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Likelihood and Maximum Likelihood Estimation

3.1 Motivation

• Consider a (possibly biased) coin for whichP (Head) =θ andP (Tail) = (1 − θ), whereθ is an
unknown parameter taking values in(0, 1) which we wish to estimate.

One way of gaining information aboutθ might be to perform an experiment in which we repeat-
edly toss the coin and count the number of tosses until we get aHead. Assume the outcome of
each toss is independent of all the other tosses, and letX denote the number of the toss on which
we first get a Head. ThenX ∼ Geom(θ) and

p (x; θ) = (1− θ)x−1θ x = 1, 2, 3, . . . ; θ ∈ (0, 1).

• Say we perform the experiment once and get a single observation x = 4 (so the first head was
observed on the fourth toss). WriteL(θ) [or more properlyL(θ; x)] for the probability of getting
this particular observationx as a function of the unknown parameterθ. Thus in this caseL(θ) is
got by puttingx = 4 in the above expression forp (x; θ), giving

L(θ) = p (4; θ) = (1− θ)3θ θ ∈ (0, 1).

We callL(θ) the likelihood function for the given observation. A graph ofL(θ) againstθ is
shown below.
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Figure 1: The likelihood functionL(θ) as a function of the unknown parameterθ

• The value ofθ that maximises the likelihood functionL(θ), i.e. that maximises the probability of
getting this particular observation, is called themaximum likelihood estimateof θ.

We can see that the maximum here is a turning point, so here themaximising value satisfies the
equation

dL(θ)

dθ
= 0 where

dL(θ)

dθ
= (1− θ)3 − 3θ(1− θ)2 = (1− θ)2(1− 4θ)

and you can check that the likelihood function is maximised at θ = 1/4 = 0.25.
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Thus this single observationx = 4 has a greater likelihood of occurring when the parameterθ
takes the valueθ = 0.25 than whenθ takes any other possible value in(0, 1). We call this value
0.25 themaximum likelihood estimateof θ for the single observationx = 4 and we denote it
by θ̂ [or more properlŷθ(x) or evenθ̂mle(x)] and writeθ̂ = 0.25.

• We can easily generalise our analysis to the case of several observations. For example, say we
repeat the experiment three times and get three independentobservationsx1 = 4, x2 = 5, and
x3 = 1. Then the corresponding random variablesX1, X2, X3 are independent, each with the
same Geometric distribution asX above, so they have joint probability mass function

pX1,X2,X3
(x1, x2, x3; θ) = p (x1; θ) p (x2; θ) p (x3; θ)

where the expression forp (x; θ) is given above.

In this case the likelihood function denotes the probability of observing these three numerical
valuesx1, x2, x3 as a function of the unknown parameterθ and is given by

L(θ) ≡ L(θ; x1, x2, x3) = pX1,X2,X3
(x1, x2, x3; θ)

= p (x1; θ) p (x2; θ) p (x3; θ)

= (1− θ)x1−1θ (1− θ)x2−1θ (1− θ)x3−1θ

= (1− θ)3θ (1− θ)4θ (1− θ)0θ

= (1− θ)7θ3.

A graph of this newL(θ) againstθ is shown below. You can easily show thatL(θ) is now
maximised at the valueθ = 3/10 = 0.3.
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Figure 2: The likelihood functionL(θ; x1, x2, x3) as a function of the unknown parameterθ

Thus, as a function of the unknown parameterθ, the likelihood of these three numerical observa-
tionsx1 = 4, x2 = 5, x3 = 1 occurring is maximised by takingθ = 0.3. Again, we say that 0.3
is the maximum likelihood estimate ofθ and we writêθ(x1, x2, x3) = 0.3 – or, since the context
is clear,θ̂ = 0.3.

3.2 Definition – Likelihood function

• General case:Assume the datax1, x2, . . . , xn are the observed numerical values of random vari-
ablesX1, X2, . . ., Xn, whose joint distribution depends on one or more unknown parametersθ.
The likelihood function L(θ) ≡ L(θ; x1, x2, . . . , xn) is just the joint probability mass function
(discrete case) or joint probability density function (continuous case) regarded as a function of
the unknown parameterθ for these fixed numerical values ofx1, x2, . . . , xn.
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• Usual random sample case:If X1, X2, . . . , Xn, is a random sample of sizen from a distribution
with probability mass functionp (x; θ) (or probability density functionf(x; θ)) then theXi are
i.i.d.r.v.s and their joint distribution factorises into the product of the individual marginal distri-
butions. Thus for a random sample

L(θ) ≡ L(θ; x1, x2, . . . , xn) =





p(x1; θ) p(x2; θ) · · · p(xn; θ) discrete case

f(x1; θ) f(x2; θ) · · · f(xn; θ) continuous case

• L(θ) is a function ofθ for fixed datax1, x2, . . . , xn.

• We interpretL(θ) as a combined measure of of how well the valueθ explains the set of observa-
tions, and hence of the ‘plausibility’ ofθ. e.g. if {xi} are collectively unlikely as observations
from fX(x; θ) thenL(θ) is small, and vice-versa.

3.7 Maximum likelihood estimate ofτ(θ)

• The actual quantity of interest may be a functionτ(θ) of θ, notθ itself.

In this case the mle ofτ(θ) is simply

τ̂(θ) = τ(θ̂)

(just the ‘plug-in’ estimate)

• This is theinvariance property of maximum likelihood estimation – we can get the mle for τ
without going to the trouble of re-parameterizing the problem in terms ofτ and then solving
∂ℓ(τ)/∂τ = 0 for τ̂ (which would give the same answer, at least when the functionτ(θ) is 1-1
(injective)).

To see this last point, note that by the chain rule for differentiation applied toℓ(τ(θ)), ∂ℓ(τ(θ))/∂θ =
∂ℓ(τ)/∂τ × τ ′(θ), so that providedτ ′(θ) 6= 0, ∂ℓ(τ(θ))/∂θ = 0 if and only if ∂ℓ(τ)/∂τ = 0.

3.8 Example – Exp(θ)

• Again letx1, x2, . . . , xn be observed values of a simple random sample from the Exp(θ) distribu-
tuion with θ unknown.

We found in§3.6 thatθ̂mle = 1/x.

– Suppose we are interested in the population variance Var(X; θ) = 1/θ2, i.e. inτ(θ) = 1/θ2.
Then the mle of the population variance is

τ̂(θ) = τ(θ̂) = 1/θ̂2 = x2

This is not the same as the sample variance!

– Suppose instead that we are interested in the proportion of the population taking values≥ 1,
that is, inτ(θ) = P{X ≥ 1; θ} = e−θ for the Exp(θ) case.

Then the mle of this proportion is

τ̂(θ) = τ(θ̂) = e−θ̂ = exp(−1/x)

This is not the same as the sample proportion of values≥ 1!
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3.11 An example with not-identically-distributed observations

• One of the strengths of the maximum likelihood approach is that it still provides answers when
the observations cannot be treated as i.i.d. The likelihoodis just the joint probability density or
mass function of the data, regarded as a function of the parameters, and this makes sense, and
can be maximised with respect to the parameters, whatever the model. Here we just consider one
example, where the observations are still independent, butwith different distributions.

• Poisson data with unequal means. The Poisson distribution is used to model counts of events
that can be assumed to occur completely at random – for example, counts of photons arriving at
a detector in different intervals of time. Suppose that therate of arrival isλ per unit time, and
thatXi is the number of arrivals in a time interval of lengthti. The it is natural to assume that
Xi ∼ Poisson(λti), for i = 1, 2, . . . , n. If the different intervals are not overlapping, then the
countsXi should be independent. If theti are all equal (allti = t, say), then we have a simple
random sample from Poisson(λt).

But it is useful and instructive to look also at the case ofunequal ti. The joint probability mass
function ofX1, X2, . . . , Xn is

P{X1 = x1, X2 = x2, . . . , Xn = xn} = P{X1 = x1} × P{X2 = x2} × · · · × P{Xn = xn}

=
e−λt1(λt1)

x1

x1!
×

e−λt2(λt2)
x2

x2!
× · · · ×

e−λtn(λtn)
xn

xn!

= e−λ(t1+t2+···+tn)λx1+x2+···+xn

tx1

1 tx2

2 · · · txn

n

x1!x2! · · · xn!

So the log-likelihood is just the logarithm of this, considered as a function ofλ:

ℓ(λ) = −λ(t1 + t2 + · · ·+ tn) + (log λ)(x1 + x2 + · · ·+ xn) + terms not containingλ.

Then
∂ℓ(λ)

∂λ
= −(t1 + t2 + · · ·+ tn) + (1/λ)(x1 + x2 + · · ·+ xn)

So
∂ℓ(λ)

∂λ
= 0 if and only if λ = λ̂ =

(x1 + x2 + · · ·+ xn)

(t1 + t2 + · · ·+ tn)

so this is the mle. (The turning value we have found is obviously a maximum, since we can see
that∂ℓ(λ)/∂λ is decreasing inλ). Note that the mlêλ is the total count of photons divided by the
total time of observation. Note that, when theti are unequal, this isnot the same as the average
of the individual estimates(xi/ti).
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