Link lecture - Lagrange Multipliers

Lagrange multipliers

e provide a method for finding a stationary point of a function, say f(x,y)

e when the variables are subject to constraints, say of the form g(z,y) = 0

e can need extra arguments to check if maximum or minimum or neither
Links to:

e Calculus unit— the method uses simple properties of partial derivatives

e Statistics unit — can be used to calculate or derive properties of estimators
Lecture will introduce the idea and cover two substantial examples:

e Gauss-Markov Theorem — links to to Statistics 1, §4. Linear regression

e Constrained mles — links to Statistics 1, §3. Maximum likelihood estimation



1. Lagrange multipliers — simplest case

Consider a function f of just two variables x and y. Say we want to find a
stationary point of f(z,y) subject to a single constraint of the form g(z,y) = 0

e Introduce a single new variable A — we call A\ a Lagrange multiplier

e Find all sets of values of (z,y, \) such that

Vf=AVg and g(z,y) =0 where Vf = ( %’ g—]yt )
1.€. o 9 Of O
_ 9 T\ =
o= and 5y 9y and g(x,y) =0

(number of equations = original number of variables + number of constraints)

e Evaluate f(x,y) at each of these points. We can often identify the
largest/smallest value as the maximum/minimum of f(x,y) subject to the
constraint, taking account of whether f is unbounded or bounded
above/below.



2. Geometric motivation

e Consider finding a local maximum (or local minimum) of f(x,y) subject to a
single constraint of the form ¢g(z,y) = 0. Recall that a contour of f is a set of
points (z,y) for which f takes some given fixed value. Consider how the
curve g(z,y) = 0 (a contour of g) intersects the contours of f.

e In the following diagram, as we move from A to C' along the contour
g(x,y) = 0, the function f(x,y) first increases then decreases, with a
stationary point (here a maximum) at 5.

e At the stationary point f and g have a common tangent, so the normal vectors
to f and g at that point are parallel, so the gradient vectors are parallel, so

Vf=AVg forsome scalar \
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tangent *.

at B SN

t. f(x,y) =2

a(x,y) =0 fix,y) =1



3. General number of variables and constraints

The method easily generalises to finding the stationary points of a function f with
n variables subject to k£ independent constraints.

E.g. consider a function f(z,y, z) of three variables x, y, z subject to two
constraints g(x,y, z) = 0 and h(x,y, z) = 0, then:

e at a stationary point V f is in the plane determined by Vg and VA
e introduce two Lagrange multipliers, say A and 1 (one per constraint)

e find all sets of values x, y, z, A, i satisfying the five (i.e. 3 4+ 2) equations
Vf=ANVg+uVh and g(x,y)=0 and h(x,y,z) =0

1.e.

of dg oh  Of dg oh  Of dg Oh

or 8:1:+M%’ oy 8y+'u8y’ 0z 0z

g(z,y,z) =0 and h(z,y,z)=0
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4. Interpretation in terms of the Lagrangian

Again consider the general case of finding a stationary point of a function

f(x1,...,x,), subject to k constraints gy (z1,...,x,) =0,...,gx(x1,...,2,) =0
e Introduce £ Lagrange multipliers Ay, ..., \g

e Define the Lagrangian A by

k
A, ) = flan, ) = Y Nge(zr, ..o @)

= f(z1, ..., xn) — Mg1(x1, ... xn) — - — MeGr(X1, ..., Tp)
e The stationary points of f subject to the constraints g; = 0,..., g, = 0 are
precisely the sets of values of (x1,...,x,, A,..., Ax) at which
O\ O\
Az, =0, 2=1,...,n and I =0, r=1,...,k

i.e. they are stationary points of the unconstrained function A.
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5. Example

e maximise flx,y) = xy subjecttox +y =1
i.e. subjectto  g(x,y) =0 where g(z,y) = +y — 1

one constraint so introduce one LLagrange multiplier A

compute ﬁ_ %—x @—1 @—1
P ar oy 7 ox O Oy

and solve the (two + one) equations
df | 0g : B
of dg .
— = )\== .. = A 2
9y 9y 1.e. T (2)
g(z,y) = le. rv+y=1 3)

substituting (1) and (2) in (3) gives 2A = 1, i.e. A = 1/2, so from (1) and (2)
the function has a stationary point subject to the constraint (here a maximum),
atr =1/2,y=1/2



6. Example

e maximise flz,y) = 2% + 2* subject to 22 + y* = 1
i.e. subjectto g(z,y) =0 where g(z,y) = 2° +y? — 1
e one constraint so introduce one Lagrange multiplier A
of of dg dg

e compute o x, 9y Y, 5 x, 9y Y

e and solve the (two + one) equations
0 0
a—i _ a_f; ie. 20 = A2z (1)
of dg .
—— = \= e. 4y = A2 2
oy oy Le. 4y Y (2)
g(z,y) =0 ie. 22+y?=1 3)

e (1)=cither A\=1orx=0;(2) = either A\ =2o0ry =0
so possible solutionsare x = 0, A =2,y =d+landy =0, A =1, = £1
where f(0,£1) = 2 [max], while f(£1,0) = 1 [min].
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7. Gauss-Markov Theorem
A minimum variance property of least squares estimators

e In linear regression the values v, .. ., y, are assumed to be observed values of
random variables Y7, ..., Y, satisfying the model

E(Y;) =a+ Bz;, Var(V;)=0* i=1,...,n

e A linear estimator of (3 is an estimator of the form ¢1Y; + Y5 + - - - + ¢, Y,

for some choice of constants cq, ..., c,.

e The variance of a linear estimator 1s Var(clYl + -+ ,Y,) =
ciVar(Yy) + -+ c2Var(V,) =cGo* + -+ 2o =0 ¢

e A linear estimator is unbiased if E(() = 3, i.e.
B=EaYi+eYo+ -+, V)= EM) 4+ -+, EY,) =
crla+pry)+ - +epla+ Pr,) =alcy + -+ c¢,) + Blerxy + - + cpxp)
which requires

n

ZCZ':O and zn:Cszzl
1

1



Thus, for fixed o2, a linear estimator that has minimum variance in the class of

linear unbiased estimators is obtained by choosing the variables cq, ..., ¢, to

— minimise the objective function f(cy, .. .

— subject to the two constraints

alcr, ..

, Cn)

:ZCZ:O and h(Cl,...,Cn)

n

1

We introduce two Lagrange multipliers A and p

and compute the 3 X n partial derivatives

(907;

— 26737

dg

1
8CZ'

and solve the (n + 2) equations

of _ 9y
(%i - (%i

+

oh
(901' 7

i=1,...

)
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The first n equations give
2c, =N+ pux;, 1=1,...,n
Summing these n equations over i = 1,...,n and using » .\ ¢; = 0 gives
22@ = n)\—F,LLZIEi — \ = —M(sz)/n = —ux

On the other hand, multiplying each equation by z; and then summing over

1 =1,...,n gives

2207;37@' :)\in—k,ufo

Now using » | ¢;z; — 1 = 0 and using A = —uz from above gives

2=—pz )y witpy @i = p=2/() i ni’)
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Thus the values of the variables ¢y, . . ., ¢, that minimise the variance of the
constrained linear estimator ¢1 Y7 + coYs + - - - 4 ¢, Y, are the values satisfying the

equations
= AN+ pz)/2 i=1,...,n
where
A=—ux and p=2/( ZCE — nz?)
SO

C;, — (xl_x) izl,...,n

> x? — nz?

and the resulting estimate 1is

A:Zy-c Zyzxz z) _Zyﬂi—n@f
o dYat—nz2 > x?—nx?

which is just the least squares estimate.

This gives a simple proof in linear regression case of the Gauss-Markov theorem:

The least squares estimator 4 has minimum variance in the class of all linear unbiased

estimators of (3.
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8. Maximum likelihood estimates — multinomial distributions

e Consider a statistical experiment in which a sample of size m 1s drawn from a

large population
e assume each observation can take one of four values —say A;, Ay, A3 or Ay

e The respective proportions of these values in the population are 61, 6, 63 and
(94SOO<9@‘ < 1, ]: 1,...,4and91—|—92—|—¢93—|—94=1

e Assume there are m; observations with value A, m, with value As, m3 with

value As and my with value A, so mq + mo + ms + my = m.

e What are the maximum likelihood estimates of 64, 65, 65 and 6,7

[Note that in this example we use m rather than n to denote the sample size,
so as not to clash with the notation 1n earlier sections where n denoted the
number of variables we were optimising over. ]
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e Here the m,; are observed values of random variables M;, 1 = 1,...,4 where
the joint distribution of My, My, M3 and M, is called a multinomial
distribution

e The joint distribution has probability mass function

m!

p(mlam27m37m4;91792793794) — (971711 972712 (973”3 HZM

mllmg!m3!m4!

and so has log likelihood function
6(01, (92, (93, (94) — const + my lOg (91 + Mo 10g (92 -+ M3 lOg (93 + My 10g (94

where the constant ¢ = logm! — (log my! + log msy! + log ms! + log my!)

e Since the 6, are probabilities and must therefore sum to 1, the maximum
likelihood estimates él, ég, ég, §4 are the values that maximise the log
likelihood ¢(61, 05, 03, 64), subject to the condition

0 +0+0s+0,=1
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Thus we want to maximise the objective function
8(91, (92, 93, (94) = Cc+ my lOg 91 + Mo lOg 92 + ms3 lOg 93 + Ty lOg 94
subject to the constraint

9(81,62,93,94) :(91+(92—|—(93—|—(94—1:O

We introduce a single Lagrange multiplier A

and compute the partial derivatives

ol m; dg ,
00, 6; oo, T
and solve the (four plus one) equations
ol 0
A Oy 40y +0s+0,—1=0

00; 00;

15



e The first four equations give

%:A, i=1,... .4
1.€.
A NP R
91_)\7 92 )\7 (93 )\7 (94 >\7

e Substituting these values into the last equation gives

my My M3 My (my+mo+mg+my) m
1 +U0a+03+0y )\+)\-|—)\-|—)\ \ 3

e Putting A = m back into the equations for each 6; we see that the maximising

values (the maximum likelihood estimates) are
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