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Likelihood and Maximum Likelihood Estimation

3.1 Motivation

e Consider a (possibly biased) coin for whi¢l{Head) =0 and P(Tail) = (1 — 6), wheref is an
unknown parameter taking values(in 1) which we wish to estimate.

One way of gaining information abodtmight be to perform an experiment in which we repeat-
edly toss the coin and count the number of tosses until we getaal. Assume the outcome of

each toss is independent of all the other tosses, and tignote the number of the toss on which
we first get a Head. TheR ~ Geomn(¢) and

p(r;0)=1-0)"10 x=1,23,...; 0¢€(0,1).

e Say we perform the experiment once and get a single obsenvat 4 (so the first head was
observed on the fourth toss). Writgd) [or more properlyL(6; )] for the probability of getting
this particular observation as a function of the unknown paramegerThus in this casé.(9) is
got by puttingr = 4 in the above expression for(z; ), giving

LO)=p(4,0)=(1-0)>  6c(0,1).

We call L(#) the likelihood function for the given observation. A graph @f(¢) againstf is
shown below.
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Figure 1: The likelihood functior.(#) as a function of the unknown paramefer

e The value o) that maximises the likelihood functiaiy#), i.e. that maximises the probability of
getting this particular observation, is called theximum likelihood estimate of 4.

We can see that the maximum here is a turning point, so hemaakenising value satisfies the
equation

dL(Q) dL(@) 3 2 2
Wz() where 7 =(1-0)"—30(1—-0)"=(1—0)(1—40)

and you can check that the likelihood function is maximisefl-a 1/4 = 0.25.
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Thus this single observation = 4 has a greater likelihood of occurring when the parameter
takes the valué = 0.25 than whert takes any other possible value(in 1). We call this value
0.25 the maximum likelihood estimate of ¢ for the single observation = 4 and we denote it
by 6 [or more properlyd(x) or evendme(x)] and writed = 0.25.

e We can easily generalise our analysis to the case of sevesahations. For example, say we
repeat the experiment three times and get three indepentsatvations;; = 4,2, = 5, and
x3 = 1. Then the corresponding random variableg X,, X5 are independent, each with the
same Geometric distribution &S above, so they have joint probability mass function

PX1, X0, X5 (T1, T2, 3;0) = p (2150) p (2;0) p (23;0)
where the expression fer(x; 0) is given above.

In this case the likelihood function denotes the probabiit observing these three numerical
valuesz, x4, x3 as a function of the unknown paramefieand is given by

L(0) = L(0;x1,22,73) = Dx,.xp.xs (T1,T2,23;0)

p(21;0) p(22;0) p(3;0)

(1—60)"710 (1 —0)"2710 (1 —6)""10
= (1-0)°0 (1 —0)* (1 —-0)°

= (1-6)"¢%

A graph of this newL(#) againstd is shown below. You can easily show thatf) is now
maximised at the valugé = 3/10 = 0.3.
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Figure 2: The likelihood functioik.(9; 1, x5, x3) as a function of the unknown parameter

Thus, as a function of the unknown paramétdhe likelihood of these three numerical observa-
tionsz; = 4,2, = 5,23 = 1 occurring is maximised by takingg= 0.3. Again, we say that 0.3
is the maximum likelihood estimate 8fand we writed (x4, o, z3) = 0.3 — or, since the context
is clear,d = 0.3.

3.2 Definition — Likelihood function

e General case:Assume the data,, z», . . . , z,, are the observed numerical values of random vari-
ablesX, X, ..., X, whose joint distribution depends on one or more unknowarpaters).
Thelikelihood function L(0) = L(0;z,xs, ..., x,) IS just the joint probability mass function
(discrete case) or joint probability density function (tonous case) regarded as a function of
the unknown parametérfor these fixed numerical values of, z», . . . , z,,.



e Usual random sample caself X, X, ..., X, is arandom sample of sizefrom a distribution
with probability mass functiom (xz; #) (or probability density functiorf(z; #)) then theX; are
i.i.d.r.v.s and their joint distribution factorises intoet product of the individual marginal distri-
butions. Thus for a random sample

p(x1;0) p(2;0) - - - p(xy; 0) discrete case
L(Q) = L(Q;LUl,ZEQ, s 7x7l> -
f(z1;0) f(x9;0) -+ f(2n;0) continuous case
e L(0)is a function off for fixed dataz,, xo, . . ., z,,.

e We interpretZ(6) as a combined measure of of how well the valuexplains the set of observa-
tions, and hence of the ‘plausibility’ @f. e.g. if {x;} are collectively unlikely as observations
from fx(z;0) thenL(#) is small, and vice-versa.

3.7 Maximum likelihood estimate of7(0)

e The actual quantity of interest may be a functidf) of ¢, notd itself.
In this case the mle af(0) is simply

(just the ‘plug-in’ estimate)

e This is theinvariance property of maximum likelihood estimation — we can get the riar 7
without going to the trouble of re-parameterizing the peoblin terms ofr and then solving
ol(r)/or = 0 for 7 (which would give the same answer, at least when the funetiéinis 1-1
(injective)).

To see this last point, note that by the chain rule for diffi¢ietion applied td(7(0)), 9¢(7(0)) /00 =
T

ol(t)/0T x 7'(0), so that provided'(0) # 0, 0¢(7(0))/060 = 0 if and only if 9¢(7) /0T = 0.
3.8 Example — Exf0)
e Againletxy, zs, ..., z, be observed values of a simple random sample from thédxdistribu-

tuion with § unknown.
We found in§3.6 thatf9\m|e =1/7.

— Suppose we are interested in the population varianceXVa) = 1/62,i.e. in7(6) = 1/6.
Then the mle of the population variance is

7(0) = 7(0) = 1/6* = 7°

This is not the same as the sample variance!

— Suppose instead that we are interested in the proportidregfdpulation taking values 1,
thatis, inT(9) = P{X > 1;0} = ¢~ for the Exg6) case.
Then the mle of this proportion is

—_ ~

7(0) = 7(0) = e = exp(—1/7)

This is not the same as the sample proportion of vakiés



3.11 An example with not-identically-distributed observations

e One of the strengths of the maximum likelihood approachas itrstill provides answers when
the observations cannot be treated as i.i.d. The likelinsgaist the joint probability density or
mass function of the data, regarded as a function of the peteas) and this makes sense, and
can be maximised with respect to the parameters, whateyendldel. Here we just consider one
example, where the observations are still independentyitadifferent distributions.

e Poisson data with unequal means. The Poisson distribution is used to model counts of events
that can be assumed to occur completely at random — for exairqiints of photons arriving at
a detector in different intervals of time. Suppose thatrdie of arrival is A per unit time, and
that X; is the number of arrivals in a time interval of length The it is natural to assume that
X; ~ Poissoni\t;), fori = 1,2,...,n. If the different intervals are not overlapping, then the
countsX; should be independent. If theare all equal (alt; = ¢, say), then we have a simple
random sample from Poissprt).

But it is useful and instructive to look also at the caseirwdqual ¢;. The joint probability mass
function of X, X5, ..., X, is

P{Xl:.I'l,XQ:CL'Q,...?Xn:l'n}:P{Xl:.I'l}XP{XQZZL'Q}X"'XP{Xn:l'n}

e M ()™ y e AM2(\ty)™2 y y e A (\t,)%n
7! xs! T,
Bt

.1'1!1'2! . '{L'n!

_ e—A(t1+t2+~~+tn))\x1+x2+~--+xn

So the log-likelihood is just the logarithm of this, congielg as a function ok:

() = =Xty 4ty + -+ o) + (log \) (21 + 22 + - - - + 2,,) + terms not containing.

Then 20
%:_(tl‘kh‘f“+tn)+(1//\)<l’1+l’2++xn)

=0 Ol(A\
9N _ ifand only if A=\ = (1422 + -+ 20)
O\ (t1+ta+ - +1tn)

so this is the mle. (The turning value we have found is ob\Wjoasnaximum, since we can see
thato/(\) /0 is decreasing in\). Note that the mle\ is the total count of photons divided by the
total time of observation. Note that, when theare unequal, this isot the same as the average
of the individual estimategr; /t;).



