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Sampling distributions related to the Normal distribution
6.1 Revision of Moment Generating functions
(i) Definition
For a continuous random variahlée the moment generation functiont x is defined by

Mx(t) = E(e™) = | e fx(x)dx

(and by the corresponding sum in the discrete case), deforedfatever values of the
integral or sum is well defined. It uniquely determines tharéution, in the sense that two
random variables with the same moment generating funcawe the same distribution.

(i) Some particular cases

X ~ N(u,o?) < Mx(t) =exp{ut +0*?/2} teR
X ~ Exp(6) — Mx(t)=0/0—1) t<6
X ~ Gammda, §) < Mx(t) =p*/(5—1t)* t<p

(i) Linear transformations
If Y =aX +b thenMy(t) = E(eY) = E(e!**%) = et M x(ta)
(iv) Joint moment generating functions and Independence
For two random variableX” andY’, the joint moment generating function is defined as
MXy(S,t) — E(esx+ty)

and similarly for more than 2 random variables.

The marginal moment generating functions forandY are given in terms of the joint
moment generating function by

Mx(s) = E(*) = Mxy(s,0)
My(t) == E(ety) == Mxvy(o, t)
Two random variableX andY” are independent if and only if
./\/le(s, t) = Mx(S)My(t) = Mxy(s, O)./\/lxy((), t).
(v) Sums of independent random variables
If Xq,...,X, areindependentand = X; + X; +--- 4+ X,,, then
My (t) = E(eY) = B(eM 15y = B(eX)B(e*2) .. B(e*m)

SO
My (t) = Mx, () Mx,(t) ... Mx, (t)

If Xq,...,X, are a random sample, i.e. they are all independent and &dl the@vsame
distribution as a random variable, then this simplifies to

My (t) = [Mx(@®)]"
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6.5 Proof of the independence o and > i (X = X)2.
The proof is made up of the following steps:

(i) the definition gives an expression for the the joint mobwg@merating function ok, X; —
X,X,—X,..., X, — X as the expected value of a complicated function of the visab

(i) simple manipulation reduces this complicated expes$o a simple product of terms of
the formexp{a;X;,};

(iii) since theX; are independent the expectation of this product is just thdyzt of the ex-
pectations and each individual expectation is just thekr)anoment generating function
of X; evaluated at;, giving a simple explicit expression for the joint mgf;

(iv) finally from the joint mgf we can calculate the marginagiifior X and the (marginal) joint
mgf for X; — X, X, — X, ..., X,, — X and note that the joint mgf is the product of these
marginal mgfs.

Thus, by analogy with the result in the notes for two randonmaes, X is independent of the
set of random variable¥; — X, X, — X, ..., X,, — X and hence o, (X; — X)2.
Detailed Proof

(i) Let X denote(X; +---+X,)/n, lets denote(s, +sa+---+5,)/n (807, (s;—5) = 0),
and letM(¢, sy, . . sn) denote the joint moment generating funct|on ofmhe 1 random
variablesX, X; — X Xo— X, X, - X.

Then by definition
M(t,s1,...,8,) = Elexp{tX +51(X; — X) + 52(Xo — X) + -+ 8,(X,, — X)})

(i) Now rearranging the terms in the curly brackets gives

t7+ Sl(Xl —7) +82(X2 —Y) + e +Sn<Xn —7)

= (t—s1—83— = 85)X +5X1 + 8 Xo+ -+ + 5, X,
t_Z'Si t 3
= uXi+-+a,X, for a; = —<2" £ 5=~ + (s; —3).
n n
(i) Thus
M(t,Sl,...,Sn)

= Elexp{tX +51(X; = X) +55(Xog = X) + -+ 5,(X,, — X)})
= Elexp{a1 X1+ -+ a, X, })
= FE(exp{a1X1}) E(exp{asXs}) --- E(exp{a,X,}) since eachX; is independent

SoOM(t,s1,...,8n)
= MXl(al) MX2( ) MXn(a )

2 2 2a2 2 2
} exp{puas + 5 21 ... exp{,uan+ ”} since each\; ~ N(u, o?)

= exp{ua; +
0.2 2
= exp{pXa; + J}—exp{ut+02t2/2n—l—a Z s; —3)%/2}.
j=1
where the last equality follows from the facts that”_, a; = ¢

and 377 af =t /n 4300 (5 =5+ 200 (i —35) /=1 n+ 377 (s —3)%
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(iv) Hence  M(t,0,...,0) = exp{ut + o%t*/2n}

and  M(0,s1,...,5,) = exp{o* X", (s; — 5)%/2}
giving M(t,s1,...,8,) = M(t,0,...,0) M(0,s1,...,8,).

ThusX is independent of the random variables, — X, X, — X, ..., X,, — X) and in particular
X isindependent of ", (X; — X)*.

6.9(b) Proof of the distribution of 377, (X; — X)?/5™.

First note that for any random variabl&s, j = 1,...,n, with X = (X; +--- + X,,)/n,

S XP = Y (X - X4+ X)?
= LK X)X (X - X) + L, X
where, by definition, 7, (X; — X) =0
so Y X7 = Y (X;-X)? +nX". (as often seen before!)
Now consider first the case where= 0 ando? = 1, soX;, j = 1,...,n, is a random sample
from the N(0, 1) distribution. PutiVs = 7", X7, Z (X —X)?and W, = nX..

Then from abovelV; = W, + W;.

Thus My, (t) = Muy,1w,(t)

= My, (t)My,(t), asW; andW, are independent from 6.4
SO My,(t) = My, (t)/ Mw, ().
But W, ~ x? from6.5, asy/nX ~ N(0,1) from 6.3 since: = 0 ando? =1,
and W3 ~ x2from6.8(a)
SO My,(t) = (1—2t)72/(1—2t)~1/2

= (1 —2t)~=Y/2 which is the mgf for they? , distribution
Thus Wy = YU (X - X)2/o? ~ 2.

To extend the proof to the case of gengralndo?, setY; = (X; — u)/o, j =1,...,n,and set
Wy = Z?:l sz = Z?:1(Xj_,u)2/‘72a Wy = Z?:1(Yj_?)2 = Z?:1(Xj_7)2/02 andV, =
nY’ = n(X — p)?/o%. Then the proof proceeds exactly as above, siigeandV; are again
independent with? andx1 distribution respectively, so again we havg = > 7, (Y; — Y)? =

Y (X = X)?o% ~



6.14 The F distribution

(i) Definition

Let U and V' be independent random variables with ~ x? andV ~ x2, and letiWW =
(U/r)/(V/s). Then we sayV has theF' distribution withr and s degrees of freedom and
we writeWW ~ F, ;.

(if) Notes

1. The density function is heavily skewed with a long riglil ta

2. If W ~ F, ; then, directly from the definitionl,/W ~ Fj, .

3. Define the percentage poift ., as the value such th&(W > F, ;.,) = a whenW ~ F, .

4. From (1-3) it follows that the distribution @t is not symmetric, but that the lower percentage
points for theF,. ; distribution can be found from the upper percentage poortshfe F , distri-
bution, using the relationship, s.; o = 1/Fs .-

6. Forz > 0, the probability density functiorfi(z) for F, ; is given (see Ric§6.2) by

f(x) = L((r+s)/2) (Z)T/er/Q—l <1+E)—(7‘+5)/2.

- T(r/2)(s/2) s
(iii) Applications
Let X1,..., X,, be arandom sample of sizefrom the Normal distributionV (;.x, 0% ), and, in-
dependently, leYy, ..., Y, be arandom sample of sizdrom the Normal distributionV (uy, 03 ).

Let6% = Y (X; — X)?/(m — 1) and let6Z = > (Y; — Y)?/(n — 1) be the usual variance
estimators for theX andY populations. Then these are independent and, from yous nodése
distributions " (X; — X)?/0% ~ x2,_, andd (Y; = Y)%/a2 ~ x2_,.

Let

o S =X/ m - 1)
(Y -Y)?/(n—-1)
then wherv?, = 0% = (say)o?

o DX =X m—1) (X = X)?/oX(m=1) _ Xpa/(m—1)

Y -YPR/(n-1) XY -YP/oin-1)  xaa/(n—1)

and in particular the distribution df is independent of the unknown parametexs 1y ando?.

~ Fm—l,n—la

This approach forms a starting point for statistical infexe about the equality of variances for
the two populations and, more generally, for inference netg of linear models including linear
regression and analysis of variance.



