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Abstract7

8

In both criminal cases and civil cases there is an increasing demand for the analysis of DNA9

mixtures involving relationships. The goal might be, for example, to identify the contributors to10

a DNA mixture where the unknown donors may be related, or to infer the relationship between11

individuals based on a DNA mixture. This paper applies a new approach to modelling and compu-12

tation for DNA mixtures involving contributors with arbitrarily complex relationships to two real13

cases from the Spanish Forensic Police.14

Some key words: Coancestry, deconvolution, disputed relationship, identity by descent, kinship, DNA mix-15

tures, likelihood ratio.16

1 Introduction17

In both criminal and civil cases relying on inference about relationships there is an increasing demand18

for the analysis of DNA mixtures where relatives are involved. The goal might be to identify the19

unknown contributors to a mixture where the donors may or may not be related, or to determine20

relationships between typed individuals and one (or more) of the contributors to a mixture, also21

in the case that the mixture contributors themselves are related. Here we use a novel approach22

that is able to tackle these problems, which to our knowledge have not previously been analysed23

rigorously in the literature. A new general software KinMix R package [6] which can handle complex24

relationships with and between mixture contributors has been developed to make inference in these25

cases. Inference is not limited to two-way relationships but can be extended to relationships among26

3 (or possibly more) contributors to a mixture.27

We analyse two real cases from the Spanish Forensic Police. In the �rst case we wish to identify a28

missing person through the analysis of DNA mixtures found on personal belongings. In many cases,29

the genetic pro�le detected on the objects is not from a single source, but might be a DNA mixture,30

revealing that the object was used by 2 (or more) people. In addition, very often, the contributors31

to these mixtures are related, mainly in cases, such as this one, where the missing person shared the32
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dwelling with relatives. Here, among other analyses, we tackle the novel problem of computing a33

likelihood ratio that the two unknown contributors to the mixture are related compared to unrelated,34

testing relationships such as parent-child, sibs, �rst cousins, etc.35

The second case concerns a murder where a man was stabbed in his home. A DNA sample was36

taken from the murder weapon and appeared to be a DNA mixture from the victim and possibly a37

close relative of the victim.38

Here we use probabilistic genotyping methods for DNA mixtures, under hypotheses about the39

relationships among contributors to the mixture and to other individuals whose genotype is available.40

We now brie�y summarise these methods and refer to [10] which presents a review on DNA mixtures41

where further background can be found.42

A natural basis for any model-based continuous DNA mixture analysis is a joint model for the43

peak heights z in the electropherogram (EPG) and genotypes n, p(n, z|ψ) = p(n)× p(z|n, ψ), with44

parameters ψ characterising the conditional distribution of peak heights [4]. We base our analysis45

of DNA mixtures on the model for p(z|n, ψ) described in [2]. This model takes fully into account46

the variation in peak heights and the possible artefacts, like stutter and dropout, that might occur47

in the DNA ampli�cation process. The model can coherently analyse a combination of replicates, a48

combinations of di�erent samples and a combinations of di�erent kits.49

In the standard case, unknown contributors to the mixture are assumed drawn at random50

from the gene pool. When the contributors are related, there is positive association between their51

contributor genotypes. A new model aimed at making inference about complex relationships from52

DNA mixtures is presented in [8]. This generalises the work in [7] which allowed inference about53

particular close relationships between contributors to a DNA mixture with unknown genotype and54

other individuals of known genotype. The new model extends the analysis to di�erent scenarios55

and allows to specify arbitrary relationships between a set of actors, each of which may be mixture56

contributors, or have measured genotypes, or both. We can evaluate the likelihood of any such57

model, and compare models accordingly. A brief description of the key ideas underlying, specifying,58

modelling and computing relationship inference is given in the Appendix.59

The case work examples in Section 2 illustrate some scenarios, where we make inference about60

two-way relationships between two mixture contributors with and without information about their61

or their relatives' genotypes.62

The software used to analyse the case work examples is the new KinMix R package [6] that extends63

the DNAmixtures R package [4] to allow for modelling DNA mixtures with related contributors.64

Among existing published work on relationships and mixtures, [11] presents an empirical study65

with data known to include known sibs among the reference samples, used to broaden the basis66

for evaluation of the information gain from using peak height data. Free software is also available67

to deal with DNA mixtures where contributors can be related [1], but this addresses a di�erent68

problem: a speci�c kinship relationship has to be de�ned and one of the contributors has to be69

known.70

2 Results of the analysis of complex DNA mixtures involving rela-71

tionship testing72

In this section we demonstrate the results and performance of our methods on the two case studies.73

For the �rst example we used the data gathered on 21 markers included in the GlobalFilerTM74

Ampli�cation kit (ThermoFisher) and in the second example we also used data on 16 markers in75

the PowerPlex R©16 kit. In all examples we assume known allele frequencies and adopt a threshold76

of 50 rfus.77
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2.1 Example 1: Identi�cation using personal belongings of a missing person78

Background on the case Personal belongings such as toothbrushes or razor blades can be used79

as a source of DNA in missing person cases. In these objects, DNA from the missing person may80

be found since they may have been frequently used before his/her disappearance. Nevertheless,81

there is uncertainty about the actual donor of the DNA isolated from these objects, and this is82

why it is recommended to �validate� the detected pro�le by using a reference (known) sample from83

a relative of the missing person. Usually, these pro�les (from objects and/or relatives) are then84

compared with DNA pro�les of unidenti�ed bodies that are stored in national databases (�massive85

comparison�). This is useful to know if the missing person has passed away but his body was not86

identi�ed. Unfortunately, in some cases, the genetic pro�le detected on an object is not a single87

source pro�le but a DNA mixture, revealing that the object was used by 2 (or more) people. In88

addition, very often, the contributors to these mixtures are related (mainly in cases where the89

missing person shared the dwelling with relatives).90

In this example, we present a real case related to a missing male. The full anonymised data91

together with the R scripts to compute the results are given in the Supplementary Material web-92

pages1. The data are anonymised to avoid serious privacy and con�dentiality concerns. In this case,93

only a daughter of the missing male was available to donate a DNA sample. This is not the ideal94

situation since false DNA matches can be found after a massive comparison of pro�les in a database95

when only one relative is available as a reference sample. In order to improve the reference genetic96

data, a toothbrush and a razor-blade, presumably used by the missing person, were also collected.97

DNA from both objects was recovered and analysed by using the GlobalFiler kit (Thermo Fisher).98

The reference sample from the daughter of the missing male was also genotyped with the same kit.99

Two di�erent DNA mixtures were detected in the two objects. An excerpt of the (anonymised)100

data is shown in Table 1, showing the alleles and peak heights in the two DNA mixtures found on101

the toothbrush T and the razor-blade RB. The DNA pro�le of the daughter, denoted by D, is also102

shown. The sex-related markers indicated that the mixture was most probably from one female and103

one male contributor.104

Results Here we analyse the two DNA mixtures found on the toothbrush T, and a razor-blade105

RB, presumably used by the missing person (ante-mortem data).106

Table 2 shows the estimated parameters ψ = (µ, σ, ξ, φ) for the analysis of the DNA mixtures107

found on T and RB. We assume there are 2 unknown contributors, denoted U1 and U2, to each of108

T and RB: not necessarily the same individuals in the two cases. We �x on two contributors since109

the analysis performed for 3 (not shown here) yielded an almost vanishing proportion for the third110

contributor, φ3 = 0. Note also that the stutter proportion ξ for sample T is zero indicating that111

stutter peaks were most probably removed from the data. The estimated proportion of DNA for the112

two contributors to sample T is large for the major contributor U1, φU1 = 0.93, whereas, for item RB113

the estimated proportions of DNA contributed by U1 and U2 are roughly equal, φU1 ' φU2 = 0.5,114

implying they contributed in almost equal proportions to the mixture. As we will see in the latter115

case the estimation of the LR and other inference is problematic. In these models, the likelihood116

can have a complicated shape and numerical maximisation can be unreliable. The values in Table117

2 are the maximum likelihood estimates as calculated by DNAmixtures.118

Table 3 shows the LR and log10 LR for testing Hp: D is the child of U1 (and similarly for U2)119

vs. H0: no unknown contributors are related to D. For item T , log10 LR = 10.97 is large pointing120

to U1 being a parent of D. It is also substantial for the hypothesis concerning U2 being a parent121

of D. Could this be due to the fact that the two contributors might be related? We will test this122

assumption later. For the RB the log10 LR in Table 3 for H1 vs. H0 is almost the same when123

1https://petergreenweb.wordpress.com/example-1-data-code-and-output/
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Table 1: Example 1: An excerpt of the anonymised data from the toothbrush T and the razorblade
RB, showing the markers, alleles and relative peak heights. The DNA pro�le of the daughter D of
the missing person is also shown.

alleles toothbrush razorblade
markers in mixture peak height peak height D

Marker 6 17 945
19 264 853 19
21 3664 612 21

Marker 7 13 1152 245
14 126 796
15 941 830 15

Marker 14 13 5158 2141 13
15 304 1512 15

Marker 20 13 3218 334
17 3550 1795 17
18 1274

Table 2: Example 1: Estimated parameters based on an analysis of the two mixture samples
assuming that the toothbrush T and RB contain DNA from two unknown contributors.

µ σ ξ φU1 φU2

toothbrush 2381 0.0614 0 0.9262 0.0736
razor-blade 1602 0.0504 0.0118 0.5001 0.4999

testing whether D is the child of U1 or of U2. This is probably due to the fact that the proportions124

are almost identical, φU1 ' φU2 = 0.5, which makes it extremely di�cult to distinguish between the125

contributors.126

We also tested whether the daughter D was a contributor to T or not, similarly for RB, and in127

both cases the logLR was zero, excluding D from being a contributor to either mixture.128

In Table 4 we present comparisons with the results of another freely-available package that anal-129

yses DNA mixtures involving relatives, relMix [9]; this uses allele-presence only, not peak heights.130

We compare, marker-by-marker, with KinMix both with and without peak height information. The131

results obtained with relMix and KinMix when not including the peak height information (columns132

2 and 3) are quite similar. Small di�erences between relMix and KinMix when not including peak133

heights are to be expected since they are based on di�erent statistical models for the mixture. For134

the majority of markers, when including peak height information KinMix gave a larger log10 LR135

(10.97 compared with 9.53, corresponding to a LR 27.5 times smaller). For two of the markers,136

Markers 8 and 10, relMix is unable to compute the likelihood, most likely because of excessive137

storage demands. We can compute �partial� log10 LRs by excluding these 2 markers, and these are138

Table 3: Example 1: log10 LR for testing whether in T and RB, Hp contributor (U1 or U2) is a
parent of D vs. H0 no contributor is related to D.

log10 LR
U1 U2

toothbrush 10.974 4.531
razor-blade 8.443 8.444
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Table 4: Example 1: Excerpt of marker-wise LR and overall log10 LR for item T , using relMix and
KinMix with and without peak height information, for testing whether in T , Hp: U1 is a parent of
D vs. H0: U1 and U2 are random members of the population.

marker relMix KinMix KinMix

w/o peak heights with peak heights

Marker 6 2.55 2.58 3.34
Marker 7 1.08 1.07 1.59
Marker 9 1.26 1.18 1.62
Marker 14 2.09 2.12 1.51

partial log10 LR 8.35 8.42 9.94
overall log10 LR 9.53 10.97

also shown in the Table.139

Table 5: Example 1: For items T and RB, log10 LR for Hp: the two contributors to the mixture
are related, i.e. U1 has relationship R to U2, vs. H0: the two contributors are unrelated. Several
di�erent relationships R are tested.

Relationship R between U1 to T RB
and U2 under Hp log10 LR

monozygotic twins −∞ −∞
parent-child −∞ −∞

sibs −2.14 −2.85
double �rst cousins −0.510 −0.657

quadruple-half-�rst-cousins −0.44 −0.630
half-sibs −0.37 −0.625

�rst cousins −0.10 −0.148
half-cousins −0.034 −0.037

Table 5 shows the results for testing whether the contributors U1 or U2 to item T and RB are140

related, i.e. Hp: U2 has relationship R to U1 versus H0: U1 and U2 are unrelated. The log10 LRs141

are all negative, implying that the LRs are smaller than 1. Although only a �nite set of possible142

relationships has been considered, these vary widely, and it is overwhelmingly clear there is there is143

no support for any relationship between the two contributors.144

We now consider the toothbrush EPG in more detail, examining the joint relationships between145

the mixture contributors and the typed daughter D, which clari�es the role of D in validating the146

mixture pro�le. Table 6 shows the log10 LR for item T for several hypothesesHp concerning di�erent147

relationships R among U1, U2 and D, vs. the null hypothesis that these individuals are all unrelated.148

The values of the log10 LR show that there is strong evidence that the two contributors to item T149

are the missing father of D and D's mother, or at least very close relatives of them. Comparing the150

�rst 4 rows of Table 6 con�rms that the most likely single possibility is that they are indeed the151

mother and father. All values in the Table remain unchanged if the sexes of all contributors are152

reversed; we choose to identify them in the way shown because inference (not shown) also including153

the Amelogenin locus indicates that is is most likely that the major contributor U1 is female.154

If there is interest in comparing two of the models displayed in Table 6, the appropriate log10 LR155

is simply obtained by calculating the di�erence beteen the values shown. For example, comparing156

the �rst row and the �fth, 17.935−10.974 = 6.961 gives the weight of evidence that U2 is the father157

of D, given that it is already assumed that U1 is the mother of D. There are too many di�erent such158
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comparisons that can be made to list them all here.159

Some of the speci�c relationships examined in Table 6 are speculative, but might be of interest160

in cases where a home is shared by an extended family.161

Table 6: Example 1: For item T , log10 LR for several hypotheses Hp concerning di�erent relation-
ships R among U1, U2 and D, vs. H0: U1 and U2 and D are unrelated. The results in the lower
half of the table can be used as baselines for comparison for those in the upper half. All log10 LR
remain unchanged if the sexes of U1 and U2 are switched.

Hp log10 LR

U1 mother of D and U2 father of D 17.935
U1 maternal aunt of D and U2 father of D 14.028
U1 mother of D and U2 paternal uncle of D 15.579
U1 maternal aunt of D and U2 paternal uncle of D 11.763

U1 mother of D and U2 unrelated 10.974
U1 maternal aunt of D and U2 unrelated 7.452
U1 unrelated and U2 father of D 4.530
U1 unrelated and U2 paternal uncle of D 2.796

Finally for this example, we consider the two mixture pro�les T and RB jointly. What is the162

strength of evidence that the same individuals have contributed to both mixtures, and if so, are163

they related to D? To answer such questions, we use KinMix to model various scenarios which deal164

with the two DNA mixture traces simultaneously, with various patterns among the contributors.165

There are too many permutations to show them all, so in Table 7 we just present some interesting166

examples. As parameters for these joint peak height model, we copy over the relevant values from167

Table 2. For full details of these calculations, please consult the codes in the online Supplementary168

material.169

Table 7 shows strong support for the hypothesis that the contributors to T and RB overlap and170

are mostly likely identical, strengthened further when a common contributor is a parent to D. As in171

previous analyses, the results are unchanged when sexes are interchanged, and in each hypothesis172

concerning a parent, the possibility that it is a close relative instead could also be examined.173

Table 7: Example 1: log10 LR for the joint analysis of several hypotheses concerning the identity
between contributors to T and RB and whether a common contributor is a parent of D. In all cases,
the baseline H0 states that both contributors and D are unrelated. All log10 LR remain unchanged
if the sexes of the contributors are switched. In the last two rows, the contributors are mentioned
in order, major then minor, omitted for brevity.

Hp log10 LR

T and RB have same 2 contributors 23.56
T and RB have same 2 contributors, �rst being parent of D 34.54
T and RB have same major contributor 16.53
T and RB have same major contributor, being parent of D 27.50
T has father and mother of D, RB has father and unknown 34.46
T has mother and father of D, RB has father and unknown 25.54
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2.2 Example 2: Analyses of a Spanish murder case174

Description of the case This concerns a murder case where a man was stabbed in his home.175

There was a knife with blood at the crime scene. The blood was mainly on the blade, but there176

was also some blood on the handle. The sample from the handle turned out to be a DNA mixture,177

with a major pro�le matching the victim. We also wish to test whether the minor pro�le in the178

mixture could be a close relative of the victim (possibly a son). The DNA pro�le of the son was not179

available. Two EPGs from the mixture were obtained by using two di�erent kits, we denote these180

by EPG1 and EPG2. The kits have partially overlapping sets of markers, EPG1 was analysed on its181

16 markers and EPG2 on its set of 22 markers, both include Amelogenin. Here we assume known182

allele frequencies taken from the Spanish allele frequency database collected on n = 284 individuals183

[3].184

Months after the murder, a man was arrested for a di�erent crime, drug tra�cking, and a185

reference DNA sample was collected. When his pro�le was entered in the DNA database several186

matches were found, among which with the DNA mixture on the handle of the knife. The matches187

were investigated and the identity of the person (name, date of birth, place of birth, name of the188

father, name of the mother) was that of the son of the victim. Table 8 gives an excerpt of the189

data showing the markers, alleles and relative peak heights for EPG1 and EPG2, together with the190

genotypes of the father (the victim) and the son (the suspect).191

Table 8: Example 2: An excerpt of the data showing the markers, alleles and relative peak heights
for EPG1 and EPG2, together with the father's and son's genotypes

EPG1 EPG2 father son
marker allele height height

CSF1PO 10 305 625 10 10
11 240 504 11 11

D10S1248 13 6990 13
14 2309 14
16 7144 16 16

D7S820 9 606 1136 9 9
10 686 10

TH01 9.3 863 2654 9.3 9.3
10 570 10

Results We analysed the data from this case to illustrate the di�erent scenarios that can be192

analysed using the recently developed Kinmix code.193

In particular we analyse the following di�erent possible scenarios:194

Scenario 1 Here none of the contributors are typed. The analysis is of a 2-person mixture model195

for a prosecution hypothesis Hp : being the two unknowns being father and son versus H0 the196

two unknown contributors are unrelated.197

Scenario 2 Here only the father (the victim) is typed. The analysis is of a 2-person mixture198

model, where father has been typed and the prosecution hypothesis is Hp : son of father and199

1 unknown are contributors versus H0 : no contributor is related to the typed individual (the200

victim).201

Scenario 3 Both father and son are typed. Here we analyse a 2-person mixture model where Hp:202

the contributors are victim (father) and son versus H0 : contributors to the mixture(s) are 2203
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unknown individuals.204

Scenario 4 Both father and son are typed. Here we analyse a 2-person mixture model where Hp:205

the contributors are victim (father) and son versus H0 : contributors to the mixture(s) are the206

victim and an unknown.207

In all scenarios, unless otherwise stated, when considering an unknown contributor to a mixture,208

he or she is taken to be a random member of the reference population, so unrelated to typed209

individuals.210

For EPG1 the MLEs of the parameters under both Hp and H0 are similar and are roughly equal211

to ψ = (µ = 576, σ = 0.32, ξ = 0, φU1 = 0.88, φU2 = 0.12). When the victim's genotype is known212

the estimated proportion contributed to EPG1 is φv = 0.18, φU1 = 0.82. For EPG2 the MLEs of the213

parameters are roughly equal to ψ = (µ = 2542, σ = 0.97, ξ = 0, φU1 = 0.75, φU2 = 0.25). When the214

victim's genotype is known the estimated proportion contributed to EPG1 is φv = 0.14, φU1 = 0.86.215

In both EPG1 and EPG2 the victim is estimated to be the minor contributor. Note that EPG2216

has a higher µ than EPG1 but this is also accompanied by a larger σ, so the coe�cient of variation217

is similar in both EPGs. The MLEs of the mean stutter proportion ξ are zero, probably because218

preprocessing of the data has removed peaks that were classi�ed in the laboratory as stutter. Our219

models, however, allow for stutter and do not require that the data be preprocessed before analysis.220

Table 9 gives the log10 LR for the 4 scenarios when analysing EPG1 and EPG2 separately and221

jointly. When combining EPGs made from the same DNA extract, as in this case, it is natural222

to make an assumption that contributors are the same. In [5] we show how results based on a223

combination of replicates, a combinations of di�erent samples and a combinations of di�erent kits224

improve the robustness of the analysis and help in �xing any complications relating to degradation.225

However, when combining pro�les from di�erent samples one needs to carefully consider whether226

there is perhaps only a partial overlap.227

Table 9: Example 2: log10 LR for Scenarios 1�4 using EPG1 and EPG2 separately and in combina-
tion.

Scenario 1 2 3 4
Typed actors none father father & son

EPG1 −0.806 5.60 22.16 22.78
EPG2 −0.175 10.66 29.16 11.68

EPG1 & EPG2 2.49 8.26 40.17 26.20

Table 10: Example 2: For item EPG1 and EPG2, log10 LR for Hp: the two contributors to the
mixture are related, i.e. U1 has relationship R to U2, vs. H0: the two contributors U1 and U2 are
unrelated and are independent of the typed individuals. Several di�erent relationships R are tested.

log10 LR
Relationship EPG1 EPG2

parent-child −0.806 −0.175
sibs −1.270 −0.940

quadruple-half-�rst-cousins −0.316 −0.022
half-sibs −0.275 0.045

�rst cousins −0.108 0.059
half-cousins −0.046 0.040
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Table 10 shows log10 LR for testing whether the two unknown contributors to the DNA mixture228

are related versus that they are unrelated. For EPG1 the LRs for testing Hp that the U1 has a229

relationship R to U2, vs. H0: the two contributors U1 and U2 are unrelated and are independent of230

the typed individuals, vary between 0.16 and 0.9 giving roughly equal weight to H1 versus H0. For231

EPG2 these vary between 0.11 and 0.86.232

Table 11 shows the deconvolution for the major contributor to the mixture for the two EPGs.233

The table only indicates genotype probabilities of at least 0.001, meaning that cells with a probability234

of less than 0.001 have been suppressed. We have denote by other the collection of alleles for which235

no peak has been observed in the EPG. For EPG1 the highest ranking genotype for the major236

contributor U1 on all markers has posterior probability greater than 0.99 and coincides with the237

genotype of the suspect (who is the son of the victim) on all markers. The deconvolution for EPG2238

gives a much poorer performance. For example, on marker D7S850 the top ranking genotype for239

EPG2 is incorrect, the correct genotype (9,9) is ranked 3rd having a small probability of 0.077.240

Table 11: Example 2: Predicted genotypes of U1 with corresponding probabilities for EPG1 and
EPG2 for an excerpt of the markers. An allele not observed in the EPG is denoted by other.

EPG1 EPG2
genotype prob. genotype prob.

CSF1PO 10 11 1 10 11 0.751
10 10 0.097
11 11 0.083
10 other 0.036
11 other 0.033

D13S317 12 13 0.997 12 13 0.576
12 12 0.003 12 12 0.363

12 other 0.043
13 other 0.011
13 13 0.006

D7S820 9 9 1 9 10 0.768
10 10 0.077
9 9 0.077
9 other 0.043

5 10 other 0.034

TH01 9.3 10 1 9.3 9.3 0.812
9.3 other 0.185
other other 0.003
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3 Conclusions241

We have shown that a wide range of relationship inference problems where one or more actors appear242

only as contributors to a DNA mixture, can be handled coherently. We can make inference about243

relationships among contributors, and between contributors and typed individuals. We carried out244

diagnostic plotting (not shown here) as recommended by [5] and found nothing to suggest the model245

was failing to �t the data.246

The new KinMix package [6] used in the casework examples illustrated here is a highly �exible247

modular software package capable of solving much more complex relationships among two or more248

mixture contributors than those presented here. It is not limited to pairwise relationships. In [8]249

we show its capabilities of dealing with multi-way relationships in DNA mixtures including cases250

where the contributors might be inbred.251
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Appendix252

The key idea that enables the speci�cation, modelling and computation of DNA mixtures with famil-253

ial relationships among the contributors, and/or between contributors and other typed individuals254

is the IBD pattern distribution. IBD stands for identity by descent, the phenomenon where two or255

more related individuals have a common allelic value at a marker, not by the coincidence of several256

draws from the gene pool giving the same value, but because the allele was passed from parent to257

child in the process of meiosis. For a given set of related individuals, or 'family', an IBD pattern is258

a partition of the alleles of the individuals in the family according to their identity by descent. The259

IBD pattern distribution is simply the probability distribution of this partition induced by repeated260

application of Mendel's �rst law.261

For just two related contributors, the idea has been in use to quantify relatedness for 80 years, in262

the form of Cotterham's kappas; for example, the relationship between two full brothers is captured263

by the probabilities that 0, 1 or 2 alleles are identical by descent: κ0 = 0.25, κ1 = 0.5, κ2 = 0.25.264

The IBD pattern distribution extends this notion to any number of related individuals, and also265

deals correctly with inbreeding.266

In KinMix, the IBD pattern distribution is used not only to specify the relationships in question,267

but also to model the distribution of the genotype pro�les, and as a data structure to drive the268

computation. With unlinked autosomal STR markers in Hardy-Weinberg equilibrium, the joint269

distribution of the genotype pro�les of the family members is completely determined by the IBD270

pattern distribution and the allele frequencies for each marker. As in much other recent work on271

computation for STR probabilistic genotyping methods for mixtures, joint distributions of genotype272

pro�les are implemented using Bayesian networks (BNs), which allow e�cient exact computation.273

The IBD pattern distribution is used directly in building the BN for the related genotypes. Full274

details are given in [8], and the methodology is implemented in the R package KinMix [6].275
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