
Identifying influential model choices in Bayesian
hierarchical models

Ida Scheel∗ Peter J. Green† Jonathan C. Rougier†

May, 2008

Abstract

Real-world phenomena are frequently modelled by Bayesian hierarchical models. The building-
blocks in such models are the distribution of each variable conditional on parent and/or neighbour vari-
ables in the graph. The specifications of centre and spread ofthese conditional distributions may be
well-motivated, while the tail specifications are often left to convenience. However, the posterior dis-
tribution of a parameter may depend strongly on such arbitrary tail specifications. This is not easily
detected in complex models. In this paper we propose a graphical diagnostic which identifies such influ-
ential statistical modelling choices at the node level in any chain graph model. Our diagnostic,the local
critique plot, examines local conflict between the information coming from the parents and neighbours
(local prior) and from the children and co-parents (lifted likelihood). It identifies properties of the local
prior and the lifted likelihood that are influential on the posterior density. We illustrate the use of the
local critique plot with applications involving models of different levels of complexity. The local critique
plot can be derived for all parameters in a chain graph model,and is easy to implement using the output
of posterior sampling.

1 Introduction

Bayesian hierarchical models are now widely used to model complex, structured data. Such models are
built from a large number of individual factors, representing the conditional distributions of each variable
given those higher in the hierarchy, or, in the case of undirected models,potential functions for cliques
of variables. Responsible, disciplined model-building requires that specification of all these factors should
properly take into account prior information, whether this codifies scientificlaws, earlier experiments, or
degrees of subjective belief. However, this specification is a very challenging task, and there will often be
a concern that it has been done imperfectly. In particular, while it may be relatively easy to specify the
location and spread of a marginal or conditional distribution, theshape of the distribution, especially in the
tail, is a more taxing question. Yet the posterior distribution of all unknowns given data may depend on the
trading off of tails of individual model factors. It is important that this phenomenon be detected so that the
modeller’s attention can be drawn to particular statistical choices that are influential in the analysis, in order
to confirm them or to reconsider.

In a simple Bayesian model, conflict between prior and data is easily detected,and this provides a diagnostic
for criticising statistical modelling choices. Suppose we have independent data(y1, . . . , y10) with ȳ = 12
which are modelled as Normal with meanµ and precision0.1. The prior distribution forµ is Normal with
mean 8 and precision 0.5. For this simple example it is easy to see that much of the posterior density for
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µ is dependent on the right tail of the prior and the left tail of the likelihood. It iseasy to illustrate (as in
Figure 1) because both the prior and the likelihood forµ are fixed (i.e. they have no random parameters).
In a general hierarchical model, identifying conflict between the sources of information contributing to the
posterior distribution of a single node is a more subtle matter. This paper introduces a graphical diagnostic
for this purpose.
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Figure 1: Plot of prior (dotdashed), normalised likelihood (dashed)and posterior (solid) withN(8, 0.5) prior for µ

Bayesian model criticism is often performed by considering a Bayesianp-value describing the compatibility
of the observed data and the model. Such ap-value is typically obtained from some test-statistic or discrep-
ancy measure (possibly depending on parameters as well as data) reflecting important aspects of the model,
and a predictive distribution for this discrepancy measure. The type of predictive distribution used varies,
e.g. the prior predictive distribution (Box, 1980), the posterior predictive distribution (Guttman, 1967; Ru-
bin, 1984; Gelman et al., 1996; Meng, 1994), and the partial posterior predictive distribution (Bayarri and
Berger, 1999, 2000; Bayarri and Castellanos, 2007). The latter approach avoids the need for informative
prior distributions, as in the prior predictive approach, as well as the conservatism caused by the double use
of data, as in the posterior predictive approach. This conservatism may also be handled by calibration (Hjort
et al., 2006). Thesep-values are usually directed at one specific aspect of a model, not considering model fit
at the individual nodes of a hierarchical model. A method for checking allstages of a hierarchical model was
proposed by Dey et al. (1998), though it is highly computationally intensive. Our idea of looking for conflict
between the prior and likelihood information at the node level is not new. O’Hagan (2003) extends the node
level residual analysis of Chaloner (1994) to other measures of conflict, to look for conflict between the dif-
ferent sources of information provided for the node in question. In practice, this is done by looking at how
much the densities representing two different sources of information overlap, measured by the height of the
densities (normalised to have unit maximum height) at the point where the two cross. A modification of this,
avoiding double use of data, is proposed in Dahl et al. (2007). Marshall and Spiegelhalter (2007) propose a
similarp-value for measuring conflict at the node level in hierarchical models, which also avoids specifying
a discrepancy measure and acts as an approximation to their cross-validatory, mixedp-value (Marshall and
Spiegelhalter, 2003, 2007), when it exists.

However, none of the above-mentioned conflict measures really address the nature of the conflict and
the impact certain aspects of the prior and the likelihood have on the posterioranalysis. The diagnostic
we propose examines conflict at the node level by identifying where the posterior samples of a variable
are located in what we call the local prior (the information coming from the parents and/or neighbours)
and what we call the lifted likelihood (the information coming from children and co-parents). It has the
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ability to identify properties of the local prior and lifted likelihood that are influential on the posterior
density. The tool we propose may be used in any chain graph model, thus is applicable to virtually all
hierarchical models in routine statistical practice. It is easy to implement using the output of a sampler,
such as the Gibbs sampler. In our examples we have run posterior simulationsusing WinBUGS (Lunn
et al., 2000) and the R (http://cran.r-project.org) package BRugs which contains OpenBUGS
(http://www.mathstat.helsinki.fi/openbugs).

The outline of the paper is as follows. In Section 2 we start by providing sometheory on chain graphs, then
we introduce the local prior, the lifted likelihood and our graphical diagnostic for chain graph models,the
local critique plot, and explain how to interpret this new diagnostic. In Section 3 we illustrate the use of the
local critique plot by applying it to three different types of chain graph models; a 2-level Directed acyclic
graph (DAG), a 3-level DAG and a DAG combined with a Markov Random Field (MRF). In Section 4 we
conclude on the abilities of the local critique plot.

2 Methodology

2.1 Chain graphs

Consider a graphG = (V,E) whereV is the set of vertices andE the set of edges. Vertexi represents
the random variablexi, which can be observed or unobserved. Constants are not represented in the graph.
For a subsetA ⊆ V let xA = {xi}i∈A andx = xV . Let O be the subset of vertices representing the
observed variables (the data), andU be subset of vertices representing the unobserved variables (parameters
or missing data), such thatO ∪ U = V . This paper has a Bayesian perspective and we consider parameters
as random variables. We only consider continuous parameters defined on the real line, but similar theory
could be developed for discrete parameters. The edges in the graph canbe directed or undirected. A subset
of a graph where all the vertices are connected by directed or undirected edges is said to form a complete
subgraph. If there is a directed edge from vertexj to vertexi, j is a parent ofi andi is a child ofj, and we
write pa(i) for the set of parents and ch(i) for the set of children of vertexi (pa(i) or ch(i) may be empty).
Furthermore, pa(A) is the set of parents of the vertices in subsetA (may be empty). If there is an undirected
edge between vertexj and vertexi, j is in the neighbourhood ofi (and vice versa) and we writei ∼ j. The
set ne(i) = {j : i ∼ j} is then called the neighbourhood of vertexi (may be empty). The directed and
undirected edges of the graph encode conditional independence properties among the variables, in a sense
shortly to be made precise.

In this paper we focus on a class of graphs called chain graphs. Suppose thatV can be partitioned into
numbered subsetsV (c), c ∈ T = {1, . . . , T}, such that all edges between subsets are directed, with direc-
tion from the subset with the lower number to the one with the higher number, andedges within subsets are
undirected. Denote the edges withinV (c) asE(c). If and only if (V (c), E(c)) form undirected subgraphs
(which do not have to be complete) for allc thenG is a chain graph andV (c), c ∈ T are called chain
components (see Lauritzen, 1996, chapter 2).G has no directed cycles. If a vertexi has no undirected edges
connected to it,i forms a chain component with itself as the only member. In the special case thatall chain
components are such single vertices,G is a Directed acyclic graph (DAG).

Now suppose the vector of all random variablesx of the chain graph takes values inX , and that probabilistic
statements on the graph are described by some probability distributionP on X with joint densityp(x).
Markov properties are implied by two factorisation assumptions onp, the first of which is

(1) p(x) =
∏

c∈T

p(xV (c)|xpa(V (c))),
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wherep(xA|xB) denotes a density of the variablesxA for any subsetA ∈ V , given the variablesxB. The
second assumption is a further factorisation of the factors in (1). LetGc be the undirected subgraph with
nodesV (c) ∪ pa(V (c)) and undirected edges between two nodes if either they are both in pa(V (c)) or
there is a directed or undirected edge between them inG. Let W (c) be the collection of all subsets of
V (c) ∪ pa(V (c)) that form complete subgraphs inGc. The second factorisation assumption is

(2) p(xV (c)|xpa(V (c))) =
∏

a∈W (c)

φa(x), c ∈ T ,

whereφa(x) is some function that depends onx only throughxa. The probability distributionP is said to
factorise according toG if p satisfies both (1) and (2) (see Lauritzen, 1996, chapter 3.2.3).

2.2 The local critique plot

The assumptions (1) and (2) lead to the following full conditional distribution for the variablexi

(3) p(xi|x−i) ∝ p(xi|xpa(i), xne(i))
∏

c:i∈pa(V (c))

p(xV (c)|xpa(V (c))), i ∈ V,

wherex−i are all variables except variablexi. In this paper we call

(4) pi(x) = p(xi|xpa(i), xne(i)), i ∈ U

the local prior forxi and

(5) li(x) =
∏

c:i∈pa(V (c))

p(xV (c)|xpa(V (c))), i ∈ U

the lifted likelihood forxi. The justification for the names ”local prior” and ”lifted likelihood” lies in that
in the case of a simple two-level model in whichxi is alone at the higher level (i.e. the only parameter),
(4) would in Bayesian statistics be called the prior and (5) the likelihood forxi. One should be aware that
if G is a non-DAG,p(xV (c)|xpa(V (c))) in (5) may contain functions ofxi that may be unexpected from a
glance at the graph. This follows from the factorisation requirement (2).In the special case of only two
chain components, one of which is a Markov Random Field (MRF) with vertices i ∈ Q and the other is a
single vertex calledp, which is a parent to all the vertices in the MRF, (5) forxp reduces to

(6) lp(x) = p(xQ|xp).

In the special case thatG is a DAG, (5) reduces to

(7) li(x) =
∏

j:i∈pa(j)

p(xj |xpa(j)), i ∈ U.

To illustrate the concepts ”local priors” and ”lifted likelihoods”, we consider a DAG example calledPumps.
It concerns the numbers of failures ofn = 10 power plant pumps. Pumpi hasyi failures, operation timeti
(in 1000s of hours) and failure rateθi. The model implemented in Spiegelhalter et al. (2004) is

(8)

yi|θi ∼ Poisson(θiti), i = 1, . . . , n

θi|α, β ∼ Gamma(α, β), i = 1, . . . , n

α ∼ Gamma(1, 1)

β ∼ Gamma(0.1, 1).
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This example originates from Gaver and O’Muircheartaigh (1987), withα andβ fixed at empirical Bayes
estimates. Gelfand and Smith (1990) also use an empirical Bayes estimate forα, but assume a Gamma
distribution forβ , while George et al. (1993) assume Gamma distributions for bothα andβ.

Herex = (y1, . . . , yn, θ1, . . . , θn, α, β). The DAG can be seen in Figure 2. The local priors for the para-
meters in this model are

(9)

pα(x) = exp (−α)

pβ(x) =
β−0.9

Γ(0.1)
exp (−β)

pθi
(x) =

βαθα−1
i

Γ(α)
exp (−βθi), i = 1, . . . , n,

and the lifted likelihoods

(10)
lα(x) = lβ(x) =

n∏

i=1

βαθα−1
i exp (−βθi)

Γ(α)

lθi
(x) ∝ θyi

i exp (−tiθi), i = 1, . . . , n.

” li(x) ∝ f(x)” implies throughout this paper thatli(x) is proportional tof(x) with respect toxi. Further-
more, in applications the parameter name is frequently used as subscript on functions instead ofi (e.g.lα(x)
instead ofl2n+1(x) in Pumps).
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Figure 2: DAG for thePumps model (squares represent constants that are not true vertices in the graph).

Based on (3-5) we propose two functions to identify influential statistical modelling choices. Assuming that
the local priorpi(x) is proper,πi(x) is the distribution function of the local prior forxi

(11) πi(x) =

∫ xi

−∞
pi(x

i→u)du, i ∈ U.

wherexi→u denotesx with thei’th element replaced byu. Notice that it is a function ofx only throughxi,
xpa(i) andxne(i). It expresses wherexi is located in the support of the local prior density given the states
of pa(i) and ne(i) in x. The cumulative distribution function is used in order to mapxi onto a standard
probability scale givenxpa(i) andxne(i).
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The second function we propose is the cumulative normalised lifted likelihood of xi

(12) ψi(x) =

∫ xi

−∞ li(x
i→u)du

∫ ∞
−∞ li(xi→u)du

, i ∈ U,

We assume for the moment that the lifted likelihood is integrable with respect toxi, so that the denominator
is finite and (12) well-defined; further we assume that the resultingψi(x) is available in closed form or equals
a known cumulative distribution function. We discuss other cases in Section 2.4. ψi(x) identifies wherexi

is located in the support of its lifted likelihood function given the state of{xV (c), xpa(V (c))}c:i∈pa(V (c)) in x. A
cumulative distribution is used in order to mapxi onto a standard[0, 1] scale given{xV (c), xpa(V (c))}c:i∈pa(V (c)).
Because the lifted likelihood (5) is not a distribution with respect to the parameter xi, normalisation is
needed. Notice thatψi(x) is a function ofx only through the set{xV (c), xpa(V (c))}c:i∈pa(V (c)), which con-
tainsxi. The intersection of the random variables involved inψi(x) and the ones involved inπi(x) may
contain more than justxi.

A third way to scorexi is in terms of its posterior distribution. Letpi(x
i→u | xO) be the marginal posterior

density ofxi and

(13) ξi(x) =

∫ xi

−∞
pi(x

i→u | xO)du, i ∈ U,

which is the cumulative posterior distribution function forxi. For consistency in notation, we treat it as
a function of the whole vectorx. ξi(x) is intended to be supplementary toπi(x) andψi(x), which are of
main interest. Our diagnostic, which we callthe local critique plot, is a graphical visualisation of the joint
posterior density ofπi(x),ψi(x) andξi(x) for eachi ∈ U , given the dataxO. Generally,πi(x) andψi(x) are
not independent conditional onξi(x) andxO. Except for very simple models, the joint posterior distribution
of πi(x), ψi(x) andξi(x) can be very complex and intractable analytically. Because this is the case alsofor
the posterior density ofxU , an obvious solution is Markov Chain Monte Carlo (MCMC) simulation. The
posterior sample ofxU provided by MCMC simulation can be directly plugged into theπi(x) andψi(x)
functions. Assume a MCMC simulation with a total ofM iterations (after burn in) is performed. The set
x

(t)
A are the values ofxA at thet’th iteration. We plug the samples{x(t)}M

t=1 into explicit formulas forπi(x)
andψi(x) to obtain the samplesπi(x

(t)) andψi(x
(t)). An estimate ofξi(x) can be derived directly from the

MCMC simulation

(14) ξ̂i(x
(t)) = 1

M

M∑

s=1

I
x
(s)
i ≤x

(t)
i

, i ∈ U.

For eachxi, i ∈ U , we record the value of our diagnostic by plotting the sampled values ofπi(x), ψi(x) and
ξi(x), that is{(πi(x

(t)), ψi(x
(t))), ξ̂i(x

(t))}M
t=1, on [0, 1] × [0, 1] × [0, 1], with π along the vertical axis,ψ

along the horizontal axis and theξ dimension expressed by marking of the points. The marking used in this
paper is done by substituting each point by a line segment with an angle∈ [0, π

2 ], where the angle relative
to theπ axis represents the value ofξi(x), transformed from[0, 1] to [0, π

2 ]. The value of(πi(x), ψi(x)) is
the centre of the plotting line segment. A vertical line segment indicatesξi(x) = 0 and a horizontal line
segment indicatesξi(x) = 1. ξ can be rendered in various ways. Rainbow colouring of the points according
to ξi(x) seems to be the easiest to interpret, but because colour printers still are rare, we have chosen the
alternative described above. Grey scale is a possibility, but it may encourage the interpretation that the light
coloured points are of less importance, which is not the case.
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2.3 Interpretation of the local critique plots

If the mass is concentrated in the upper left corner or the lower right corner of the plotting region, it means
thatxi | xO is located mainly in the tails of both the local prior and the lifted likelihood (opposite tails). In
other words, the marginal posterior density ofxi is a result of a trading off these tails. Ifxi is considered im-
portant, there is reason to rethink the model carefully to ensure that the model is well specified. In particular,
one should reconsider the tails of the local prior and the lifted likelihood. Less extreme, but still a reason
to re-examine the model, is the case when the mass is well spread out in theπ dimension, but concentrated
close to one of the vertical edges in the plot, which means that the posterior density ofxi is using only the
tail of its lifted likelihood, but most of its local prior. Conversely, if the posterior density ofxi is using
most of its lifted likelihood, but mainly the tail of its local prior, the mass will be well spread out in theψ
dimension, but concentrated close to one of the horizontal edges in the plot.

If the plot shows that the mass is gathered along a thin line parallel to theψ axis, it means that the posterior
density ofxi is using only a small part of the local prior. This is not surprising if the priorspecification for
xi is non-informative, or if the lifted likelihood is highly informative because of large amounts of data. On
the other hand, if the plot shows that the mass is gathered along a thin line parallel to theπ axis, it means that
the posterior density ofxi is using only a small part of the lifted likelihood, which may be more disturbing.
Of course, there may be good reasons why the lifted likelihood is non-informative onxi.

The mass will never be concentrated in the lower left corner or the upper right corner of the plotting region,
unless there is something wrong in the simulation. The reason is simply thatxi values located in the same
side tails of the local prior and the lifted likelihood will not have the highest posterior density values.

Generally,πi(x) andψi(x) do not follow a Unif(0, 1) distribution. How close the distributions ofπi(x) and
ψi(x) are to Unif(0, 1) depends on the similarity between the local prior and the full conditional and between
the lifted likelihood and the full conditional, respectively. In the special case that the lifted likelihood is com-
pletely flat, i.e.li(x) ∝ 1, thenpi(x) = p(xi|x−i) andπi(x) ∼ Unif(0, 1). Similarly, in the special case that
the local prior is completely flat, i.e.pi(x) ∝ 1, thenli(x) = p(xi|x−i) andψi(x) ∼ Unif(0, 1). Suppose
neither the local prior or the lifted likelihood are flat, but that they agree wellon the location and spread of
the distribution ofxi. Generally, the degree of such similarity betweenpi(x) andli(x) will not be constant
because they can both depend on random parameters. The distributions of πi(x) andψi(x) will in such a
case not be Unif(0, 1), but their supports will still cover most of[0, 1] and their modes will be approximately
0.5.

To illustrate the local critique plots, we return to the simple Normal example from theIntroduction. First
we introduce some general notation on distributions. Ifz is Normal with meanµ and precision (inverse
variance)τ , we write z ∼ N(µ, τ) andΦ(u;µ, τ) = P (z ≤ u). If z is Gamma with shapeα and rate
(inverse scale)β, we write z ∼ Ga(α, β) andΓ(v;α, β) = P (z ≤ v). Lastly, z ∼ logN(µ, τ) means
that z is log-Normal where the mean and precision of the logarithm ofz areµ and τ , respectively, and
Ω(v;µ, τ) = P (z ≤ v). The model for the simple Normal example is

(15)
yi|µ, τ ∼ N(µ, τ), i = 1, . . . , n

µ ∼ N(µ0, τ0),

with either fixed precisionτ , in which casex = (y1, . . . , yn, µ), or random precisionτ , in which case
x = (y1, . . . , yn, µ, τ). We focus our attention on the parameterµ. This is a DAG where the local prior and
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lifted likelihood forµ are identical to the conventional prior and likelihood

(16)

πµ(x) = Φ (µ;µ0, τ0)

lµ (x) =
n∏

i=1

p (yi|µ, τ) ∝ exp
(
− τn

2 (µ− ȳ)2
)
⇒ ψµ (x) = Φ (µ; ȳ, τn) .

The data used in this example haven = 10 and ȳ = 12. Figure 3 (a) shows the local critique plot forµ
whenτ = 0.1, µ0 = 8 andτ0 = 0.5 (Model1) based on 10000 MCMC posterior simulations. It is a further
demonstration of what can be seen in Figure 1; the posterior samples ofµ are located in the right tail of its
local prior and the left tail of its lifted likelihood. The local critique plot forµ whenτ ∼ Ga(1e−6, 1e−6),
µ0 = 11 andτ0 = 0.5 (Model2) can be seen in Figure 3 (b) (also based on 10000 MCMC posterior simula-
tions). The posterior samples ofµ for Model2 are more spread out across both the local prior and the lifted
likelihood than when usingModel1, where the local prior mean forµ is farther away from̄y. Also, because
τ is now made random, there is randomness inψ direction, which is explained below. The information from
the local critique plots in Figure 3 (a) and (b) may be obvious just from looking at the model, but for models
with more complicated structures conflicts of this kind are not at all obvious, and our graphical diagnostic
serves a useful purpose.

For some variables the relationship betweenπi(x) andξi(x) or betweenψi(x) andξi(x) is one-to-one, given
the observed dataxO. If i has no random parents or neighbours, i.e. if

(17) pa(i) ∪ ne(i) ⊆ O,

then the local prior (4) is a function only ofxi, i.e. pi(x) = p(xi), and thereforeπi(x) = g(xi), whereg
is strictly increasing. Hence the posterior distribution ofπi(x) can be completely described in terms of the
posterior distribution ofxi, i.e. ξi(x), andg. If i is the parent only of observed data and has no random
co-parents, i.e. if

(18) ch(i) ⊆ O and ∪c:i∈pa(V (c)) pa(V (c)) = {i},

thenxi is the only random variable in the lifted likelihood (5), i.e.li(x) = p(xO | xi), and consequently
ψi(x) = h(xi), whereh is strictly increasing. Hence the posterior distribution ofψi(x) can be completely
described in terms of the posterior distribution ofxi, i.e. ξi(x), andh. In Model2, µ has no random parents
or neighbours, but is a co-parent with the random parameterτ , thus (17) is true but not (18). In Figure 3
(b) we see that the angle of the plotting line segment relative to theπ axis (which corresponds to the value
of ξµ(x)) is strictly increasing as a function ofπµ(x). In Model1, both (17) and (18) are true, i.e.µ has
no random parents, neighbours or co-parents and is the parent only of observed data. Then given a value
of ξµ(x), bothπµ(x) andψµ(x) are fixed and the angle of the plotting line segment relative to theπ axis is
strictly increasing both as a function ofπµ(x) and ofψµ(x), as can be seen in Figure 3 (a). In the limiting
case that both (17) and (18) are true and the lifted likelihood and the local prior provide exactly the same
information aboutxi, i.e. li(x) ∝ pi(x), then the local critique plot forxi consists of the straight line
πi(x) = ψi(x).

2.4 Approximate integration of the lifted likelihood

Computationally it is convenient if the lifted likelihood of the variablexi has a conditional conjugate fam-
ily, because thenψi(x) equals a known cumulative distribution function. But sometimes it is not easy to
integrate the lifted likelihoodli(x) (5), or li(x) may not even be integrable. In the latter case,ψi(x) is
not well-defined by (12). As a solution to both these issues, we suggest first to determine an interval[a, b]
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ψµ(x(t))

π µ
(x

(t)
)

(a)

ψµ(x(t))

π µ
(x

(t)
)

(b)

Figure 3: The local critique plots forµ in (a) Model1 (τ = 0.1, µ0 = 8 andτ0 = 0.5) and (b)Model2 (τ ∼
Ga(1e−6, 1e−6), µ0 = 11 andτ0 = 0.5) (M = 10000, results are shown for a random subsample of size
500).

that covers the bulk of theli(x) mass, and then perform numerical integration on this interval to obtain
ψ̂i(x). Whenxi has random, unobserved children and/or random co-parents, new integration boundaries
[a, b] must be determined at each simulation iteration to be plotted. Hence the algorithms for determining
[a, b] and performing the integrations should be as efficient as possible. Supposexi lies betweenamin and
bmax. The algorithm we propose for determining suitable bounds[a, b] for the numerical integration starts
with an initial interval[a0, b0] (e.g. the 10th and 90th percentiles in the posterior sample ofxi), inside which
log li(x) is evaluated atm equally spaced abscissas. The interval is then expanded iteratively, until the log-
arithm of the lifted likelihood at either end is at leastq

2 less than the maximum in the interval, whereq is
a high quantile of theχ2

1 distribution (e.g.99%). Pseudocode for this program can be seen in the supple-
mental material. Once an appropriate interval has been determined,ψi(x) can be approximated using the
Trapezium Rule. Now,̂ψi(x) = 0 for xi ≤ a andψ̂i(x) = 1 for xi ≥ b. Because[a, b] generally does not
cover all of the support ofli(x), the values 0 and 1 do not have the same interpretations forψ̂i(x) as for
ψi(x). To visualise this fact we suggest suppressing the plotting of the boundaries forψ at 0 and 1.

To illustrate the use of this approach we return to thePumps example. The lifted likelihood forα is

(19) lα(x) ∝





(
β

∏n
i=1 θ

1
n
i

)α

Γ (α)





n

=

(
κα

Γ (α)

)n

, κ = β
n∏

i=1

θ
1
n
i .

It is not possible to integrate this lifted likelihood analytically. The local critique plot for α with ψα(x)
estimated bŷψα(x), usingm = 6 and the Trapezoid Rule on200 subintervals, can be seen in Figure 4 (a).

To assess how well this approximation is doing we performed another approximation. lα(x) depends on
the parametersβ andθi, i = 1, . . . , n only throughκ. An examination oflα(x) for different values of
κ suggests that the normalisedlα(x) can be approximated well by a Normal distribution with mean equal
to the mode oflα(x) (α⋆, found by optimisation) and precision equal to the estimated Fisher Information
(estimated by settingα = α⋆). The Fisher Information forα from lα(x) is nφ1(α), whereφ1(α) is the

9



ψα(x(t))

π α
(x

(t)
)

(a)

ψα(x(t))

π α
(x

(t)
)

(b)

Figure 4: The local critique plots forα in the Pumps example where theψα(x(t)) is (a) estimated using the numerical
approach described in section 2.4 and (b) approximated by a Normal distribution (M = 10000, results are
shown for a random subsample of size 300).

trigamma function. The local critique plot forα with ψα(x) estimated by this Normal approximation can be
seen in Figure 4 (b). We see that the two local critique plots in (a) and (b) are very similar.

We also want to mention the possibility of multiplyingli(x) with a non-informative, proper prior (e.g. the
Jeffreys prior). If this results in a (unnormalised) posterior densityl̂i(x) which can be integrated analytically,
it can provide a reasonable approximation toψi(x). In addition to the advantage ofl̂i(x) being integrable,
the use of the Jeffreys prior makeŝψi(x) invariant to transformation, whichψi(x) generally is not, as we
show in the next section. We have not explored this idea; indeed, we havefound it difficult to find non-
trivial examples where the Jeffreys prior does result in an analytically-integrablêli(x). Another possibility
is to exploit the lack of invariance ofψi(x) by transformingxi in order to achieve an analytically tractable,
integrable lifted likelihood.

2.5 Invariance

Our graphical tool is invariant in theπ-direction to one-to-one transformations ofxi, but not always in the
ψ-direction. Consider a one-to-one transformationx̃i = g(xi) of xi, i ∈ U . The other variables are not
transformed, sõx = xi→x̃i . The full conditional distribution for the variablẽxi is then

(20) p(x̃i|x−i) ∝ p(x̃i|xpa(i), xne(i))
∏

c:i∈pa(V (c))

p(xV (c)|x̃pa(V (c))), i ∈ V.

The model is the same as before the transformation, including the local prior on xi = g−1(x̃i), in the sense
that the local prior oñxi is

(21) p̃i(x̃) = p(x̃i|xpa(i), xne(i)) = pi(x)
dg−1(x̃i)

dx̃i

 .

Becausexi is the only transformed variable, i.e.̃x−i = x−i, and because the model is the same as before
the transformation, we have for the lifted likelihood

(22) l̃i(x̃) =
∏

c:i∈pa(V (c))

p(xV (c)|x̃pa(V (c))) =
∏

c:i∈pa(V (c))

p(xV (c)|xpa(V (c))) = li(x).

10



We suppose in the following, for simplicity, thatg is increasing. Now, becauseπi(x) is equivalent to
the cumulative distribution of the local prior ofxi, and because the local prior distribution is unchanged
(see (21)), we have

(23) π̃i(x̃) =

∫ x̃i

−∞
p̃i(x

i→ũ)dũ =

∫ xi

−∞
pi(x

i→u)dg−1(ũ)
dũ

dg(u)
du du =

∫ xi

−∞
pi(x

i→u)du = πi(x).

i.e. π̃i(x̃) is identical toπi(x) for g increasing, or the complement1−πi(x) for g decreasing. Thusπi(x) is
invariant to this type of transformation. When creatingψ̃i(x̃) the integrand is the same as forψi(x) (see (22))
even though the variable to integrate over is transformed. We have

(24) ψ̃i(x̃) =

∫ x̃i

−∞ l̃i(x
i→ũ)dũ

∫ ∞
−∞ l̃i(xi→ũ)dũ

=

∫ xi

−∞ li(x
i→u)dg(u)

du du
∫ ∞
−∞ li(xi→u)dg(u)

du du
.

Hence, for linear transformations,̃ψi(x̃) is identical toψi(x) (see (12)), but for non-linear transformations
it is generally not. Thusψi(x) is not invariant to non-linear one-to-one transformations. Forj 6= i, the
functionsπj(x) andψj(x) are obviously unaltered by this kind of transformation ofxi.

The non-invariance ofψi(x) is obviously unappealing because there is no ”true” parametrisation, and thus
no ”true” ψi(x). There is an analogous freedom of choice of focus parameters when defining pD, the
effective number of parameters in a model, and the resulting deviance information criterion (DIC), proposed
by Spiegelhalter et al. (2002). Because of this lack of invariance, the local critique plot can potentially give
a false warning about a lifted likelihoodli(x), or conceal a warning that should have been given aboutli(x).
But in the following example we see that relatively drastic transformations do not cause a great discrepancy
in ψ. We return again to thePumps example. Alternatively to the parametrisation used in (8), one could
reparametrise using for example the two power transformationsηi = log (θi) or νi = 1

θi
instead ofθi. All

three parametrisations are natural choices:θi is the mean value parameter,ηi is the canonical parameter and
νi is the mean time to event parameter. The two alternative models are

(25)
yi|ηi ∼ Poisson(exp (ηi)ti), i = 1, . . . , n

exp (ηi)|α, β ∼ Ga(α, β), i = 1, . . . , n

and

(26)
yi|νi ∼ Poisson( ti

νi
), i = 1, . . . , n

1
νi
|α, β ∼ Ga(α, β), i = 1, . . . , n,

with the same distributions forα andβ as in parametrisation (8). Let̃x = xn+i→ηi andẋ = xn+i→νi . We
now have

(27)
π̃ηi

(x̃) = Γ (exp (ηi);α, β) = Γ (θi;α, β) = πθi
(x)

π̇νi
(ẋ) = 1 − Γ

(
1

νi
;α, β

)
= 1 − Γ (θi;α, β) = 1 − πθi

(x).

For parametrisation (8) the lifted likelihood ofθi (see (10)) is proportional to a Ga(yi + 1, ti) density forθi,
so

(28) ψθi
(x) = Γ (θi; yi + 1, ti) .

For parametrisations (25) and (26) the lifted likelihoods ofηi andνi are

(29)
l̃ηi

(x̃) ∝ exp (ηiyi − ti exp (ηi))

l̇νi
(ẋ) ∝

(
1
νi

)yi

exp (− ti
νi

),

11



which means that̃ψηi
(x̃) = Γ

(
exp (ηi); yi, ti

)
for yi > 0 andψ̇νi

(ẋ) = Γ
(

1
νi

; yi − 1, ti
)

for yi > 1, and

neitherψ̃ηi
(x̃) nor ψ̇νi

(ẋ) are the same asψθi
(x) (or 1 − ψθi

(x)). Henceψi(x) is not invariant to the trans-
formation fromθi to ηi or νi. Figure 5 shows the local critique plots for (a)θi, (b) ηi and (c)νi.

The functions̃lηi
(x̃) for yi = 0 and l̇νi

(ẋ) for yi < 2 are not integrable. Because the pumpsi = 2, 7 and
8 haveyi = 1, we used the numerical approach proposed in the previous subsection (with m = 60 and
and the Trapezoid Rule on1000 subintervals) for estimatinġψνi

(ẋ), i = 2, 7, 8. These three cases with
the lowest failure counts are where we see the biggest differences betweenψθi

(x), ψ̃ηi
(x̃) andψ̇νi

(ẋ), with
ψ̇νi

(ẋ) for i = 2 being the most divergent. Pump 2 is an unusual data point with only one failure despite
a relatively long operation time. However, for mosti there are actually no substantial visible distinctions
betweenψθi

(x), ψ̃ηi
(x̃) andψ̇νi

(ẋ), and we draw the same conclusions regarding the lifted likelihoods for
the different parametrisations for these pumps. Considering the fact thatthe posterior mean estimates of
theθi’s range from 0.06 to 1.98, we have here explored relatively drastic transformationsηi = log θi and
νi = 1

θi
. The example therefore reassures us thatψi(x) does not seem to be very sensitive to transformations.

i= 1 i= 2 i= 3 i= 4 i= 5

i= 6 i= 7 i= 8 i= 9 i= 10

ψθi
(x(t))

π θ
i(x

(t)
)

(a)

i= 1 i= 2 i= 3 i= 4 i= 5

i= 6 i= 7 i= 8 i= 9 i= 10

ψηi
(x(t))

π η
i(x

(t)
)

(b)

i= 1 i= 2 i= 3 i= 4 i= 5

i= 6 i= 7 i= 8 i= 9 i= 10

1 − ψνi
(x(t))

1
−

π ν
i(x

(t)
)

(c)

Figure 5: The local critique plots for (a)θi in parametrisation (8), (b)ηi in parametrisation (25) and (c)νi in para-
metrisation (26) for thePumps example (M = 10000, results are shown for a random subsample of size
300).
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3 Applications

3.1 3-level DAG: Rats

This application illustrates how the local critique plot can reveal local prior or lifted likelihood domination,
and identify situations where the posterior is a trade off of tail specifications. It shows local critique plots
for the parameters in a 3-level DAG, and is based on theRats example in Spiegelhalter et al. (2004). The
weights ofN = 30 rats were measured weekly overT = 5 weeks. Rati has weightyij at daytj . The model
is

(30)

yij |αi, βi, σc ∼ N(αi + βi(tj − t̄), 1
σ2

c
), i = 1, . . . , N, j = 1, . . . , T

αi|αc, σα ∼ N(αc,
1

σ2
α
), i = 1, . . . , N

βi|βc, σβ ∼ N(βc,
1

σ2
β

), i = 1, . . . , N.

The DAG can be seen in Figure 6. Instead of using the prior distributions from Spiegelhalter et al. (2004),
we invent a biologist with strong opinions about what the priors should be.He suggests

(31)

σc ∼ Unif(0, Uσc)

αc ∼ N(µαc , ταc)

σα ∼ Unif(0, Uσα)

βc ∼ N(µβc
, τβc

)

σβ ∼ Unif(0, Uσβ
),

with µαc = 250, µβc
= 1, ταc = τβc

= 1 andUσc = Uσα = Uσβ
= 10. Let τc = 1

σ2
c
, τα = 1

σ2
α

andτβ = 1
σ2

β

.

It is more convenient to deriveψ functions for the precisions rather than for the standard deviations. A
uniform distribution Unif(0, U) on the standard deviationσ is equivalent to the precisionτ = 1

σ2 having the
cumulative distribution functionF (τ ;U) = 1 − 1

U τ
−1/2, τ ∈ [U−2,∞). Theπ andψ functions can be

seen in Appendix A.1. The corresponding local critique plots can be seenin Figure 7 and Figure 8.
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Figure 6: DAG for theRats model.

Many of the local critique plots draw attention to possible conflicts in assumptions. The strongest warning
is given by Figure 7 (c), which shows a compromise that imply extreme influence of the tails of both the
local prior and lifted likelihood. The marginal posterior distribution forτα is a trade off of the outer left
tail of the local prior and the outer right tail of the lifted likelihood. In Figure 7(b), the local prior ofαc is
constraining the marginal posterior, and only a very small part of the outerright tail of the lifted likelihood
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)
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)
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Figure 7: The local critique plots for (a)τc, (b)αc, (c) τα, (d)βc and (e)τβ for Rats (M = 10000, results are shown
for a random subsample of size 300).

is used, which generally is a very unsatisfying situation. The local critique plots in Figure 7 (d) and (e) show
cases where the lifted likelihoods are constraining the marginal posteriors,and only a small part of the outer
right tail of their respective local priors are used. Figure 7 (a) also shows a case where the marginal posterior
is dependent on only a small part of the local prior, but here the part ofthe local prior being used is closer
to the centre. It is common, and often desired, for the likelihood to dominate the posterior. However, if we
have more justified specifications for the centres of the local priors than for the tails, we may be happy with
a local critique plot similar to the one in Figure 7 (a), while a plot similar to those shown in Figure 7 (d)
and (e) attracts attention. The local critique plots seen in Figure 8 (a) show that the marginal posteriors for
many of theαi’s are dependent only on the outer left or right tail of their local prior. This mostly concerns
the rats with low average weights, for which the correspondingαi posterior samples are located only in the
outer left tail of the local prior. However, most extreme is the plot for the rat with the highest average weight
(rat 9), which shows that in addition to being dependent only on the outer right tail of the local prior, the
marginal posterior ofα9 depends heavily on the left tail of the lifted likelihood. The same type of situation,
to a slightly less serious extent, can be seen in Figure 8 (b) for theβi’s of the rats with the highest weight
gains. For the rats with the lowest weight gains, we can see the opposite situation; the posterior samples of
the correspondingβi’s are located only in the left tail of the local prior and to a large extent in the right tail
of the lifted likelihood. Generally, the local critique plots in Figure 8 (b) show that the posterior samples of
theβi’s are more spread out across their local priors than is the case for theαi’s in Figure 8 (a).
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(a)
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π β
i(x

(t)
)

(b)

Figure 8: The local critique plot for (a)αi and (b)βi for Rats. Theαi plots are sorted by increasing order of the
average rat weights̄yi·, while theβi plots are sorted by the increasing order of the weight gainsyi5 − yi1

(M = 10000, results are shown for a random subsample of size 300).
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3.2 2-level DAG: Poisson-Gamma spatial moving average model

This application shows how diagnostic warnings from the local critique plots prompt us to reconsider the
statistical model, in particular the way that information from the data is distributed spatially. The application
is taken from Best et al. (2000). They used a Poisson-Gamma spatial moving average model to asses the
association between exposure to NO2 and potentially unobserved spatial factors, and the rate of respiratory
illness in children in the Huddersfield region in England. The data is from the European multicentre study
SAVIAH. The Huddersfield region was partitioned into a grid ofI = 605 cellsAi of 750m × 750m each,
to which the disease counts were aggregated (yi) and long-term average population (Ni, in hundreds) and
excess NO2 concentration (Zi) estimated. Another partition was done of a larger rectangle that covers allof
Huddersfield as well as a surrounding buffer zone of 2km intoJ = 96 areasBj of 3km× 3km, representing
areas associated with latent spatial factors. The model Best et al. (2000) used is

(32)

yi ∼ Poisson(Ni · (β0 + β1Zi + β2

∑

j

kijγj)), i = 1, . . . , I

β0 ∼ Ga(α0, τ0)

β1 ∼ Ga(α1, τ1)

β2 ∼ Ga(α2, τ2)

γj ∼ Ga(αγ , τγ), j = 1, . . . , J.

The DAG for this model can be seen in Figure 9.

We use here thekij matrix from Thomas et al. (2004, Example 6), which is of the form

kij =
1

2πρ2|Bj |

∫

Bj

exp
(
−

|ai−bj |
2

2ρ2

)
dbj ,(33)
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Figure 9: DAG for theSAVIAH model.

whereai is the centre of cellAi, |ai − bj | is the Euclidean distance betweenai and the locationbj within
the latent risk areaBj , and|Bj | is the area ofBj . Here,kij is a kernel function integrated over all distances
between the centre of cellAi and all locations in the latent risk areaBj , divided by the area ofBj . In Best
et al. (2000),kij is simply the kernel evaluated for the distance between the centre ofAi and the centre of
Bj . For computational reasons, Best et al. (2000) fix the value of the scaleρ. They experimented with sev-
eral different values in the range 0-15 km, but settled onρ ≡ 1 km, which they found to be most consistent
with the data. In order to avoid aggregation inconsistencies, Best et al. (2000) chose the identity link, which
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gives a linear dose-response relationship.

The model given by (32) has the same joint distribution of data and parameters as the model

(34)

yi(J+1) ∼ Poisson(Niβ0), i = 1, . . . , I

yi(J+2) ∼ Poisson(Niβ1Zi), i = 1, . . . , I

yij ∼ Poisson(Niβ2kijγj), i = 1, . . . , I, j = 1, . . . , J

yi =

J+2∑

j=0

yij ,

where{yij} are augmented data. The local priors forβ0, β1, β2 and{γj}
J
j=1 are the same as in (32). This

second way of expressing the model is useful when setting up the full conditionals. Theπ andψ functions
for the parameters can be seen in Appendix A.2.

The fixed parameters of the prior distributions ofβ0, β1 andβ2 were chosen by Best et al. (2000) so that
there was80% prior probability that the disease counts attributed to each of three risk factors (baselineβ0,
NO2 relatedβ1Zi, unobserved spatialβ2

∑
j kijγj) would lie between one tenth and ten times a nominal

equal attribution. The choice ofα0 = α1 = α2 = 0.575 gives a ratio of 100 for the 90th and 10th percent-
iles, whileτ0 = 3α0

Ȳ
, τ1 = 3α1Z̄

Ȳ
, τ2 = 3α2

Ȳ
in addition lead to prior means forβ0, β1 andβ2 corresponding

to each of the three risk categories contributing with one third of the overall disease ratēY =
P

i yi
P

i Ni
. Z̄

is the population weighted average excess NO2 concentration. The parameters of the prior distributions of
{γj}j=1,...,j were fixed so that the prior mean ofγj would be|Bj | and the prior variance reflected the prior
belief of moderate spatial variability. This was achieved by settingαγ = |Bj |/km2 andτγ = 1/km2. The
data we have used (taken from Thomas et al., 2004, Example 6) are randomly perturbed compared to the
ones used in Best et al. (2000). The local critique plots can be seen in Figures 10 and 11. We see that
the samples ofβ0, β1 andβ2 are distributed well across their respective lifted likelihoods. The marginal
posterior distributions ofβ0 andβ1 are using almost all of the local priors, except for the right-hand tails.
The marginal posterior distribution ofβ2 is using almost exclusively the right-hand tail of its local prior.

The local critique plots of theγj ’s in Figure 11 are laid out in accordance with the location of the corres-
ponding latent risk areasBj , j = 1, . . . , J . The plots for theγj ’s close to the edges give warnings about
their lifted likelihoods. All of the posterior samples of theseγj ’s are concentrated in a small part of the
left tail of their lifted likelihoods. An examination ofψγj

(x) and the data reveals that this is due to the
fact that the lifted likelihoods for theseγj ’s are extremely vague. This is caused by very small values of
kij ,∀i for these latent risk areas and thus small values of

∑I
i=1Nikij . The reason for the smallkij-values

is that the correlation lengthρ = 1 km is relatively short, and that the peripheral latent risk areas are ac-
tually partially or completely outside the Huddersfield region, which has an irregular shape. Hence, there
is almost no information in the data about theseγj ’s, and the posterior samples are dominated by the local
prior information. We verified this explanation by experimenting with a longer correlation length, namely
ρ = 15 km. This alternativekij matrix resulted in local critique plots for theγj ’s with good spread across
the whole plotting regions for allj (plots not shown), illustrating that a long correlation length distributes the
information in the data to all the latent risk areas. Hence, Figure 11 is an example of local critique plots that
give warnings which make us reconsider the modelling, but where a reexamination of the problem reveals
that there is a reasonable explanation consistent with the model and data.

Many of the non-peripheralγj ’s have local critique plots that cover the whole of the plotting region, i.e. all
of the local priors and lifted likelihoods are being used. Some of the non-peripheral plots are concentrated
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Figure 10: The local critique plots for (a)β0, (b)β1 and (c)β2 (M = 20000, results are shown for a random subsample
of size 300).

in the upper-left (e.g. andj = 20 andj = 62) or the lower-right corner (e.g.j = 69). It seems that the local
priors ofγ20 andγ62 are restricting their posterior samples to be of lower values than the lifted likelihoods
suggest. They have the highest posterior mean and median of all theγj ’s. Conversely, forγ69 it seems that
the local prior is restricting the posterior samples to be higher than the lifted likelihood suggest.γ69 has the
lowest posterior mean and median of all theγj ’s. The ”gaps” in some of the local critique plots in Figure 11
are due to the fact that the augmented datayij are discrete.

62

69

20

ψγj
(x(t))

π γ
j(x

(t)
)

Figure 11: The local critique plots forγj (M = 20000, results are shown for a random subsample of size 300). The
plots for the latent risk areas are laid out according to the respective locations.
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3.3 DAG combined with MRF: Larynx cancer

In a Markov Random Field (MRF), neighbours influence the posterior distribution of a variable through the
local prior. This application shows how the local critique plot is able to identifyconflict between the local
prior and the lifted likelihood of a variable, which partly can be traced back tothe information provided
by the neighbours of the variable. We apply a modification of the model introduced in Besag et al. (1991)
for disease mapping. They proposed a model involving a Gaussian Intrinsic Conditional Auto Regression
(CAR) prior for spatial random effects combined with an unstructured Normal prior for independent random
effects. Green and Richardson (2002) applied a slightly altered versionof this model for data on larynx
cancer mortality in France for the period 1986-1993. We analyse the same data, which were taken from
Rezvani et al. (1997). Initially, we apply the following model

(35)

yi|c, ui, vi ∼ Poisson
(

exp
(
c+ ui + vi

)
Ei

)
, i = 1, . . . , I

ui|τu, u−i ∼ N(ūi, niτu), i = 1, . . . , I

vi|τv ∼ N(0, τv), i = 1, . . . , I

c ∼ Uniform
(
−∞,∞

)

τu ∼ Ga
(
αu, βu

)

τv ∼ Ga
(
αv, βv

)
,

whereyi is the observed number of disease cases,Ei the (known) estimated expected count based on the
population size in areai, ni the number of neighbours of regioni andūi = 1

ni

∑
j∈ne(i) uj . The graph for

this model can be seen in Figure 12. We use WinBUGS and its distributioncar.normal (as prior onui)
to perform the posterior MCMC simulations. Becausecar.normal imposes the constraint

∑I
i=1 ui = 0,

it makes sense to include the intercept variablec. Usingcar.normal requires an improper uniform prior
on c. We choseαu = βu = αv = βv = 0.01, as proposed in the GeoBUGS manual (Thomas et al., 2004).
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Figure 12: The graph for theLarynx model.

Because the interceptc has an improper prior and henceπc(x) does not exist,c is not of interest in this
context. In the following we therefore disregard it. As shown in Section 2.5,the parametrisation in the
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distribution foryi makes the lifted likelihoods ofui andvi non-integrable foryi = 0. Instead ofui andvi

we therefore use the parametersai = exp (ui) andbi = exp (vi), which then have log-Normal distributions

(36)

yi|c, ai, bi ∼ Poisson
(
exp (c)aibiEi

)
, i = 1, . . . , I

ai|τu, a−i ∼ logN(ūi, niτu), i = 1, . . . , I

bi|τv ∼ logN(0, τv), i = 1, . . . , I.

Theπ andψ functions can be seen in Appendix A.3. The local critique plots forτu andτv for this model
(Larynx1) can be seen in Figure 13.

ψτu
(x(t))

π τ
u(x

(t)
)

(a)

ψτv
(x(t))

π τ
v(x

(t)
)

(b)

Figure 13: The local critique plots for (a)τu and (b)τv for Larynx1 (M = 10000, results are shown for a random
subsample of size 300).

The posterior samples ofτu andτv are pressing against the upper edge of the plots, i.e. they are located in
the right hand tail of their prior specifications. This reflects that the marginal posterior distributions forτu
andτv are using only small parts of the respective outer tails of the non-informative local priors. Because the
local prior distributions are relatively non-informative, and because wesee that the samples are well spread
out across the lifted likelihoods, this may well be reasonable.

The local critique plots for thebi’s show approximately the same features as the local critique plots for the
ai’s, we therefore show only the latter. They can be seen in Figure 14, laid out according to the location
of the regions. Some regions are moved slightly in order for all the plots to be visible. Region 20 (Corse)
has no neighbours, henceu20 ≡ 0 and the local critique plot collapses to a single point, therefore Corse is
not included in the plot. The values ofyi/Ei can be seen in Table 1 in Appendix A.3. We see that regions
with low values ofyi/Ei have local critique plots forai with mass gathered towards the lower right corner.
Conversely regions with high values ofyi/Ei have local critique plots with mass gathered towards the upper
left corner. The strength of these effects are affected by theyi/Ei values of the neighbours. Consider for
example the regions 63 (Puy-de-Dôme), 75 (Paris) and 94 (Val-de-Marne). They have approximately the
sameyi/Ei values (1.3), but theai local critique plot for Puy-de-Dôme shows that the posterior samples
are located far out in the left hand tail of the lifted likelihood, while Paris and Val-de-Marne have posterior
samples which cover almost all of the respective lifted likelihoods. The neighbours of Puy-de-Dôme all have
yi/Ei values below 1, while all but one of the neighbours of Paris and Val-de-Marne have values greater
than or equal to 1.3. Looking at the regions 50 (Manche) and 51 (Marne) we see that the respectiveai local
critique plots are very similar, but Manche has a much loweryi/Ei value (0.08) than Marne (0.34). This
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Figure 14: The local critique plot forai for Larynx1 (M = 10000, results are shown for a random subsample of
size 300).
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is also due to different neighbour behaviour, the neighbours of Manche have generally loweryi/Ei values
than those of Marne.

The strength of the spatial dependence is controlled by the precisionτu. The larger the precisionτu, the
greater the spatial dependence and the more the neighbours of regioni, through the local prior ofai, influ-
ence the posterior samples ofai. Thus, for models that lead to smaller posterior values ofτu than model
Larynx1, we expect less regions to have local critique plots with gatherings in the upper left or lower right
corners than what is the case in Figure 14. We illustrate this in the following subsection by considering an
alternative local prior specification forτu, which is more informative and encourageτu to be smaller, hence
implying less spatial dependence. We also consider an alternative local prior for τv.

3.3.1 Larynx2

The alternative prior choices are

(37)
τu ∼ logN

(
µ, ρ

)

τv ∼ logN
(
µ, ρ

)
,

whereµ = 0 andρ = 5. We now have newπ functions forτu andτv (see Appendix A.3), whileψτu and
ψτu , as well as theπ andψ functions for the other parameters, remain unchanged. The local critiqueplots
for τu andτv for this model can be seen in Figure 15, and the local critique plots for theai’s can be seen in
Figure 16.
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Figure 15: The local critique plots for (a)τu and (b)τv for Larynx2 (M = 10000, results are shown for a random
subsample of size 300).

The marginal posteriors ofτu andτv are also now using only the outer right tails of their local priors, but in
addition we see that the samples now are more concentrated towards the left tails of their lifted likelihoods
than what was the case forLarynx1 (Figure 13). This can be explained by the fact that we inLarynx2
are imposing more informative local priors onτu andτv than inLarynx1. This causes less of the lifted
likelihood information to be used. At the same time the marginal posteriors dependonly on the outer right
tail of the informative local priors. Hence, the local critique plots in Figure 15 show that there seems to be
reason to reconsider the modelling inLarynx2.
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Figure 16: The local critique plot forai for Larynx2 (M = 10000, results are shown for a random subsample of
size 300).

23



As expected, sinceLarynx2 leads to smaller posterior values ofτu thanLarynx1, and hence less spatial
dependence, a general distinction between Figure 16 and Figure 14 is that for Larynx2 (Figure 16), the
local priors are not constraining the posterior samples as much as forLarynx1 (Figure 14), and most of
the local priors and lifted likelihoods of theai’s are being used.

4 Conclusions

In this paper we have proposed a graphical diagnostic for chain graphmodels called the local critique plot.
It investigates conflict locally at the node level between the information coming from the parents and neigh-
bours (through the local prior) and the information coming from the childrenand co-parents (through the
lifted likelihood). By visualising the link between the local prior, the lifted likelihood and the marginal
posterior distribution of the parameter, the local critique plot is able to diagnose local conflict between the
different sources of information. Specific, local choices made by the modeller that are influential for the
posterior analysis of that particular parameter can be identified.

Through applications involving pure DAG models and one application combininga DAG with a MRF, we
have illustrated the use and various features of the local critique plot. For example, we have seen situations
where the local critique plot reveals that the marginal posterior distribution of a parameter is dominated
by the local prior, and hence only a small part of the lifted likelihood is used.In the more common, but
generally less problematic, case of lifted likelihood domination, the local critiqueplot identifies situations
where the local prior should be checked for mis-specification, e.g. because only a small part of one of the
tails is used. We have also seen situations where the posterior is a result of atrade off of tail specifications.

The lifted likelihood dimension in the local critique plot is not invariant to transformation of the parameter,
but the lack of invariance does not seem to be too severe. The applications have shown cases where the
local critique plot gives a warning about specific modelling choices, but where after a closer examination
of model and data the choices in question are justified. We stress that a warning given by the local critique
plot is not saying that the current model is wrong or proposing a better model, but rather that the modeller
should re-examine his or her choices to make sure that they are justifiable.

For lifted likelihoods that are not integrable or do not have analytically tractable integrals, we have pro-
posed a numerical integration scheme that is computationally fast, and thus suitable for performing at each
simulation step. Hence, the local critique plot can be derived for all parameters in Bayesian hierarchical
models characterised by chain graphs, and is easy to implement as a by-product of a posterior simulation,
e.g. MCMC. It is not, however, a diagnostic of the coding of the posterior simulation.

The local critique plot is an informal graphical diagnostic, intended for a visual examination of possible
conflict. Future extensions of this diagnostic may include theory on formal evaluations of specific features,
with the specification of suitable discrepancy measures guided by the local critique plot. When performing
the corresponding formal tests, there are some possible pitfalls, e.g. it is important to avoid double use
of data, as is the case for the posterior predictivep-values. Also, potential multiple testing issues must be
handled carefully.

Acknowledgements

The authors are very grateful to Arnoldo Frigessi, Jørund Gåsemyr, Bent Natvig and Sylvia Richardson for
helpful comments and discussions.

24



References

Bayarri, M. J. and Berger, J. O. (1999). Quantifying surprise in the data and model verification. In Bernardo,
M., Berger, J. O., Dawid, A. P., and Smith, A. F. M., editors,Bayesian Statistics 6, pages 53–82. Oxford
University Press.

Bayarri, M. J. and Berger, J. O. (2000).p-values for composite null models (with discussion).J. Amer.
Statist. Assoc., 95:1127–1142.

Bayarri, M. J. and Castellanos, M. E. (2007). Bayesian checking of the second levels of hierarchical models.
Statist. Sci., 22:322–343.

Besag, J., York, J., and Mollié, A. (1991). Bayesian image restoration, with two applications in spatial
statistics.Ann. Inst. Statist. Math., 43:1–59.

Best, N. G., Ickstadt, K., Wolpert, R. L., and Briggs, D. J. (2000). Combining models of health and ex-
posure data: the SAVIAH study. In Elliott, P., Wakefield, J., Best, N., and Briggs, D., editors,Spatial
Epidemiology: Methods and Applications, pages 393–414. Oxford: Oxford University Press.

Box, G. E. P. (1980). Sampling and Bayes’ inference in scientific modellingand robustness.J. R. Statist.
Soc., Ser. A, 143:383–430.

Chaloner, K. (1994). Residual analysis and outliers in Bayesian hierarchical models. In Freeman, P. R. and
Smith, A. F. M., editors,Aspects of uncertainty: A tribute to D. V. Lindley, chapter 10, pages 149–157.
Wiley.

Dahl, F. A., Gåsemyr, J., and Natvig, B. (2007). A robust conflict measure of inconsistencies in Bayesian
hierarchical models.Scand. J. Statist. doi: 10.1111/j.1467-9469.2007.00560.x.

Dey, D. K., Gelfand, A. E., Swartz, T. B., and Vlachos, P. K. (1998). Asimulation-intensive approach for
checking hierarchical models.Test, 7:325–346.

Gaver, D. P. and O’Muircheartaigh, I. G. (1987). Robust empirical bayes analyses of event rates.Techno-
metrics, 29:1–15.

Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approachesto calculating marginal densities.J.
Am. Statist. Ass., 85:398–409.

Gelman, A., Meng, X. L., and Stern, H. (1996). Posterior predictive assessment of model fitness via realized
discrepancies.Statist. Sinica, 6:733–760.

George, E. I., Makov, U. E., and Smith., A. F. M. (1993). Conjugate likelihood distributions. Scand. J.
Statist., 20:147–156.

Green, P. J. and Richardson, S. (2002). Hidden Markov models and disease mapping.J. Am. Statist. Ass.,
97:1055–1070.

Guttman, I. (1967). The use of the concept of a future observation in goodness-of-fit problems.J. R. Statist.
Soc., Ser. B, 29:83–100.

Hjort, N. L., Dahl, F. A., and Steinbakk, G. H. (2006). Post-processingposterior predictivep values.J. Am.
Statist. Assoc., 101:1157–1174.

Lauritzen, S. L. (1996).Graphical Models. Oxford University Press.

Lunn, D. J., Thomas, A., Best, N., and Spiegelhalter, D. (2000). WinBUGS- a Bayesian modelling frame-
work: concepts, structure, and extensibility.Statistics and Computing, 10:325–337.

Marshall, E. C. and Spiegelhalter, D. J. (2003). Approximate cross-validatory predictive checks in disease
mapping models.Stat. Med., 22:1649–1660.

Marshall, E. C. and Spiegelhalter, D. J. (2007). Identifying outliers in Bayesian hierarchical models: a
simulation-based approach.Bayesian Analysis, 2:409–444.

25



Meng, X. L. (1994). Posterior predictivep-values.Ann. Statist., 22:1142–1160.

O’Hagan, A. (2003). HSSS model criticism. In Green, P. J., Richardson, S., and Hjort, N. L., editors,Highly
Structured Stochastic Systems, pages 423–444. Oxford: Oxford University Press.

Rezvani, A., Mollié, A., Doyon, F., and Sancho-Garnier, H. (1997). Atlas de la Mortalité par Cancer en
France, Période 1986-1993.Paris: Editions INSERM.

Rubin, D. B. (1984). Bayesian justifiable and relevant frequency calculations for the applied statistician.
Ann. Statist., 12:1151–1172.

Spiegelhalter, D., Thomas, A., Best, N., and Lunn, D. (2004).WinBUGS Examples Volume 1. WinBUGS
Version 1.4.1.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and van der Linde, A. (2002). Bayesian measures of model
complexity and fit.J. R. Statist. Soc. B, 64:583–616.

Thomas, A., Best, N., Lunn, D., Arnold, R., and Spiegelhalter, D. (2004).GeoBUGS User Manual. Version
1.2.

26



Appendix

A π and ψ functions

A.1 Rats

Theπ andψ functions for the parameters in theRats example in Section 3.1 are

(38)

παi
(x) = Φ

(
αi;αc, τα

)
ψαi

(x) = Φ
(
αi; yi·, T · τc

)
, i = 1, . . . , N

πβi
(x) = Φ

(
βi;βc, τβ

)
ψβi

(x) = Φ
(
βi;

sty

stt
, stt · τc

)
, i = 1, . . . , N

πτc(x) = F
(
τc;Uσc

)
ψτc(x) = Γ

(
τc;

NT
2 + 1,

N∑

i=1

T∑

j=1

(yij − µij)
2/2

)

παc(x) = Φ
(
αc;µαc , ταc

)
ψαc(x) = Φ

(
αc; ᾱ, N · τα

)

πτα(x) = F
(
τα;Uσα

)
ψτα(x) = Γ

(
τα; N

2 + 1,
N∑

i=1

(αi − αc)
2/2

)

πβc
(x) = Φ

(
βc;µβc

, τβc

)
ψβc

(x) = Φ
(
βc; β̄, N · τβ

)

πτβ
(x) = F

(
τβ ;Uσβ

)
ψτβ

(x) = Γ
(
τβ ; N

2 + 1,

N∑

i=1

(βi − βc)
2/2

)
,

wherestt =
∑T

j=1(tj − t̄)2, sty =
∑T

j=1(tj − t̄) · (yij − yi·) andµij = αi + βi(tj − t̄).

A.2 SAVIAH

Theπ andψ functions for the parameters inSAVIAH1 in Section 3.2 are

(39)

πβ0(x) = Γ
(
β0;α0, τ0

)
ψβ0(x) = Γ

(
β0; y·(J+1) + 1,

I∑

i=1

Ni

)

πβ1(x) = Γ
(
β1;α1, τ1

)
ψβ1(x) = Γ

(
β1; y·(J+2) + 1,

I∑

i=1

NiZi

)

πβ2(x) = Γ
(
β2;α2, τ2

)
ψβ2(x) = Γ

(
β2; y·· + 1,

I∑

i=1

J∑

j=1

Nikijγj

)

πγj
(x) = Γ

(
γj ;αγ , τγ

)
ψγj

(x) = Γ
(
γj ; y·j + 1, β2

I∑

i=1

Nikij

)
, j = 1, . . . , J,

wherey·j =
∑I

i=1 yij andy·· =
∑I

i=1

∑J
j=1 yij .
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A.3 Larynx

Theπ andψ functions for the parameters inLarynx1 in Section 3.3 are

(40)

πai
(x) = Ω

(
ai; ūi, niτu

)
ψai

(x) = Γ
(
ai; yi + 1, exp(c)biEi

)
, i = 1, . . . , I

πbi
(x) = Ω

(
bi; 0, τv

)
ψbi

(x) = Γ
(
bi; yi + 1, exp(c)aiEi

)
, i = 1, . . . , I

πτu(x) = Γ
(
τu;αv, βv

)
ψτu(x) = Γ

(
τu; I−m

2 + 1,
∑

i∼i′

(ui − ui′)
2/2

)

πτv(x) = Γ
(
τv;αu, βu

)
ψτv(x) = Γ

(
τv;

I
2 + 1,

I∑

i=1

v2
i /2

)
,

wherem is the number of ”islands”, which, because all the regions except Corseare connected, here equals
2.

ForLarynx2 in Section 3.3.1, theπ functions forτu andτv are

(41)
πτu(x) = Ω

(
τu;µ, ρ

)

πτv(x) = Ω
(
τv;µ, ρ

)
,

The rest of theπ andψ functions are the same as in (40).

Data

Larynx

Table 1 contains theyi/Ei values for theLarynx application, based on the data reported by Rezvani et al.
(1997).
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Table 1: Larynx data

Region yi

Ei

Region yi

Ei

Region yi

Ei

Region yi

Ei

1 1.19 25 0.79 49 0.51 73 0.37
2 1.32 26 1.09 50 0.08 74 1.14
3 0.93 27 0.94 51 0.34 75 1.3
4 0.56 28 0.92 52 0.41 76 1.26
5 2.12 29 0.85 53 0.59 77 1.29
6 1.46 30 0.86 54 0.82 78 0.95
7 0.66 31 0.66 55 0.62 79 0.57
8 1.2 32 1.14 56 0.32 80 0.89
9 1.42 33 1.24 57 1.29 81 0.61
10 0.99 34 1.22 58 0.56 82 0.91
11 1.01 35 1.07 59 1.25 83 1.5
12 0.73 36 1.13 60 0.87 84 1.14
13 1.29 37 1.01 61 0.67 85 0.63
14 0.8 38 0.93 62 1.6 86 0.31
15 0.22 39 0.47 63 1.29 87 0.48
16 0.32 40 1.12 64 0.87 88 0.93
17 0.68 41 0.97 65 0.46 89 1.15
18 0.57 42 0.58 66 1.09 90 1.35
19 0.54 43 0.52 67 0.66 91 0.9
20 1 44 0.93 68 0.86 92 1.57
21 0.8 45 0.91 69 0.83 93 1.64
22 0.98 46 1.23 70 0.71 94 1.32
23 1.08 47 0.57 71 0.59 95 1.58
24 0.76 48 0 72 0.56
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