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Comparisons and Regression

In this final section, we look at hypothesis tests and confidence intervals in situations where the
data has more structure that just a single sample, based on the assumption that data are Normally
distributed.

9.1 Introduction
In previous sections we have concentrated on cases where the data could be modelled as a single
random sample from a parametric distribution with one or more unknown parameters. This type
of model is applicable when there are no systematic differences between the experimental units,
so any differences in the data values from unit to unit are attributable to random variation. Our
focus was on using EDA to identify an appropriate population distribution, on estimating the
parameters of this distribution and evaluating the accuracy of the estimates, and on evaluating the
evidence for or against a simple hypothesis about the parameter values.

In reality, data are usually collected in order to make comparisons between groups, and/or to study
how the main variable of interest (the response variable) depends one one or more explanatory
variables. These are really different versions of the same question – if data arise in different
groups (age groups, groups receiving different treatments, groups from different countries, etc.),
then we can think of each data item being accompanied by a label indicating the group to which
that item belongs, so by studying the way in which the response variable depends on this label,
we are comparing groups. In this case, the explanatory variable is discrete or categorical, and
often referred to as a factor.

In the remainder of the course we consider these problems of comparison and dependence. The
response variable will be influenced by both systematic and random variation, and we can think
of the task of the statistician being to separate these two effects.

9.2 A general framework for tests and confidence intervals using the t distribution
Suppose that we have a statistical model in which we have a parameter of interest θ, and an
estimator θ̂ of this parameter, with the property that

θ̂ ∼ N(θ, σ2
θ̂
). (1)

The variance σ2
θ̂

is unknown but we have an estimator of it, which we denote S2
θ̂
, and we suppose

that
rS2

θ̂
/σ2

θ̂
∼ χ2

r (2)

for some r (the degrees of freedom), and that

θ̂ and S2
θ̂

are independent. (3)

Results in Section 6 of the course tell us quite a lot about this situation. From (1) and §6.2(c) we
know that

θ − θ̂
σθ̂
∼ N(0, 1) (4)

and then (2), (3) and §6.10 imply that

θ − θ̂
Sθ̂
∼ tr. (5)
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This is a very general result, with far-reaching consequences, because the assumptions are so
general. It is mainly used to construct hypothesis tests and confidence intervals.

Hypothesis tests. It follows from (5) that in testing the hypothesis H0 : θ = θ0 (where θ0 is a
fixed number), we can use the test statistic

T =
θ − θ̂
Sθ̂

and know that under H0, T ∼ tr.

Confidence intervals. It also follows from (5) that

P

{
−tr;α/2 <

θ − θ̂
Sθ̂

< tr;α/2

}
= 1− α,

and after the usual manipulations (e.g. see §7.3), this means that (cL, cU) is a 100(1 − α)%

confidence intervals for θ, where

cL = θ̂ − tr;α/2Sθ̂ and cU = θ̂ + tr;α/2Sθ̂.

9.3 Example: a single sample from N(µ, σ2)

Suppose that we are in the familiar situation of assuming that X1, X2, . . . , Xn are a simple ran-
dom sample from N(µ, σ2), with both parameters unknown. Then we can see that this is an
example of the general set-up of §9.2, with

θ = µ, θ̂ = X, σ2
θ̂

= σ2/n, S2
θ̂

= S2/n, r = n− 1.

The confidence interval for θ ≡ µ in §9.2 is the same as that in §7.3, and the hypothesis test in
§9.2 is the same as that in §8.6 (the one-sample t test).

In the remainder of the section, we will look at some more interesting examples, the application of
the results in §9.2 to linear regression and to comparison of two populations. These two special
cases are examples of a larger much more general class of methods in statistics for studying
dependence and comparison.

9.4 Linear regression
In this section, we return to Linear Regression, as seen in Section 4. But, now we have laid
the theoretical groundwork, we can perform inference on the parameters of the model, for ex-
ample tests of hypotheses and confidence intervals; before we only discussed estimation of the
parameters.

As mentioned in the introduction, we are thinking of a kind of comparison of populations. Instead
of discretely separated groups, what we are comparing are the populations of potential Y values
for different values of x, so it is a continuous variable (x) that distinguishes our populations of
interest. In this course, we only consider one-dimensional x, and a linear dependence of Y on x,
but the subject of Regression becomes much more general later.
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Here we will use the assumptions and notation of §4:

Yi = α + βxi + ei,

for unknown parameters α, β, together with the assumption that the ei, i = 1, 2, . . . , n are i.i.d.
N(0, σ2). This is equivalent to saying that Yi ∼ N(α + βxi, σ

2), independently for each i =

1, 2, . . . , n.

9.5 Distribution of α̂, β̂ and σ̂2

Lemma (partly seen in §4.10)

(i) E(β̂) = β, Var(β̂) = σ2/ssxx and β̂ ∼ N(β, σ2/ssxx)

(ii) E(α̂) = α, Var(α̂) = σ2(1/n+ x̄2/ssxx) and α̂ ∼ N(α, σ2(1/n+ x̄2/ssxx))

(iii) (n− 2)σ̂2/σ2 ∼ χ2
n−2 and σ̂2 is independent of (α̂, β̂).

Proof (i) For a given data set, the yi are observed values of the random variables Yi correspond-
ing to the given values of xi. If we took repeated independent sets of samples of the Yi keeping
the set of values of the predictor variable fixed at x1, . . . , xn, then the value of β̂ would vary from
sample to sample as we would get different sets of values for y1, . . . , yn. Thus, considered as a
random variable,

β̂ =

∑n
1 Yixi − (

∑n
1 Yi

∑n
1 xi)/n∑n

1 x
2
i − (

∑n
1 xi)

2/n
=

n∑
1

Yi
(xi − x̄)

ssxx
=

n∑
i=1

biYi

where, for given fixed values of x1, . . . , xn, the bi = (xi − x̄)/ssxx, i = 1, . . . , n are fixed
constants and the Yi are independent Normally distributed random variables with mean E(Yi) =

α + βxi and variance Var(Yi) = σ2.

From the results in §6 we can immediately deduce that β̂ has a Normal distribution, since it is a
linear combination of independent Normally distributed random variables. To calculate the mean
and variance for β̂ we first note that

E(β̂) = E(
∑n

1 biYi) =
∑n

1 bi E(Yi) =
∑n

1 bi(α + βxi) = α
∑n

1 bi + β
∑n

1 bixi

and

Var(β̂) = Var(
∑n

1 biYi) =
∑n

1 b
2
i Var(Yi) (as the Yi are independent) = σ2

∑n
1 b

2
i .

But
∑n

1 bi =
1

ssxx

n∑
1

(xi − x̄) =
1

ssxx
0 = 0

and
∑n

1 bixi =
1

ssxx

n∑
1

(xi − x̄)xi =

∑n
1 x

2
i − x̄

∑n
1 xi

ssxx
=

∑n
1 x

2
i − nx̄2

ssxx
=
ssxx
ssxx

= 1

and
∑n

1 b
2
i =

1

(ssxx)2

n∑
1

(xi − x̄)2 =
ssxx

(ssxx)2
=

1

ssxx
.

Thus E(β̂) = α 0 + β 1 = β and Var(β̂) =
σ2

ssxx
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(ii) Derivation of the distribution for α̂ is very similar to that for β̂. We start by noting that
α̂ = Ȳ − β̂x̄ =

∑n
1 Yi/n − x̄

∑n
1 biYi =

∑n
1 Yi(1/n − bix̄) =

∑n
i=1 aiYi where ai = (1/n −

bix̄), i = 1, . . . , n. This in turn means α̂ has a Normal distribution and gives E(α̂) = α
∑n

1 ai +

β
∑n

1 aixi and Var(α̂) = σ2
∑n

1 a
2
i . Finally, using the facts that

∑n
1 bi = 0,

∑n
1 bixi = 1 and∑n

1 b
2
i = 1/ssxx, one can easily deduce that

∑n
1 ai = 1,

∑n
1 aixi = 0 (so E(α̂) = α) and∑n

1 a
2
i = (1/n+ x̄2/ssxx) =

∑
x2
i /n ssxx (so Var(α̂) = σ2(1/n+ x̄2/ssxx) = σ2

∑
x2
i /n ssxx).

(iii) The proof of part(iii) is similar to that in §6.5, and is omitted.

9.7 Example - the Leaning Tower of Pisa
We previously met this example in §4.

Some of the basic arithmetic:∑
i xi = 1053,

∑
i yi = 9018,

∑
i x

2
i = 85475,

∑
i y

2
i = 6271714,

∑
i xiyi = 732154.

So x = 81, y = 693.6923, ssxx = 182, ssyy = 15996.77, ssxy = 1696

and then β̂ = 9.319, α̂ = −61.121, σ̂2 = 17.481, S2
α̂ = 631.51, S2

β̂
= 0.096047.

Finally, σ̂ = 4.181, Sα̂ = 25.130, Sβ̂ = 0.3099.

To be continued on the board.....

9.8 Confidence Intervals and Hypothesis Tests using the summary command in R
Consider the simple Normal linear regression model Yi = α + βxi + ei, where the ei are i.i.d.
N(0, σ2).Assume the predictor values x1, . . . , xn are contained in an R data vector called xdata
and the response values y1, . . . , yn are contained in an R data vector called ydata, and assume
we want our analysis to be contained in the R object xyoutput.

We have already seen how to produce the output using the R command
> xyoutput <- lm(ydata ˜ xdata)
and how to perform exploratory data analysis, estimation and assessment of fit using the follow-
up commands plot, coef, fitted, and residuals.

For confidence intervals and hypothesis tests, most of the necessary information can be obtained
with the summary command. For example

> summary(xyoutput)

produces the following output, where the formulae shown in each box is replaced in the actual
output by its numerical value.
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Call:
lm(formula = ydata ˜ xdata)

Residuals:

Min 1Q Median 3Q Max

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) α̂ = ȳ − β̂x̄ Sα̂ = σ̂

√
1

n
+

x̄2

ssxx
α̂/Sα̂ 2(1− Ftn−2(|α̂/Sα̂|))

xdata β̂ = ssxy/ssxx Sβ̂ = σ̂/
√
ssxx β̂/Sβ̂ 2(1− Ftn−2(|β̂/Sβ̂|))

---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: σ̂ =

√
ssyy − ss2

xy/ssxx

n− 2
on n− 2 degrees of freedom

Thus the output:
(i) first of all it reproduces the formula used to produce the output, so you can check exactly
which model is being analysed;
(ii) then it produces a 5-number summary of the residual values (or lists in full the numerical
values of the residuals if there are only a few of them);
(iii) then it lists the relevant values for constructing confidence intervals and performing hypoth-
esis tests on the linear model coefficients α and β – first for α (the intecept in the model) and then
for β (the coefficient of x in the model);
(iv) then it lists numerical values relevant to estimating σ2 (or, more precisely, σ);
(v) and finally it gives information on the R-Squared and F-statistic values (which I’ve omitted
as they are not covered in this unit).

In particular, the values on the line beginning (Intercept) are:
(i) α̂ (the estimate of α),
(ii) Sα̂ (the standard error, which estimates the standard deviation α̂),
(iii) tobs = α̂/Sα̂ (the observed test statistic for testing H0:α = 0 vs. H1:α 6= 0),
(iv) P (|W | > |tobs), where W ∼ tn−2 (the p-value of the data for the test).

The result of a hypothesis test of H0:α = 0 vs. H1:α 6= 0 can then be deduced immediately from
the corresponding p-value. Moreover, the endpoints for a 100(1 − γ)% confidence interval for
α can be calculated using the values of α̂, Sα̂ and the appropriate t-distribution percentage point
tn−2;γ/2.

The values on the line beginning xdata are the corresponding quantities for estimating, con-
structing confidence intervals or performing hypothesis tests on β:
i.e. (i) β̂, (ii) Sβ̂ , (iii) tobs = β̂/Sβ̂ , and (iv) P (|W | > |tobs), where W ∼ tn−2.
A 100(1− γ)% confidence interval for β can be obtained in a similar manner to that for α.
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9.9 The Leaning Tower of Pisa example in R
In our previous analysis (§4) we had typed pisafit<-lm(tilt˜year,data=pisa) to
carry out the linear regression. Applying the summary(pisafit) command using this previ-
ous result produces the output below. You can (and should) check that the values shown corre-
spond to the appropriate values calculated in your notes when we constructed confidence intervals
and performed hypothesis tests on α and β.

From the output we can, for example, immediately read off the least squares estimate β̂ = 9.3187

and its standard error Sβ̂ = 0.3099. We can also see that the p-value for testing H0:β = 0 versus
H1:β 6= 0 is extremely small (6.5× 10−12) and so there is very strong evidence that β is not zero
and the mean tilt does vary significantly with the year.

Call:
lm(formula = tilt ˜ year)

Residuals:
Min 1Q Median 3Q Max

-5.9670 -3.0989 0.6703 2.3077 7.3956

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -61.1209 25.1298 -2.432 0.0333 *
year 9.3187 0.3099 30.069 6.5e-12 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.181 on 11 degrees of freedom
Multiple R-Squared: 0.988, Adjusted R-squared: 0.9869
F-statistic: 904.1 on 1 and 11 DF, p-value: 6.503e-12

9.10 Comparison of two groups
We now look at the situation of the comparison of two groups – that is of an explanatory vari-
able that is binary – takes just two values. We have two groups of data, and suspect there are
systematic differences between the groups which may affect the data. So we assume that the
data values for each group come from distinct populations. The question of interest is whether
there are systematic differences between the populations in the value of some quantity of interest
(corresponding to differences in the factor values). The groups might be defined by properties
of the experimental units (human subjects, etc.) or by different treatments (drug therapies, for
example) applied to those units.

For simplicity, we restrict ourselves to the case where the data can be assumed normally dis-
tributed, the quantity of interest is the population mean, and to the very specific question of
testing whether observed differences are statistically significant.

Sometimes, we may be able to assume that the values in each data set are entirely independent
of each other and of those in the other data set. In this case the data can be modelled as two in-
dependent random samples from different population distributions. Here the question of interest
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reduces to whether the means of the two populations differ. This type of model can be analysed
using a two sample t-test.

Alternatively, when we are studying differences between treatments, the experiment may be de-
signed so that each treatment is applied to each experimental unit, so the data consist of pairs
of observations on each of n experimental units, with the first observation in each pair corre-
sponding to one factor value and the second corresponding to the other. Whatever the differences
between the experimental units, it may be plausible to assume that the change in factor value is
associated with a common systematic change in the underlying distribution of the variable being
measured. An appropriate model is often that the differences between the observations in each
pair are independent observations from the same distribution, whose mean corresponds to the
systematic change, and the question of interest reduces to whether or not this mean change is
zero. This type of model can be analysed using a paired t-test.

9.11 Two sample t-test
For the two sample t-test the model assumptions are that the data consists of two independent
random samples, where X1, . . . , Xn is a random sample of size n from the Normal N(µX , σ

2
X)

distribution and Y1, . . . , Ym is a random sample of size m from the Normal N(µY , σ
2
Y ) distribu-

tion. Denote the sample means by X̄ = (X1 + · · ·+Xn)/n and Ȳ = (Y1 + · · ·+ Ym)/m.

The null hypothesis of interest is H0 : µX = µY , or equivalently H0 : µX − µY = 0. The
standard estimators of µX and µY are X̄ and Ȳ , so it is natural to base our analysis on the value
of X̄ − Ȳ . From §6.4, X̄ ∼ N(µX , σ

2
X/n) and Ȳ ∼ N(µY , σ

2
Y /m), so from §6.3 X̄ − Ȳ ∼

N(µX − µY , σ2
X/n+ σ2

Y /m).

The situation is slightly more complicated than the single sample case. If we can assume the X
and Y distributions have the same variance, then we can combine our estimates of σ2

X and σ2
Y

into a single pooled estimate, and the resulting test statistic does have a standard t-distribution. If
we cannot make this assumption, then a result due to Welch shows that the distribution of the test
statistic can be approximated by a t-distribution with non-integer degrees of freedom. We deal
with these two cases in turn below.

9.11.1 Pooled two sample t-test
Here we are prepared to make the extra model assumption that σ2

X = σ2
Y = (say) σ2.

Denote the sample variances by S2
X =

∑n
i=1(Xi−X̄)2/(n−1) and S2

Y =
∑m

j=1(Yj−Ȳ )2/(m−1).

Since both of these are independent estimates of the common variance σ2, we can combine them
into the pooled estimate

S2
p =

∑n
i=1(Xi − X̄)2 +

∑m
j=1(Yj − Ȳ )2

n+m− 2
=

(n− 1)S2
X + (m− 1)S2

Y

n+m− 2
.

Since (n−1)S2
X and (m−1)S2

Y are independent and have χ2 distributions, by §6.8, (n−1)S2
X +

(m− 1)S2
Y ∼ χ2

n+m−2. So we are again in the general situation of §9.2, with

θ = µX−µY , θ̂ = X−Y , σ2
θ̂

= σ2(1/n+1/m), S2
θ̂

= S2
p(1/n+1/m), r = n+m−2.

Thus the test statistic becomes

T = (X̄ − Ȳ )/Sp

√
1

n
+

1

m
and T ∼ tn+m−2 when H0 is true.

7



9.11.2 Welch two sample t-test
In the general case, when σ2

X 6= σ2
Y , the natural estimators of the population variances are the

corresponding sample variances. Put

σ̂2
X = S2

X =
n∑
i=1

(Xi − X̄)2/(n− 1) and σ̂2
Y = S2

Y =
m∑
j=1

(Yj − Ȳ )2/(m− 1).

The test statistic is then: T = (X̄ − Ȳ )/

√
σ̂2
X

n
+
σ̂2
Y

m
.

A result due to Welch shows that: T ' tν when H0 is true. Note that this is only an approxi-
mation. The degrees of freedom are not necessarily integer, and are computed as:

ν =

(
S2
X

n
+
S2
Y

m

)2

1

n− 1

(
S2
X

n

)2

+
1

m− 1

(
S2
Y

m

)2 .

When the X and Y distributions have similar unimodal shapes, the approximation to the distri-
bution of the test statistic is reasonably good for n ≥ 5 and m ≥ 5. Note also that, when the
sample quantities (sample sizes and sample variances) are similar for the two samples, then the
degrees of freedom ν will be close to the value n+m− 2 used in the pooled test.

9.12 Paired t-test
For the paired t-test, the data consists n pairs of observations (X1, Y1), . . . , (Xn, Yn). Denote the
difference between the values in each pair by Wi = Xi − Yi. The model assumption is then that
W1, . . . ,Wn are a random sample from the N(δ, σ2) distribution, where δ and σ2 are unknown,
and the null hypothesis of interest is H0 : δ = 0.

Again we are in the general situation of §9.2, with now:

θ = δ, θ̂ = W = X − Y , σ2
θ̂

= σ2/n, S2
θ̂

= S2
W/n, r = n− 1.

Here, S2
W =

∑n
i=1(Wi −W )2/(n− 1). The test statistic is then

T =

√
n W

SW
and T ∼ tn−1 when H0 is true.

Again, we reject H0 if the value of the test statistic is significantly different from zero, where the
relevant direction of the difference will depend on the particular alternatives of interest.

Note that the model assumptions do not necessarily require that X1, . . . , Xn all have the same
distribution. For example, suppose that each Xi ∼ N(µi, τ

2) and that each Yi ∼ N(µi − δ, τ 2),
where the µi may all be different. This corresponds to a situation where the underlying mean
value µi for each experimental unit may vary from unit to unit, but where the systematic differ-
ence in the mean due to the factor is the same for all units. This would still be consistent with the
model assumptions above, since it still implies that each Xi − Yi ∼ N(δ, σ2), where σ2 = 2τ 2.

This type of experimental design may be particularly appropriate if the experimental units are
quite variable. In this case, small but consistent systematic differences may show up in an ex-
periment that uses paired observations, but may not be detected by an experiment that uses two
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independent samples because the small differences in the mean are masked by the high variability
between the experimental units.

9.13 t-test procedures in R
Welch two sample t-test
The default two sample t-test in R is the Welch test. Assume the two random samples are in data
arrays xdata and ydata. A test of the null hypothesis H0 : µX −µY = 0 against the two sided
alternative HA : µX − µY 6= 0 can be performed using the command

> t.test(xdata,ydata)

The output includes the value of the test statistic, the degrees of freedom ν for the approximating
t-distribution and the (approximate) p-value.

The option alternative="less" can be used to test against the alternativeHA : µX−µY <
0 as in the command

> t.test(xdata,ydata,alternative="less")

Similarly the option alternative="greater" can be used to test against the alternative
HA : µX − µY > 0.

Pooled two sample t-test
Again assume the two random samples are in data arrays xdata and ydata. Under the model
assumption that the population variances are equal, a pooled t-test of the null hypothesis H0 :

µX − µY = 0 agaist the two sided alternative HA : µX − µY 6= 0 can be performed using the
command

> t.test(xdata,ydata,var.equal=T)

Other alternatives can be specified using the alternative=· · · option as above. Again, the
output includes the value of the test statistic, the degrees of freedom and the p-value.

Paired t-test
For the paired t-test, the data is assumed to be in equal-length data arrays xdata and ydata,
where each component of xdata will be paired with the corresponding component of ydata.
A paired t-test of the null hypothesis H0 : δ = 0 agaist the two sided alternative HA : δ 6= 0 can
then be performed using the command

> t.test(xdata,ydata,paired=T)

and other alternatives can be specified using the alternative=· · · option. As usual, the output
includes the value of the test statistic, the degrees of freedom and the p-value.
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