Link lecture - Lagrange Multipliers

Lagrange multipliers

- provide a method for finding a stationary point of a function, say $f(x, y)$
- when the variables are subject to constraints, say of the form $g(x, y)=0$
- can need extra arguments to check if maximum or minimum or neither

Links to:

- Calculus unit- the method uses simple properties of partial derivatives
- Statistics unit - can be used to calculate or derive properties of estimators

Lecture will introduce the idea and cover two substantial examples:

- Gauss-Markov Theorem - links to to Statistics 1, §4. Linear regression
- Constrained mles - links to Statistics 1, §3. Maximum likelihood estimation

1. Lagrange multipliers - simplest case

Consider a function f of just two variables x and y. Say we want to find a stationary point of $f(x, y)$ subject to a single constraint of the form $g(x, y)=0$

- Introduce a single new variable λ - we call λ a Lagrange multiplier
- Find all sets of values of (x, y, λ) such that

$$
\nabla f=\lambda \nabla g \quad \text { and } \quad g(x, y)=0 \quad \text { where } \quad \nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)
$$

i.e.

$$
\frac{\partial f}{\partial x}=\lambda \frac{\partial g}{\partial x} \quad \text { and } \quad \frac{\partial f}{\partial y}=\lambda \frac{\partial g}{\partial y} \quad \text { and } \quad g(x, y)=0
$$

(number of equations $=$ original number of variables + number of constraints)

- Evaluate $f(x, y)$ at each of these points. We can often identify the largest/smallest value as the maximum/minimum of $f(x, y)$ subject to the constraint, taking account of whether f is unbounded or bounded above/below.

2. Geometric motivation

- Consider finding a local maximum (or local minimum) of $f(x, y)$ subject to a single constraint of the form $g(x, y)=0$. Recall that a contour of f is a set of points (x, y) for which f takes some given fixed value. Consider how the curve $g(x, y)=0$ (a contour of g) intersects the contours of f.
- In the following diagram, as we move from A to C along the contour $g(x, y)=0$, the function $f(x, y)$ first increases then decreases, with a stationary point (here a maximum) at B.
- At the stationary point f and g have a common tangent, so the normal vectors to f and g at that point are parallel, so the gradient vectors are parallel, so

$$
\nabla f=\lambda \nabla g \quad \text { for some scalar } \quad \lambda
$$

3. General number of variables and constraints

The method easily generalises to finding the stationary points of a function f with n variables subject to k independent constraints.
E.g. consider a function $f(x, y, z)$ of three variables x, y, z subject to two constraints $g(x, y, z)=0$ and $h(x, y, z)=0$, then:

- at a stationary point ∇f is in the plane determined by ∇g and ∇h
- introduce two Lagrange multipliers, say λ and μ (one per constraint)
- find all sets of values x, y, z, λ, μ satisfying the five (i.e. $3+2$) equations

$$
\nabla f=\lambda \nabla g+\mu \nabla h \quad \text { and } \quad g(x, y)=0 \quad \text { and } \quad h(x, y, z)=0
$$

i.e.

$$
\begin{gathered}
\frac{\partial f}{\partial x}=\lambda \frac{\partial g}{\partial x}+\mu \frac{\partial h}{\partial x}, \quad \frac{\partial f}{\partial y}=\lambda \frac{\partial g}{\partial y}+\mu \frac{\partial h}{\partial y}, \quad \frac{\partial f}{\partial z}=\lambda \frac{\partial g}{\partial z}+\mu \frac{\partial h}{\partial z} \\
g(x, y, z)=0 \quad \text { and } \quad h(x, y, z)=0
\end{gathered}
$$

4. Interpretation in terms of the Lagrangian

Again consider the general case of finding a stationary point of a function $f\left(x_{1}, \ldots, x_{n}\right)$, subject to k constraints $g_{1}\left(x_{1}, \ldots, x_{n}\right)=0, \ldots, g_{k}\left(x_{1}, \ldots, x_{n}\right)=0$

- Introduce k Lagrange multipliers $\lambda_{1}, \ldots, \lambda_{k}$
- Define the Lagrangian Λ by

$$
\begin{aligned}
\Lambda(x, \lambda) & =f\left(x_{1}, \ldots, x_{n}\right)-\sum_{r=1}^{k} \lambda_{r} g_{r}\left(x_{1}, \ldots, x_{n}\right) \\
& =f\left(x_{1}, \ldots, x_{n}\right)-\lambda_{1} g_{1}\left(x_{1}, \ldots, x_{n}\right)-\cdots-\lambda_{k} g_{k}\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

- The stationary points of f subject to the constraints $g_{1}=0, \ldots, g_{k}=0$ are precisely the sets of values of $\left(x_{1}, \ldots, x_{n}, \lambda_{1}, \ldots, \lambda_{k}\right)$ at which

$$
\frac{\partial \Lambda}{\partial x_{i}}=0, \quad i=1, \ldots, n \quad \text { and } \quad \frac{\partial \Lambda}{\partial \lambda_{r}}=0, \quad r=1, \ldots, k
$$

i.e. they are stationary points of the unconstrained function Λ.

5. Example

- maximise $\quad f(x, y)=x y \quad$ subject to $x+y=1$
i.e. subject to $\quad g(x, y)=0 \quad$ where $g(x, y)=x+y-1$
- one constraint so introduce one Lagrange multiplier λ
- compute $\quad \frac{\partial f}{\partial x}=y, \quad \frac{\partial f}{\partial y}=x, \quad \frac{\partial g}{\partial x}=1, \quad \frac{\partial g}{\partial y}=1$
- and solve the (two + one) equations

$$
\begin{array}{ll}
\frac{\partial f}{\partial x}=\lambda \frac{\partial g}{\partial x} & \text { i.e. } y=\lambda \\
\frac{\partial f}{\partial y}=\lambda \frac{\partial g}{\partial y} & \text { i.e. } x=\lambda \\
g(x, y)=0 & \text { i.e. } x+y=1 \tag{3}
\end{array}
$$

- substituting (1) and (2) in (3) gives $2 \lambda=1$, i.e. $\lambda=1 / 2$, so from (1) and (2) the function has a stationary point subject to the constraint (here a maximum), at $x=1 / 2, y=1 / 2$

6. Example

- maximise $\quad f(x, y)=x^{2}+2 y^{2} \quad$ subject to $x^{2}+y^{2}=1$
i.e. subject to $\quad g(x, y)=0 \quad$ where $g(x, y)=x^{2}+y^{2}-1$
- one constraint so introduce one Lagrange multiplier λ
- compute $\quad \frac{\partial f}{\partial x}=2 x, \quad \frac{\partial f}{\partial y}=4 y, \quad \frac{\partial g}{\partial x}=2 x, \quad \frac{\partial g}{\partial y}=2 y$
- and solve the (two + one) equations

$$
\begin{array}{ll}
\frac{\partial f}{\partial x}=\lambda \frac{\partial g}{\partial x} & \text { i.e. } \quad 2 x=\lambda 2 x \\
\frac{\partial f}{\partial y}=\lambda \frac{\partial g}{\partial y} & \text { i.e. } 4 y=\lambda 2 y \\
g(x, y)=0 & \text { i.e. } x^{2}+y^{2}=1
\end{array}
$$

- (1) \Rightarrow either $\lambda=1$ or $x=0$; $(2) \Rightarrow$ either $\lambda=2$ or $y=0$
so possible solutions are $x=0, \lambda=2, y= \pm 1$ and $y=0, \lambda=1, x= \pm 1$ where $f(0, \pm 1)=2[\max]$, while $f(\pm 1,0)=1[\min]$.

7. Gauss-Markov Theorem

A minimum variance property of least squares estimators

- In linear regression the values y_{1}, \ldots, y_{n} are assumed to be observed values of random variables Y_{1}, \ldots, Y_{n} satisfying the model

$$
\mathrm{E}\left(Y_{i}\right)=\alpha+\beta x_{i}, \quad \operatorname{Var}\left(Y_{i}\right)=\sigma^{2}, \quad i=1, \ldots, n
$$

- A linear estimator of β is an estimator of the form $c_{1} Y_{1}+c_{2} Y_{2}+\cdots+c_{n} Y_{n}$ for some choice of constants c_{1}, \ldots, c_{n}.
- The variance of a linear estimator is $\operatorname{Var}\left(c_{1} Y_{1}+\cdots+c_{n} Y_{n}\right)=$ $c_{1}^{2} \operatorname{Var}\left(Y_{1}\right)+\cdots+c_{n}^{2} \operatorname{Var}\left(Y_{n}\right)=c_{1}^{2} \sigma^{2}+\cdots+c_{n}^{2} \sigma^{2}=\sigma^{2} \sum_{1}^{n} c_{i}^{2}$
- A linear estimator is unbiased if $\mathrm{E}(\hat{\beta})=\beta$, i.e.
$\beta=\mathrm{E}\left(c_{1} Y_{1}+c_{2} Y_{2}+\cdots+c_{n} Y_{n}\right)=c_{1} \mathrm{E}\left(Y_{1}\right)+\cdots+c_{n} \mathrm{E}\left(Y_{n}\right)=$ $c_{1}\left(\alpha+\beta x_{1}\right)+\cdots+c_{n}\left(\alpha+\beta x_{n}\right)=\alpha\left(c_{1}+\cdots+c_{n}\right)+\beta\left(c_{1} x_{1}+\cdots+c_{n} x_{n}\right)$ which requires

$$
\sum_{1}^{n} c_{i}=0 \quad \text { and } \quad \sum_{1}^{n} c_{i} x_{i}=1
$$

- Thus, for fixed σ^{2}, a linear estimator that has minimum variance in the class of linear unbiased estimators is obtained by choosing the variables c_{1}, \ldots, c_{n} to
- minimise the objective function $f\left(c_{1}, \ldots, c_{n}\right)=\sum_{1}^{n} c_{i}^{2}$
- subject to the two constraints

$$
g\left(c_{1}, \ldots, c_{n}\right)=\sum_{1}^{n} c_{i}=0 \quad \text { and } \quad h\left(c_{1}, \ldots, c_{n}\right)=\sum_{1}^{n} c_{i} x_{i}-1=0
$$

- We introduce two Lagrange multipliers λ and μ
- and compute the $3 \times n$ partial derivatives

$$
\frac{\partial f}{\partial c_{i}}=2 c_{i}, \quad \frac{\partial g}{\partial c_{i}}=1, \quad \frac{\partial h}{\partial c_{i}}=x_{i}, \quad i=1, \ldots, n
$$

- and solve the $(n+2)$ equations

$$
\frac{\partial f}{\partial c_{i}}=\lambda \frac{\partial g}{\partial c_{i}}+\mu \frac{\partial h}{\partial c_{i}}, \quad i=1, \ldots, n, \quad \sum_{1}^{n} c_{i}=0, \quad \sum_{1}^{n} c_{i} x_{i}-1=0
$$

- The first n equations give

$$
2 c_{i}=\lambda+\mu x_{i}, \quad i=1, \ldots, n
$$

- Summing these n equations over $i=1, \ldots, n$ and using $\sum_{1}^{n} c_{i}=0$ gives

$$
2 \sum c_{i}=n \lambda+\mu \sum x_{i} \Longrightarrow \lambda=-\mu\left(\sum x_{i}\right) / n=-\mu \bar{x}
$$

- On the other hand, multiplying each equation by x_{i} and then summing over $i=1, \ldots, n$ gives

$$
2 \sum c_{i} x_{i}=\lambda \sum x_{i}+\mu \sum x_{i}^{2}
$$

- Now using $\sum_{1}^{n} c_{i} x_{i}-1=0$ and using $\lambda=-\mu \bar{x}$ from above gives

$$
2=-\mu \bar{x} \sum x_{i}+\mu \sum x_{i}^{2} \Longrightarrow \mu=2 /\left(\sum x_{i}^{2}-n \bar{x}^{2}\right)
$$

Thus the values of the variables c_{1}, \ldots, c_{n} that minimise the variance of the constrained linear estimator $c_{1} Y_{1}+c_{2} Y_{2}+\cdots+c_{n} Y_{n}$ are the values satisfying the equations

$$
c_{i}=\left(\lambda+\mu x_{i}\right) / 2 \quad i=1, \ldots, n
$$

where

$$
\lambda=-\mu \bar{x} \quad \text { and } \quad \mu=2 /\left(\sum x_{i}^{2}-n \bar{x}^{2}\right)
$$

So

$$
c_{i}=\frac{\left(x_{i}-\bar{x}\right)}{\sum x_{i}^{2}-n \bar{x}^{2}} \quad i=1, \ldots, n
$$

and the resulting estimate is

$$
\hat{\beta}=\sum y_{i} c_{i}=\sum \frac{y_{i}\left(x_{i}-\bar{x}\right)}{\sum x_{i}^{2}-n \bar{x}^{2}}=\frac{\sum y_{i} x_{i}-n \bar{y} \bar{x}}{\sum x_{i}^{2}-n \bar{x}^{2}}
$$

which is just the least squares estimate.

This gives a simple proof in linear regression case of the Gauss-Markov theorem: The least squares estimator $\hat{\beta}$ has minimum variance in the class of all linear unbiased estimators of β.

8. Maximum likelihood estimates - multinomial distributions

- Consider a statistical experiment in which a sample of size m is drawn from a large population
- assume each observation can take one of four values - say A_{1}, A_{2}, A_{3} or A_{4}
- The respective proportions of these values in the population are $\theta_{1}, \theta_{2}, \theta_{3}$ and θ_{4} so $0<\theta_{i}<1, j=1, \ldots, 4$ and $\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}=1$
- Assume there are m_{1} observations with value A_{1}, m_{2} with value A_{2}, m_{3} with value A_{3} and m_{4} with value A_{4} so $m_{1}+m_{2}+m_{3}+m_{4}=m$.
- What are the maximum likelihood estimates of $\theta_{1}, \theta_{2}, \theta_{3}$ and θ_{4} ?
[Note that in this example we use m rather than n to denote the sample size, so as not to clash with the notation in earlier sections where n denoted the number of variables we were optimising over.]
- Here the m_{i} are observed values of random variables $M_{i}, i=1, \ldots, 4$ where the joint distribution of M_{1}, M_{2}, M_{3} and M_{4} is called a multinomial distribution
- The joint distribution has probability mass function

$$
p\left(m_{1}, m_{2}, m_{3}, m_{4} ; \theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right)=\frac{m!}{m_{1}!m_{2}!m_{3}!m_{4}!} \theta_{1}^{m_{1}} \theta_{2}^{m_{2}} \theta_{3}^{m_{3}} \theta_{4}^{m_{4}}
$$

and so has \log likelihood function

$$
\ell\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right)=\mathrm{const}+m_{1} \log \theta_{1}+m_{2} \log \theta_{2}+m_{3} \log \theta_{3}+m_{4} \log \theta_{4}
$$

where the constant $c=\log m!-\left(\log m_{1}!+\log m_{2}!+\log m_{3}!+\log m_{4}!\right)$

- Since the θ_{i} are probabilities and must therefore sum to 1 , the maximum likelihood estimates $\hat{\theta}_{1}, \hat{\theta}_{2}, \hat{\theta}_{3}, \hat{\theta}_{4}$ are the values that maximise the log likelihood $\ell\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right)$, subject to the condition

$$
\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}=1
$$

- Thus we want to maximise the objective function

$$
\ell\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right)=c+m_{1} \log \theta_{1}+m_{2} \log \theta_{2}+m_{3} \log \theta_{3}+m_{4} \log \theta_{4}
$$

- subject to the constraint

$$
g\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right)=\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}-1=0
$$

- We introduce a single Lagrange multiplier λ
- and compute the partial derivatives

$$
\frac{\partial \ell}{\partial \theta_{i}}=\frac{m_{i}}{\theta_{i}}, \quad \frac{\partial g}{\partial \theta_{i}}=1, \quad i=1, \ldots, 4
$$

- and solve the (four plus one) equations

$$
\frac{\partial \ell}{\partial \theta_{i}}=\lambda \frac{\partial g}{\partial \theta_{i}} \quad i=1, \ldots, 4 \quad \theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}-1=0
$$

- The first four equations give

$$
\frac{m_{i}}{\theta_{i}}=\lambda, \quad i=1, \ldots, 4
$$

i.e.

$$
\theta_{1}=\frac{m_{1}}{\lambda}, \quad \theta_{2}=\frac{m_{2}}{\lambda}, \quad \theta_{3}=\frac{m_{3}}{\lambda}, \quad \theta_{4}=\frac{m_{4}}{\lambda}
$$

- Substituting these values into the last equation gives

$$
1=\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}=\frac{m_{1}}{\lambda}+\frac{m_{2}}{\lambda}+\frac{m_{3}}{\lambda}+\frac{m_{4}}{\lambda}=\frac{\left(m_{1}+m_{2}+m_{3}+m_{4}\right)}{\lambda}=\frac{m}{\lambda}
$$

- Putting $\lambda=m$ back into the equations for each θ_{i} we see that the maximising values (the maximum likelihood estimates) are

$$
\hat{\theta}_{1}=\frac{m_{1}}{m}, \quad \hat{\theta}_{2}=\frac{m_{2}}{m}, \quad \hat{\theta}_{3}=\frac{m_{3}}{m}, \quad \hat{\theta}_{4}=\frac{m_{4}}{m}
$$

