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Abstract

Real-world phenomena are frequently modelled by Bayesiaratthical models. The building-
blocks in such models are the distribution of each variabtelitional on parent and/or neighbour vari-
ables in the graph. The specifications of centre and spre#fiesé conditional distributions may be
well-motivated, while the tail specifications are ofter lef convenience. However, the posterior dis-
tribution of a parameter may depend strongly on such arbitial specifications. This is not easily
detected in complex models. In this paper we propose a gralpfiingnostic which identifies such influ-
ential statistical modelling choices at the node level in emain graph model. Our diagnosttbe local
critique plot, examines local conflict between the information comingrfthe parents and neighbours
(local prior) and from the children and co-parents (liftéglihood). It identifies properties of the local
prior and the lifted likelihood that are influential on thesperior density. We illustrate the use of the
local critique plot with applications involving models dfférent levels of complexity. The local critique
plot can be derived for all parameters in a chain graph meahel is easy to implement using the output
of posterior sampling.

1 Introduction

Bayesian hierarchical models are now widely used to model complex, sgdatiata. Such models are
built from a large number of individual factors, representing the conditidistributions of each variable
given those higher in the hierarchy, or, in the case of undirected magutgksntial functions for cliques
of variables. Responsible, disciplined model-building requires that spetgifin of all these factors should
properly take into account prior information, whether this codifies scienéiis, earlier experiments, or
degrees of subjective belief. However, this specification is a very ciuafig task, and there will often be
a concern that it has been done imperfectly. In particular, while it may laévedy easy to specify the
location and spread of a marginal or conditional distribution stiepe of the distribution, especially in the
tail, is a more taxing question. Yet the posterior distribution of all unknowwsgilata may depend on the
trading off of tails of individual model factors. It is important that this pberenon be detected so that the
modeller’s attention can be drawn to particular statistical choices that areritifilin the analysis, in order
to confirm them or to reconsider.

In a simple Bayesian model, conflict between prior and data is easily detantkthis provides a diagnostic
for criticising statistical modelling choices. Suppose we have independémt:d, . . ., y10) with y = 12
which are modelled as Normal with mearand precisior.1. The prior distribution for. is Normal with
mean 8 and precision 0.5. For this simple example it is easy to see that much oktheaqr density for
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u is dependent on the right tail of the prior and the left tail of the likelihood. #asy to illustrate (as in
Figure 1) because both the prior and the likelihoodfare fixed (i.e. they have no random parameters).
In a general hierarchical model, identifying conflict between the sswt@formation contributing to the
posterior distribution of a single node is a more subtle matter. This paper iogsdugraphical diagnostic
for this purpose.

Figure1: Plot of prior (dotdashed), normalised likelihood (dastheut) posterior (solid) witV (8, 0.5) prior for

Bayesian model criticism is often performed by considering a Baygsiahue describing the compatibility
of the observed data and the model. Sughvalue is typically obtained from some test-statistic or discrep-
ancy measure (possibly depending on parameters as well as data)ngfleportant aspects of the model,
and a predictive distribution for this discrepancy measure. The typeedigtive distribution used varies,
e.g. the prior predictive distribution (Box, 1980), the posterior prediatigtribution (Guttman, 1967; Ru-
bin, 1984; Gelman et al., 1996; Meng, 1994), and the partial postemaligtive distribution (Bayarri and
Berger, 1999, 2000; Bayarri and Castellanos, 2007). The lattepag@ip avoids the need for informative
prior distributions, as in the prior predictive approach, as well as theezgatism caused by the double use
of data, as in the posterior predictive approach. This conservatismlgwapeahandled by calibration (Hjort
et al., 2006). Thesp-values are usually directed at one specific aspect of a model, not edngichodel fit
at the individual nodes of a hierarchical model. A method for checkingiadles of a hierarchical model was
proposed by Dey et al. (1998), though it is highly computationally inten€e idea of looking for conflict
between the prior and likelihood information at the node level is not newa@eld (2003) extends the node
level residual analysis of Chaloner (1994) to other measures of dptdliook for conflict between the dif-
ferent sources of information provided for the node in question. lotjpe this is done by looking at how
much the densities representing two different sources of informatiotepyeneasured by the height of the
densities (normalised to have unit maximum height) at the point where the ta® &anodification of this,
avoiding double use of data, is proposed in Dahl et al. (2007). Mihestch Spiegelhalter (2007) propose a
similar p-value for measuring conflict at the node level in hierarchical modelg&hniso avoids specifying
a discrepancy measure and acts as an approximation to their cross-vglidakxed p-value (Marshall and
Spiegelhalter, 2003, 2007), when it exists.

However, none of the above-mentioned conflict measures really adthresnature of the conflict and
the impact certain aspects of the prior and the likelihood have on the posteatysis. The diagnostic
we propose examines conflict at the node level by identifying where theepor samples of a variable
are located in what we call the local prior (the information coming from thermiarand/or neighbours)
and what we call the lifted likelihood (the information coming from children ao¢parents). It has the
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ability to identify properties of the local prior and lifted likelihood that are infiti@® on the posterior
density. The tool we propose may be used in any chain graph model, thpplisadle to virtually all
hierarchical models in routine statistical practice. It is easy to implement usingutput of a sampler,
such as the Gibbs sampler. In our examples we have run posterior simulasiogsWinBUGS (Lunn
et al., 2000) and the Rh{ t p: // cran. r - pr oj ect . or g) package BRugs which contains OpenBUGS
(htt p: // www. mat hst at . hel si nki . fi/openbugs).

The outline of the paper is as follows. In Section 2 we start by providing shewy on chain graphs, then
we introduce the local prior, the lifted likelihood and our graphical diagodsr chain graph modelghe
local critique plot, and explain how to interpret this new diagnostic. In Section 3 we illustratesinefithe
local critique plot by applying it to three different types of chain graph eisida 2-level Directed acyclic
graph (DAG), a 3-level DAG and a DAG combined with a Markov RandonidHEIRF). In Section 4 we
conclude on the abilities of the local critique plot.

2 Methodology
2.1 Chain graphs

Consider a grapy = (V, E) whereV is the set of vertices anl’ the set of edges. Vertexrepresents
the random variable;, which can be observed or unobserved. Constants are not ref@e@se the graph.
For a subsed C V letxs = {z;}ica andz = xy. Let O be the subset of vertices representing the
observed variables (the data), aiide subset of vertices representing the unobserved variables (parame
or missing data), such thatu U = V. This paper has a Bayesian perspective and we consider parameters
as random variables. We only consider continuous parameters defirtbe ceal line, but similar theory
could be developed for discrete parameters. The edges in the grapk daected or undirected. A subset
of a graph where all the vertices are connected by directed or undiredtges is said to form a complete
subgraph. If there is a directed edge from verte vertex:, j is a parent of and: is a child of j, and we
write p&(i) for the set of parents and @h for the set of children of vertek(pa(i) or ch(z) may be empty).
Furthermore, p@l) is the set of parents of the vertices in subd€may be empty). If there is an undirected
edge between vertekand vertex, j is in the neighbourhood af(and vice versa) and we write~ j. The
setngi) = {j : © ~ j} is then called the neighbourhood of vertegmay be empty). The directed and
undirected edges of the graph encode conditional independencerijge@mmong the variables, in a sense
shortly to be made precise.

In this paper we focus on a class of graphs called chain graphs. Sapipatl” can be partitioned into
numbered subseis(c), c € 7 = {1,...,T}, such that all edges between subsets are directed, with direc-
tion from the subset with the lower number to the one with the higher numbegdges within subsets are
undirected. Denote the edges withitic) asE(c). If and only if (V(¢), E(c)) form undirected subgraphs
(which do not have to be complete) for althenG is a chain graph an#f'(c), ¢ € 7 are called chain
components (see Lauritzen, 1996, chapteGg)as no directed cycles. If a vertékas no undirected edges
connected to itj forms a chain component with itself as the only member. In the special casdlttiain
components are such single verticgss a Directed acyclic graph (DAG).

Now suppose the vector of all random variablesf the chain graph takes valuesit and that probabilistic
statements on the graph are described by some probability distribBtiom X' with joint densityp(x).
Markov properties are implied by two factorisation assumptiong, dhe first of which is

O pa) = [ ] p@volzpavie);
ceT



wherep(z 4|z ) denotes a density of the variableg for any subsed € V, given the variabless. The
second assumption is a further factorisation of the factors in (1).GL&e the undirected subgraph with
nodesV (c) U paV'(c)) and undirected edges between two nodes if either they are both¥(ga or
there is a directed or undirected edge between the@. iLet W (c) be the collection of all subsets of
V(c) UpaV(c)) that form complete subgraphsdh. The second factorisation assumption is

@) Py lrpave)) = [ ¢al@), ceT,
aeW (c)

whereg¢, (x) is some function that depends oronly throughz,. The probability distributiorP is said to
factorise according t@ if p satisfies both (1) and (2) (see Lauritzen, 1996, chapter 3.2.3).
2.2 Thelocal critique plot
The assumptions (1) and (2) lead to the following full conditional distributdritie variabler;
3) p(ailz_i) & p(zilzpasy Tnei)) || Plavielzpaviey), i €V,

ciepaV(c))

wherez_; are all variables except variahig. In this paper we call

(4) pi(x) = p(xi|$pa(i)’$ne(i)>a el

the local prior forz; and

(5) )= J[ pavelzave)) i€U
ciepaV(c))

the lifted likelihood forz;. The justification for the names "local prior” and "lifted likelihood” lies in that
in the case of a simple two-level model in whichis alone at the higher level (i.e. the only parameter),
(4) would in Bayesian statistics be called the prior and (5) the likelihood foOne should be aware that
if G is @ non-DAG,p(zv(¢)|Zpav(c))) in (5) may contain functions af; that may be unexpected from a
glance at the graph. This follows from the factorisation requirementi{2}he special case of only two
chain components, one of which is a Markov Random Field (MRF) with vexriiee (Q and the other is a
single vertex calleg, which is a parent to all the vertices in the MRF, (5) fgrreduces to

(6) lp(z) = p(zg|zp).

In the special case thétis a DAG, (5) reduces to

(7) lz($) = H p(xj‘l'pa(j)% 1eU.
jepa(y)

To illustrate the concepts "local priors” and "lifted likelihoods”, we consid®AG example calle@unps.
It concerns the numbers of failureswof= 10 power plant pumps. Pumjphasy; failures, operation time;
(in 1000s of hours) and failure rafie. The model implemented in Spiegelhalter et al. (2004) is

yi|0; ~ Poissoif;t;), i =1,...,n
O;la, B ~ Gammaw, 3), i=1,...,n
a ~ Gammal, 1)

B ~ Gamma0.1,1).

(8)
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This example originates from Gaver and O’Muircheartaigh (1987), witind 5 fixed at empirical Bayes
estimates. Gelfand and Smith (1990) also use an empirical Bayes estimatelfor assume a Gamma
distribution fors , while George et al. (1993) assume Gamma distributions for d@thd 3.

Herex = (y1,...,Yn,b1,...,0n,a,3). The DAG can be seen in Figure 2. The local priors for the para-
meters in this model are

Pa(z) = exp (—a)
—0.9
(9) pﬁ(l') = 1—\(01) €xXp (_ﬁ)
apna—1
po, (x) = % exp (—p6;), i1 =1,...,n,

and the lifted likelihoods

_ 1y 3207 exp (—86:)
(10) lo(z) = lg(z) = 1211 o)

lo,(z) o< 07 exp (—t;60;), i =1,...,n.

"l;(z) o< f(x)” implies throughout this paper that{x) is proportional tof (x) with respect tor;. Further-
more, in applications the parameter name is frequently used as subsciipictionis instead af(e.g.l, (x)

instead oflo,, 1 (x) in Punps).

9
o=

i=1,...,n

Figure 2: DAG for thePunps model (squares represent constants that are not trueeseitithe graph).

Based on (3-5) we propose two functions to identify influential statistical thogehoices. Assuming that
the local priorp; () is proper,;(z) is the distribution function of the local prior far;

(11) mi(x) :/ pi(x")du, i € U.

wherez'—* denotes: with thes’th element replaced by. Notice that it is a function of only throughz;,
Tpgi) ANdzngy. It €Xpresses where; is located in the support of the local prior density given the states
of pa(i) and ng:) in . The cumulative distribution function is used in order to mamnto a standard
probability scale givemp, ;) andzne;).



The second function we propose is the cumulative normalised lifted likelihbogd o

ff;oli(xi—m)du . -
S b nde

—00

(12) Yi(z) =

We assume for the moment that the lifted likelihood is integrable with respegt $o that the denominator
is finite and (12) well-defined; further we assume that the resultjfig) is available in closed form or equals
a known cumulative distribution function. We discuss other cases in Secdop2x) identifies wherer;

is located in the support of its lifted likelihood function given the statigf ), Zpa v (c)) }ciiepav(c)) IN T+ A
cumulative distribution is used in order to magonto a standarfd, 1] scale give{wy (), Tpav (c)) } c:icpav(c))
Because the lifted likelihood (5) is not a distribution with respect to the paramegtenormalisation is
needed. Notice that;(z) is a function ofz only through the sefxy (), Tpav () } c:iepav(e))» Which con-
tainsx;. The intersection of the random variables involved/ifiz) and the ones involved in;(z) may
contain more than just;.

A third way to scorex; is in terms of its posterior distribution. Let(z'~% | o) be the marginal posterior
density ofz; and

(13) &i(z) = / pi(z"™Y | zo)du, i € U,

which is the cumulative posterior distribution function fof. For consistency in notation, we treat it as
a function of the whole vector. &;(z) is intended to be supplementary#gx) and;(x), which are of
main interest. Our diagnostic, which we ctié local critique plot, is a graphical visualisation of the joint
posterior density of;(x), ¥;(z) and;(x) for eachi € U, given the datap. Generallysr; (x) andy; (z) are
not independent conditional gf(x) andxzo. Except for very simple models, the joint posterior distribution
of m;(z), ¥ (x) and¢;(z) can be very complex and intractable analytically. Because this is the caderalso
the posterior density af;;, an obvious solution is Markov Chain Monte Carlo (MCMC) simulation. The
posterior sample of;; provided by MCMC simulation can be directly plugged into théx) and;(z)
functions. Assume a MCMC simulation with a total bf iterations (after burn in) is performed. The set
:):X) are the values aof 4 at thet'th iteration. We plug the s,z:lmple{:zz:(t)},{‘i1 into explicit formulas forr; ()
andy; (z) to obtain the samples; (z(!)) and«; (z(")). An estimate of;(x) can be derived directly from the
MCMC simulation

M
(14) fi(a:(t)) = % ZIz(s)<z(_t), 1 e U.
s=1

i =1

For eache;, i € U, we record the value of our diagnostic by plotting the sampled valueg ©f, ¢;(x) and
&i(z), that is{(m;(z®), i (x®)), & ()M, on[0,1] x [0,1] x [0, 1], with = along the vertical axisy
along the horizontal axis and tijelimension expressed by marking of the points. The marking used in this
paper is done by substituting each point by a line segment with an an@leZ |, where the angle relative

to ther axis represents the value §fz), transformed fron0, 1] to [0, 7]. The value of(m;(x), ¥;(z)) is

the centre of the plotting line segment. A vertical line segment indicates = 0 and a horizontal line
segment indicateg (z) = 1. £ can be rendered in various ways. Rainbow colouring of the points @iogor

to &;(x) seems to be the easiest to interpret, but because colour printers stilfgraveahave chosen the
alternative described above. Grey scale is a possibility, but it may esg®tie interpretation that the light

coloured points are of less importance, which is not the case.



2.3 Interpretation of thelocal critique plots

If the mass is concentrated in the upper left corner or the lower righecoifrthe plotting region, it means
thatx; | 2o is located mainly in the tails of both the local prior and the lifted likelihood (opposit tén
other words, the marginal posterior densityrfs a result of a trading off these tails.af is considered im-
portant, there is reason to rethink the model carefully to ensure that the imad# specified. In particular,
one should reconsider the tails of the local prior and the lifted likelihoods keggeme, but still a reason
to re-examine the model, is the case when the mass is well spread outrmimension, but concentrated
close to one of the vertical edges in the plot, which means that the postemsitydef =; is using only the
tail of its lifted likelihood, but most of its local prior. Conversely, if the pogierdensity ofzx; is using
most of its lifted likelihood, but mainly the tail of its local prior, the mass will be wellead out in the)
dimension, but concentrated close to one of the horizontal edges in the plot.

If the plot shows that the mass is gathered along a thin line parallel t6 #xés, it means that the posterior
density ofz; is using only a small part of the local prior. This is not surprising if the psjmecification for

x; is nhon-informative, or if the lifted likelihood is highly informative because ofjflaamounts of data. On
the other hand, if the plot shows that the mass is gathered along a thin litlelgarthe = axis, it means that
the posterior density af; is using only a small part of the lifted likelihood, which may be more disturbing.
Of course, there may be good reasons why the lifted likelihood is nonriridre onz;.

The mass will never be concentrated in the lower left corner or the ujgbdrcorner of the plotting region,
unless there is something wrong in the simulation. The reason is simply thatues located in the same
side tails of the local prior and the lifted likelihood will not have the highestgros density values.

Generally,r;(z) andy;(z) do not follow a Unif0, 1) distribution. How close the distributions &f(z) and
¥;(x) are to Unif0, 1) depends on the similarity between the local prior and the full conditional etvesien
the lifted likelihood and the full conditional, respectively. In the specia¢¢hat the lifted likelihood is com-
pletely flat, i.e.l;(z) x 1, thenp;(z) = p(z;|x_;) andm;(x) ~ Unif(0, 1). Similarly, in the special case that
the local prior is completely flat, i.en;(x) o 1, thenl;(z) = p(zi|z—;) andy;(x) ~ Unif(0,1). Suppose
neither the local prior or the lifted likelihood are flat, but that they agree erethe location and spread of
the distribution ofz;. Generally, the degree of such similarity betweegfx) andi;(z) will not be constant
because they can both depend on random parameters. The distribdtigiis)cand; () will in such a
case not be Un(f, 1), but their supports will still cover most ¢, 1] and their modes will be approximately
0.5.

To illustrate the local critique plots, we return to the simple Normal example fronmtheduction. First
we introduce some general notation on distributionsz i Normal with mearu and precision (inverse
variance)r, we writez ~ N(u,7) and®(u;pu,7) = P(z < u). If z is Gamma with shape and rate
(inverse scalep, we write z ~ Gala, 3) andT'(v;a, 3) = P(z < v). Lastly,z ~ logN (i, 7) means
that z is log-Normal where the mean and precision of the logarithm afe ;» and r, respectively, and
Q(v; pu, 7) = P(z < v). The model for the simple Normal example is

Yilw, 7~ N(p,7), i=1,...,n

(15)

v~ N (o, 7o),
with either fixed precisiorr, in which caser = (yi,...,yn, 1), Of random precision, in which case
x = (y1,.-.,yn, 4, 7). We focus our attention on the parametefThis is a DAG where the local prior and



lifted likelihood for . are identical to the conventional prior and likelihood

mu(w) = P (3 po, 7o)

o) 1o () = [Tl 7) o exp (<5 (4= %) = 2 () = @ (7).
=1

The data used in this example have= 10 andy = 12. Figure 3 (a) shows the local critique plot for
whenr = 0.1, up = 8 andry = 0.5 (Mbdel 1) based on 10000 MCMC posterior simulations. Itis a further
demonstration of what can be seen in Figure 1; the posterior sampleareflocated in the right tail of its
local prior and the left tail of its lifted likelihood. The local critique plot fewhenr ~ Ga(le—6, 1e—6),

uo = 11 andry = 0.5 (Mbdel 2) can be seen in Figure 3 (b) (also based on 10000 MCMC posterior simula-
tions). The posterior samples pffor Model 2 are more spread out across both the local prior and the lifted
likelihood than when usinlybdel 1, where the local prior mean faris farther away frong. Also, because

7 is now made random, there is randomness firection, which is explained below. The information from
the local critique plots in Figure 3 (a) and (b) may be obvious just from |lapirthe model, but for models
with more complicated structures conflicts of this kind are not at all obvious par graphical diagnostic
serves a useful purpose.

For some variables the relationship betwegr) andg;(x) or between); (x) and¢;(x) is one-to-one, given
the observed datay. If i has no random parents or neighbours, i.e. if

(17) pa(i) Unei) € O,

then the local prior (4) is a function only af, i.e. p;(z) = p(z;), and thereforer;(xz) = g(x;), whereg

is strictly increasing. Hence the posterior distributiontgfz) can be completely described in terms of the
posterior distribution ofc;, i.e. & (x), andg. If i is the parent only of observed data and has no random
co-parents, i.e. if

(18) Ch(Z) cO and Uc:iepa(V(c)) pa(V(c)) = {Z}7

thenz; is the only random variable in the lifted likelihood (5), i.k(z) = p(zo | z;), and consequently
i(x) = h(z;), whereh is strictly increasing. Hence the posterior distribution/efz) can be completely
described in terms of the posterior distributiorugfi.e. &;(x), andh. In Model 2, i has no random parents
or neighbours, but is a co-parent with the random paramettdrus (17) is true but not (18). In Figure 3
(b) we see that the angle of the plotting line segment relative ta tvds (which corresponds to the value
of £,(x)) is strictly increasing as a function af,(z). In Model 1, both (17) and (18) are true, i.¢. has
no random parents, neighbours or co-parents and is the parentfasibgerved data. Then given a value
of &,(x), both7,(x) andi,,(x) are fixed and the angle of the plotting line segment relative tortagis is
strictly increasing both as a function of,(x) and ofi,(z), as can be seen in Figure 3 (a). In the limiting
case that both (17) and (18) are true and the lifted likelihood and the ldcalgrovide exactly the same
information aboutz;, i.e. l;(x) « p;(z), then the local critique plot fog; consists of the straight line

mi(x) = Yi(z).

2.4 Approximateintegration of thelifted likelihood

Computationally it is convenient if the lifted likelihood of the variabighas a conditional conjugate fam-
ily, because themr);(x) equals a known cumulative distribution function. But sometimes it is not easy to
integrate the lifted likelihood;(z) (5), or l;(x) may not even be integrable. In the latter casgx) is

not well-defined by (12). As a solution to both these issues, we sugggdbfidetermine an intervéd, b]



m(x®)
()
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@ (b)

Figure 3: The local critique plots fop: in (a) Model 1 (7 = 0.1, uo = 8 andry = 0.5) and (b)Model 2 (7 ~
Gale—6,1e—6), up = 11 andry = 0.5) (M = 10000, results are shown for a random subsample of size
500).

that covers the bulk of thg(z) mass, and then perform numerical integration on this interval to obtain
¥;(x). Whenx; has random, unobserved children and/or random co-parents, n@ratite boundaries

[a, b] must be determined at each simulation iteration to be plotted. Hence the algorithdeteomining

[a, b] and performing the integrations should be as efficient as possible. Saipples between,,;, and
bmax- The algorithm we propose for determining suitable boundg| for the numerical integration starts
with an initial interval[ag, by] (e.g. the 10th and 90th percentiles in the posterior sampig) phside which

log l;(x) is evaluated atn equally spaced abscissas. The interval is then expanded iterativélyharnog-
arithm of the lifted likelihood at either end is at Ieéstess than the maximum in the interval, wheres

a high quantile of the¢? distribution (e.g.99%). Pseudocode for this program can be seen in the supple-
mental material. Once an appropriate interval has been determipged, can be approximated using the
Trapezium Rule. Nowy;(z) = 0 for z; < a andy;(z) = 1 for z; > b. Becausda, b] generally does not
cover all of the support of;(z), the values 0 and 1 do not have the same interpretatiorugi(ozb as for
¥;(x). To visualise this fact we suggest suppressing the plotting of the baeadar: at 0 and 1.

To illustrate the use of this approach we return toRoeps example. The lifted likelihood fot: is

51_[?:19@% hE po \ ™ no1
< F(a)> :(F(a)> ,nggef.

It is not possible to integrate this lifted likelihood analytically. The local critiqi@ for o with ¢, (z)
estimated by),,(z), usingm = 6 and the Trapezoid Rule @0 subintervals, can be seen in Figure 4 (a).

(19) lo(z) x

To assess how well this approximation is doing we performed anotherxapytion. [, (z) depends on

the parameterg and#;, i = 1,...,n only throughx. An examination of,(z) for different values of

k suggests that the normalisédz) can be approximated well by a Normal distribution with mean equal
to the mode of, (z) (a*, found by optimisation) and precision equal to the estimated Fisher Information
(estimated by setting = «*). The Fisher Information forw from [, (z) is n¢1(«), whereg; («) is the
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Figure 4: The local critique plots for in the Pumps example where thig (z(*)) is (a) estimated using the numerical
approach described in section 2.4 and (b) approximated byredl distribution {4/ = 10000, results are
shown for a random subsample of size 300).

trigamma function. The local critique plot farwith v, (x) estimated by this Normal approximation can be
seen in Figure 4 (b). We see that the two local critique plots in (a) and€b)eaty similar.

We also want to mention the possibility of multiplyidgz) with a non-informative, proper prior (e.g. the
Jeffreys prior). If this results in a (unnormalised) posterior deﬁ;ﬂm which can be integrated analytically,
it can provide a reasonable approximation/i¢x). In addition to the advantage éﬂx) being integrable,
the use of the Jeffreys prior makesg(x) invariant to transformation, whictt; () generally is not, as we
show in the next section. We have not explored this idea; indeed, weftiand it difficult to find non-
trivial examples where the Jeffreys prior does result in an analyticaidggiableii(x). Another possibility
is to exploit the lack of invariance af; (x) by transforminge; in order to achieve an analytically tractable,
integrable lifted likelihood.

2.5 Invariance

Our graphical tool is invariant in the-direction to one-to-one transformationsagf but not always in the
y-direction. Consider a one-to-one transformatign= ¢(x;) of z;,i € U. The other variables are not
transformed, s& = z'~%:. The full conditional distribution for the variable is then

(20) p(Eilr_i) < p(Eilzpaiy Tnei) || P@vie |Epavey)s i € V.

ciepa(V(c))
The model is the same as before the transformation, including the local prigr-e g—'(;), in the sense
that the local prior orx; is

~ [~ ~ d -1 Z;
(21) Pi(7) = p(Zi|Tpas)» Tnes)) = Pi() l QT()

Because; is the only transformed variable, i.€.; = x_;, and because the model is the same as before
the transformation, we have for the lifted likelihood

22) L@ = I preveliave) = [I pavelreave)) = Li@).
c:iepaV(c)) ciepaV(e))

10



We suppose in the following, for simplicity, thatis increasing. Now, becausg(z) is equivalent to
the cumulative distribution of the local prior af, and because the local prior distribution is unchanged
(see (21)), we have

~ i o i—uydg~ (@ U o i—u
(23) 7i(7) = / pi(z ") du = / pi(z )dgd—ﬁ()d%—(u)du = / pi(x"™")du = m;(x).
i.e. 7; () is identical tor; () for g increasing, or the complement- r;(z) for g decreasing. Thus;(z) is
invariant to this type of transformation. When creatifigz) the integrand is the same as fa(z) (see (22))
even though the variable to integrate over is transformed. We have

5 [ (@ ~0da [

(24) Ui(F) = e =
@) S lilaimida 22 li(xlﬁu)%du

Hence, for linear transformations; (i) is identical toy;(x) (see (12)), but for non-linear transformations
it is generally not. Thus);(z) is not invariant to non-linear one-to-one transformations. fFof i, the
functionsr;(x) andy;(x) are obviously unaltered by this kind of transformatiorcaf

The non-invariance of;(x) is obviously unappealing because there is no "true” parametrisation, agad th
no "true” v;(x). There is an analogous freedom of choice of focus parameters wéfarind pp, the
effective number of parameters in a model, and the resulting devianceiation criterion (DIC), proposed
by Spiegelhalter et al. (2002). Because of this lack of invariance, tlaé doitique plot can potentially give

a false warning about a lifted likelihodg x), or conceal a warning that should have been given ab@uit

But in the following example we see that relatively drastic transformation®tocause a great discrepancy
in ¢». We return again to thBunps example. Alternatively to the parametrisation used in (8), one could
reparametrise using for example the two power transformatjprs log (6;) or v; = ei instead ofp;. All
three parametrisations are natural choiégss the mean value parametey,s the canonical parameter and
v; is the mean time to event parameter. The two alternative models are

yi|ni ~ Poissoffexp (n;)t;), i =1,...,n

(25) .
eXp(771>|Oé7ﬁNGdO[,ﬁ), /L:]'""7n
and
yilv; ~ Poissoitl), i =1,...,n
(26) | h:)

1 R
V—i|a,ﬁ~Ga(a,ﬁ), v = 1a"'7n>

with the same distributions far and3 as in parametrisation (8). Lét= z""~" andi = z""~vi. We
now have

i (2) = T (exp (mi); o, B) = T (05; , B) = mp, ()

)

(27)

For parametrisation (8) the lifted likelihood @f (see (10)) is proportional to a Gg + 1, t;) density ford;,
SO

(28) Yo, (x) =T (O + 1, t;) .
For parametrisations (25) and (26) the lifted likelihoodg,céndy; are

Iy, (%) o< exp (niyi — tiexp (1;))

(29) ho(#) ox ()" exp (- 5),

11



which means thap,, () = T (exp (m:); yi, t:) for y; > 0 and,, (&) = T'(;E;9; — 1,4;) fory; > 1, and
neitherys,, () nor,, () are the same agy, () (or 1 — 1y, (). Hencey; (x) is not invariant to the trans-
formation fromé; to n; or v;. Figure 5 shows the local critique plots for &) (b) ; and (c)v;.

The functionsim () for y; = 0 andi,, (&) for y; < 2 are not integrable. Because the pumps 2, 7 and

8 havey; = 1, we used the numerical approach proposed in the previous subsegiibm{ = 60 and

and the Trapezoid Rule or)00 subintervals) for estimating}l,i (¢),7 = 2,7,8. These three cases with
the lowest failure counts are where we see the biggest differencesdsetw (x), ¢,,. () andi,, (i), with

z/},,z. () for i = 2 being the most divergent. Pump 2 is an unusual data point with only oneefai@spite

a relatively long operation time. However, for maghere are actually no substantial visible distinctions
betweenyy, (), 1y, (&) andi,, (i), and we draw the same conclusions regarding the lifted likelihoods for
the different parametrisations for these pumps. Considering the fadhth@iosterior mean estimates of
the 6;'s range from 0.06 to 1.98, we have here explored relatively drastisfoanations); = log 6; and

v, = gi The example therefore reassures usthét) does not seem to be very sensitive to transformations.

i=3

i=4
e S
R WS i

) ¥y E53
fyi A
v T [

i=3 =4
g | 1
w.'/o,rrm‘/{% iz

Figure5: The local critique plots for (af; in parametrisation (8), (b); in parametrisation (25) and (¢} in para-
metrisation (26) for th&unps example {4/ = 10000, results are shown for a random subsample of size
300).
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3 Applications

3.1 3-level DAG: Rats

This application illustrates how the local critique plot can reveal local pridifted likelihood domination,
and identify situations where the posterior is a trade off of tail specificatikirshows local critique plots
for the parameters in a 3-level DAG, and is based orRdues example in Spiegelhalter et al. (2004). The
weights of N = 30 rats were measured weekly ovEr= 5 weeks. Rat has weighty;; at dayt;. The model

is

ylj‘azvﬁlvacNN(Qz—f—ﬁz(t —-E) Lg) -:]_’”.’N’j:l’“"T
(30) ai\ac,aawN(ac,%), 1=1,...,N
ﬂi‘ﬂcvaﬁNN(ﬂcyé),’i:17...7N.

The DAG can be seen in Figure 6. Instead of using the prior distributions 8piegelhalter et al. (2004),
we invent a biologist with strong opinions about what the priors shoultHbesuggests

o. ~ Unif(0,Us,)
ae ~ N(ta,s Ta,)
(32) oo ~ Unif(0,Uy,,)
Be ~ N(:uﬂcv Tﬂc)
og ~ Unif(0, UUB)’

1

with e, = 250, ug, = 1, 7, = 75, = 1andU,, = Uy, = Uy, = 10. Letr. = 02,7'& = andrg ==

It is more convenient to derivg functions for the preC|S|ons rather than for the standard deV|at|ons A
uniform distribution Unif0, U') on the standard deviatianis equivalent to the precision= 01 having the

cumulative distribution functiod(m;U) = 1 — 277Y/2, 7 € [U~2,00). Ther andy functions can be
seen in Appendix A.1. The corresponding local critique plots can beisdégure 7 and Figure 8.

QP @ P

5_

Figure 6: DAG for theRat s model.

Many of the local critique plots draw attention to possible conflicts in assumptikdres strongest warning
is given by Figure 7 (c), which shows a compromise that imply extreme influehthe tails of both the
local prior and lifted likelihood. The marginal posterior distribution fgris a trade off of the outer left
tail of the local prior and the outer right tail of the lifted likelihood. In Figurébj, the local prior ok, is
constraining the marginal posterior, and only a very small part of the dgtartail of the lifted likelihood

13
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Figure 7: The local critique plots for (aj, (b) a, (C) 7w, (d) 5. and (e)rs for Rat s (M = 10000, results are shown
for a random subsample of size 300).

is used, which generally is a very unsatisfying situation. The local crititpts m Figure 7 (d) and (e) show
cases where the lifted likelihoods are constraining the marginal postenatenly a small part of the outer
right tail of their respective local priors are used. Figure 7 (a) alewsta case where the marginal posterior
is dependent on only a small part of the local prior, but here the pahedbcal prior being used is closer
to the centre. It is common, and often desired, for the likelihood to dominateoterpr. However, if we
have more justified specifications for the centres of the local priors thiahddails, we may be happy with
a local critique plot similar to the one in Figure 7 (a), while a plot similar to thosevsho Figure 7 (d)
and (e) attracts attention. The local critique plots seen in Figure 8 (a) slavwhthmarginal posteriors for
many of thew;’s are dependent only on the outer left or right tail of their local pridrisimostly concerns
the rats with low average weights, for which the correspondingosterior samples are located only in the
outer left tail of the local prior. However, most extreme is the plot for thevith the highest average weight
(rat 9), which shows that in addition to being dependent only on the oigtertail of the local prior, the
marginal posterior ofvg depends heavily on the left tail of the lifted likelihood. The same type of situation,
to a slightly less serious extent, can be seen in Figure 8 (b) fop;th@f the rats with the highest weight
gains. For the rats with the lowest weight gains, we can see the oppositesittiae posterior samples of
the corresponding;’s are located only in the left tail of the local prior and to a large extent initjtd tail

of the lifted likelihood. Generally, the local critique plots in Figure 8 (b) shost the posterior samples of
the §;'s are more spread out across their local priors than is the case fay'thia Figure 8 (a).

14
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Figure 8: The local critique plot for (a)y; and (b)3; for Rat s. Theq; plots are sorted by increasing order of the
average rat weightg;., while the3; plots are sorted by the increasing order of the weight gains- ;1
(M = 10000, results are shown for a random subsample of size 300).
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3.2 2-level DAG: Poisson-Gamma spatial moving average model

This application shows how diagnostic warnings from the local critique plaispt us to reconsider the
statistical model, in particular the way that information from the data is distribyiitbdly. The application

is taken from Best et al. (2000). They used a Poisson-Gamma spatialgrenxénage model to asses the
association between exposure to NO2 and potentially unobserved spetitakf and the rate of respiratory
illness in children in the Huddersfield region in England. The data is from tinegean multicentre study
SAVI AH. The Huddersfield region was partitioned into a gridlof 605 cells A; of 750m x 750m each,

to which the disease counts were aggregatedand long-term average populatioN,( in hundreds) and
excess NO2 concentratiof) estimated. Another partition was done of a larger rectangle that covefs all
Huddersfield as well as a surrounding buffer zone of 2km jhte 96 areasB; of 3km x 3km, representing
areas associated with latent spatial factors. The model Best et al) (28€Dis

Yi ~ POiSSOI(\NZ‘ . (ﬁo + BlZz + ,82 Zk‘ij’yj)), 1=1,...,1
J

Bo ~ Galag, 10)

B ~ Gala, )

B ~ Galag, T2)

v~ Gaay, ), j=1,...,J.

The DAG for this model can be seen in Figure 9.

(32)

We use here thg;; matrix from Thomas et al. (2004, Example 6), which is of the form

1 ‘av_b.|2
33 hij = ———— — labiPyap,
(33) J Qsz‘Bj/BjeXp( 20° )db;

®®

Figure 9: DAG for the SAVI AH model.

wheregq; is the centre of cell;, |a; — b;| is the Euclidean distance betweenand the locatiorb; within
the latent risk are#;, and|B;| is the area of3;. Here,k;; is a kernel function integrated over all distances
between the centre of cell; and all locations in the latent risk arég, divided by the area aB;. In Best

et al. (2000)%;; is simply the kernel evaluated for the distance between the centte arfid the centre of
B;. For computational reasons, Best et al. (2000) fix the value of the gcaleey experimented with sev-
eral different values in the range 0-15 km, but settleghan 1 km, which they found to be most consistent
with the data. In order to avoid aggregation inconsistencies, Best e08D)2hose the identity link, which
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gives a linear dose-response relationship.

The model given by (32) has the same joint distribution of data and paranasténe model

Yi(j4+1) ~ POISSOiN;B), i =1,...,1
Yi(J+2) ~ Poissor@NzﬂlZi), 1=1,...,1

(34) Yij ~ POiSSOIﬁNiﬂQkij’yj), = 1, ... ,I, j = 1, ceey J
J+2

Yi = Z Yijs
j=0

where{y;; } are augmented data. The local priors flgy 31, 32 and{yj}jzl are the same as in (32). This
second way of expressing the model is useful when setting up the fudittmrals. Ther and+y functions
for the parameters can be seen in Appendix A.2.

The fixed parameters of the prior distributions@f G, and 3> were chosen by Best et al. (2000) so that
there was30% prior probability that the disease counts attributed to each of three risk$gttselings,,
NO2 relateds; Z;, unobserved spatialy Zj k;j~v;) would lie between one tenth and ten times a nominal
equal attribution. The choice ofy = a; = ay = 0.575 gives a ratio of 100 for the 90th and 10th percent-
iles, whilery = 3% = 3‘$Z, Ty = 3% in addition lead to prior means fak), 3; and 3, corresponding

to each of the three risk categories contributing with one third of the oveealhde ratd” = %ﬁ, Z

is the population weighted average excess NO2 concentration. The parsuaiethe prior distributions of
{7}j=1,...; were fixed so that the prior mean ef would be|B;| and the prior variance reflected the prior
belief of moderate spatial variability. This was achieved by setting= | B;|/km? andr, = 1/km?. The
data we have used (taken from Thomas et al., 2004, Example 6) aremgngerturbed compared to the
ones used in Best et al. (2000). The local critique plots can be seenureBig0 and 11. We see that
the samples of, 5, and S, are distributed well across their respective lifted likelihoods. The marginal
posterior distributions ofjy and 3, are using almost all of the local priors, except for the right-hand tails.
The marginal posterior distribution @f is using almost exclusively the right-hand tail of its local prior.

The local critique plots of the;’s in Figure 11 are laid out in accordance with the location of the corres-
ponding latent risk areaB;, j = 1,...,J. The plots for they;’s close to the edges give warnings about
their lifted likelihoods. All of the posterior samples of theggs are concentrated in a small part of the
left tail of their lifted likelihoods. An examination of., (x) and the data reveals that this is due to the
fact that the lifted likelihoods for thesg;’s are extremely vague. This is caused by very small values of
ki;, Vi for these latent risk areas and thus small values3f | Nik;;. The reason for the smal};-values

is that the correlation length = 1 km is relatively short, and that the peripheral latent risk areas are ac-
tually partially or completely outside the Huddersfield region, which has agulae shape. Hence, there
is almost no information in the data about thess, and the posterior samples are dominated by the local
prior information. We verified this explanation by experimenting with a longeretation length, namely

p = 15 km. This alternative;; matrix resulted in local critique plots for thg’s with good spread across
the whole plotting regions for ajl (plots not shown), illustrating that a long correlation length distributes the
information in the data to all the latent risk areas. Hence, Figure 11 is an éxafipcal critique plots that
give warnings which make us reconsider the modelling, but where am#eation of the problem reveals
that there is a reasonable explanation consistent with the model and data.

Many of the non-peripheral;’s have local critique plots that cover the whole of the plotting region, i.e. all
of the local priors and lifted likelihoods are being used. Some of the ndpkezal plots are concentrated
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Figure 10: The local critique plots for (a)y, (b) 51 and (c)B2 (M = 20000, results are shown for a random subsample
of size 300).

in the upper-left (e.g. angl= 20 and;j = 62) or the lower-right corner (e.g. = 69). It seems that the local
priors of yo9 and~g. are restricting their posterior samples to be of lower values than the lifted libelgho
suggest. They have the highest posterior mean and median of all'sh&€onversely, fory, it seems that
the local prior is restricting the posterior samples to be higher than the lifted icelisuggestygy has the
lowest posterior mean and median of all thés. The "gaps” in some of the local critique plots in Figure 11
are due to the fact that the augmented dgtare discrete.
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Figure 11: The local critique plots foty; (M = 20000, results are shown for a random subsample of size 300). The
plots for the latent risk areas are laid out according to #spective locations.
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3.3 DAG combined with MRF: Larynx cancer

In a Markov Random Field (MRF), neighbours influence the posteridriloigion of a variable through the
local prior. This application shows how the local critique plot is able to idewwiyflict between the local
prior and the lifted likelihood of a variable, which partly can be traced badkdanformation provided

by the neighbours of the variable. We apply a modification of the model intextiin Besag et al. (1991)
for disease mapping. They proposed a model involving a Gaussian iot@osaditional Auto Regression
(CAR) prior for spatial random effects combined with an unstructureaidbprior for independent random
effects. Green and Richardson (2002) applied a slightly altered veo$itns model for data on larynx
cancer mortality in France for the period 1986-1993. We analyse the sataewvehich were taken from
Rezvani et al. (1997). Initially, we apply the following model

yile, ug, v ~ Poissor(exp (c4ui + vi)Ei), i=1,...,1
Ui| Ty, Ui ~ N(Uj,ni7), 1 =1,...,1
(35) vi|Ty ~ N(0,7), i =1,...,1
¢ ~ Uniform( — oo, o)
Ty ™~ Ga(au,ﬂu)
7y ~ Ga(ay, By),

wherey; is the observed number of disease caggshe (known) estimated expected count based on the
population size in areq n; the number of neighbours of regierandu; = ni >_jenei) i~ The graph for
this model can be seen in Figure 12. We use WIinBUGS and its distribeiion nor mal (as prior onu;)

to perform the posterior MCMC simulations. Becagse . nor mal imposes the constrailjt:f:1 u; = 0,

it makes sense to include the intercept variablgsingcar . nor nal requires an improper uniform prior
onc. We chosev,, = 6, = a,, = 3, = 0.01, as proposed in the GeoBUGS manual (Thomas et al., 2004).

Figure 12: The graph for the.ar ynx model.

Because the intercepthas an improper prior and heneg(z) does not exist¢ is not of interest in this
context. In the following we therefore disregard it. As shown in Section thé& parametrisation in the

19



distribution fory; makes the lifted likelihoods af; andv; non-integrable fo; = 0. Instead ofu; andv;
we therefore use the parameters= exp (u;) andb; = exp (v;), which then have log-Normal distributions

yile, ag, by ~ Poissorﬁ exp (c)aibiEi), 1=1,...,1
(36) ai|Ty,a—; ~ 109N (u;,nimy), i1 =1,...,1
bi|ty, ~logN(0,7,), i =1,...,1I.

The and+ functions can be seen in Appendix A.3. The local critique plotsrfoandr, for this model
(Lar ynx1) can be seen in Figure 13.

(<)
e, (x9)

0, (x) U, (69)

@ (b)

Figure 13: The local critique plots for (ay, and (b)7, for Lar ynx1 (M = 10000, results are shown for a random
subsample of size 300).

The posterior samples ef, andr, are pressing against the upper edge of the plots, i.e. they are located in
the right hand tail of their prior specifications. This reflects that the mdrgweterior distributions for,

andr, are using only small parts of the respective outer tails of the non-inforelathal priors. Because the
local prior distributions are relatively non-informative, and becausseeethat the samples are well spread
out across the lifted likelihoods, this may well be reasonable.

The local critique plots for thé;’s show approximately the same features as the local critique plots for the
a;'s, we therefore show only the latter. They can be seen in Figure 14, laidozording to the location

of the regions. Some regions are moved slightly in order for all the plots tésiider Region 20 (Corse)
has no neighbours, henagy, = 0 and the local critique plot collapses to a single point, therefore Corse is
not included in the plot. The values ¢f/ E; can be seen in Table 1 in Appendix A.3. We see that regions
with low values ofy; / E; have local critique plots fod; with mass gathered towards the lower right corner.
Conversely regions with high valuesg@f/ E; have local critique plots with mass gathered towards the upper
left corner. The strength of these effects are affected by the; values of the neighbours. Consider for
example the regions 63 (Puy-de-Déme), 75 (Paris) and 94 (Val-ded)laiThey have approximately the
samey; / E; values (1.3), but the; local critique plot for Puy-de-Déme shows that the posterior samples
are located far out in the left hand tail of the lifted likelihood, while Paris aalddé-Marne have posterior
samples which cover almost all of the respective lifted likelihoods. The heigls of Puy-de-Déme all have
yi/ E; values below 1, while all but one of the neighbours of Paris and Val-dea®have values greater
than or equal to 1.3. Looking at the regions 50 (Manche) and 51 (Marasee that the respectiwelocal
critique plots are very similar, but Manche has a much lowg¢#; value (0.08) than Marne (0.34). This
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Figure 14: The local critique plot for; for Lar ynx1 (M = 10000, results are shown for a random subsample of
size 300).
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is also due to different neighbour behaviour, the neighbours of Mahekie generally lowey;/ E; values
than those of Marne.

The strength of the spatial dependence is controlled by the precigiomhe larger the precision,, the
greater the spatial dependence and the more the neighbours of igthicough the local prior ofi;, influ-
ence the posterior samples@f Thus, for models that lead to smaller posterior values,ahan model
Lar ynx1, we expect less regions to have local critique plots with gatherings in ther lgfpor lower right
corners than what is the case in Figure 14. We illustrate this in the followingestibn by considering an
alternative local prior specification fat,, which is more informative and encouraggto be smaller, hence
implying less spatial dependence. We also consider an alternative |awaliqurr,, .

3.31 Larynx2

The alternative prior choices are

Tu ™~ IOQN(/%p)

37
(37) Ty ™~ |09N(M,p),

wherey = 0 andp = 5. We now have new functions forr, andr, (see Appendix A.3), while)., and
¥, as well as ther and functions for the other parameters, remain unchanged. The local crgigtse
for 7, andr, for this model can be seen in Figure 15, and the local critique plots far;thean be seen in
Figure 16.

. (0)
7, (xY)

4, 60) ()

(@) (b)

Figure 15: The local critique plots for (&), and (b)r, for Lar ynx2 (M = 10000, results are shown for a random
subsample of size 300).

The marginal posteriors af, andr, are also now using only the outer right tails of their local priors, but in
addition we see that the samples now are more concentrated towards thiésleftttzeir lifted likelihoods
than what was the case fobar ynx1 (Figure 13). This can be explained by the fact that weam ynx2

are imposing more informative local priors ep andr, than inLar ynx1. This causes less of the lifted
likelihood information to be used. At the same time the marginal posteriors depgynon the outer right
tail of the informative local priors. Hence, the local critique plots in Figusssthiow that there seems to be
reason to reconsider the modellingliar ynx2.
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Figure 16: The local critique plot for; for Lar ynx2 (M = 10000, results are shown for a random subsample of
size 300).
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As expected, sinckar ynx2 leads to smaller posterior values®fthanLar ynx1, and hence less spatial
dependence, a general distinction between Figure 16 and Figure 14 ferthar ynx2 (Figure 16), the
local priors are not constraining the posterior samples as much asfgrmx1 (Figure 14), and most of
the local priors and lifted likelihoods of the's are being used.

4 Conclusions

In this paper we have proposed a graphical diagnostic for chain gnaplels called the local critique plot.
It investigates conflict locally at the node level between the information comamg the parents and neigh-
bours (through the local prior) and the information coming from the chil@dh co-parents (through the
lifted likelihood). By visualising the link between the local prior, the lifted likelidoand the marginal

posterior distribution of the parameter, the local critique plot is able to diagieoal conflict between the
different sources of information. Specific, local choices made by theeftevdhat are influential for the

posterior analysis of that particular parameter can be identified.

Through applications involving pure DAG models and one application combamiDgG with a MRF, we
have illustrated the use and various features of the local critique plotxBorme, we have seen situations
where the local critique plot reveals that the marginal posterior distribufienparameter is dominated
by the local prior, and hence only a small part of the lifted likelihood is usedhe more common, but
generally less problematic, case of lifted likelihood domination, the local crifdpisidentifies situations
where the local prior should be checked for mis-specification, e.g.useanly a small part of one of the
tails is used. We have also seen situations where the posterior is a restrihaé aff of tail specifications.

The lifted likelihood dimension in the local critique plot is not invariant to transtation of the parameter,
but the lack of invariance does not seem to be too severe. The applechaoe shown cases where the
local critique plot gives a warning about specific modelling choices, Iharevafter a closer examination
of model and data the choices in question are justified. We stress that iagvgiven by the local critique
plot is not saying that the current model is wrong or proposing a betteeinot rather that the modeller
should re-examine his or her choices to make sure that they are justifiable.

For lifted likelihoods that are not integrable or do not have analytically tdetmtegrals, we have pro-
posed a numerical integration scheme that is computationally fast, and thudestotgoerforming at each
simulation step. Hence, the local critique plot can be derived for all paessi Bayesian hierarchical
models characterised by chain graphs, and is easy to implement as adogtpsba posterior simulation,
e.g. MCMC. It is not, however, a diagnostic of the coding of the postetioulgtion.

The local critique plot is an informal graphical diagnostic, intended foisaal examination of possible
conflict. Future extensions of this diagnostic may include theory on fornaddiations of specific features,
with the specification of suitable discrepancy measures guided by the ta@pie plot. When performing
the corresponding formal tests, there are some possible pitfalls, e.g. it istémpto avoid double use
of data, as is the case for the posterior predigiwalues. Also, potential multiple testing issues must be
handled carefully.
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Appendix

A 7 and vy functions

A.l Rats

Thew andvy functions for the parameters in tRat s example in Section 3.1 are

Wai(x):@(ai;a077a> ¢a( ) (Oéz,ymT‘Tc>,i:1,~-7N

Wﬁz(l') = 7,76077-ﬁ> ¢BL($) = (I)(ﬁu % Stt - Tc)a 1= 17 s 7N

=1 j=1

o
mo(@) = F(riUs) () =T (ra 3 +1, S5 i) ?/2)
(38) Mo () = (i foesTa. ) (@) = @ (016, N - 70 )
(
mo.(@) = @(Beip ) va(x) = @ (B BN - 7)

mry (@) = F(15U5,)  try(0) =T (¥ +1 i( ~ 5)%/2),

wheresy = Y7 (t; — )2, siy = >y (t; — 1) - (yij — vi.) andpy = i + Bi(t; — 1),

A.2 SAVI AH

Ther and functions for the parameters 8AVI AHL in Section 3.2 are

T8, (x) = F(ﬁo; aoﬁo) Vg () = F(ﬁo; Y.+ T 1L, iN@)

i=1
i=1

I J
DBy + 1,3 S Nikin;)

i=1 j—l

(39)

mg (x) =T (51; a1, T g, (x F(ﬂl; Y.(g42) T 1, XI: N,-Zl)
( (

)
mg,(z) =T 52;042,7'2) Vg, (2
) Yy (@ :F('Vav?/ﬂLl ﬁ2ZNkU> j=1,.

Ty (:U) = F('Yj; Oy, Ty

I I J
wherey.; = > i yij andy. =375 > Yij-
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A.3 Larynx

Therw andvy functions for the parameters irar ynx1 in Section 3.3 are

Ta, () = Q(al,u“nﬂu> Ya, () :F<a,,y1—|—1 exp(c)b; EZ>, =1,...,1
m,(2) = Q(bl,o m) ( :r( s + 1, exp(c)a E) i=1,....1
(40) Tr (@) = D(rsen, o)t (2) = T(ms 552+ 1, Z ui = uy)?/2)

(@) =T (mi 0w Bu) (@) = (TMHZ?/z)

wherem is the number of "islands”, which, because all the regions except @oessonnected, here equals
2.

ForLar ynx2 in Section 3.3.1, the functions forr, andr, are

7, (@) = (i )
7, (z) = Q<Tv§ I, p),

The rest of ther and« functions are the same as in (40).

(41)

Data

Lar ynx

Table 1 contains thg;/ E; values for the_ar ynx application, based on the data reported by Rezvani et al.
(1997).
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Table1: Lar ynx data

Region 7 || Region 7 || Region # || Region £
1 1.19 25 0.79 49 0.51 73 0.37
2 1.32 26 1.09 50 0.08 74 1.14
3 0.93 27 0.94 51 0.34 75 1.3
4 0.56 28 0.92 52 0.41 76 1.26
5 2.12 29 0.85 53 0.59 77 1.29
6 1.46 30 0.86 54 0.82 78 0.95
7 0.66 31 0.66 55 0.62 79 0.57
8 1.2 32 1.14 56 0.32 80 0.89
9 1.42 33 1.24 57 1.29 81 0.61
10 0.99 34 1.22 58 0.56 82 0.91
11 1.01 35 1.07 59 1.25 83 1.5
12 0.73 36 1.13 60 0.87 84 1.14
13 1.29 37 1.01 61 0.67 85 0.63
14 0.8 38 0.93 62 1.6 86 0.31
15 0.22 39 0.47 63 1.29 87 0.48
16 0.32 40 1.12 64 0.87 88 0.93
17 0.68 41 0.97 65 0.46 89 1.15
18 0.57 42 0.58 66 1.09 90 1.35
19 0.54 43 0.52 67 0.66 91 0.9
20 1 44 0.93 68 0.86 92 1.57
21 0.8 45 0.91 69 0.83 93 1.64
22 0.98 46 1.23 70 0.71 94 1.32
23 1.08 a7 0.57 71 0.59 95 1.58
24 0.76 48 0 72 0.56
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