MATH11400 Statistics 1 2010-11

Homepage http://www.stats.bris.ac.uk/%7Emapjg/Teach/Stats1/

Solution Sheet 3

1. For a Geometric distribution with paramefeand probability mass function

(1 -6t z=1,2,...
p(z;0) = ( ) .
0 otherwise

the population mean is given in terms of the single unknowarmpater by=' (X;0) = 1/6.

Let m, denote the sample mean= (x; + --- + z,,)/n. For simplicity, W[iteé for the method
of moments estimatémom . Since there is only one unknown paramefesatisfies the single
equation

E(X;0)=my e 1f0=z ie 0=1/z=n/> x.
=1

2. Since there is only one unknown parametewe need only one equation to define the method
of moments estimate, and we use the equation involving tladlesh moment of the distribution
that explicitly depends oé.

Usually this would be the first population or distribution ment, EE(X; #). However, if X has
a N(0,6?) distribution, then the first moment of the distributionfi$X; §) = 0 and this does
not depend ord. The next smallest moment is the second momEk?; 0) = Var(X;6) +
[E(X;6)]* = 6? and this does depend ¢n

Let m, denote the second sample momentyso= (z + --- 4 27 )/n. For simplicity, writed
for the method of moments estima@@om. Then the equation definirghere is

B =m, e =Y ie 0= \(Y )
i=1 =1

3. (a) The default histogram produced Ryis shown below. The shape looks like a typical Expo-
nential pdf, so there is no reason to believe an Exponenssilslition with parametef would
not be an appropriate model.

(b) Since there is only one unknown parameétexe need only one equation to define the method
of moments estimator, and we use the equation involvingrtralest moment of the distribution
that explicitly depends ofi. For an Expf) distribution, the population mean ig6. Letm,
denote the sample mean= (z, + - - - + x,,) /n and writed for the method of moments estimator
fmom , thend satifies the equation

E(X:0)=m; ie 1/0=z e 6=1/z

For the given datap, = 115.2, givingé = 1/m; = 0.008680556.
(c) The steps are: first re-order the observations to obt@iisample quantiles or order statistics

21, - - - T(ny- TheN, since there are= 120 observations, calcula®y ' (k/121;0) = —log(1 —
k/121)/é for k = 1,...,120. Finally plot each value af;, against the corresponding value of
F~1(k/20;0).
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There are many ways of writing a sequence of commands thdtpeathe plot irR. The basic
steps involved are the same: read in the data; compute th@tet moments estimate (here it
is given in the question); if necessary, sort the data interading order; compute the quantiles
of fitted distribution; plot the ordered observations agathe fitted quantiles and compare to
the liney = z. The following basic set of instructions R should make clear exactly what is
involved, but note thaR provides the opportunity for many elegant short cuts onaebgcome
familiar with its commands.

ml <- mean(gaps)

theta <- 1/ml

gaps.ord <- sort(gaps)

guant <- (1:120)/121

gaps.fit <- gexp(quant,theta) # or: -log(1-quant)/theta
plot(gaps.fit, gaps.ord,...) # [add labels and titles here!]
abline(0,1)
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The required plot is shown above, on the right. It shows aomasle fit to the liney = =,
especially at the lower end, and the only systematic dendtiom the line is at the upper end,
where the sample quantiles seem somewhat ‘too high’. Bugtiseno very strong reason to
believe the observations do not come from an Exponentitilalision.

. Fora Unif0, 3) distribution,F(x) = /3 for the range of intere$t < = < 3. ThusF~1(y) = 3y,
and for then = 6 observations the corresponding five quantiles of the (Unif) distribution are
given by F~1(k/(6 + 1)) = 3k/7, for k = 1,...,6. Finally, we plot the ordered observations
(the sample quantiles), againsBk/7fork =1,...,6.

The resulting plot is shown below, with the straight line- x added to enable easier assessment
of fit. If the observations really came from the given (or fiftdistribution then the points should
lie along the this straight line, since we should hayg ~ F'~'(k/7). Here the plot shows that
there seems to be no systematic deviation from this line. Bsivery hard to make any definite
judgement with so few data points.
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5. (a) Since there are two unknown parameteasid\, we need two equations to define the method
of moments estimators, and we use the equations involviagwio smallest moments of the
distribution that depend am and\. HereE(X; a, \) = a/A andE(X?; o, \) = Var(X;a, \) +
E(X;a, ]2 =a/) +a?/)? = ala+1)/)\2
Let m; denote the sample mean= (x; + --- + x,,)/n and letm, denote the second sample
moment, son, = (22 + - - - + 22) /n. For simplicity, writea and\ for the estimatorgmom and
Amom Then the method of moments estimators satisfy

E(X;4,A) = m; and BE(X2da,)) = my

ie. a/A = my and &(a+1)/A2 = my
ie. a/A = m; and a/N?* = my—m?
Whence
G- —"™ _ and A— "1
(ma —m7) (m2 —mi)

(b) The method here is again similar to that for question 8epkthat there is no closed form
calculation which we can use to calculate the inverse of tae@a distribution function and
a package with a command such as gigammacommand inR is essential. The data here are
already ordered, so the following explicit steps would gkdte the method of moments estimates
from m,; andm, (here they are given in the question) and then find and plditted quantiles.

> ml <- mean(seeded.rain)

m2 <- mean(seeded.rain"2)

alpha <- m172/(m2 - m172)

lambda <- m1/(m2 - m1°2)

quant <- seq(1:25)/(26)

seeded.fit <- ggamma(quant,alpha,lambda)
plot(seeded.fit, seeded.rain)

abline(0,1)
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A probability plot for the Rainfall data is given below. Thedibes not look exceptionally good;
the order statistics in the middle/upper third are somewhadller than expected and the three
largest observations are much larger than expected. Howawenot sure that this really shows
any systematic deviation from the line, and | feel there isimmediate reason to reject the
Gamma model.
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6. (a) Both the boxplot and histogram below show no evidenateatNormal distribution would
not provide an adequate model for the data. The boxplot @&escthat the data are reasonably
symmetric about the mean and that there are no outliersewe histogram looks nicely sym-
metric and unimodal. A plot (not shown) of the observatianghie order given in the question
indicates no sign that consecutive observations are nepirdent.

Cavendish boxplot Cavendish histogram
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(b) For the Cavendish dat&® givesm; = 5.448 andm, = 29.727. From your notes, the
method of moments estimates gre= m; = 5.448 ando? = my — (my)? = 0.047134, giving
6 = 0.217. As in question 1, for av(u, ¢?) distribution, F'(x; u, 0?) = ®((z — p)/0o), where
® is the distribution function of theV (0, 1) distribution. ThusF—(y; u,0?) = u+ c®(y),
and for then = 29 observations the corresponding quantiles of the fittedibligton are given
by F~1(k/30; ii,02) = i+ 6@ 1 (k/30), fork = 1,...,29.

The method is now the same as for question 3, but using tabthe &/ (0, 1) distribution or the
gnorm command inR. The probability plot (3rd figure above) shows that the poire fairly
close to the line; = x and shows no systematic deviation from that line, indicaéirgood fit to
the estimated Normal distribution.

(c) From the working in (b) above, we see that the quantilébefitted distribution are jugt +

(6 x the quantiles of théV (0, 1) distribution). Thus we can try plotting the ordered obstores
against the quantiles of th€(0, 1) distribution, without estimating either or o2 (see 4th figure
above). If the data lie on a straight line in one plot it wi# Ibn a straight line in the other plot,
S0 we can evaluate the fit to a Normal distribution from eitilet. Moreover, if we fit a straight
line through the points in th&' (0, 1) probability plot, we can read off the slope as an estimate of
o and the value at zero as an estimatg.of



