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Hypothesis Tests

8.1 Introduction

A hypothesis H is a statement about a parameter – for example, that θ = 0, µ = 4.2 or 2 < σ <
5. A test of a hypothesis is a procedure for deciding whether a pre-conceived hypothesis H is
consistent with the data x1, x2, . . . , xn. This is not the same as deciding whether H is true or not.
Data will always be consistent with two or more hypotheses that contradict each other!

Establishing the consistency of a hypothesis with the data is posed as a competition between this
hypothesis, say H0 and another one, H1, although the two are not treated symmetrically. H1 is
present simply, or at least mainly, to define the direction of departures from H0 that are regarded
as interesting. For example, if testing whether grocery packages contain at least a specified
amount µ0, we would test H0 : µ = µ0 against the alternative H1 : µ < µ0, since the consumer
does not care if s/he gets too much!

Thus a test ofH0 needs to provide an answer to the question: is the hypothesisH0 consistent with
the data x1, x2, . . . , xn (or would a value of θ allowed by H1 be preferable), or more precisely “is
there significant evidence against H0 in these data?”. We call H0 the null hypothesis and H1 the
alternative hypothesis, terminology that reinforces the asymmetry of the situation.

At its simplest, a hypothesis-testing procedure requires the following steps:

1. Statement of any model assumptions

2. Statement of the null hypothesis and the alternative hypothesis of interest

3. Calculation of the value of an appropriate test statistic

4a. Computation of the resulting p-value, or....

4b. Computation of the critical region for a specified significance level

5. Report on any conclusions.

Model Assumptions
As with any statistical procedure, we start with a probability model for the data. We will assume
that the data is a simple random sample from the values of a particular population variable, whose
population distribution is a member of a known parametric family.

We will first focus on the case when the parameter of interest is the population mean µ.

Null Hypothesis
Often the null hypothesis is that of no difference or no effect – i.e. there is no difference between
the parameter value for this population and the parameter value for some previous reference
population, reflecting the fact that the distribution of the variable in the current population is no
different from that in the previous population, or that what differences there are have had no effect
on this parameter value. That is why we call it the null hypothesis.

If we denote the known mean for the previous population by µ0 and denote the unknown mean
for the current population by µ, then the null hypothesis takes the form H0 : µ = µ0.
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Alternative Hypothesis
We will usually have in mind some specific alternative hypothesis of interest, which we think
might reasonably be true, and which we might accept if we reject H0. We will denote the alter-
native hypothesis by H1, and restrict attention to three standard cases:

(a) the current mean is greater than its previous value, i.e. µ > µ0

(b) the current mean is less than its previous value, i.e. µ < µ0

(c) the current mean differs from its previous value, i.e. µ 6= µ0.

A shorthand way of writing the null and alternative hypotheses for case (a) is:

• H0 : µ = µ0 versus H1 : µ > µ0,

with corresponding shorthands for the cases H1 : µ < µ0 and H1 : µ 6= µ0.

Test Statistic
To summarise the evidence provided by the data for or against H0, we use the value of a suitable
test statistic T (X1, . . . , Xn), i.e. a function of the data with the following properties:
(a) ‘extreme’ values of the test statistic would be highly unlikely if H0 were true and indicate
evidence that H0 is in fact false,
(b) when µ = µ0 (i.e. whenH0 is true) the distribution of T is known and its distribution function
is tabulated or can be easily calculated.

We have seen that the sample mean X̄ is a natural estimator for an unknown population mean µ,
so it is often sensible to base our test statistic on the function X̄ − µ0.

8.2 p-value approach: Consistency with H0

If the observed value of our test statistic is relatively consistent with H0 then it provides little or
no evidence that H0 is untrue. Thus, for a given value t, it is of interest to identify the set of
values of the test statistic T which would be less consistent with H0 and more consistent with
H1 than t. In later courses you will see that these are precisely the set of values whose relative
likelihood of occurring under H0 rather than H1 is less than that for t.

Obviously, the set of values depends that are less consistent with H0 and more consistent with
H1 depends on the particular alternative of interest H1. In the three most common cases below,
we can identify it by considering how the values we would expect to see for T would differ if H1

rather than H0 were true.

(a) H1 : µ > µ0 i.e. the alternative is that the current mean is greater than the reference mean.
Here ‘less consistent with H0’ corresponds to values such that T (X1, . . . , Xn) > t.

(b) H1 : µ < µ0 i.e. the alternative is that the current mean is less than the reference mean.
Here ‘less consistent with H0’ corresponds to values such that T (X1, . . . , Xn) < t.

(c) H1 : µ 6= µ0 i.e. the alternative is that the current mean differs from the reference mean.
Here ‘less consistent with H0’ corresponds to values such that |T (X1, . . . , Xn)| > |t|.

p-value
Say our sample data x1, . . . , xn has resulted in an observed value tobs = T (x1, . . . , xn) for the
test statistic T . We measure the weight of evidence this provides by computing the probability,
under the assumption that H0 is true, of getting a value of the test statistic less consistent with
H0 (and more consistent with H1) than the one actually observed. We call this probability the
p-value corresponding to the observed value tobs.
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Thus, for each alternative, we calculate the p-value as follows:

(a) H1 : µ > µ0 ⇒ p-value = P (T > tobs |H0 true)

(b) H1 : µ < µ0 ⇒ p-value = P (T < tobs |H0 true)

(c) H1 : µ 6= µ0 ⇒ p-value = P (|T | > |tobs| |H0 true).

Interpretation of the p-value
If the p-value is very small – i.e. the level of consistency with H0 is very small – then we take
that as strong evidence that either the null hypothesis H0 : µ = µ0 is false or that something very
unlikely has happened. Thus, small p-values may well lead us to reject H0 in favour of H1.

Conversely, if the p-value is relatively large, then the this particular set of observations is rela-
tively likely to occur when H0 is true, and we conclude that there is no evidence to lead us to
reject H0.

8.3 Critical region approach: Type I and Type II Error

One way of evaluating the performance of a test procedure is to focus attention on some particular
alternative value (say µ = µ1 > 0) and ask how likely the procedure would be to detect that µ
was not equal to µ0 when in fact µ = µ1. Denote this simple fixed alternative hypothesis by
H1 : µ = µ1, and assume for the moment that µ can only take one of the two values µ = µ0 or
µ = µ1. In this simplified context, there are only two possible errors, called type I error and type
II error, where:

• Type I error is the error of deciding the null hypothesis H0 is false when in fact H0 is
actually true,

• Type II error is the error of deciding the null hypothesis H0 is true (and the alternative
hypothesis H1 is false) when in fact H1 is actually true.

Significance level
There is a trade-off between type I and type II error. A change to the test procedure that reduces
the type I error will usually increase the type II error, and vice-versa. Control of the type I error
is often thought of as being more important, since H0 represents in some sense the status-quo.
Thus, a common way of applying a test procedure is to fix in advance some small acceptable
threshold level α for the type I error. We call this level the significance level of the test, and speak
of an α-level test. Typical values taken for α are 0.05 or 0.01.

Thus, for a test procedure with fixed type I error:

• Significance level α = P(Type I error) = P(Reject H0|H0 true).

Note that, by definition, an α-level test procedure will reject H0 if and only if the calculated p-value
is less than or equal to α.

Note also that for large sample sizes, a small difference between the current parameter and the
reference parameter may be statistically significant but not of any real practical importance.

Critical region
Fixing the significance level α in turn fixes the critical region C – the set of observations or values
of the test statistic that would lead us to reject H0 – and the critical value c∗ – the value of the
test statistic that is on the borderline between accepting and rejecting H0. So
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• Critical region C = set of values of the test statistic that would lead us to reject H0.

When the test procedure has fixed type I error and the alternative of interest is H1 : µ > µ0, then
this defines the critical value c∗ as the value satisfying the condition P (T > c∗|H0 true) = α.
Corresponding conditions hold for the other two cases.

P(Type II error) and Power
Consider again the case of a simple fixed alternative and look first at H1 : µ = µ1 > µ0. A type
II error occurs when we accept the null hypothesis H0 as true when in fact H1 is actually true.
Under our test procedure for this alternative, we accept H0 as true if and only if the value of our
test statistic is less than or equal to c∗. Thus, for a test statistic T , critical value c∗ and alternative
hypothesis value µ1, the probability of committing a type II error is just the probability that the
value of our test statistic will be less than or equal to c∗ when in fact H1 is actually true, i.e.

• P(Type II error) = P(Accept H0|H1 true) = P (T ≤ c∗|µ = µ1).

We define the power of the test to be 1− P (T ≤ c∗|µ = µ1), i.e. 1− P(Type II error). It gives a
measure of how powerful the procedure would be in detecting that the alternative µ = µ1 is true.

When the alternative of interest is µ < µ0, so we are testingH0 : µ = µ0 versusH1 : µ = µ1 < 0,
the argument proceeds exactly as above, except that the orientation of the null and alternative
values of µ has been reversed. Thus fixing the significance level at a given value α now fixes a
critical value c∗ such that we accept H0 if the value of our test statistic is greater than or equal
to c∗ and we reject H0 only if the value of our test statistic is less than c∗. It is still true that
P(Type I error) = Significance level = α, but, for a test statistic T , critical value c∗ and alternative
hypothesis value µ1, we now have

• P(Type II error) = P(Accept H0|H1 true) = P (T ≥ c∗|µ = µ1).

8.4 Confidence Intervals and Hypothesis Tests

Hypothesis tests are closely related to confidence intervals. In particular, the α-level test of
H0 : µ = µ0 versus the two-sided alternative H1 : µ 6= µ0 will reject H0 if and only if the
corresponding two-sided 100(1− α)% confidence interval for µ does not contain µ0.

Similar results connect one-sided tests and one-sided confidence intervals of the form (−∞, cU)
or (cL,∞). The α-level test of H0 : µ = µ0 versus the one-sided alternative H1 : µ > µ0

will reject H0 if and only if µ0 is not contained in the corresponding one-sided 100(1 − α)%
confidence interval (cL,∞), and the α-level test of H0 : µ = µ0 versus the one-sided alternative
H1 : µ < µ0 will reject H0 if and only if µ0 is not contained in the corresponding one-sided
100(1− α)% confidence interval (−∞, cU).

t-tests in R
We have already met the t.test() command in R in the context of calculating confidence
intervals. The R command:

> t.test(data, mu = 0, alternative="greater", conf.level=0.9)

will compute a one-sample t-test on observations in an array data, with null hypothesis H0 :
µ = 0, with alternative hypothesis H1 : µ > 0, and at significance level α = 0.1. The numerical
mean value 0 can be replaced by the value appropriate for your data, the alternative hypothesis
”greater” can be replaced by the alternatives ”less” or ”two.sided” as desired, and the significance
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level can be changed by setting conf.level to 1− α (the default value is α = 0.05).

8.5 Example - Normal distribution with known variance

As in §7.1, we start by consider the (unrealistically) simple case where we have a random sample
of size n from a Normal N(µ, σ2) distribution, where the population mean µ is an unknown
parameter which we wish to test but the population variance σ2 is known (say σ2 = σ2

0).

The following gives a typical example: When patients with a certain type of chronic illness are
treated with the current standard medication, the mean time to recurrence of the illness is 53.3
days, with a standard deviation of σ0 = 26.4 days. A new type of medication, that is thought to
increase the time until recurrence, was tried by a randomly chosen sample of 16 patients. For this
sample, the mean time to recurrence was x̄ = 65.8 days.

Assuming the variance of the recovery time is the same for the new medication as for the current
medication, we might want to test whether the new medication has increased the mean time to
recovery, using a test with significance level, say α = 0.05.

Model assumptions:
(a) x1, . . . , xn are the observed values of a random sample X1, . . . , Xn, . . .
(b) . . . from a population with the Normal N(µ, σ2) distribution, where µ is unknown but the
value of σ2 is known – say σ2 = σ2

0 .

Thus in our medical example above we might assume:
(a) The recurrence times for the n = 16 patients are a random sample from the population of
recurrence times for all patients that will use this new medication . . .
(b) . . . with distributionN(µ, σ2), where µ is unknown but the value σ2 = σ2

0 = (26.4)2 is known.

Hypotheses:
Say the past or ‘status quo’ value of the mean is some pre-assigned or known value µ0 and we
are interested in whether there is sufficient evidence to conclude the mean of the population from
which the sample is taken has mean µ > µ0. Then we take:

• Null hypothesis to be H0 : µ = µ0 (corresponding to no difference between the means)

• Alternative hypothesis H1 : µ > µ0 (corresponding to the new mean being greater)

Thus, in our medical example we would take: H0 : µ = µ0 = 53.3 versus H1 : µ > 53.3
The null hypothesis H0 corresponds to no difference between the mean recurrence time µ for
the new medication and the mean recurrence time µ0 = 53.3 for the standard medication. The
alternative hypothesis H1 corresponds to the mean recurrence time for the new medication being
longer than the mean recurrence time for the standard medication.

Test Statistic:
Since X̄ is the natural estimator of µ, we base our test statistic on X̄ − µ0. Since the population
standard deviation σ0 is assumed known we can take as our test statistic

T (X1, . . . , Xn) =
√
n(X̄ − µ0)/σ0

Then from §6, when H0 is true (i.e. when µ = µ0) we have X ∼ N(µ0, σ
2
0) and T ∼ N(0, 1).

In our medical example, this means we base our test statistic on X̄ − 53.3. Since the population
standard deviation σ0 = 26.4 is assumed known and n = 16, we can take as our test statis-
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tic T (X1, . . . , Xn) =
√
n(X̄ − µ0)/σ0 =

√
16(X̄ − 53.3)/26.4, where X̄ ∼ N(µ, σ2

0/n) =
N(µ, (26.4)2/16). Thus, when H0 is true (i.e. when µ = µ0 = 53.3) we have T =

√
16(X̄ −

53.3)/26.4 ∼ N(0, 1).

The data gives x̄ = 65.8 so the observed test statistic is tobs =
√

16(65.8− 53.3)/26.4 = 1.893.

p-value:
Since the alternative of interest is H1: µ > µ0, the values of T which are less consistent with
H0 than tobs are the set of values {T > tobs}. Also, when H0 is true, T ∼ N(0, 1). Thus
p-value = P (T > tobs|H0 true) = P (Z > tobs) (whereZ ∼ N(0, 1)) = 1− Φ(tobs)

In the medical example, the values of T which are less consistent with H0 than tobs are the set of
values {T > tobs = 1.893} so
p-value = P (T > tobs|H0 true) = P (Z > 1.893) = 1− Φ(1.893) = 1− 0.9708 = 0.0292.

Critical region:
Since the alternative of interest is H1: µ > µ0, the values of T which are less consistent with H0

than a given value t are the set of values {T > t} and the critical region of values for which the
test would reject H0 is of the form C = {T > c∗}.

To find c∗ for a given significance level α, we recall that a test has significance level α if P(Reject
H0|H0 true) = α. Thus, for a 0.05-level test, c∗ is defined by the condition

0.05 = α = P (RejectH0|H0 true) = P (T > c∗ |H0 true) = P (Z > c∗) = 1− Φ(c∗),

so c∗ = Φ−1(1− α) and for α = 0.05 this gives c∗ = Φ−1(0.95) = 1.645.

Thus in the medical example the critical region of values C has the form C = {T > c∗}, i.e.
C = {T > 1.645}. Since tobs = 1.893 is in C, the 0.05-level test would lead us to reject H0.

NOTE: the form of the set of values of T which are less consistent with H0 than a given value t
depends crucially on the choice of the alternative hypothesis H1. Here, for H1 : µ < µ0 it would
have form {T < t}, and for H1 : µ 6= µ0 it would have form {T > |t|}.

Conclusions:
In giving conclusions we should (a) report the p-value and/or whether tobs is in the critical region;
and (b) interpret that to make practical conclusions about µ in the context of the example.

In the medical example, the p-value of 0.03 is quite small – if the mean for the new medication
was really 53.3 we would only only observe data for which the consistency with H0 was this
small about 3 percent of the time. Thus there is reasonably strong evidence that H0 is not true.

Similarly, the observed test statistic value tobs = 1.893 falls well within the critical region of the
0.05-level test, so at this level we would reject H0 in favour of H1, and conclude that the new
medication has increased the mean time to recovery.

As the required significance level decreases the borderline level of consistency also decreases. A
level that was borderline for the 0.05-level test would be (well) above the borderline for, say, a
0.025-level test, and here tobs = 1.893 would not be in the critical region of a 0.025-level test.
Thus, if we only classified an observation as inconsistent with H0 if it was outside this lower
threshold, we would be more cautious and report that there is insufficient evidence to conclude
that the new medication has increased the mean time to recovery.
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