Spatial processes and statistical modelling

Peter Green
University of Bristol, UK
BCCS GM&CSS 2008/09 Lecture 8

Spatial indexing

- Continuous space
- Discrete space
 - lattice
 - irregular - general graphs
 - areally aggregated
- Point processes
 - other object processes

Space vs. time

- apparently slight difference
- profound implications for mathematical formulation and computational tractability

Requirements of particular application domains

- agriculture (design)
- ecology (sparse point pattern, poor data?)
- environmetrics (space/time)
- climatology (huge physical models)
- epidemiology (multiple indexing)
- image analysis (huge size)

Key themes

- conditional independence
 - graphical/hierarchical modelling
- aggregation
 - analysing dependence between differently indexed data
 - opportunities and obstacles
- literal credibility of models
- Bayes/non-Bayes distinction blurred

Why build spatial dependence into a model?

- No more reason to suppose independence in spatially-indexed data than in a time-series
- However, substantive basis for form of spatial dependent sometimes slight - very often space is a surrogate for missing covariates that are correlated with location
Discretely indexed data

Modelling spatial dependence in discretely-indexed fields
- Direct
- Indirect
 - Hidden Markov models
 - Hierarchical models

Hierarchical models, using DAGs
Variables at several levels - allows modelling of complex systems, borrowing strength, etc.

Modelling with undirected graphs
Directed acyclic graphs are a natural representation of the way we usually specify a statistical model - directionally:
- disease → symptom
- past → future
- parameters → data …
whether or not causality is understood.
But sometimes (e.g. spatial models) there is no natural direction

Conditional independence
In model specification, spatial context often rules out directional dependence (that would have been acceptable in time series context)

Conditional independence
In model specification, spatial context often rules out directional dependence
Conditional independence

In model specification, spatial context often rules out directional dependence.

Directed acyclic graph

In general:

\[p(x) = \prod_{v \in V} p(x_v | x_{pa(v)}) \]

for example:

\[p(a, b, c, d) = p(a)p(b)p(c|a, b)p(d|c) \]

In the RHS, any distributions are legal, and uniquely define joint distribution.

Undirected (CI) graph

Regular lattice, irregular graph, areal data...

Absence of edge denotes conditional independence given all other variables.

But now there are non-trivial constraints on conditional distributions.

Undirected (CI) graph

Suppose we assume

\[p(x) \propto \exp \left(\sum_C V_C(x_C) \right) \]

then

\[p(x_v | x_{\bar{v}}) \propto \exp \left(\sum_{C \ni v} V_C(x_C) \right) \]

and so

\[p(x_v | x_{\bar{v}}) = p(x_v | x_a) \]

The Hammersley-Clifford theorem says essentially that the converse is also true - the only sure way to get a valid joint distribution is to use (a).

Hammersley-Clifford

A positive distribution \(p(X) \) is a Markov random field

\[p(X_v | X_{\bar{v}}) = p(X_v | X_{\bar{a}}) \]

if and only if it is a Gibbs distribution

\[p(X) \propto \exp \left(\sum_C V_C(X_C) \right) \]

- Sum over cliques \(C \) (complete subgraphs)

Partition function

Almost always, the constant of proportionality in

\[p(X) \propto \exp \left(\sum_C V_C(X_C) \right) \]

is not available in tractable form: an obstacle to likelihood or Bayesian inference about parameters in the potential functions \(V_C(X_C) \).

Physicists call \(Z = \int \exp \left(\sum_C V_C(X_C) \right) \) the partition function.
Markov properties for undirected graphs

- The situation is a bit more complicated than it is for DAGs. There are 4 kinds of Markovness:
 - P – pairwise
 - Non-adjacent pairs of variables are conditionally independent given the rest
 - L – local
 - Conditional only on adjacent variables (neighbours), each variable is independent of all others
 - G – global
 - Any two subsets of variables separated by a third are conditionally independent given the values of the third subset.
 - F – factorisation
 - the joint distribution factorises as a product of functions of cliques
 - In general these are different, but F → G → L → P always. For a positive distribution, they are all the same.

Gaussian Markov random fields: spatial autoregression

If $V_C(X_C) = -\beta_{ij}(x_i-x_j)^2/2$ for $C \in \{i,j\}$ and 0 otherwise, then
$$p(X) \propto \exp \left\{ \sum_C V_C(X_C) \right\}$$
is a multivariate Gaussian distribution, and
$$p(X_i | X_{\neq i}) = p(X_i | X_{\neq i})$$
is the univariate Gaussian distribution
$$X_i | X_{\neq i} \sim N(\sigma_i^2 \sum \beta_{ij} X_j, \sigma_i^2) \quad \text{where} \quad \sigma_i^2 = \sum_{j \neq i} \beta_{ij}$$

Non-Gaussian Markov random fields

Pairwise interaction random fields with less smooth realisations obtained by replacing squared differences by a term with smaller tails, e.g.
$$p(X) \propto \exp \left\{ \sum_C V_C(X_C) \right\}$$
$$= \exp \left\{-\beta(1+\delta) \sum_{i,j} \log \cosh \left(\frac{x_i-x_j}{\delta} \right) \right\}$$

Discrete-valued Markov random fields

Besag (1974) introduced various cases of
$$p(X) \propto \exp \left\{ \sum_C V_C(X_C) \right\}$$
for discrete variables, e.g. auto-logistic (binary variables), auto-Poisson (local conditionals are Poisson), auto-binomial, etc.
Auto-logistic model \((X = 0 \text{ or } 1)\)
\[
p(X) \propto \exp \left[\sum_c V_c(X_c) \right]
\]
\[
\propto \exp \left[\sum_i \alpha_i X_i + \sum_{i \neq j} \theta_{ij} X_i X_j \right]
\]
\[
p(X_i | X_{-i}) = p(X_i | X_n) \text{ is Bernoulli}(p) \text{ with}
\]
\[
\log(p_i/(1-p_i)) = (\alpha_i + \sum_{j \neq i} \theta_{ij} x_j)
\]
- a very useful model for dependent binary variables \((NB \text{ various parameterisations})\)

Statistical mechanics models
\[
p(X) \propto \exp \left[\sum_c V_c(X_c) \right]
\]
The classic Ising model (for ferromagnetism) is the symmetric autologistic model on a square lattice in 2-D or 3-D. The Potts model is the generalisation to more than 2 ‘colours’
\[
p(X) \propto \exp \left[\sum_i \alpha_i + \beta \sum_{i \neq j} I(X_i = X_j) \right]
\]
and of course you can usefully un-symmetrise this.

Auto-Poisson model
\[
p(X) \propto \exp \left[\sum_c V_c(X_c) \right]
\]
\[
\propto \exp \left[\sum_i (\alpha_i x_i - \log x_i!) + \sum_{i \neq j} \theta_{ij} x_i x_j \right]
\]
\[
p(X_i | X_{-i}) = p(X_i | X_n)
\]
is Poisson \(\exp(\alpha_i + \sum_{j \neq i} \theta_{ij} x_j))\)
For integrability, \(\theta_{ij}\) must be \(\leq 0\), so this only models negative dependence: very limited use.

Hierarchical models and hidden Markov processes

Chain graphs
- If both directed and undirected edges, but no directed loops:
- can rearrange to form global DAG with undirected edges within blocks

Chain graphs
- If both directed and undirected edges, but no directed loops:
- can rearrange to form global DAG with undirected edges within blocks
- Hammersley-Clifford within blocks
Hidden Markov random fields

- We have a lot of freedom modelling spatially-dependent continuously-distributed random fields on regular or irregular graphs
- But very little freedom with discretely distributed variables
- ⇒ use hidden random fields, continuous or discrete
- compatible with introducing covariates, etc.

Hidden Markov models
e.g. Hidden Markov chain

\[z_0 \rightarrow z_1 \rightarrow z_2 \rightarrow z_3 \rightarrow z_4 \]

observed

\[y_1 \rightarrow y_2 \rightarrow y_3 \rightarrow y_4 \]

hidden

Spatial epidemiology applications

Independently, for each region \(i \). Options:
- \(\log(\hat{\lambda}_i) \) CAR, CAR+white noise (BMY, 1989)
- Direct modelling of \(\text{cov}(\log(\hat{\lambda}_i)) \), e.g. SAR
- Mixture/allocation/partition models:
 \[E(Y_i) = \lambda_i e_i \]
- Covariates, e.g.:
 \[E(Y_i) = \lambda_i e_i \exp(x_i^T \beta) \]

Spatial epidemiology applications

Richardson & Green (JASA, 2002) used a hidden Markov random field model for disease mapping

\[y_i \sim \text{Poisson}(\hat{\lambda}_i e_i) \]
Chain graph for disease mapping based on Potts model

\[Y_i \sim \text{Poisson}(\lambda, \epsilon_i) \]

Larynx cancer in females in France

SMRs

\[y_i / E_i \]

\[p(\lambda > 1 | y) \]