
BCCS 2008/09: Graphical models and complex stochastic systems:
Lecture 10: Bayesian model choice

As we said early on, ‘all models are wrong, some models are useful’. Very rarely is the choice
of a model absolutely fixed, much more commonly we will want to use data to help formulate
or choose a model, or to criticise a model currently under consideration. There are many
different tasks of this kind, and various approaches, Bayesian or non-Bayesian. It is an area
of particularly active current research, so it is impossible to give a brief overview. Here
we will just discuss one problem – choosing between several specified models, and fitting
the unknown parameters in each – that is, simultaneous inference about the model and its
parameters.

10.1 Extending the hierarchical set-up

Let us label the models in question by k (perhaps k = 1, 2, . . ., but we can label the models to
suit the application). The prior probability that model k generated the data is p(k). Model
k has a parameter vector θk (NB, this does not mean the kth component of a vector θ). Note
that there is no reason why the dimension of θk should be the same for all k. For each k we
will have a prior distribution for the parameter θk, denoted p(θk|k), and a likelihood for the
data Y , denoted p(Y |k, θk).

By the ordinary rules for probability, the joint distribution of everything is

p(k, θk, Y ) = p(k)p(θk|k)p(Y |k, θk)

This really just corresponds to adding one more ‘top’ level to bring together a collection of
hierarchical models for the same data Y . Our task is to make inference about both k and
θk; but as usual by Bayes’ theorem,

p(k, θk, Y ) =
p(k, θk, Y )

p(Y )
∝ p(k, θk|Y )

In other words, the model indicator k becomes just like one more unknown parameter.
We can compute this posterior distribution by any MCMC method that can cope with the
possibility that the unknowns, the state variable of the Markov chain, (k, θk) is not of fixed
dimension, e.g. reversible jump. (This kind of application was the original motivation for
creating these methods).

Once we have a (simulation-based) approximation to p(k, θk|Y ), we can derive the pos-
terior model probabilities p(k|Y ) by simply ignoring the simulated values of the θk, so that
p(k|Y ) is estimated by the sample relative frequency of ‘visiting’ model k. Similarly, we
can approximate the within-model parameter posterior p(θk|k, Y ) by considering only the θ
values in the sample obtained when the MCMC was visiting the correct model.

Note that in this basic form, the Bayesian approach does not choose a specific model, it
finds the probability for each of a range of models; if we need to choose just one, we might
choose the model with the highest posterior probability.

10.2 Bayesian model averaging

It is often a good idea not to choose just one model and then behave as if it is known to be
true. In reality there is some doubt, so it is better to recognise that doubt by averaging over
models, weighted by their posterior probabilities.
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Figure 1: A small MCMC sample of x(t) for the 3–changepoint model
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Figure 2: A small MCMC sample of x(t) for the variable number of changepoints model
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For example, suppose we want to do prediction – that is state the distribution of the next
observation Y +. Then

p(Y +|Y ) =
p(Y, Y +)

p(Y )
=

∑
k p(k)

∫
p(θk|k)p(Y |k, θk)p(Y +|k, θk)dθk∑

k p(k)
∫

p(θk|k)p(Y |k, θk)dθk

which can be re-written as

∑
k

∫
p(k, θk|Y )p(Y +|k, θk)dθk,

that is, as posterior model averaging.
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Figure 3: Posterior average of x(t) for the variable number of changepoints model

10.3 Bayes factors

Some people find the idea of specifying prior model probabilities p(k) logically difficult. We
can get round that by only using the data to compare models. Note that comparing models
k1 and k0,

p(k1|Y )

p(k0|Y )
=

p(k1, Y )

p(k0, Y )
=

p(k1)

p(k0)
× p(Y |k1)

p(Y |k0)
.

We call the last term the Bayes factor for model k1 vs. model k0. So in words, posterior odds
equal prior odds times Bayes factor. The probability p(Y |k) is called the marginal likelihood
for model k – marginal since the parameters θk have been ‘integrated out’.

As a rough rule of thumb, the pioneering statistician Jeffreys proposed that Bayes factors
greater that 3, 10 or 100 should be interpreted as saying that the data provided ‘substantial’,
‘strong’ or ‘decisive’ preference for model k1 rather than k0, respectively.
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10.4 Variable selection

A very important special case of model choice is when you have a multiple linear regression
model:

Yi = α + β1x1i + β2x2i + · · ·βdxdi + error

and you don’t believe that all of the terms on the right are actually needed – we want to
select the variables {xj} that have a significant effect on Y .

This is a model selection problem with 2d models, corresponding to all the possible choices
of covariates, and has been a particular focus of research interest.

10.5 Reading

Some articles in the book of Gilks, Richardson and Spiegelhalter (1996) are relevant, but
most of the literature is still found only in journals.
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