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Sampling distributions related to the Normal distribution

6.1 Revision of Moment Generating functions
(i) Definition

For a continuous random variableX the moment generation functionMX is defined by

MX(t) ≡ E(etX) =

∫

etxfX(x)dx

(and by the corresponding sum in the discrete case), defined for whatever values oft the
integral or sum is well defined. It uniquely determines the distribution, in the sense that two
random variables with the same moment generating function have the same distribution.

(ii) Some particular cases

X ∼ N(µ, σ2) ⇐⇒ MX(t) = exp{µt+ σ2t2/2} t ∈ R

X ∼ Exp(θ) ⇐⇒ MX(t) = θ/(θ − t) t < θ

X ∼ Gamma(α, β) ⇐⇒ MX(t) = βα/(β − t)α t < β

(iii) Linear transformations

If Y = aX + b thenMY (t) = E(etY ) = E(etaX+tb) = etbMX(ta)

(iv) Joint moment generating functions and Independence

For two random variablesX andY , the joint moment generating function is defined as

MX,Y (s, t) ≡ E(esX+tY )

and similarly for more than 2 random variables.

The marginal moment generating functions forX andY are given in terms of the joint
moment generating function by

MX(s) = E(esX) = MX,Y (s, 0)

MY (t) = E(etY ) = MX,Y (0, t)

Two random variablesX andY are independent if and only if

MX,Y (s, t) = MX(s)MY (t) = MX,Y (s, 0)MX,Y (0, t).

(v) Sums of independent random variables

If X1, . . . , Xn are independent andY = X1 +X2 + · · ·+Xn, then

MY (t) = E(etY ) = E(etX1+···+tXn) = E(etX1)E(etX2) . . . E(etXn)

so
MY (t) = MX1

(t)MX2
(t) . . .MXn

(t)

If X1, . . . , Xn are a random sample, i.e. they are all independent and all have the same
distribution as a random variableX, then this simplifies to

MY (t) = [MX(t)]
n
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6.5 Proof of the independence ofX and
∑n

j=1
(Xj −X)2.

The proof is made up of the following steps:

(i) the definition gives an expression for the the joint moment generating function ofX,X1 −
X,X2 −X, . . . , Xn −X as the expected value of a complicated function of the variables;

(ii) simple manipulation reduces this complicated expression to a simple product of terms of
the formexp{ajXj};

(iii) since theXj are independent the expectation of this product is just the product of the ex-
pectations and each individual expectation is just the (known) moment generating function
of Xj evaluated ataj, giving a simple explicit expression for the joint mgf;

(iv) finally from the joint mgf we can calculate the marginal mgf for X and the (marginal) joint
mgf for X1 −X,X2 −X, . . . , Xn −X and note that the joint mgf is the product of these
marginal mgfs.

Thus, by analogy with the result in the notes for two random variables,X is independent of the
set of random variablesX1 −X,X2 −X, . . . , Xn −X and hence of

∑n
j=1 (Xj −X)2.

Detailed Proof

(i) Let X denote(X1+ · · ·+Xn)/n, lets denote(s1+s2+ · · ·+sn)/n (so
∑n

j=1 (sj−s) = 0),
and letM(t, s1, . . . , sn) denote the joint moment generating function of then+ 1 random
variablesX,X1 −X,X2 −X, . . . , Xn −X.

Then by definition

M(t, s1, . . . , sn) = E(exp{tX + s1(X1 −X) + s2(X2 −X) + · · ·+ sn(Xn −X)})

(ii) Now rearranging the terms in the curly brackets gives

tX + s1(X1 −X) + s2(X2 −X) + · · ·+ sn(Xn −X)

= (t− s1 − s2 − · · · − sn)X + s1X1 + s2X2 + · · ·+ snXn

= a1X1 + · · ·+ anXn for aj =
t−

∑

i si
n

+ sj =
t

n
+ (sj − s).

(iii) Thus
M(t, s1, . . . , sn)

= E(exp{tX + s1(X1 −X) + s2(X2 −X) + · · ·+ sn(Xn −X)})
= E(exp{a1X1 + · · ·+ anXn})
= E(exp{a1X1}) E(exp{a2X2}) · · · E(exp{anXn}) since eachXj is independent

SoM(t, s1, . . . , sn)

= MX1
(a1) MX2

(a2) · · · MXn
(an)

= exp{µa1 +
σ2a21
2

} exp{µa2 +
σ2a22
2

} · · · exp{µan +
σ2a2n
2

} since eachXj ∼ N(µ, σ2)

= exp{µΣjaj +
σ2 Σja

2
j

2
} = exp{µt+ σ2t2/2n+ σ2

n
∑

j=1

(sj − s)2/2}.

where the last equality follows from the facts that
∑n

j=1 aj = t

and
∑n

j=1 a2j = t2/n+
∑n

j=1(sj − s)2 + 2t
∑n

j=1(sj − s)/n = t2/n+
∑n

j=1(sj − s)2.
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(iv) Hence M(t, 0, . . . , 0) = exp{µt+ σ2t2/2n}
and M(0, s1, . . . , sn) = exp{σ2

∑n
j=1(sj − s)2/2}

giving M(t, s1, . . . , sn) = M(t, 0, . . . , 0)M(0, s1, . . . , sn).

ThusX is independent of the random variables(X1−X,X2−X, . . . , Xn−X) and in particular
X is independent of

∑n
j=1 (Xj −X)2.

6.9(b) Proof of the distribution of
∑n

j=1
(Xj −X)2/σ2.

First note that for any random variablesXj, j = 1, . . . , n, with X ≡ (X1 + · · ·+Xn)/n,
∑n

j=1 X
2
j =

∑n
j=1(Xj −X +X)2

=
∑n

j=1(Xj −X)2 + 2X
∑n

j=1(Xj −X) +
∑n

j=1X
2

where, by definition,
∑n

j=1(Xj −X) = 0

so
∑n

j=1 X
2
j =

∑n
j=1(Xj −X)2 + nX

2
. (as often seen before!)

Now consider first the case whereµ = 0 andσ2 = 1, soXj , j = 1, . . . , n, is a random sample

from theN(0, 1) distribution. PutW3 ≡
∑n

j=1 X
2
j , W2 ≡

∑n
j=1(Xj − X)2 andW1 ≡ nX

2
.

Then from above,W3 = W2 +W1.

Thus MW3
(t) = MW1+W2

(t)

= MW1
(t)MW2

(t), asW1 andW2 are independent from 6.4,

so MW2
(t) = MW3

(t)/MW1
(t).

But W1 ∼ χ2
1 from 6.5, as

√
nX ∼ N(0, 1) from 6.3 sinceµ = 0 andσ2 = 1,

and W3 ∼ χ2
n from 6.8(a),

so MW2
(t) = (1− 2t)−n/2/(1− 2t)−1/2

= (1− 2t)−(n−1)/2 which is the mgf for theχ2
n−1 distribution.

Thus W2 ≡
∑n

j=1(Xj −X)2/σ2 ∼ χ2
n−1.

To extend the proof to the case of generalµ andσ2, setYj ≡ (Xj − µ)/σ, j = 1, . . . , n, and set
W3 ≡

∑n
j=1 Y

2
j =

∑n
j=1(Xj−µ)2/σ2, W2 ≡

∑n
j=1(Yj−Y )2 =

∑n
j=1(Xj−X)2/σ2 andW1 ≡

nY
2
= n(X − µ)2/σ2. Then the proof proceeds exactly as above, sinceW3 andW1 are again

independent withχ2
n andχ2

1 distribution respectively, so again we haveW2 ≡
∑n

j=1(Yj − Y )2 =
∑n

j=1(Xj −X)2/σ2 ∼ χ2
n−1.
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6.14 The F distribution

(i) Definition
Let U and V be independent random variables withU ∼ χ2

r and V ∼ χ2
s, and letW =

(U/r)/(V/s). Then we sayW has theF distribution with r and s degrees of freedom and
we writeW ∼ Fr,s.

(ii) Notes
1. The density function is heavily skewed with a long right tail.
2. If W ∼ Fr,s then, directly from the definition,1/W ∼ Fs,r .
3. Define the percentage pointFr,s;α as the value such thatP (W ≥ Fr,s;α) = α whenW ∼ Fr,s.

4. From (1–3) it follows that the distribution ofF is not symmetric, but that the lower percentage
points for theFr,s distribution can be found from the upper percentage points for theFs,r distri-
bution, using the relationshipFr,s;1−α = 1/Fs,r;α.

6. Forx > 0, the probability density functionf(x) for Fr,s is given (see Rice§6.2) by

f(x) =
Γ((r + s)/2)

Γ(r/2)Γ(s/2)

(r

s

)r/2

xr/2−1
(

1 +
rx

s

)

−(r+s)/2

.

(iii) Applications
LetX1, . . . , Xm be a random sample of sizem from the Normal distributionN(µX , σ

2
X), and, in-

dependently, letY1, . . . , Yn be a random sample of sizen from the Normal distributionN(µY , σ
2
Y ).

Let σ̂2
X =

∑

(Xi − X)2/(m − 1) and letσ̂2
Y =

∑

(Yj − Y )2/(n − 1) be the usual variance
estimators for theX andY populations. Then these are independent and, from your notes, have
distributions

∑

(Xi −X)2/σ2
X ∼ χ2

m−1 and
∑

(Yj − Y )2/σ2
Y ∼ χ2

n−1.

Let

T =

∑

(Xi −X)2/(m− 1)
∑

(Yj − Y )2/(n− 1)
,

then whenσ2
X = σ2

Y = (say)σ2

T =

∑

(Xi −X)2/(m− 1)
∑

(Yj − Y )2/(n− 1)
=

∑

(Xi −X)2/σ2
X(m− 1)

∑

(Yj − Y )2/σ2
Y (n− 1)

=
χ2
m−1/(m− 1)

χ2
n−1/(n− 1)

∼ Fm−1,n−1,

and in particular the distribution ofT is independent of the unknown parametersµX , µY andσ2.

This approach forms a starting point for statistical inference about the equality of variances for
the two populations and, more generally, for inference in variety of linear models including linear
regression and analysis of variance.
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