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Confidence Intervals

7.1 Introduction – N(µ, σ2) – Confidence Interval for µ whenσ2 is known

Consider the simple case where we have a random sample of sizen from a NormalN(µ, σ2)

distribution, where the population meanµ is an unknown parameter which we wish to estimate
and (unrealistically) the population varianceσ2 is known (sayσ2 = σ2

0).

The natural estimator ofµ is X̄ – it is the maximum likelihood estimator, the method of moments
estimator and the estimator given by the sample mean. However, even for this ‘best’ estimator,
different samples would give different estimates, so we know our estimate cannot be ‘exactly’
correct.

In such cases, it may be more informative to report the value of the estimate, together with some
measure of the accuracy or the margin of error of the estimate. This leads to procedures which
report their results in the form of anintervalof values we have someconfidencecontains the true
value of the unknown parameter.

95% Confidence Interval

Say we wanted to know what margin of error to report to be 95% confident that the true value of
µ was within the declared margin of error of the estimatex̄. One way of proceeding is as follows:

We know X̄ ∼ N(µ, σ2
0/n) and

X̄ − µ

σ0/
√

n
∼ N(0, 1) from 6.4

so P

(

−1.96 ≤ X̄ − µ

σ0/
√

n
≤ 1.96

)

= 0.95 since z0.025 = 1.96.

But
X̄ − µ

σ0/
√

n
≤ 1.96 ⇐⇒ X̄ − µ ≤ 1.96 σ0√

n
⇐⇒ X̄ − 1.96 σ0√

n
≤ µ

and −1.96 ≤ X̄ − µ

σ0/
√

n
⇐⇒ −1.96 σ0√

n
≤ X̄ − µ ⇐⇒ µ ≤ X̄ +

1.96 σ0√
n

so the event

{

−1.96 ≤ X̄ − µ

σ0/
√

n
≤ 1.96

}

occurs if and only if

the event

{

X̄ − 1.96 σ0√
n

≤ µ ≤ X̄ +
1.96 σ0√

n

}

also occurs.

Thus if we take a large number of simple random samples from the N(µ, σ2
0) distribution, each

of fixed sizen, then in 95% of the samples the intervalX̄ ± 1.96σ0/
√

n will contain the true
parameter valueµ (and in 5% it will not). Thus we report a95% confidence intervalwith Lower
end pointscL and Upper end pointcU given by

cL = X̄ − 1.96 σ0√
n

and cU = X̄ +
1.96 σ0√

n

General100(1 − α)% confidence interval

More generally for a100(1 − α)% confidence interval :
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we know P

(

−zα/2 ≤
X̄ − µ

σ0/
√

n
≤ zα/2

)

= 1 − α

but
X̄ − µ

σ0/
√

n
≤ zα/2 ⇐⇒ X̄ − µ ≤ zα/2 σ0√

n
⇐⇒ X̄ − zα/2 σ0√

n
≤ µ

and −zα/2 ≤
X̄ − µ

σ0/
√

n
⇐⇒ −zα/2 σ0√

n
≤ X̄ − µ ⇐⇒ µ ≤ X̄ +

zα/2 σ0√
n

so the event

{

−zα/2 ≤
X̄ − µ

σ0/
√

n
≤ zα/2

}

occurs if and only if

the event

{

X̄ − zα/2 σ0√
n

≤ µ ≤ X̄ +
zα/2 σ0√

n

}

also occurs.

Thus if we take a large number of simple random samples from the N(µ, σ2
0) distribution, each

of fixed sizen, then in100(1 − α)% of the samples the interval̄X ± zα/2σ0/
√

n will contain
the true parameter valueµ (and in100α% it will not). We can therefore report a100(1 − α)%

confidence intervalwith Lower end pointscL and Upper end pointcU given by

cL = X̄ − zα/2 σ0√
n

and cU = X̄ +
zα/2 σ0√

n

Notes

• For each sample the interval either will or will not contain the true valueµ. In 95% of cases
(or more generally in100(1− α)% of cases) it will and in the remainder it will not – but it
is impossible to tell for each sample whether the interval does or does not containµ.

• The length of the confidence interval is2 × zα/2 σ0/
√

n. Here it is clear that:
– the length of the interval DECREASES as the sample sizen INCREASES
– the length of the interval INCREASES as the population varianceσ2

0 INCREASES
– the length of the interval INCREASES as the confidence level100(1 − α) INCREASES
(since this meansα DECREASES and sozα/2 INCREASES).
These relationships between the (average) length of the interval and the sample size, the
population variance and the confidence level are intuitively reasonable and are hold more
generally for other confidence intervals we will meet.

• The interval is of the form(cL, cU), where the end points

cL(X1, . . . , Xn) = X̄ − zα/2 σ0/
√

n and cU(X1, . . . , Xn) = X̄ + zα/2 σ0/
√

n

depend on the data as well as on the value ofn and the value of the known parameterσ0.
Thus the end points of the confidence interval, and (usually)the length of the confidence
interval, are themselves random variables whose values will vary from sample to sample.

• The confidence statement defining the interval has the form

P{cL ≤ µ ≤ cU} = 1 − α.

It is important to understand that in this statement,µ is fixed; it is cL andcU that depend
on the data, so vary from sample to sample. The confidence statement is an assertion about
the joint distribution ofcL andcU .

2



7.9 Confidence interval forθ – Exp(θ) population

Say we have a simple random sampleX1, . . . , Xn from a population with Exp(θ) distribution,
and we want to construct a100(1−α)% confidence interval for the single unknown parameterθ.

The standard estimate (mom and mle) forθ is θ̂ = n/
∑n

j=1
Xj,

where (from§ 6.13)
∑n

j=1
Xj ∼ Gamma(n, θ) and hence2θ

∑n
j=1

Xj ∼ χ2
2n.

To construct an ‘equal tailed’ confidence interval we start by noting that

P

(

χ2
2n ; 1−α/2 ≤ 2θ

n
∑

j=1

Xj ≤ χ2
2n ; α/2

)

= 1 − α

so that

P

(

χ2
2n ; 1−α/2

2
∑n

j=1
Xj

≤ θ ≤
χ2

2n ; α/2

2
∑n

j=1
Xj

)

= 1 − α.

Thus, if we take cL = χ2
2n ; 1−α/2/(2

∑n
j=1

Xj) and cU = χ2
2n ; α/2

/(2
∑n

j=1
Xj)

then(cL, cU) is a100(1 − α)% confidence interval forθ.

7.10 Confidence intervals by simulation in R

Given a simple random sampleX1, . . . , Xn of sizen from a distribution in a parametric family
with a single unknown parameterθ, and we can construct an approximate100(1−α)% confidence
interval by simulation as follows:

1. Calculate an estimatêθ for θ.

2. SimulateB simple random samples, each of the same sizen as the original sample, from the
distribution in the parametric family corresponding to thevalueθ̂.

3. Calculate theB estimates,θ∗1, . . . , θ
∗

B, one from each simulated sample, using the same esti-
mation method as in step 1 above.

4. Calculate the correpondingB values ofθ∗k − θ̂, k = 1, . . . , B. If θ̂ is close toθ, then the
distribution of the values ofθ∗ − θ̂ for samples from the distribution with parameterθ̂ will be
close to the distribution of̂θ − θ for samples from the distribution with parameterθ.

5. Identify valueskL andkU such that100α/2 of theB values ofθ∗k − θ̂ are< kL and100α/2

of theB values ofθ∗k − θ̂ are> kU . Then from step 4 above we have that

P (kL ≤ θ̂ − θ ≤ kU) ≃ P (kL ≤ θ∗ − θ̂ ≤ kU) ≃ 1 − α.

6. The event{kL ≤ θ̂ − θ ≤ kU} is equivalent to the event{θ̂ − kU ≤ θ ≤ θ̂ − kL}, so for B
large the interval(cL, cU) is an approximate100(1 − α)% confidence interval forθ, where

cL = θ̂ − kU and cU = θ̂ − kL.

7.11 Example - Earthquakes - 90% Confidence Interval

Consider again thequakes data set (§1.6) withn = 62 observations. In line with the graphical
plots in§1.6 and the assessment of fit in§2.11, we assume the data comes from a distribution in
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the Exp(θ) family. For this family, we found that the method of momentsestimate forθ (§2.6)
and the maximum likelihood estimate forθ (§3.6) both had the form̂θ = 1/x̄.

The sequence ofR commands below first calculateŝθ for the quakes data; then generates
62, 000 observations from the Exponential distribution with this value of θ, and arranges the
observations into a matrix ofB = 1000 samples each withn = 62 observations. Next it calculates
a vector of means for each of thek = 1, . . . , 1000 samples; calculates the vector of estimatesθ∗k
for the samples; calculates the vector of differencesθ∗k − θ̂; sorts these differences in order of
increasing value and puts the sorted values in a vectorsort.diff. Finally, we want a 90%
confidence interval, so100(1 − α) = 90 giving α = 0.1 andα/2 = 0.05. Thus the last three
commands output the 50th and the 950th of the 1000 ordered values ofθ∗k − θ̂ (i.e. the 5th and
the 95th quantiles of the ordered differences); calculatecL = θ̂ − kU ; and calculatecU = θ̂ − kL.
Other intervals can be calculated similarly - e.g. for a 95% confidence interval you would need
the 2.5th and the 97.5th quantiles, which here would roughlycorrespond to the 25th and the 975th
values in the set of ordered differences.

> theta.hat <- 1/mean(quakes)
> xsamples <- matrix(rexp(62000,theta.hat), nrow=1000)
> xmean <- apply(xsamples,1,mean)
> theta.star <- 1/xmean
> diff.theta <- (theta.star - theta.hat)
> sort.diff <- sort(diff.theta)
> sort.diff[c(50,950)]
> cl <- theta.hat - sort.diff[950]
> cu <- theta.hat - sort.diff[50]

A histogram of the 1000 differences for a particular simulation is given below. Recall that the esti-
mate ofθ here isθ̂ = 0.00229. For this simulation the 5th and 95th quantiles werekL = −0.00039

andkU = 0.00058 respectively, so the90% confidence interval calculated from the simulation
had end pointscL = θ̂−kU = 0.00171 andcU = θ̂−kL = 0.00268. This compares well with the
exact 90% confidence interval, which has end points (§7.8) cL = χ2

2n;1−α/2
/2
∑n

1
xi = 0.00183

andcU = χ2
2n;α/2

/2
∑n

1
xi = 0.00279, calculated usingR.
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