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4. Linear Regression

4.1 Introduction
So far our data have consisted of observations on a single variable of interest. We now look at
what happens when we have additional information associated with each observation. For sim-
plicity we will assume that this information consists of thevalue of a single real-valued variable,
but the approach can easily be extended.

It is customary to useY to denote the original variable of interest and to usex to denote
the associated variable. In this notation, the data now consist of a set ofn pairs of values
(x1, y1), . . . , (xn, yn), corresponding to then members of our sample, whereyi is the observed
value of the original variable andxi is the value of the associated variable for theith member of
the sample.

We are interested in whether there is a pattern to the relationship between the two variables which
can be used to explain or predict values of the variable of interest in terms of the values of the
associated variable. For example, we might have data on the heights and weights of a sample
of students and be interested in how well height can be used topredict weight. Alternatively we
might have data on the level of debt and the annual parental income for a sample of students, and
may wish to investigate whether there was any dependence between the two variable, and, if so,
what form the dependence took.

Note that the two variables play different roles, in that theoriginal variable oftendepends on the
associated variable. For example, changes in weight do not usually cause changes in height, but
a change in height (through growth) is usually associated with an increase in weight. For that
reason the variable of interest (ourY variable) is called theresponse variable(an old-fashioned
term is thedependent variable) while the associated variable (ourx variable) is known as the
predictor variable or theexplanatory variable (or the independent variable; again, best to
avoid this term).

We also need to take account of the random variation in the relationship between thex andY
values. For example, if we took repeated samples, then even if the x values were kept the same
they values obtained would usually vary from sample to sample. Thus an appropriate framework
is to assume that for each valuex of the explanatory variable there is a correspondingpopulation
of values ofY with its own x-dependent distribution, and we call the functiong(x) given by
g(x) = E(Y |x) the regressionof Y on x. In this framework, our search for a simple functional
explanation of the dependence of the (mean of the)Y variable on thex variable becomes a search
for a simple expression forE(Y |x) which is valid over an appropriate range ofx values.

Thesimple linear regression modelsays that relationship ofE(Y |x) to x is of the form

E(Y |x) = α + βx

For this model, the basic questions of interest are:
• What are good estimates of the unknown parametersα andβ (assuming the model is correct)?

• How well do the data fit the model and is there any evidence fromthe data that the model is
not correct (i.e. systematic deviation from what we would expect if the model was correct)?

• What evidence is there thatY really does depend onx (i.e. thatβ 6= 0)?
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4.6 Example – Leaning Tower of Pisa
Studies by engineers on the Leaning Tower of Pisa between 1975 and 1987 recorded the following
data on the increasing tilt of the tower. Each tilt value in the table represents the difference
between where a point on the tower would have been if the towerwere straight and where it
actually was in the corresponding year. The data are coded intenths of a millimetre in excess of
2.9 metres, so the 1975 tilt of 642 represents an actual difference of 2.9642 metres. Only the last
two digits of the year are shown. The data are contained in theStatistics 1 data framepisa ; the
variables are calledyear andtilt respectively.

Year (xi) 75 76 77 78 79 80 81 82 83 84 85 86 87
Tilt (yi) 642 644 656 667 673 688 696 698 713 717 725 742 757

Fitted 637.78 647.10 656.42 665.74 675.05 684.37 693.69 703.01 712.33 721.65 730.97 740.29 749.60
Residuals 4.22 -3.10 -0.42 1.26 -2.05 3.63 2.31 -5.01 0.67 -4.65 -5.97 1.71 7.40

The summary statistics for the data set are:

n = 13
∑

xi = 1053
∑

yi = 9018
∑

x2

i = 85475
∑

y2i = 6271714
∑

yixi = 732154

giving x̄ = 81, ȳ = 693.6923, ssxx = 182, ssxy = 1696 and ssyy = 15996.77.
Thus the least squares estimates are

β̂ =

∑
yixi − nȳx̄∑
x2

i − nx̄2
=

ssxy
ssxx

= 9.3187 α̂ = ȳ − β̂x̄ = −61.1209

giving the fitted regression line y = α̂ + β̂x = −61.1209 + 9.3187x
From this the fitted values and the residuals in the table can be calculated, using the formulae

ŷi = α̂ + β̂xi êi = yi − ŷi i = 1, . . . , n.

A scatter plot of the data is shown on the left below, togetherwith the fitted regression line. There
seems to be quite a good fit of the straight line to the data. A plot of the residuals against the
corresponding year is shown on the right. They appear to be fairly random, with equal numbers
of +’ve and−’ve values and no obvious systematic pattern or systematic trend in variability.
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4.7 Analysing linear regression models in R
R has a simple commandlm for analysing linear regression models. This command produces
anR object, containing a variety of numerical outputs which canbe accessed using appropriate
commands such ascoef , fitted , residuals , plot andsummary .

Assume the predictor (x) values are in a data arrayxdata and the response (y) values are in a
data arrayydata . We can perform an initial analysis with the commands:
> plot(xdata,ydata)
> xyoutput <- lm(ydata ˜ xdata)
> coef(xyoutput)
The first line produces an initial scatter plot, the second line tellsR to perform a linear regression
with the response values inydata and the predictor values inxdata and to store the output in
the objectxyoutput , and the third line produces a vector containing the least squares estimates
of the interceptα and the slopeβ.

> plot(xdata,ydata); abline(coef(xyoutput))
will produce a scatter plot together with the fitted regression line – i.e. the line whose intercepta
is the first value and whose slopeb is the second value in the vectorcoef(xyoutput) .

> fitted(xyoutput)
> residuals(xyoutput)
will respectively output the vector of fitted values and the vector of residual values. Thus, for
example, we can plot the residuals against the predictor values with the command:
> plot(xdata,residuals(xyoutput))

Towards the end of the course, we will look at other outputs such assummary(xyoutput) ,
which produces (among other things) estimates ofσ2 and of Var(α̂) and Var(β̂).

For the Leaning Tower of Pisa example above, the predictor (year) values are in the variable
year and the response (tilt) values intilt , in the data framepisa . I used the commands:
> attach(pisa); pisafit <- lm(tilt ˜ year)
to perform the linear regression analysis and store the output in the objectpisafit . I then
inspected the scatter plot and the fitted line with the commands:
> plot(year,tilt); abline(coef(pisafit))
and inspected the values of the least squares estimates withthe command:
> coef(pisafit)
which gave output:

(Intercept) year
-61.120879 9.318681

Finally I inspected the fitted values and the values of the residuals with the commands:
> fitted(pisafit)
> residuals(pisafit)
and plotted the residuals against the predictor (year) values with the command:
> plot(year, residuals(pisafit))
(for those who are interested, I used thesegments command, specifically
> segments(year,0,,residuals(pisafit)); abline(h=0)
to add the extra lines – seehelp(segments) ).
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4.10 Normal linear regression
If we are prepared to assume a little more than in§4.2, we can make stronger statements about
the least squares estimates.

It is sometimes reasonable to assume that the errors{ei} are normally distributed. We still have
E(ei) = 0 andVar(ei) = σ2, so the extra assumption is thatei ∼ N(0, σ2), independently for
i = 1, 2, . . . , n.

This is equivalent to saying thatYi ∼ N(α + βxi, σ
2), independently fori = 1, 2, . . . , n.

Some of the consequences (not proved here) are:

• the least squares estimates(α̂, β̂) are also the maximum likelihood estimates (so we have a
second good reason to think they will be reasonable estimates)

• the estimates are themselves Normally distributed:

α̂ ∼ N(α, σ2[1/n+ x2/ssxx])

β̂ ∼ N(β, σ2/ssxx)

(these facts will be useful near the end of the course, when wediscuss hypothesis testing
and confidence intervals in linear regression)

Note that we cannot check the assumption thatYi ∼ N(α + βxi, σ
2) from the data by sim-

ply making a histogram, stem-and-leaf plot, or QQ plot of thedatay1, y2, . . . , yn, since all the
observations havedifferent normal distributions. But we can carry out a check after the linear
regression has been fitted, by looking at the residuals. Continuing the example in§4.7, typing
> qqnorm(residuals(xyoutput))
shows a Normal Q-Q plot of the residuals and helps check for non-Normality.

4.11 Visual assessment of the quality of fit of a linear regression model to data
One way of assessing the fit of a model is by examining a plot of the residualŝe1, ê2, . . . , ên
(plotted against the predictor valuesx1, x2, . . . , xn or the fitted valueŝy1, ŷ2, . . . , ŷn).

If the model in§4.2 is correct, thene1, e2, . . . , en is a random sample from a distribution with
expectation 0 and varianceσ2. We cannot observe or calculatee1, e2, . . . , en, but we can look at
their estimateŝe1, ê2, . . . , ên instead. What we should see:

• no systematic pattern in the size or sign of the residuals

• and, if we assume normally distributed errors as in§4.10, additionally:

• a roughly symmetric distribution of the residuals about 0

• no extreme outliers (residuals≥ 3σ̂ or≤ −3σ̂, say)

If what we see departs from this ideal, we may be able to judge from the pattern we can see
how to change the model so that it does fit for example, we mightallow the error varianceσ2 to
depend onx, or we could include a quadratic term in the model, likeE(Y |x) = α + βx + γx2.
But this is beyond the scope of this unit.
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4.12 Examples of Lack of Fit
In linear regression examples, you should always plot the points on a scatter plot, draw in the
estimated regression line, and also plot the residuals. This may enable you to see by eye (i) if the
basic linear model is incorrect; (ii) if there are any unusual observations or outliers, which may
perhaps have been wrongly recorded; (iii) if the regressionline is especially sensitive any of the
observations. This information may not be at all apparent just from the summary data values.

The example below, due to Anscombe, brings out this point clearly. It consists of four artificial
data sets, each of 11 data pairs, with the same values of the relevant summary statistics. Thus
each data set gives rise to exactly the same regression line and exactly the same inferences forα,
β andσ2. The data are contained in the Statistics 1 data setanscombe .

Data Set 1 x values 10 8 13 9 11 14 6 4 12 7 5

y values 8.04 6.95 7.58 8.81 8.33 9.96 7.24 4.26 10.84 4.82 5.68

Data Set 2 x values 10 8 13 9 11 14 6 4 12 7 5

y values 9.14 8.14 8.74 8.77 9.26 8.10 6.13 3.10 9.13 7.26 4.74

Data Set 3 x values 10 8 13 9 11 14 6 4 12 7 5

y values 7.46 6.77 12.74 7.11 7.81 8.84 6.08 5.39 8.15 6.42 5.73

Data Set 4 x values 8 8 8 8 8 8 8 19 8 8 8

y values 6.58 5.76 7.71 8.84 8.47 7.04 5.25 12.50 5.56 7.91 6.89

The summary statistics for each data set are (approximately):
n = 11

∑
x1 = 99

∑
yi = 82.5

∑
x2

i = 1001
∑

y2i = 660
∑

yixi = 797.5.

From the scatter plots with the fitted regression lines, we see immediately that there is a lack of
fit for data sets 2, 3 and 4: in data set 2 the relationship betweenx andy is quadratic rather than
linear so the simple linear model is incorrect; in data set 3 the simple linear regression model is
correct, but a very clear regression line is distorted by theeffect of a single outlier; in data set
4, the regression line is particularly sensitive to they value for the single observation taken at
x = 19 and it is impossible to tell from this choice ofx values whether or not a simple linear
regression model is suitable.
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