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Solution Sheet 2

1. (a).

ȳ =
∑n

i=1
yi/n

=
∑n

i=1
(axi + b)/n

= a
∑n

i=1
xi/n+

∑n

i=1
b/n

= ax̄+ b

s2y =
∑n

i=1
(yi − ȳ)2/(n− 1)

=
∑n

i=1
((axi + b)− (ax̄+ b))2/(n− 1)

= a2
∑n

i=1
(xi − x̄)2/(n− 1)

= a2s2x

(b). The linear transformation fromx to y = ax + b will either preserve the order of the
observations when they are ranked in increasing size (ifa > 0) or reverse it (ifa < 0). Thus the
middle rankedy observation will be the one corresponding to the middle rankedx observation;
the top and bottom 10% of they observations will be exactly those values corresponding tothe
top and bottom 10% of thex observations (though top and bottom may swap ifa < 0), and so
on.

Thus the median, the quartiles and the trimmed means of the{yi} will be exactly (a× the value
of the corresponding quantity for the{xi}) + b. Since the IQR is the difference between the two
quartiles, theb will cancel as in the claculation fors2y above, and the IQR for the{yi} will be just
(a× the IQR for the{xi}).

(c). Herea = 1.8 and b = 32, so the{yi} observations will have mean= 1.8 × 68.1 +
32 = 154.58; median= 1.8 × 68.9 + 32 = 156.02; variance= 1.82 × 3.2 = 10.368; IQR
= 1.8× 7.7 = 13.86.

2. The data are of the form−11.1,−6.6,−5.0,−5.0,−5.0,−4.4,−4.4, . . . etc., with multiple data
values at slightly unusual decimal values that seem to be just over0.5 apart. Thus it displays the
kind of clustering or granularity mentioned in Section 1.2 of the notes.

The clue is in the previous question, and the fact that the data represents temperatures. If you
guess that the datax is in units of degrees Celsius, then the correspondingy values in degrees
Fahrenheit satisfyy = 1.8x+32, giving, after slight rounding, values12, 20, 23, 23, 23, 24, 24, . . ..
Thus the data were probably recorded in Fahrenheit, roundedto the nearest integer value, and
then later transformed to degrees Celsius, acquiring in the process a spurious air of accuracy to
an extra decimal point.

Of course, the quite irregular shape of the whole distribution is worth some interpretation. But
these are data from just 60 arbitrary cities, there is no reason to expect conformity to any standard
distribution. From the extremes, one imagines that cities in both Alaska and in the South (or
perhaps Hawaii) were included.

3. The boxplot resulting from the commands in the question should look like the one below. The
treatment types appear to split into two disjoint groups,{A,B,F} and {C,D,E}. Within each
group, the treatments are quite comparable – for example, they appear roughly similar in terms
of location and spread. However, there are substantial differences between the groups, both in
terms of location and spread.
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Figure 1: Box plots of the insect spray data

There are a variety of ways to compute the treatment means andvariances in R. The way shown
below works by reforming the data into a matrix, with one column of data corresponding to
each treatment and then computing the column means and column variances using theapply
command together with themean andvar commands. The standard deviations are then found as
the square roots of the variances. As expected, the numerical summaries show exactly the same
type of similarities within the groups{A,B,F}and{C,D,E}, and consistent differences between
the two groups, as the boxplots.

> attach(InsectSprays)
> spraymat<-matrix(InsectSprays[,1], ncol=6)
> apply(spraymat, 2, mean)
[1] 14.500000 15.333333 2.083333 4.916667 3.500000 16.666667
> apply(spraymat, 2, var)
[1] 22.272727 18.242424 3.901515 6.265152 3.000000 38.606061
> sqrt(apply(spraymat, 2, var))
[1] 4.719399 4.271115 1.975225 2.503028 1.732051 6.213378

4. Here is a transcript of my runs inR:

> ir2<-iridium[-c(1,2,3,4,8)]
> stem(ir2)

The decimal point is at the |

159 | 123
159 | 55556678
160 | 00112234
160 | 68
161 | 1

> stem(rnorm(22))

The decimal point is at the |
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-2 | 60
-1 | 83
-0 | 7554432211
0 | 38
1 | 223567

> stem(rnorm(22))

The decimal point is at the |

-2 | 3
-1 | 6332
-0 | 8666310
0 | 13337
1 | 00129

> stem(storm.claims)

The decimal point is 1 digit(s) to the right of the |

0 | 00000112233334
0 | 5588
1 | 2

> stem(rexp(19))

The decimal point is at the |

0 | 1223457899
1 | 011248
2 | 3
3 | 8
4 | 0

> stem(rexp(19))

The decimal point is at the |

0 | 011223
0 | 5567
1 | 22
1 | 6689
2 | 02
2 | 5

Of course, when using random numbers, you get different ‘data’ each time, so your output may
look different in detail. Probably the most important conclusions to be drawn from the visual
comparisons are:

(a) With small sample sizes (n = 22 or 19), there is considerable variation between samples
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in the appearance of stem and leaf plots and histograms: somelook very similar in broad
terms to the true density functions from which the data are generated, other less so.

(b) The real data sets give plots that qualitatively lie within the range of variation in the simu-
lated data sets (allowing for the differences in units).

(c) But on the basis of small samples, you cannot expect to conclude that a particular statistical
model generated the data (in the sense that an infintely largesample would exactly conform
to the true density function).
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