of the

consistency of geometry to analysis. There seemed reason-

able hope that genuinely finitary methods of proof could ren-

der arithmetic provably consistent within finite arithmetical

means.

The address that Hilbert gave at the 1928 Congress (when

Germany had been re-admitted to the International Congress

of Mathematicians after being denied this in 1924) not only

gave a plea for the internationalist, apolitical nature of math-

ematical research but also formulated several important ques-

tions for this foundational project.

Hilbert’s programme and the
Entscheidungsproblem

– (I. Completeness) His dictum, concerning the belief (en-

graved as the famous non ignorabimus on his gravestone)

that any mathematical problem was in principle solvable,

can be restated as the belief that mathematics was com-

plete. That is, given any properly formulated mathematical

proposition P, either a proof of P could be found or a dis-

proof.

– (II. Consistency) The question of consistency – given a set

of axioms for, say, arithmetic, such as the Dedekind-Peano

axioms, PA, could it be shown that no proof of a contradic-

tion can possibly arise? Hilbert stringently wanted a proof

of consistency that was finitary, that made no appeal to in-

finite objects or methods.

– (III. Decidability – the Entscheidungsproblem) Could there

be a finitary process or algorithm that would decide for any

properly formulated proposition P whether it was derivable

from axioms or not?

Of course the main interest was consistency but there was

hope (discernible from some of the writings of the Göttingen

group) that there was such a process and therefore a positive

solution to the Entscheidungsproblem. From others came ex-

pressions that it was not:

Hardy:

“There is of course no such theorem and this is very fortunate,

since if there were we should have a mechanical set of rules for

the solution of all mathematical problems, and our activities as

mathematicians would come to an end.” [6]

von Neumann:

“When undecidability fails, then mathematics as it is under-

stood today ceases to exist; in its place there would be an abso-

lutely mechanical prescription with whose help one could decide

whether any given sentence is provable or not.” [12]

Gödel’s Incompleteness Theorems block Hilbert’s

programme

Theorem 1. (Gödel-Rosser First Incompleteness Theorem –

1931) For any theory T containing a moderate amount of

arithmetical strength, with T having an effectively given list

of axioms, then:

if T is consistent then it is incomplete, that is, for some propo-

sition neither T ⊢ P nor T ⊢ ¬P.

The theorem is, deliberately, written out in a semi-modern

form. Here, it suffices that T contain the Dedekind-Peano ax-

ioms, PA, to qualify as having a ‘moderate amount of arith-

metical strength’. The axioms of PA can be written out as an

‘effectively given’ list, since although the axioms of PA in-

clude an infinite list of instances of the Induction Axiom, we

may write out an effective prescription for listing them. Hence

PA satisfies the theorem’s hypothesis. Gödel had used a ver-

sion of the system of Principia Mathematica of Russell and

Whitehead but was explicit in saying that the theorem had a

wide applicability to any sufficiently strong “formal system”

(although without being able to specify completely what that

meant).

This immediately established that PA is incomplete, as is

any theory containing the arithmetic of PA. This destroys any

hope for the full resolution of Hilbert’s programme that he

had hoped for.

However in a few months there was more to come:

Theorem 2. (Gödel’s Second Incompleteness Theorem –

1931) For any consistent T as above, containing the axioms

of PA, the statement that ‘T is consistent’ (when formalised

as ‘ConT ’) is an example of such an unprovable sentence.

Symbolically:

T � ConT

The first theorem thus demonstrated the incompleteness

of any such formal system, and the second the impossibility

of demonstrating the consistency of the system by the means

of formal proofs within that system. The first two of Hilbert’s

questions were thus negatively answered. What was left open

by this was the Entscheidungsproblem. That there might be

some effective or finitary process is not ruled out by the In-

completeness Theorems. But what could such a process be

like? How could one prove something about a putative system

that was not precisely described, and certainly not mathemat-

ically formulated?

Church and the λ-calculus

One attempt at resolving this final issue was the system

of functional equations called the “λ-calculus” of Alonzo

Church. He had obtained his thesis in 1927 and, after vis-

iting Amsterdam and Göttingen, was appointed an assistant

professor in Princeton in 1931. The λ-calculus gave a strict,

but rather forbidding, formalism for writing out terms defin-

ing a class of functions from base functions and a generalised

recursion or induction scheme. Church had only established

that the simple number successor function was “λ-definable”

when his future PhD student Stephen Cole Kleene arrived in

1931; by 1934 Kleene had shown that all the usual number

theoretic functions were also λ-definable. They used the term

“effectively calculable” for the class of functions that could

be computed in the informal sense of effective procedure or

algorithm alluded to above.

Church ventured that the notion of λ-definability should

be taken to coincide with “effectively calculable”.
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Church’s Thesis (1934 – first version, unpublished) The effec-

tively calculable functions coincide with the λ-definable func-

tions.

At first Kleene tried to refute this by a diagonalisation argu-

ment along the lines of Cantor’s proof of the uncountability

of the real numbers. He failed in this but instead produced a

theorem: the Recursion Theorem. Gödel’s view of the sugges-

tion contained in the thesis when Church presented it to him

was that it was “thoroughly unsatisfactory”.

Gödel meanwhile had formulated an expanded notion of

primitive recursive functions that he had used in his Incom-

pleteness papers; these became known as theHerbrand-Gödel

general recursive functions. He lectured on these in 1934

whilst visiting the IAS, Princeton.

Church and Kleene were in the audience and seem to have

decided to switch horses. Kleene:

“I myself, perhaps unduly influenced by rather chilly recep-

tions from audiences around 1933–35 to disquisitions on λ-

definability, chose, after [Herbrand-Gödel] general recursiveness

had appeared, to put my work in that format . . . ”

Preliminary solutions to the Entscheidungsproblem

By 1935 Church could show that there was no λ-formula

“A convB” iff the λ-terms A and B were convertible to each

other within the λ-calculus. Moreover, mostly by the work

of Kleene, they could show the λ-definable functions were

co-extensive with the general recursive functions. Putting this

“non-λ-definable-conversion" property together with this last

fact, there was therefore a problem which, when coded in

number theory, could not be solved using general recursive

functions. This was published by Church [2]. Another thesis

was formulated:

Church’s Thesis (1936 – second version) The effectively calcu-

lable functions coincide with the [H-G] general recursive func-

tions.

Gödel still indicated at the time that the issue was unresolved

and that he was unsure that the general recursive functions

captured all informally calculable functions.

“On Computable Numbers”

Newman and Turing were unaware of these developments in

Princeton. The first subject of Turing’s classic paper is os-

tensibly ‘Computable Numbers’ and is said to be only “with

an application to the Entscheidungsproblem”. He starts by re-

stricting his domain of interest to the natural numbers, al-

though he says it is almost as easy to deal with computable

functions of computable real numbers (but he will deal with

integers as being the ‘least cumbrous’). He briefly initiates

the discussion calling computable numbers those ‘calculable

by finite means.’

In the first section he compares a man computing a real

number to a machine with a finite number of states or ‘m-

configurations’ q1, . . . , qR. The machine is supplied with a

‘tape’ divided into cells capable of containing a single symbol

from a finite alphabet. The machine is regarded as scanning,

and being aware of, only the single symbol in the cell being

King’s College Rowing Team 1935 (2nd from the left, rear row) after his

election to a Fellowship

viewed at any moment in time. The possible behaviour of the

machine is determined only by the current state qn and the

current scanned symbol S r which make up the current con-

figuration of the machine. The machine may operate on the

scanned square by erasing the scanned symbol or writing a

symbol. It may move one square along the tape to the left or

to the right. It may also change its m-configuration.

He says that some of the symbols written will represent

the decimal expansion of the real number being computed,

and others (subject to erasure) will be for scratch work. He

thus envisages the machine continuously producing output,

rather than halting at some stage. It is his contention that

“these operations include all those which are used in the com-

putation of a number”. His intentions are often confused with

statements such as ‘Turing viewed any machine calculation

as reducible to one on a Turing machine’ or some thesis of

this form. Or that he had ‘distilled the essence of machine

computability down to that of a Turing machine’. He explic-

itly warns us that no “real justification will be given for these

definitions until Section 9”.

In Section 2 he goes on to develop a theory of his ma-

chines giving and discussing some definitions. He also states:

“If at each stage the motion of the machine is completely deter-

mined by the configuration, we shall call the machine an ‘auto-

matic’ or a-machine.”

“For some purposes we may use machines whose motion is only

partly determined. When such a machine reaches one of these

ambiguous configurations, it cannot go on until some arbitrary

choice has been made . . . ”

Having thus in two sentences prefigured the notion of

what we now call a non-deterministic Turing machine he says

that he will stick in the current paper only to a-machines, and

will drop the ‘a’. He remarks that such a non-deterministic

machine ‘could be used to deal with axiomatic systems’. (He

is probably thinking here of the choices that need to be made

when developing a proof line-by-line in a formal system.) The

succeeding sections develop the theory of the machines. The

theory of a “universal machine” is explicitly described, as
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is in particular the conception of program as input or stored

data and the mathematical argument using Cantor’s diagonal-

isation technique, to show the impossibility of determining by

a machine, whether a machine program was ‘circular’ or not.

(Thus, as he does not consider a complete computation as a

halted one, he instead considers first the problem of whether

one can determine a looping behaviour.)

Section 9 “The extent of the computable numbers” is in

some ways the heart of the paper, in particular for later discus-

sions of the so-called ‘Turing’ or ‘Church-Turing’ theses. It is

possibly of a unique character for a paper in a purely math-

ematical journal of that date (although perhaps reminiscent

of Cantor’s discussions on the nature of infinite sets in Math-

ematische Annalen). He admits that any argument that any

calculable number (by a human) is “computable” (i.e., in his

machine sense) is bound to hang on intuition and so be mathe-

matically somewhat unsatisfactory. He argues that the basis of

the machine’s construction earlier in the paper is grounded on

an analysis of what a human computer does when calculating.

This is done by appealing to the obvious finiteness conditions

of human capabilities: the possibilities of surveying the writ-

ing paper and observing symbols together with their writing

and erasing.

It is important to see that this analysis should be taken

prior to the machine’s description. (Indeed one can imagine

the paper re-ordered with this section placed at the start.) He

had asked:

“What are the possible processes which can be carried out in

computing a real number.” [Author’s emphasis]

It is as if the difference between the Princeton approach

and Turing’s is that the former appeared to be concentrating

on discovering a definition whose extension covered in one

blow the notion of effectively calculable, whereas Turing con-

centrated on process, the very act of calculating.

According to Gandy [5] Turing has in fact proved a theo-

rem albeit one with unusual subject matter. What has been

achieved is a complete analysis of human computation in

terms of finiteness of the human acts of calculation bro-

ken down into discrete, simple and locally determined steps.

Hence:

Turing’s Thesis: Anything that is humanly calculable is com-

putable by a Turing machine.

(i) Turing provides a philosophical paradigm when defin-

ing “effectively calculable”, in that a vague intuitive no-

tion has been given a unique meaning which can be

stated with complete precision.

(ii) He also makes possible a completely precise under-

standing of what is a ‘formal system’ thereby making

an exact statement of Gödel’s results possible (see the

quotation below). He claims to have a machine that will

enumerate the theorems of predicate calculus. This also

makes possible a correct formulation of Hilbert’s 10th

problem. It is important to note that Turing thus makes

expressions along the lines of “such and such a proposi-

tion is undecidable” have mathematical content.

(iii) In the final four pages he gives his solution to the

Entscheidungsproblem. He proves that there is no ma-

chine that will decide of any formula ϕ of the predicate

calculus whether it is derivable or not.

He was 23. His mentor and teacher Max Newman was as-

tonished and at first reacted with disbelief. He had achieved

what the combined mental resources of Hilbert’s Göttingen

school and Princeton had not, and in the most straightforward,

direct, even simple manner. He had attended Newman’s Part

III course on the Foundations of Mathematics in Spring 1935

and within 14 months had solved the last general open prob-

lem associated with Hilbert’s programme.

However, this triumph was then tempered by the arrival

of Church’s preprint of [1] which came just after Turing’s

proof was read by Newman. The latter however convinced the

London Mathematical Society that the two approaches were

sufficiently different to warrant publication; this was done in

November 1936, with an appendix demonstrating that the ma-

chine approach was co-extensional with the λ-definable func-

tions, and with Church as referee.

Gödel again:2

“When I first published my paper about undecidable proposi-

tions the result could not be pronounced in this generality, be-

cause for the notions of mechanical procedure and of formal sys-

tem no mathematically satisfactory definition had been given at

that time . . . The essential point is to define what a procedure

is.”

“That this really is the correct definition of mechanical com-

putability was established beyond any doubt by Turing.”

Turing’s “Ordinal logics”

In 1937 Turingwent to Princeton but was somewhat dismayed

to find only Church and Kleene there. He first asked von Neu-

mann for a problem, and von Neumann passed on one from

Ulam concerning the possibility of approximating continuous

groups with finite ones which Turing soon answered nega-

tively.

With this and some other work he published two papers

on group theory (described in a letter to Philip Hall as ‘small

papers, just bits and pieces’; nevertheless they appeared in

Compositio and Annals of Mathematics).

He stayed on in Princeton on a Procter Fellowship (of

these there were three, one each for candidates from Cam-

bridge, Oxford and the Collège de France). He decided to

work towards a PhD under Church. He still had a King’s Fel-

lowship and thus a PhD would not have been of great use to

him in the Cambridge of that day. He completed his thesis

in two years (even whilst grumbling about Church’s “sugges-

tions which resulted in the thesis being expanded to appalling

length” – it is 106 pages). The topic (probably suggested by

Church) concerned trying to partially circumvent incomplete-

ness of formal theories T by adding as axioms statements to

the effect that the theory was consistent.

To illustrate the thesis problem with an example (where

we may think of T0 as PA again) set:

T1 : T0 + Con(T0)

where “Con(T0)” is some expression arising from the Incom-

pleteness Theorems expressing that “T0 is a consistent sys-

tem”; as Con(T0) is not provable from T0, this is a deductively

stronger theory; continuing:

Tk+1 : Tk + Con(Tk) for k < ω, and then:Tω =
�

k<ω

Tk.
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Presumably we may still continue:

Tω+1 = Tω + Con(Tω) etc.

We thus obtain a transfinite hierarchy of theories. As would

occur to many peoplewho have spent even amoderate amount

of time pondering the Second Incompleteness Theorem, one

could ask of this sequence of theories of increasing deductive

strength, what can one in general prove from a theory in this

sequence? (Indeed this is just one question one can see about

the incompleteness results that bubble up from time to time

on MathOverflow.)

Turing called these theories “Logics” and used the letter

“L” but I shall use the modern convention. He was thus inves-

tigating the question as to what extent such a sequence could

be ‘complete’:

Question: Can it be that for any problem A there might be

an ordinal α so that Tα proves A or ¬A?

Actually he was aiming at a more restricted question,

namely what he called number theoretic problems which are

those that can be expressed in an ‘∀∃’ form (the twin primes

conjecture comes to mind). He does not clarify why he alights

on this particular form of the question.

There are several items that must be discussed first, in or-

der to give this sketch of a progression of theories even some

modicum of precision. To formally write down in the lan-

guage of PA a sentence that says “Con(PA)” one really needs

a formula ϕ0(v0) that defines for us the set of Gödel code num-

bers n of instances of the axiom set T0 = PA. There are in-

finitely many such formulae but we choose one which is both

simple (it is Σ1, meaning definable using a single existential

quantifier) and canonical in that it simply defines the axiom

numbers in a straightforward manner. Assuming we have a

ϕ0, we then may set ϕk+1(n̄) ←→ ϕk(n̄) ∨ Con(ϕk) where

Con(ϕk) expresses in a Gödelian fashion the consistency of

the axiom set defined by ϕk.

But what to do at stage ω? How you choose a formula for

a limit stage depends on how you approach that stage, but the

problem even occurs for stageω: how do you define a formula

that uniformly depends on the previous stages so that you can

express the “union” set of axioms correctly?

Notation and progressions

Turing solved this and devised a method for assigning sets

of sentences, so theories, to all constructive (also called re-

cursive or computable) ordinals by the means of notations. In

essence a notation for an ordinal is merely some name for it

but a system of notations (which Turing used) was invented

by Kleene using the λ-calculus. Nowadays we also use the

idea of being able to name the ordinal α by the natural num-

ber index e of a computable function {e} which computed the

characteristic function of a well-order of N of order type α.

This essentially yields a tree order with infinite branching

at all and only constructive ordinal limit points.

The set of notations O ⊂ N thus forms a tree order, with

n <O m ↔ |n| < |m|, where | · | is the ordinal rank function

(defined by transfinite recursion along <O) satisfying:

|0| = 0; |2a| = |a| + 1; |3e| = limn→∞|{e}(n)|.

However O is a co-analytic set of integers and is thus highly

complex. Let suc(a) =d f 2
a and let lim(e) =d f 3

e.

Definition 1. A progression based on a theory T is a primitive

recursive mapping n −→ ϕn where ϕn is an ∃ formula such

that PA proves:

(i) T0 = T;

(ii) ∀n
�

Tsuc(n) = Tn + Con(ϕn)
�

;

(iii) Tlim(n) =
�

m T{n}(m).

Thus one attaches in a uniform manner formulae ϕa to

define theories Ta to every a ∈ N of the form suc(a), lim(a).

However this does not tell us how to build progressions which

can be justified by the Recursion Theorem.

An explicit consistency sequence is then defined to be the

restriction of a progression to a path through O.

With these tools Turing proved a form of an enhanced

Completeness Theorem.

Theorem 3 (Turing’s Completeness Theorem). For any true

∀ sentence of arithmetic, ψ, there is a b = b(ψ) ∈ O with

|b| = ω + 1, so that Tb ⊢ ψ. The map ψ֌ b(ψ) is given by a

primitive recursive function.

Thus we may for any true ψ find a path through O of

length ω + 1,

T = T0, T1, . . . , Tω+1 = Tb

with the last proving ψ. At first glance this looks like magic:

how does this work, and can we use it to discovermore ∀-facts

about the natural number system?

However, there is a trick here. As Turing readily admits,

what one does is construct for any ∀ sentence ψ an exten-

sion Tb(ψ) proving ψ with |b(ψ)| = ω + 1. Then if ψ is true

we deduce that Tb(ψ) is a consistent extension in a proper con-

sistency sequence (notice that conditional in the antecedent of

the theorem’s statement). However if ψ is false Tb(ψ) turns out

to be merely inconsistent, and so proves anything. In general

it is harder to answer ?b ∈ O? than the original ∀ question and

so we have gained no new arithmetical knowledge. The out-

come of the investigation is thus somewhat equivocal: we can

say that some progressions of theories will produce truths of

arithmetic but we cannot determine which ones they will turn

out to be.

He regarded the results as somewhat disappointing. He

had only succeeded in proving a theorem for ‘∀’ problems

and not for his chosen ‘number theoretic problems’. He had,

moreover, proven another theorem that stated that there would

be b, c ∈ O, with, for example, |b| = |c| = ω + 1, such

that Tb and Tc would prove different families of sentences.

Thus invariance would fail even for theories of the same

“depth”.

It does contain a remarkable aside however. Almost as

a throw-away comment he introduces what has come to be

called a relativised Turing Machine or (as he called it) an or-

acle machine. This machine is allowed an instruction state

that permits it to query an ‘oracle’ (considered perhaps as

an infinite bit-stream of information about the members of

B ⊆ N written out on a separate tape) whether ?n ∈ B? An an-

swer is received and computation continues.With this one can

develop the idea of ‘relative computability’ – whether mem-

bership of m in set A can be determined from knowledge of

finitely many membership questions about set B. This notion

is central to modern computability theory. However, Turing



Feature

EMS Newsletter September 2012	 37

Royal Society Election portrait 1951

introduces the concept, (dubbing it an ‘oracle’ or o-machine)

and uses it somewhat unnecessarily to prove the point that

there are arithmetic problems that are not in his sense num-

ber theoretic problems. And then ignores it for the rest of the

paper; it is unused in the sequel.

The paper, duly published in 1939, lay somewhat dormant

until taken up by Spector and Feferman some 20 years later.

Feferman did a far reaching analysis of the notion of gen-

eral progressions, using not just formalised consistency state-

ments as Turing had done but also other forms that, roughly

speaking, ensured the preservation of truth. Note that a gen-

eral consistency sequence step will not necessarily preserve

truth of even say existential statements. However, a properly

formulated ‘existential soundness’ statement – that existen-

tial sentences provable from the theory are true – when iter-

ated or progressed in the above manner, can result in a ‘∀∃’-

completeness statement of the Turing kind. Indeed, it can be

shown that there are paths through O along which all true

sentences of arithmetic are provable. However, finding a path

through O is no simpler than determining whether a single b

is in O, so again there is this equivocal feeling to the results.

It is compounded by the fact that there are also paths through

O, as Spector and Feferman found, which do not establish all

truths of arithmetic.

The photograph shows Turing on his election as Fellow of

the Royal Society in London in 1951 with a citation for “On

Computable Numbers”; he was not the youngest at an age

of 38 (Hodges notes that Hardy had been elected at 33 and

Ramanujan at 30). Three further small articles appeared on

the lambda-calculus, but otherwise Turing published nothing

further on mathematical logic.

This article does not aim to discuss his contributions to

the wartime decoding effort, the development of actual com-

puters or to morphogenesis but in all these areas he displayed

an open mind to ideas no matter whence they came and a

startlingly fresh, lucid, when not even slyly mischievious,

writing style that is exemplified by his Mind paper [11]. He

had an ability to get to the heart of a problem and express it

in simple, clear terms. Robin Gandy told an anecdote of Tur-

ing entering the room where two engineers were laboriously

testing the permeability of the cores in certain transformers

of radio receivers. Robin marvelled to see Turing take a clean

piece of paper, write at the top Maxwell’s equations and then

proceed to derive what they wanted ab ovo.

I’ll conclude on a more visionary note with a quotation

from an interview he gave following a discussion of a famous

British neuroscientist’s well publicised lecture on the impos-

sibility of the brain being a mere machine. It shows that he

was indeed visionary in what computers would be capable of.

Whilst reports to the US Government or military at about

this time supposedly emphasised the rarefied nature of the

new or even nascent machines, that they would only be used

in university (or presumably government) laboratories or that

“five or six machines would suffice for the whole country”,

Turing’s view could not have been more different: he sug-

gested that computers would permeate all walks of life and

that in 100 years a machine would pass what has come to be

called the “Turing Test.”

“This is only a foretaste of what is to come, and only the shadow

of what is going to be. We have to have some experience with the

machine before we really know its capabilities. It may take years

before we settle down to the new possibilities, but I do not see

why it should not enter any of the fields normally covered by the

human intellect and eventually compete on equal terms.”

(Press Interview with The Times, June 1949)

Acknowledgements. This article emerged from an invited
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and here, I am completely indebted to Andrew Hodges’ sen-

sitive and thoughtful biography. I am also grateful for ex-

changes with Martin Davis, Bob Soare, George Dyson and

of course for many conversations with my former supervisor

Robin Gandy (1919–1995), who was Turing’s only PhD stu-

dent and to whom the lecture was dedicated.

To the interested reader the following are also recom-

mended; they were consulted once more during my prepa-

ration of this lecture: Davis’ anthology [3] of the early fun-

damental papers in the subject, Gandy’s paper [5], Soare’s

article on the early history of computation theory [8] and, for
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Notes

1. Equivalence of left and right almost periodicity, J. of the London

Math. Society, 10, 1935.

2. There are several approving quotes from Gödel; this is taken

from an unpublished (and ungiven) lecture in theNachlassGödel,

Collected Works, Vol. III, p. 166–168.
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