
Link lecture - Lagrange Multipliers

Lagrange multipliers

• provide a method for finding a stationary point of a function, say f(x, y)

• when the variables are subject to constraints, say of the form g(x, y) = 0

• can need extra arguments to check if maximum or minimum or neither

Links to:

• Calculus unit– the method uses simple properties of partial derivatives

• Statistics unit – can be used to calculate or derive properties of estimators

Lecture will introduce the idea and cover two substantial examples:

• Gauss-Markov Theorem – links to to Statistics 1, §4. Linear regression

• Constrained mles – links to Statistics 1, §3. Maximum likelihood estimation
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1. Lagrange multipliers – simplest case

Consider a function f of just two variables x and y. Say we want to find a
stationary point of f(x, y) subject to a single constraint of the form g(x, y) = 0

• Introduce a single new variable λ – we call λ a Lagrange multiplier

• Find all sets of values of (x, y, λ) such that

∇f = λ∇g and g(x, y) = 0 where ∇f =

(
∂f

∂x
,
∂f

∂y

)
i.e.

∂f

∂x
= λ

∂g

∂x
and

∂f

∂y
= λ

∂g

∂y
and g(x, y) = 0

(number of equations = original number of variables + number of constraints)

• Evaluate f(x, y) at each of these points. We can often identify the
largest/smallest value as the maximum/minimum of f(x, y) subject to the
constraint, taking account of whether f is unbounded or bounded
above/below.
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2. Geometric motivation

• Consider finding a local maximum (or local minimum) of f(x, y) subject to a
single constraint of the form g(x, y) = 0. Recall that a contour of f is a set of
points (x, y) for which f takes some given fixed value. Consider how the
curve g(x, y) = 0 (a contour of g) intersects the contours of f .

• In the following diagram, as we move from A to C along the contour
g(x, y) = 0, the function f(x, y) first increases then decreases, with a
stationary point (here a maximum) at B.

• At the stationary point f and g have a common tangent, so the normal vectors
to f and g at that point are parallel, so the gradient vectors are parallel, so

∇f = λ∇g for some scalar λ
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3. General number of variables and constraints

The method easily generalises to finding the stationary points of a function f with
n variables subject to k independent constraints.

E.g. consider a function f(x, y, z) of three variables x, y, z subject to two
constraints g(x, y, z) = 0 and h(x, y, z) = 0, then:

• at a stationary point∇f is in the plane determined by∇g and ∇h

• introduce two Lagrange multipliers, say λ and µ (one per constraint)

• find all sets of values x, y, z, λ, µ satisfying the five (i.e. 3 + 2) equations

∇f = λ∇g + µ∇h and g(x, y) = 0 and h(x, y, z) = 0

i.e.

∂f

∂x
= λ

∂g

∂x
+ µ

∂h

∂x
,

∂f

∂y
= λ

∂g

∂y
+ µ

∂h

∂y
,

∂f

∂z
= λ

∂g

∂z
+ µ

∂h

∂z

g(x, y, z) = 0 and h(x, y, z) = 0
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4. Interpretation in terms of the Lagrangian

Again consider the general case of finding a stationary point of a function
f(x1, . . . , xn), subject to k constraints g1(x1, . . . , xn) = 0, . . . , gk(x1, . . . , xn) = 0

• Introduce k Lagrange multipliers λ1, . . . , λk

• Define the Lagrangian Λ by

Λ(x, λ) = f(x1, . . . , xn)−
k∑

r=1

λrgr(x1, . . . , xn)

= f(x1, . . . , xn)− λ1g1(x1, . . . , xn)− · · · − λkgk(x1, . . . , xn)

• The stationary points of f subject to the constraints g1 = 0, . . . , gk = 0 are
precisely the sets of values of (x1, . . . , xn, λ1, . . . , λk) at which

∂Λ

∂xi

= 0, i = 1, . . . , n and
∂Λ

∂λr

= 0, r = 1, . . . , k

i.e. they are stationary points of the unconstrained function Λ.
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5. Example

• maximise f(x, y) = xy subject to x+ y = 1

i.e. subject to g(x, y) = 0 where g(x, y) = x+ y − 1

• one constraint so introduce one Lagrange multiplier λ

• compute
∂f

∂x
= y,

∂f

∂y
= x,

∂g

∂x
= 1,

∂g

∂y
= 1

• and solve the (two + one) equations

∂f

∂x
= λ

∂g

∂x
i.e. y = λ (1)

∂f

∂y
= λ

∂g

∂y
i.e. x = λ (2)

g(x, y) = 0 i.e. x+ y = 1 (3)

• substituting (1) and (2) in (3) gives 2λ = 1, i.e. λ = 1/2, so from (1) and (2)
the function has a stationary point subject to the constraint (here a maximum),
at x = 1/2, y = 1/2
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6. Example

• maximise f(x, y) = x2 + 2y2 subject to x2 + y2 = 1

i.e. subject to g(x, y) = 0 where g(x, y) = x2 + y2 − 1

• one constraint so introduce one Lagrange multiplier λ

• compute
∂f

∂x
= 2x,

∂f

∂y
= 4y,

∂g

∂x
= 2x,

∂g

∂y
= 2y

• and solve the (two + one) equations

∂f

∂x
= λ

∂g

∂x
i.e. 2x = λ2x (1)

∂f

∂y
= λ

∂g

∂y
i.e. 4y = λ2y (2)

g(x, y) = 0 i.e. x2 + y2 = 1 (3)

• (1)⇒ either λ = 1 or x = 0; (2)⇒ either λ = 2 or y = 0

so possible solutions are x = 0, λ = 2, y = ±1 and y = 0, λ = 1, x = ±1

where f(0,±1) = 2 [max], while f(±1, 0) = 1 [min].
8



7. Gauss-Markov Theorem
A minimum variance property of least squares estimators

• In linear regression the values y1, . . . , yn are assumed to be observed values of
random variables Y1, . . . , Yn satisfying the model
E(Yi) = α + βxi, Var(Yi) = σ2, i = 1, . . . , n

• A linear estimator of β is an estimator of the form c1Y1 + c2Y2 + · · ·+ cnYn

for some choice of constants c1, . . . , cn.

• The variance of a linear estimator is Var(c1Y1 + · · ·+ cnYn) =

c21 Var(Y1) + · · ·+ c2n Var(Yn) = c21σ
2 + · · ·+ c2nσ

2 = σ2
∑n

1 c
2
i

• A linear estimator is unbiased if E(β̂) = β, i.e.
β = E(c1Y1 + c2Y2 + · · ·+ cnYn) = c1 E(Y1) + · · ·+ cn E(Yn) =

c1(α+ βx1) + · · ·+ cn(α+ βxn) = α(c1 + · · ·+ cn) + β(c1x1 + · · ·+ cnxn)

which requires
n∑
1

ci = 0 and
n∑
1

cixi = 1
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• Thus, for fixed σ2, a linear estimator that has minimum variance in the class of
linear unbiased estimators is obtained by choosing the variables c1, . . . , cn to

– minimise the objective function f(c1, . . . , cn) =
∑n

1 c
2
i

– subject to the two constraints

g(c1, . . . , cn) =
n∑
1

ci = 0 and h(c1, . . . , cn) =
n∑
1

cixi − 1 = 0

• We introduce two Lagrange multipliers λ and µ

• and compute the 3× n partial derivatives

∂f

∂ci
= 2ci,

∂g

∂ci
= 1,

∂h

∂ci
= xi, i = 1, . . . , n

• and solve the (n+ 2) equations

∂f

∂ci
= λ

∂g

∂ci
+ µ

∂h

∂ci
, i = 1, . . . , n,

n∑
1

ci = 0,
n∑
1

cixi − 1 = 0
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• The first n equations give

2ci = λ+ µxi, i = 1, . . . , n

• Summing these n equations over i = 1, . . . , n and using
∑n

1 ci = 0 gives

2
∑

ci = nλ+ µ
∑

xi =⇒ λ = −µ(
∑

xi)/n = −µx̄

• On the other hand, multiplying each equation by xi and then summing over
i = 1, . . . , n gives

2
∑

cixi = λ
∑

xi + µ
∑

x2
i

• Now using
∑n

1 cixi − 1 = 0 and using λ = −µx̄ from above gives

2 = −µx̄
∑

xi + µ
∑

x2
i =⇒ µ = 2/(

∑
x2

i − nx̄2)
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Thus the values of the variables c1, . . . , cn that minimise the variance of the
constrained linear estimator c1Y1 + c2Y2 + · · ·+ cnYn are the values satisfying the
equations

ci = (λ+ µxi)/2 i = 1, . . . , n

where
λ = −µx̄ and µ = 2/(

∑
x2

i − nx̄2)

so

ci =
(xi − x̄)∑
x2

i − nx̄2
i = 1, . . . , n

and the resulting estimate is

β̂ =
∑

yici =
∑ yi(xi − x̄)∑

x2
i − nx̄2

=

∑
yixi − nȳx̄∑
x2

i − nx̄2

which is just the least squares estimate.

This gives a simple proof in linear regression case of the Gauss-Markov theorem:
The least squares estimator β̂ has minimum variance in the class of all linear unbiased
estimators of β.
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8. Maximum likelihood estimates – multinomial distributions

• Consider a statistical experiment in which a sample of size m is drawn from a
large population

• assume each observation can take one of four values – say A1, A2, A3 or A4

• The respective proportions of these values in the population are θ1, θ2, θ3 and
θ4 so 0 < θi < 1, j = 1, . . . , 4 and θ1 + θ2 + θ3 + θ4 = 1

• Assume there are m1 observations with value A1, m2 with value A2, m3 with
value A3 and m4 with value A4 so m1 +m2 +m3 +m4 = m.

• What are the maximum likelihood estimates of θ1, θ2, θ3 and θ4?

[Note that in this example we use m rather than n to denote the sample size,
so as not to clash with the notation in earlier sections where n denoted the
number of variables we were optimising over.]
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• Here the mi are observed values of random variables Mi, i = 1, . . . , 4 where
the joint distribution of M1,M2,M3 and M4 is called a multinomial
distribution

• The joint distribution has probability mass function

p(m1,m2,m3,m4; θ1, θ2, θ3, θ4) =
m!

m1!m2!m3!m4!
θm1
1 θm2

2 θm3
3 θm4

4

and so has log likelihood function

`(θ1, θ2, θ3, θ4) = const +m1 log θ1 +m2 log θ2 +m3 log θ3 +m4 log θ4

where the constant c = logm!− (logm1! + logm2! + logm3! + logm4!)

• Since the θi are probabilities and must therefore sum to 1, the maximum
likelihood estimates θ̂1, θ̂2, θ̂3, θ̂4 are the values that maximise the log
likelihood `(θ1, θ2, θ3, θ4), subject to the condition

θ1 + θ2 + θ3 + θ4 = 1
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• Thus we want to maximise the objective function

`(θ1, θ2, θ3, θ4) = c+m1 log θ1 +m2 log θ2 +m3 log θ3 +m4 log θ4

• subject to the constraint

g(θ1, θ2, θ3, θ4) = θ1 + θ2 + θ3 + θ4 − 1 = 0

• We introduce a single Lagrange multiplier λ

• and compute the partial derivatives

∂`

∂θi

=
mi

θi

,
∂g

∂θi

= 1, i = 1, . . . , 4

• and solve the (four plus one) equations

∂`

∂θi

= λ
∂g

∂θi

i = 1, . . . , 4 θ1 + θ2 + θ3 + θ4 − 1 = 0

15



• The first four equations give

mi

θi

= λ, i = 1, . . . , 4

i.e.

θ1 =
m1

λ
, θ2 =

m2

λ
, θ3 =

m3

λ
, θ4 =

m4

λ
,

• Substituting these values into the last equation gives

1 = θ1 +θ2 +θ3 +θ4 =
m1

λ
+
m2

λ
+
m3

λ
+
m4

λ
=

(m1 +m2 +m3 +m4)

λ
=
m

λ

• Putting λ = m back into the equations for each θi we see that the maximising
values (the maximum likelihood estimates) are

θ̂1 =
m1

m
, θ̂2 =

m2

m
, θ̂3 =

m3

m
, θ̂4 =

m4

m
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