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Abstract

In both criminal cases and civil cases there is an increasing demand for the analysis of DNA
mixtures involving relationships. The goal might be, for example, to identify the contributors to
a DNA mixture where the unknown donors may be related, or to infer the relationship between
individuals based on a DNA mixture. This paper applies a new approach to modelling and compu-
tation for DNA mixtures involving contributors with arbitrarily complex relationships to two real
cases from the Spanish Forensic Police.

Some key words: Coancestry, deconvolution, disputed relationship, identity by descent, kinship, DNA mix-
tures, likelihood ratio.

1 Introduction

In both criminal and civil cases relying on inference about relationships there is an increasing demand
for the analysis of DNA mixtures where relatives are involved. The goal might be to identify the
unknown contributors to a mixture where the donors may or may not be related, or to determine
relationships between typed individuals and one (or more) of the contributors to a mixture, also
in the case that the mixture contributors themselves are related. Here we use a novel approach
that is able to tackle these problems, which to our knowledge have not previously been analysed
rigorously in the literature. A new general software KinMix R package [6] which can handle complex
relationships with and between mixture contributors has been developed to make inference in these
cases. Inference is not limited to two-way relationships but can be extended to relationships among
3 (or possibly more) contributors to a mixture.

We analyse two real cases from the Spanish Forensic Police. In the first case we wish to identify a
missing person through the analysis of DNA mixtures found on personal belongings. In many cases,
the genetic profile detected on the objects is not from a single source, but might be a DNA mixture,
revealing that the object was used by 2 (or more) people. In addition, very often, the contributors
to these mixtures are related, mainly in cases, such as this one, where the missing person shared the
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dwelling with relatives. Here, among other analyses, we tackle the novel problem of computing a
likelihood ratio that the two unknown contributors to the mixture are related compared to unrelated,
testing relationships such as parent-child, sibs, first cousins, etc.

The second case concerns a murder where a man was stabbed in his home. A DNA sample was
taken from the murder weapon and appeared to be a DNA mixture from the victim and possibly a
close relative of the victim.

Here we use probabilistic genotyping methods for DNA mixtures, under hypotheses about the
relationships among contributors to the mixture and to other individuals whose genotype is available.
We now briefly summarise these methods and refer to [10] which presents a review on DNA mixtures
where further background can be found.

A natural basis for any model-based continuous DNA mixture analysis is a joint model for the
peak heights z in the electropherogram (EPG) and genotypes n, p(n,z|y) = p(n) x p(z|n, ), with
parameters 1) characterising the conditional distribution of peak heights [4]. We base our analysis
of DNA mixtures on the model for p(z|n, ) described in [2]. This model takes fully into account
the variation in peak heights and the possible artefacts, like stutter and dropout, that might occur
in the DNA amplification process. The model can coherently analyse a combination of replicates, a
combinations of different samples and a combinations of different kits.

In the standard case, unknown contributors to the mixture are assumed drawn at random
from the gene pool. When the contributors are related, there is positive association between their
contributor genotypes. A new model aimed at making inference about complex relationships from
DNA mixtures is presented in [8]. This generalises the work in [7] which allowed inference about
particular close relationships between contributors to a DNA mixture with unknown genotype and
other individuals of known genotype. The new model extends the analysis to different scenarios
and allows to specify arbitrary relationships between a set of actors, each of which may be mixture
contributors, or have measured genotypes, or both. We can evaluate the likelihood of any such
model, and compare models accordingly. A brief description of the key ideas underlying, specifying,
modelling and computing relationship inference is given in the Appendix.

The case work examples in Section 2 illustrate some scenarios, where we make inference about
two-way relationships between two mixture contributors with and without information about their
or their relatives’ genotypes.

The software used to analyse the case work examples is the new KinMix R package [6] that extends
the DNAmixtures R package [4] to allow for modelling DNA mixtures with related contributors.

Among existing published work on relationships and mixtures, [11] presents an empirical study
with data known to include known sibs among the reference samples, used to broaden the basis
for evaluation of the information gain from using peak height data. Free software is also available
to deal with DNA mixtures where contributors can be related [1], but this addresses a different
problem: a specific kinship relationship has to be defined and one of the contributors has to be
known.

2 Results of the analysis of complex DNA mixtures involving rela-
tionship testing

In this section we demonstrate the results and performance of our methods on the two case studies.
For the first example we used the data gathered on 21 markers included in the GlobalFiler™
Amplification kit (ThermoFisher) and in the second example we also used data on 16 markers in
the PowerPlex®16 kit. In all examples we assume known allele frequencies and adopt a threshold
of 50 rfus.
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2.1 Example 1: Identification using personal belongings of a missing person

Background on the case Personal belongings such as toothbrushes or razor blades can be used
as a source of DNA in missing person cases. In these objects, DNA from the missing person may
be found since they may have been frequently used before his/her disappearance. Nevertheless,
there is uncertainty about the actual donor of the DNA isolated from these objects, and this is
why it is recommended to “validate” the detected profile by using a reference (known) sample from
a relative of the missing person. Usually, these profiles (from objects and/or relatives) are then
compared with DNA profiles of unidentified bodies that are stored in national databases (“massive
comparison”). This is useful to know if the missing person has passed away but his body was not
identified. Unfortunately, in some cases, the genetic profile detected on an object is not a single
source profile but a DNA mixture, revealing that the object was used by 2 (or more) people. In
addition, very often, the contributors to these mixtures are related (mainly in cases where the
missing person shared the dwelling with relatives).

In this example, we present a real case related to a missing male. The full anonymised data
together with the R scripts to compute the results are given in the Supplementary Material web-
pages'. The data are anonymised to avoid serious privacy and confidentiality concerns. In this case,
only a daughter of the missing male was available to donate a DNA sample. This is not the ideal
situation since false DNA matches can be found after a massive comparison of profiles in a database
when only one relative is available as a reference sample. In order to improve the reference genetic
data, a toothbrush and a razor-blade, presumably used by the missing person, were also collected.
DNA from both objects was recovered and analysed by using the GlobalFiler kit (Thermo Fisher).
The reference sample from the daughter of the missing male was also genotyped with the same kit.
Two different DNA mixtures were detected in the two objects. An excerpt of the (anonymised)
data is shown in Table 1, showing the alleles and peak heights in the two DNA mixtures found on
the toothbrush T and the razor-blade RB. The DNA profile of the daughter, denoted by D, is also
shown. The sex-related markers indicated that the mixture was most probably from one female and
one male contributor.

Results Here we analyse the two DNA mixtures found on the toothbrush T, and a razor-blade
RB, presumably used by the missing person (ante-mortem data).

Table 2 shows the estimated parameters ¢ = (i, 0,&, ¢) for the analysis of the DNA mixtures
found on T and RB. We assume there are 2 unknown contributors, denoted U; and Us, to each of
T and RB: not necessarily the same individuals in the two cases. We fix on two contributors since
the analysis performed for 3 (not shown here) yielded an almost vanishing proportion for the third
contributor, ¢3 = 0. Note also that the stutter proportion £ for sample T is zero indicating that
stutter peaks were most probably removed from the data. The estimated proportion of DNA for the
two contributors to sample 7' is large for the major contributor Uy, ¢y, = 0.93, whereas, for item RB
the estimated proportions of DNA contributed by U; and Uy are roughly equal, ¢y, ~ ¢y, = 0.5,
implying they contributed in almost equal proportions to the mixture. As we will see in the latter
case the estimation of the LR and other inference is problematic. In these models, the likelihood
can have a complicated shape and numerical maximisation can be unreliable. The values in Table
2 are the maximum likelihood estimates as calculated by DNAmixtures.

Table 3 shows the LR and log;, LR for testing #H,: D is the child of U; (and similarly for Us)
vs. Ho: no unknown contributors are related to D. For item T', log;qo LR = 10.97 is large pointing
to U being a parent of D. It is also substantial for the hypothesis concerning U, being a parent
of D. Could this be due to the fact that the two contributors might be related? We will test this
assumption later. For the RB the log;jy LR in Table 3 for H; vs. Hp is almost the same when

"https://petergreenweb.wordpress.com/example-1-data-code-and-output/
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Table 1: Example 1: An excerpt of the anonymised data from the toothbrush T and the razorblade
RB, showing the markers, alleles and relative peak heights. The DNA profile of the daughter D of
the missing person is also shown.

alleles  toothbrush  razorblade
markers in mixture peak height peak height D
Marker 6 17 945
19 264 853 19
21 3664 612 21
Marker 7 13 1152 245
14 126 796
15 941 830 15
Marker 14 13 5158 2141 13
15 304 1512 15
Marker 20 13 3218 334
17 3550 1795 17
18 1274

Table 2: Example 1: Estimated parameters based on an analysis of the two mixture samples
assuming that the toothbrush 7" and RB contain DNA from two unknown contributors.

H 4 3 ou, U,
toothbrush | 2381 0.0614 0 0.9262 0.0736
razor-blade | 1602 0.0504 0.0118 0.5001 0.4999

testing whether D is the child of U; or of U,. This is probably due to the fact that the proportions
are almost identical, ¢y, >~ ¢y, = 0.5, which makes it extremely difficult to distinguish between the
contributors.

We also tested whether the daughter D was a contributor to T' or not, similarly for RB, and in
both cases the logLR was zero, excluding D from being a contributor to either mixture.

In Table 4 we present comparisons with the results of another freely-available package that anal-
yses DNA mixtures involving relatives, relMix [9]; this uses allele-presence only, not peak heights.
We compare, marker-by-marker, with KinMix both with and without peak height information. The
results obtained with relMix and KinMix when not including the peak height information (columns
2 and 3) are quite similar. Small differences between relMix and KinMix when not including peak
heights are to be expected since they are based on different statistical models for the mixture. For
the majority of markers, when including peak height information KinMix gave a larger log,;; LR
(10.97 compared with 9.53, corresponding to a LR 27.5 times smaller). For two of the markers,
Markers 8 and 10, relMix is unable to compute the likelihood, most likely because of excessive
storage demands. We can compute “partial” log;q LRs by excluding these 2 markers, and these are

Table 3: Example 1: log;q LR for testing whether in 7" and RB, M, contributor (U; or Us) is a
parent of D ws. Hp no contributor is related to D.

log;o LR
Up Us

toothbrush | 10.974 | 4.531

razor-blade | 8.443 | 8.444
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Table 4: Example 1: Excerpt of marker-wise LR and overall log;y LR for item 7', using relMix and
KinMix with and without peak height information, for testing whether in 7', H,: U; is a parent of
D ws. Hg: Uy and Us are random members of the population.

marker relMix KinMix KinMix

w/o peak heights with peak heights
Marker 6 2.55 2.58 3.34
Marker 7 1.08 1.07 1.59
Marker 9 1.26 1.18 1.62
Marker 14 2.09 2.12 1.51
partial log;y LR 8.35 8.42 9.94
overall log;o LR 9.53 10.97

also shown in the Table.

Table 5: Example 1: For items 7" and RB, log;y LR for H,: the two contributors to the mixture
are related, 4.e. U7 has relationship R to Us, vs. Hgy: the two contributors are unrelated. Several
different relationships R are tested.

Relationship R between U; to T RB

and Us under H,, log;g LR
monozygotic twins —00 —00
parent-child —00 —00

sibs —2.14 —2.85

double first cousins | —0.510 —0.657
quadruple-half-first-cousins | —0.44 —0.630
half-sibs | —0.37 —0.625

first cousins | —0.10 —0.148

half-cousins | —0.034 —0.037

Table 5 shows the results for testing whether the contributors Uy or Us to item T and RB are
related, i.e. Hp: Us has relationship R to Uy versus Ho: Uy and Uz are unrelated. The log;y LRs
are all negative, implying that the LRs are smaller than 1. Although only a finite set of possible
relationships has been considered, these vary widely, and it is overwhelmingly clear there is there is
no support for any relationship between the two contributors.

We now consider the toothbrush EPG in more detail, examining the joint relationships between
the mixture contributors and the typed daughter D, which clarifies the role of D in validating the
mixture profile. Table 6 shows the log;y LR for item 7" for several hypotheses H,, concerning different
relationships R among Uy, Us and D, vs. the null hypothesis that these individuals are all unrelated.
The values of the log;, LR show that there is strong evidence that the two contributors to item T
are the missing father of D and D’s mother, or at least very close relatives of them. Comparing the
first 4 rows of Table 6 confirms that the most likely single possibility is that they are indeed the
mother and father. All values in the Table remain unchanged if the sexes of all contributors are
reversed; we choose to identify them in the way shown because inference (not shown) also including
the Amelogenin locus indicates that is is most likely that the major contributor U; is female.

If there is interest in comparing two of the models displayed in Table 6, the appropriate log;y LR
is simply obtained by calculating the difference beteen the values shown. For example, comparing
the first row and the fifth, 17.935 —10.974 = 6.961 gives the weight of evidence that Us is the father
of D, given that it is already assumed that U; is the mother of D. There are too many different such
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comparisons that can be made to list them all here.
Some of the specific relationships examined in Table 6 are speculative, but might be of interest
in cases where a home is shared by an extended family.

Table 6: Example 1: For item T, log;y LR for several hypotheses H, concerning different relation-
ships R among Uy, Uz and D, vs. Hp: U; and Uy and D are unrelated. The results in the lower
half of the table can be used as baselines for comparison for those in the upper half. All log;, LR
remain unchanged if the sexes of Uy and Us are switched.

Hp log;q LR
U1 mother of D and U, father of D 17.935
U1 maternal aunt of D and Us father of D 14.028
U1 mother of D and Us paternal uncle of D 15.579
Uy maternal aunt of D and U paternal uncle of D 11.763
U1 mother of D and Us unrelated 10.974
U7 maternal aunt of D and Us unrelated 7.452
Ui unrelated and Us father of D 4.530
U7 unrelated and U, paternal uncle of D 2.796

Finally for this example, we consider the two mixture profiles T and RB jointly. What is the
strength of evidence that the same individuals have contributed to both mixtures, and if so, are
they related to D? To answer such questions, we use KinMix to model various scenarios which deal
with the two DNA mixture traces simultaneously, with various patterns among the contributors.
There are too many permutations to show them all, so in Table 7 we just present some interesting
examples. As parameters for these joint peak height model, we copy over the relevant values from
Table 2. For full details of these calculations, please consult the codes in the online Supplementary
material.

Table 7 shows strong support for the hypothesis that the contributors to 7' and RB overlap and
are mostly likely identical, strengthened further when a common contributor is a parent to D. As in
previous analyses, the results are unchanged when sexes are interchanged, and in each hypothesis
concerning a parent, the possibility that it is a close relative instead could also be examined.

Table 7: Example 1: log;o LR for the joint analysis of several hypotheses concerning the identity
between contributors to T' and RB and whether a common contributor is a parent of D. In all cases,
the baseline Hg states that both contributors and D are unrelated. All log;; LR remain unchanged
if the sexes of the contributors are switched. In the last two rows, the contributors are mentioned
in order, major then minor, omitted for brevity.

H, log;o LR
T and RB have same 2 contributors 23.56
T and RB have same 2 contributors, first being parent of D 34.54
T and RB have same major contributor 16.53
T and RB have same major contributor, being parent of D 27.50
T has father and mother of D, RB has father and unknown 34.46
T has mother and father of D, RB has father and unknown 25.54
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2.2 Example 2: Analyses of a Spanish murder case

Description of the case This concerns a murder case where a man was stabbed in his home.
There was a knife with blood at the crime scene. The blood was mainly on the blade, but there
was also some blood on the handle. The sample from the handle turned out to be a DNA mixture,
with a major profile matching the victim. We also wish to test whether the minor profile in the
mixture could be a close relative of the victim (possibly a son). The DNA profile of the son was not
available. Two EPGs from the mixture were obtained by using two different kits, we denote these
by EPG1 and EPG2. The kits have partially overlapping sets of markers, EPG1 was analysed on its
16 markers and EPG2 on its set of 22 markers, both include Amelogenin. Here we assume known
allele frequencies taken from the Spanish allele frequency database collected on n = 284 individuals
[3].

Months after the murder, a man was arrested for a different crime, drug trafficking, and a
reference DNA sample was collected. When his profile was entered in the DNA database several
matches were found, among which with the DNA mixture on the handle of the knife. The matches
were investigated and the identity of the person (name, date of birth, place of birth, name of the
father, name of the mother) was that of the son of the victim. Table 8 gives an excerpt of the
data showing the markers, alleles and relative peak heights for EPG1 and EPG2, together with the
genotypes of the father (the victim) and the son (the suspect).

Table 8: Example 2: An excerpt of the data showing the markers, alleles and relative peak heights
for EPG1 and EPG2, together with the father’s and son’s genotypes

EPG1 EPG2 father son
marker | allele height height

CSF1PO 10 305 625 10 10
11 240 504 11 11

D1051248 13 6990 13
14 2309 14
16 7144 16 16
D75820 9 606 1136 9 9

10 686 10
THO1 9.3 863 2654 9.3 9.3
10 570 10

Results We analysed the data from this case to illustrate the different scenarios that can be
analysed using the recently developed Kinmix code.
In particular we analyse the following different possible scenarios:

Scenario 1 Here none of the contributors are typed. The analysis is of a 2-person mixture model
for a prosecution hypothesis H,, : being the two unknowns being father and son versus Ho the
two unknown contributors are unrelated.

Scenario 2 Here only the father (the victim) is typed. The analysis is of a 2-person mixture
model, where father has been typed and the prosecution hypothesis is H,, : son of father and
1 unknown are contributors versus Hy : no contributor is related to the typed individual (the
victim).

Scenario 3 Both father and son are typed. Here we analyse a 2-person mixture model where H,:
the contributors are victim (father) and son versus Hy : contributors to the mixture(s) are 2
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unknown individuals.

Scenario 4 Both father and son are typed. Here we analyse a 2-person mixture model where H,:
the contributors are victim (father) and son versus Hg : contributors to the mixture(s) are the
victim and an unknown.

In all scenarios, unless otherwise stated, when considering an unknown contributor to a mixture,
he or she is taken to be a random member of the reference population, so unrelated to typed
individuals.

For EPG1 the MLEs of the parameters under both H, and Hg are similar and are roughly equal
to ¢ = (u = 576,060 = 0.32,£ = 0,¢y, = 0.88, ¢y, = 0.12). When the victim’s genotype is known
the estimated proportion contributed to EPG1 is ¢, = 0.18, ¢y, = 0.82. For EPG2 the MLEs of the
parameters are roughly equal to ¢ = (u = 2542,0 = 0.97,£ = 0, ¢y, = 0.75, ¢y, = 0.25). When the
victim’s genotype is known the estimated proportion contributed to EPG1 is ¢, = 0.14, ¢y, = 0.86.
In both EPG1 and EPG2 the victim is estimated to be the minor contributor. Note that EPG2
has a higher p than EPG1 but this is also accompanied by a larger o, so the coefficient of variation
is similar in both EPGs. The MLEs of the mean stutter proportion £ are zero, probably because
preprocessing of the data has removed peaks that were classified in the laboratory as stutter. Our
models, however, allow for stutter and do not require that the data be preprocessed before analysis.

Table 9 gives the log;o LR for the 4 scenarios when analysing EPG1 and EPG2 separately and
jointly. When combining EPGs made from the same DNA extract, as in this case, it is natural
to make an assumption that contributors are the same. In [5] we show how results based on a
combination of replicates, a combinations of different samples and a combinations of different kits
improve the robustness of the analysis and help in fixing any complications relating to degradation.
However, when combining profiles from different samples one needs to carefully consider whether
there is perhaps only a partial overlap.

Table 9: Example 2: log;y LR for Scenarios 1-4 using EPG1 and EPG2 separately and in combina-
tion.

Scenario 1 2 3 4
Typed actors | none  father father & son
EPG1 | —0.806 5.60 22.16 22.78

EPG2 | —0.175 10.66 29.16 11.68

EPG1 & EPG2 2.49 8.26 40.17 26.20

Table 10: Example 2: For item EPG1 and EPG2, log;o LR for H,: the two contributors to the
mixture are related, i.e. Uy has relationship R to Us, vs. Hg: the two contributors U; and Us are
unrelated and are independent of the typed individuals. Several different relationships R are tested.

log,;o LR
Relationship | EPG1  EPG2
parent-child | —0.806 —0.175
sibs | —1.270 —0.940
quadruple-half-first-cousins | —0.316 —0.022
half-sibs | —0.275 0.045
first cousins | —0.108 0.059
half-cousins | —0.046 0.040
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Table 10 shows log;y LR for testing whether the two unknown contributors to the DNA mixture
are related versus that they are unrelated. For EPG1 the LRs for testing H, that the U; has a
relationship R to Us, vs. Hyp: the two contributors U; and Us are unrelated and are independent of
the typed individuals, vary between 0.16 and 0.9 giving roughly equal weight to H; versus Hg. For
EPG2 these vary between 0.11 and 0.86.

Table 11 shows the deconvolution for the major contributor to the mixture for the two EPGs.
The table only indicates genotype probabilities of at least 0.001, meaning that cells with a probability
of less than 0.001 have been suppressed. We have denote by other the collection of alleles for which
no peak has been observed in the EPG. For EPG1 the highest ranking genotype for the major
contributor U; on all markers has posterior probability greater than 0.99 and coincides with the
genotype of the suspect (who is the son of the victim) on all markers. The deconvolution for EPG2
gives a much poorer performance. For example, on marker D7S850 the top ranking genotype for
EPG2 is incorrect, the correct genotype (9,9) is ranked grd having a small probability of 0.077.

Table 11: Example 2: Predicted genotypes of U; with corresponding probabilities for EPG1 and
EPG2 for an excerpt of the markers. An allele not observed in the EPG is denoted by other.

EPG1 EPG2
genotype prob. genotype prob.
CSF1PO | 10 11 1 10 11 0.751

10 10 0.097
11 11 0.083
10 other 0.036
11 other 0.033

D13S317 | 12 13 0.997 12 13 0.576
12 12 0.003 12 12 0.363
12 other 0.043
13 other 0.011
13 13 0.006

D7S820 | 9 9 1 9 10 0.768
10 10 0.077
9 9 0.077

9 other 0.043
510 other 0.034

THO1 | 9.3 10 1 9.3 9.3 0.812
9.3 other 0.185
other other 0.003
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3 Conclusions

We have shown that a wide range of relationship inference problems where one or more actors appear
only as contributors to a DNA mixture, can be handled coherently. We can make inference about
relationships among contributors, and between contributors and typed individuals. We carried out
diagnostic plotting (not shown here) as recommended by [5] and found nothing to suggest the model
was failing to fit the data.

The new KinMix package [6] used in the casework examples illustrated here is a highly flexible
modular software package capable of solving much more complex relationships among two or more
mixture contributors than those presented here. It is not limited to pairwise relationships. In [8]
we show its capabilities of dealing with multi-way relationships in DNA mixtures including cases
where the contributors might be inbred.
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Appendix

The key idea that enables the specification, modelling and computation of DNA mixtures with famil-
ial relationships among the contributors, and/or between contributors and other typed individuals
is the IBD pattern distribution. IBD stands for identity by descent, the phenomenon where two or
more related individuals have a common allelic value at a marker, not by the coincidence of several
draws from the gene pool giving the same value, but because the allele was passed from parent to
child in the process of meiosis. For a given set of related individuals, or ‘family’, an IBD pattern is
a partition of the alleles of the individuals in the family according to their identity by descent. The
IBD pattern distribution is simply the probability distribution of this partition induced by repeated
application of Mendel’s first law.

For just two related contributors, the idea has been in use to quantify relatedness for 80 years, in
the form of Cotterham’s kappas; for example, the relationship between two full brothers is captured
by the probabilities that 0, 1 or 2 alleles are identical by descent: kg = 0.25, k1 = 0.5, ko = 0.25.
The IBD pattern distribution extends this notion to any number of related individuals, and also
deals correctly with inbreeding.

In KinMix, the IBD pattern distribution is used not only to specify the relationships in question,
but also to model the distribution of the genotype profiles, and as a data structure to drive the
computation. With unlinked autosomal STR markers in Hardy-Weinberg equilibrium, the joint
distribution of the genotype profiles of the family members is completely determined by the IBD
pattern distribution and the allele frequencies for each marker. As in much other recent work on
computation for STR probabilistic genotyping methods for mixtures, joint distributions of genotype
profiles are implemented using Bayesian networks (BNs), which allow efficient exact computation.
The IBD pattern distribution is used directly in building the BN for the related genotypes. Full
details are given in [8], and the methodology is implemented in the R package KinMix [6].
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