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Solution Sheet 3

1. For a Geometric distribution with parameterθ and probability mass function

p(x; θ) =

{

θ(1 − θ)x−1 x = 1, 2, . . .

0 otherwise

the population mean is given in terms of the single unknown parameter byE(X; θ) = 1/θ.

Let m1 denote the sample mean̄x = (x1 + · · · + xn)/n. For simplicity, writeθ̂ for the method
of moments estimatêθmom . Since there is only one unknown parameter,θ̂ satisfies the single
equation

E(X; θ̂) = m1 i.e. 1/θ̂ = x̄ i.e. θ̂ = 1/x̄ = n/
n

∑

i=1

xi.

2. Since there is only one unknown parameterθ, we need only one equation to define the method
of moments estimate, and we use the equation involving the smallest moment of the distribution
that explicitly depends onθ.

Usually this would be the first population or distribution moment,E(X; θ). However, ifX has
a N(0, θ2) distribution, then the first moment of the distribution isE(X; θ) = 0 and this does
not depend onθ. The next smallest moment is the second moment,E(X2; θ) = Var(X; θ) +
[E(X; θ)]2 = θ2 and this does depend onθ.

Let m2 denote the second sample moment, som2 = (x2
1 + · · · + x2

n
)/n. For simplicity, writeθ̂

for the method of moments estimateθ̂mom. Then the equation defininĝθ here is

E(X2; θ̂) = m2 i.e. θ̂2 =
n

∑

i=1

x2
i
/n i.e. θ̂ =

√

(
n

∑

i=1

x2
i
/n).

3. (a) The default histogram produced byR is shown below. The shape looks like a typical Expo-
nential pdf, so there is no reason to believe an Exponential distribution with parameterθ would
not be an appropriate model.

(b) Since there is only one unknown parameterθ, we need only one equation to define the method
of moments estimator, and we use the equation involving the smallest moment of the distribution
that explicitly depends onθ. For an Exp(θ) distribution, the population mean is1/θ. Let m1

denote the sample meanx̄ = (x1 + · · ·+xn)/n and writeθ̂ for the method of moments estimator
θ̂mom , thenθ̂ satifies the equation

E(X; θ̂) = m1 i.e. 1/θ̂ = x̄ i.e. θ̂ = 1/x̄

For the given data,m1 = 115.2, giving θ̂ = 1/m1 = 0.008680556.

(c) The steps are: first re-order the observations to obtain the sample quantiles or order statistics
x(1), . . . , x(n). Then, since there aren = 120 observations, calculateF−1

X
(k/121; θ̂) = − log(1−

k/121)/θ̂ for k = 1, . . . , 120. Finally plot each value ofx(k) against the corresponding value of
F−1(k/20; θ̂).
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There are many ways of writing a sequence of commands that produce the plot inR. The basic
steps involved are the same: read in the data; compute the method of moments estimate (here it
is given in the question); if necessary, sort the data into ascending order; compute the quantiles
of fitted distribution; plot the ordered observations against the fitted quantiles and compare to
the liney = x. The following basic set of instructions inR should make clear exactly what is
involved, but note thatR provides the opportunity for many elegant short cuts once you become
familiar with its commands.

> m1 <- mean(gaps)
> theta <- 1/m1
> gaps.ord <- sort(gaps)
> quant <- (1:120)/121
> gaps.fit <- qexp(quant,theta) # or: -log(1-quant)/theta
> plot(gaps.fit, gaps.ord,...) # [add labels and titles here!]
> abline(0,1)

The required plot is shown above, on the right. It shows a reasonable fit to the liney = x,
especially at the lower end, and the only systematic deviation from the line is at the upper end,
where the sample quantiles seem somewhat ‘too high’. But there is no very strong reason to
believe the observations do not come from an Exponential distribution.

4. For a Unif(0, 3) distribution,F (x) = x/3 for the range of interest0 < x < 3. ThusF−1(y) = 3y,
and for then = 6 observations the corresponding five quantiles of the Unif(0, 3) distribution are
given byF−1(k/(6 + 1)) = 3k/7, for k = 1, . . . , 6. Finally, we plot the ordered observations
(the sample quantiles)x(k) against3k/7 for k = 1, . . . , 6.

The resulting plot is shown below, with the straight liney = x added to enable easier assessment
of fit. If the observations really came from the given (or fitted) distribution then the points should
lie along the this straight line, since we should havex(k) ≃ F−1(k/7). Here the plot shows that
there seems to be no systematic deviation from this line. But it is very hard to make any definite
judgement with so few data points.
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5. (a) Since there are two unknown parametersα andλ, we need two equations to define the method
of moments estimators, and we use the equations involving the two smallest moments of the
distribution that depend onα andλ. HereE(X; α, λ) = α/λ andE(X2; α, λ) = Var(X; α, λ) +
[E(X; α, λ)]2 = α/λ2 + α2/λ2 = α(α + 1)/λ2.

Let m1 denote the sample mean̄x = (x1 + · · · + xn)/n and letm2 denote the second sample
moment, som2 = (x2

1 + · · ·+ x2
n
)/n. For simplicity, writeα̂ andλ̂ for the estimatorŝαmom and

λ̂mom Then the method of moments estimators satisfy

E(X; α̂, λ̂) = m1 and E(X2; α̂, λ̂) = m2

i.e. α̂/λ̂ = m1 and α̂(α̂ + 1)/λ̂2 = m2

i.e. α̂/λ̂ = m1 and α̂/λ̂2 = m2 − m2
1

Whence

α̂ =
m2

1

(m2 − m2
1)

and λ̂ =
m1

(m2 − m2
1)

.

(b) The method here is again similar to that for question 3, except that there is no closed form
calculation which we can use to calculate the inverse of the Gamma distribution function and
a package with a command such as theqgammacommand inR is essential. The data here are
already ordered, so the following explicit steps would calculate the method of moments estimates
from m1 andm2 (here they are given in the question) and then find and plot thefitted quantiles.

> m1 <- mean(seeded.rain)
> m2 <- mean(seeded.rainˆ2)
> alpha <- m1ˆ2/(m2 - m1ˆ2)
> lambda <- m1/(m2 - m1ˆ2)
> quant <- seq(1:25)/(26)
> seeded.fit <- qgamma(quant,alpha,lambda)
> plot(seeded.fit, seeded.rain)
> abline(0,1)

A probability plot for the Rainfall data is given below. The fitdoes not look exceptionally good;
the order statistics in the middle/upper third are somewhatsmaller than expected and the three
largest observations are much larger than expected. However, I’m not sure that this really shows
any systematic deviation from the line, and I feel there is noimmediate reason to reject the
Gamma model.
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6. (a) Both the boxplot and histogram below show no evidence that a Normal distribution would
not provide an adequate model for the data. The boxplot indicates that the data are reasonably
symmetric about the mean and that there are no outliers, while the histogram looks nicely sym-
metric and unimodal. A plot (not shown) of the observations in the order given in the question
indicates no sign that consecutive observations are not independent.
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(b) For the Cavendish data,R givesm1 = 5.448 andm2 = 29.727. From your notes, the
method of moments estimates areµ̂ = m1 = 5.448 andσ̂2 = m2 − (m1)

2 = 0.047134, giving
σ̂ = 0.217. As in question 1, for aN(µ, σ2) distribution,F (x; µ, σ2) = Φ((x − µ)/σ), where
Φ is the distribution function of theN(0, 1) distribution. ThusF−1(y; µ, σ2) = µ + σΦ−1(y),
and for then = 29 observations the corresponding quantiles of the fitted distribution are given
by F−1(k/30; µ̂, σ̂2) = µ̂ + σ̂Φ−1(k/30), for k = 1, . . . , 29.

The method is now the same as for question 3, but using tables of theN(0, 1) distribution or the
qnorm command inR. The probability plot (3rd figure above) shows that the points lie fairly
close to the liney = x and shows no systematic deviation from that line, indicating a good fit to
the estimated Normal distribution.

(c) From the working in (b) above, we see that the quantiles ofthe fitted distribution are just̂µ +
(σ̂× the quantiles of theN(0, 1) distribution). Thus we can try plotting the ordered observations
against the quantiles of theN(0, 1) distribution, without estimating eitherµ or σ2 (see 4th figure
above). If the data lie on a straight line in one plot it will lie on a straight line in the other plot,
so we can evaluate the fit to a Normal distribution from eitherplot. Moreover, if we fit a straight
line through the points in theN(0, 1) probability plot, we can read off the slope as an estimate of
σ and the value at zero as an estimate ofµ.
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