Solution Sheet 4

1. When the data values x_{1}, \ldots, x_{n} are the observed values of a random sample of size n from a discrete distribution with probability mass function $p(x ; \theta)$, the Likelihood function has the form $L(\theta)=p\left(x_{1} ; \theta\right) p\left(x_{2} ; \theta\right) \cdots p\left(x_{n} ; \theta\right)$. Writing $\hat{\theta}$ for the maximum likelihood estimate $\hat{\theta}_{\text {mle }}$, then in regular cases $\hat{\theta}$ satisfies the likelihood equation $\sum_{i=1}^{n} \partial / \partial \theta \log p\left(x_{i} ; \theta\right)=0$.
Here the observations are from a Poisson (θ) distribution, so

$$
\begin{aligned}
p(x ; \theta) & =e^{-\theta} \theta^{x} / x! \\
\log p(x ; \theta) & =-\theta+x \log (\theta)-\log (x!) \\
\frac{\partial}{\partial \theta} \log p(x ; \theta) & =-1+\frac{x}{\theta} \\
\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log p\left(x_{i} ; \theta\right) & =\left(-1+\frac{x_{1}}{\theta}\right)+\cdots+\left(-1+\frac{x_{n}}{\theta}\right)=-n+\frac{\sum_{1}^{n} x_{i}}{\theta}
\end{aligned}
$$

so the maximum likelihood estimate $\hat{\theta}$ satisfies the likelihood equation
i.e.

$$
-n+\frac{\sum_{1}^{n} x_{i}}{\hat{\theta}}=0
$$

$$
\hat{\theta}=\frac{\sum_{1}^{n} x_{i}}{n}=\bar{x}
$$

2. When the data values x_{1}, \ldots, x_{n} are the observed values of a random sample of size n from a continuous distribution with probability density function $f(x ; \theta)$, the Likelihood function has the form $L(\theta)=f\left(x_{1} ; \theta\right) f\left(x_{2} ; \theta\right) \cdots f\left(x_{n} ; \theta\right)$. Writing $\hat{\theta}$ for the maximum likelihood estimate $\hat{\theta}_{\text {mle }}$, then in regular cases $\hat{\theta}$ satisfies the likelihood equation $\sum_{i=1}^{n} \partial / \partial \theta \log f\left(x_{i} ; \theta\right)=0$.
Here, adapting the method in question 1 above to the continuous case, we have

$$
\begin{aligned}
f(x ; \theta) & =\theta x^{\theta-1} \\
\log f(x ; \theta) & =\log (\theta)+(\theta-1) \log (x) \\
\frac{\partial}{\partial \theta} \log f(x ; \theta) & =\frac{1}{\theta}+\log (x) \\
\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log f\left(x_{i} ; \theta\right) & =\left(\frac{1}{\theta}+\log \left(x_{1}\right)\right)+\cdots+\left(\frac{1}{\theta}+\log \left(x_{n}\right)\right)=\frac{n}{\theta}+\sum_{1}^{n} \log \left(x_{i}\right)
\end{aligned}
$$

so the maximum likelihood estimate $\hat{\theta}$ satisfies the likelihood equation

$$
\frac{n}{\hat{\theta}}+\sum_{1}^{n} \log \left(x_{i}\right)=0
$$

i.e.

$$
\hat{\theta}=-\frac{n}{\sum_{1}^{n} \log \left(x_{i}\right)}
$$

For the given data, $n=5$ and $\sum_{1}^{5} \log \left(x_{i}\right)=-5.314919$ so $\hat{\theta}=-5 /(-5.314919)=0.94075$.
3. (a) Here the observations are from a $\operatorname{Binomial}(K, \theta)$ distribution, so following the method in question 1 above

$$
\begin{aligned}
p(x ; \theta) & =\binom{K}{x} \theta^{x}(1-\theta)^{K-x} \\
\log p(x ; \theta) & =\log \left[\binom{K}{x}\right]+x \log (\theta)+(K-x) \log (1-\theta) \\
\frac{\partial}{\partial \theta} \log p(x ; \theta) & =\frac{x}{\theta}-\frac{(K-x)}{(1-\theta)} \\
\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log p\left(x_{i} ; \theta\right) & =\left(\frac{x_{1}}{\theta}-\frac{\left(K-x_{1}\right)}{(1-\theta)}\right)+\cdots+\left(\frac{x_{n}}{\theta}-\frac{\left(K-x_{n}\right)}{(1-\theta)}\right) \\
& =\frac{\sum_{1}^{n} x_{i}}{\theta}-\frac{\left(n K-\sum_{1}^{n} x_{i}\right)}{(1-\theta)}
\end{aligned}
$$

so the maximum likelihood estimate $\hat{\theta}$ satisfies the likelihood equation

$$
\frac{\sum_{1}^{n} x_{i}}{\hat{\theta}}-\frac{\left(n K-\sum_{1}^{n} x_{i}\right)}{(1-\hat{\theta})}=0
$$

i.e.

$$
\begin{aligned}
\sum_{1}^{n} x_{i}-\hat{\theta} \sum_{1}^{n} x_{i} & =\hat{\theta} n K-\hat{\theta} \sum_{1}^{n} x_{i} \\
\hat{\theta}=\sum_{1}^{n} x_{i} / n K & =\bar{x} / K
\end{aligned}
$$

(b) For the given data, $n=7, K=10$ and $x_{1}+\cdots+x_{7}=57$ so the maximum likelihood estimate is $\hat{\theta}=57 / 70=0.81429$.
Let X denote the trainee's score in the examination. The probability the trainee will pass the examination is $P(X=10$ or $9 ; \theta)=P(X=10 ; \theta)+P(X=9 ; \theta)=\theta^{10}+10 \theta^{9}(1-\theta)$. Thus the maximum likelihood estimate of the probability of passing is just $\hat{\theta}^{10}+10 \hat{\theta}^{9}(1-\hat{\theta})=0.4205$.
(c) In the lecture example, given data of 4,5 , and 1 , there must have been in total 3 heads in 10 tosses (although in this experiment the ' 3 ' was fixed in advance, and the ' 10 ' the result of the random results of the coin tosses). If you analysed this as if the number of tosses was fixed in advance, and the 3 heads was the observed result, you could use part (a), with $K=1, n=10$ and $\left(x_{1}, x_{2}, \ldots, x_{n}\right)=(0,0,0,1,0,0,0,0,1,1)$ and by part (a) the mle for θ would again be 0.3 .
4. Here the observations are from an $\operatorname{Exponential}(\theta)$ distribution, so following the method outlined above adapted to the case of a continuous distribution,

$$
\begin{aligned}
f(x ; \theta) & =\theta e^{-\theta x} \\
\log f(x ; \theta) & =\log (\theta)-\theta x \\
\frac{\partial}{\partial \theta} \log f(x ; \theta) & =\frac{1}{\theta}-x \\
\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log f\left(x_{i} ; \theta\right) & =\left(\frac{1}{\theta}-x_{1}\right)+\cdots+\left(\frac{1}{\theta}-x_{n}\right)=\frac{n}{\theta}-\sum_{1}^{n} x_{i}
\end{aligned}
$$

so the maximum likelihood estimate $\hat{\theta}$ satisfies the likelihood equation

$$
\frac{n}{\hat{\theta}}-\sum_{1}^{n} x_{i}=0 \quad \text { i.e. } \quad \hat{\theta}=n / \sum_{1}^{n} x_{i}=1 / \bar{x} .
$$

For the given data, $\bar{x}=3.812$, so $\hat{\theta}=0.26233$.
(a) Since $X \sim \operatorname{Exp}(\theta)$, the median of the distribution of the lifetimes of lamps in the population is the value m (which depends on θ) such that $P(X>m ; \theta)=P(X \leq m ; \theta)=\frac{1}{2}$. For an Exponential $\left(\theta\right.$ distribution, $P(X>x ; \theta)=e^{-\theta x}$, so $e^{-\theta m}=\frac{1}{2}$, and $\overline{e^{\theta m}}=2$, giving $m=\log (2) / \theta$. Thus the maximum likelihood estimate of the median of the distribution is $\hat{m}=\log (2) / \hat{\theta}=2.642$. Note that the sample median is 3.7.
(b) Since $P(X>x ; \theta)=e^{-\theta x}$, the probability a randomly chosen lamp will survive beyond 10 hours is $P(X>10 ; \theta)=\exp (-10 \theta)$. Thus the maximum likelihood estimate of this survival probability is just $\exp (-10 \hat{\theta})=0.0726$. Note that the sample proportion of values greater than 10 is $1 / 25=0.04$.
5. (a) The likelihood function is just the joint probability density function as a function of the unknown parameters μ_{X}, μ_{Y} and σ^{2}. Since all the random variables are independent, this is just the product of all the $n+m$ individual (marginal) probability density functions,
i.e. $f_{X}\left(x_{1} ; \mu_{X}, \sigma^{2}\right) \cdots f_{X}\left(x_{n} ; \mu_{X}, \sigma^{2}\right) \times f_{Y}\left(y_{1} ; \mu_{Y}, \sigma^{2}\right) \cdots f_{Y}\left(y_{m} ; \mu_{Y}, \sigma^{2}\right)$.

Thus the loglikelihood function is just
$l\left(\mu_{X}, \mu_{Y}, \sigma^{2}\right)=\sum_{i=1}^{n} \log f_{X}\left(x_{i} ; \mu_{X}, \sigma^{2}\right)+\sum_{j=1}^{m} \log f_{Y}\left(y_{j} ; \mu_{Y}, \sigma^{2}\right)$.
(b) Since there are three unknown parameters μ_{X}, μ_{Y} and σ^{2}, the maximum likelihood estimates are the joint solutions of the three equations $\partial / \partial \mu_{X} l\left(\mu_{X}, \mu_{Y}, \sigma^{2}\right)=0, \partial / \partial \mu_{Y} l\left(\mu_{X}, \mu_{Y}, \sigma^{2}\right)=$ 0 , and $\partial / \partial \sigma l\left(\mu_{X}, \mu_{Y}, \sigma^{2}\right)=0$. Now

$$
\begin{aligned}
\frac{\partial}{\partial \mu_{X}} \log f_{X}\left(x ; \mu_{X}, \sigma^{2}\right) & =\frac{\left(x-\mu_{X}\right)}{\sigma^{2}} & \frac{\partial}{\partial \mu_{X}} \log f_{Y}\left(y ; \mu_{Y}, \sigma^{2}\right) & =0 \\
\frac{\partial}{\partial \mu_{Y}} \log f_{X}\left(x ; \mu_{X}, \sigma^{2}\right) & =0 & \frac{\partial}{\partial \mu_{Y}} \log f_{Y}\left(y ; \mu_{Y}, \sigma^{2}\right) & =\frac{\left(y-\mu_{Y}\right)}{\sigma^{2}} \\
\frac{\partial}{\partial \sigma} \log f_{X}\left(x ; \mu_{X}, \sigma^{2}\right) & =-\frac{1}{\sigma}+\frac{\left(x-\mu_{X}\right)^{2}}{\sigma^{3}} & \frac{\partial}{\partial \sigma} \log f_{Y}\left(y ; \mu_{Y}, \sigma^{2}\right) & =-\frac{1}{\sigma}+\frac{\left(y-\mu_{Y}\right)^{2}}{\sigma^{3}}
\end{aligned}
$$

Thus, on summing the terms above, we get

$$
\begin{aligned}
\frac{\partial}{\partial \mu_{X}} l\left(\mu_{X}, \mu_{Y}, \sigma^{2}\right) & =\sum_{i=1}^{n} \frac{\partial}{\partial \mu_{X}} \log f_{X}\left(x_{i} ; \mu_{X}, \sigma^{2}\right)+\sum_{j=1}^{m} \frac{\partial}{\partial \mu_{X}} \log f_{Y}\left(y_{j} ; \mu_{Y}, \sigma^{2}\right) \\
& =\frac{\left(x_{1}-\mu_{X}\right)}{\sigma^{2}}+\cdots+\frac{\left(x_{n}-\mu_{X}\right)}{\sigma^{2}}+0+\cdots+0 \\
& =\frac{\sum_{i=1}^{n} x_{i}-n \mu_{X}}{\sigma^{2}}
\end{aligned}
$$

while $\frac{\partial}{\partial \mu_{Y}} l\left(\mu_{X}, \mu_{Y}, \sigma^{2}\right)=\frac{\sum_{j=1}^{m} y_{j}-m \mu_{Y}}{\sigma^{2}}$
and $\quad \frac{\partial}{\partial \sigma} l\left(\mu_{X}, \mu_{Y}, \sigma^{2}\right)=-\frac{n}{\sigma}+\frac{\sum_{i=1}^{n}\left(x_{i}-\mu_{X}\right)^{2}}{\sigma^{3}}-\frac{m}{\sigma}+\frac{\sum_{j=1}^{m}\left(y_{j}-\mu_{Y}\right)^{2}}{\sigma^{3}}$
(c) On inspection, we see that the equations for the maximum likelihood estimates of μ_{X} and μ_{Y} are exactly the same as they would be for individual samples from each distribution and give

$$
\hat{\mu}_{X}=\left(x_{1}+\cdots x_{n}\right) / n=\bar{x} \quad \text { and } \quad \hat{\mu}_{Y}=\left(y_{1}+\cdots y_{m}\right) / m=\bar{y} .
$$

However, both data sets contribute jointly to the maximum likelihood estimate of σ^{2}, and the likelihood equation for σ has solution

$$
\begin{aligned}
\hat{\sigma}^{2} & =\frac{\sum_{i=1}^{n}\left(x_{i}-\hat{\mu}_{X}\right)^{2}+\sum_{j=1}^{m}\left(y_{j}-\hat{\mu}_{Y}\right)^{2}}{n+m} \\
& =\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+\sum_{j=1}^{m}\left(y_{j}-\bar{y}\right)^{2}}{n+m} \\
& =\frac{\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}+\sum_{j=1}^{m} y_{j}^{2}-m \bar{y}^{2}}{n+m} .
\end{aligned}
$$

(d) For the given data

$$
\begin{aligned}
& n=9, \quad \sum x_{i}=104.0, \quad \sum x_{i}^{2}=1218.92 \\
& m=10, \quad \sum y_{i}=102.3, \quad \sum y_{i}^{2}=1071.69
\end{aligned}
$$

giving

$$
\hat{\mu_{X}}=\bar{x}=11.5556 \quad \hat{\mu_{Y}}=\bar{y}=10.2300 \quad \text { and } \quad \hat{\sigma^{2}}=2.2265 .
$$

6. (a) Since the probability that any given subject cheated on their tax return is τ and since θ denotes the probability that a randomly chosen subject will tick box 1 , we have that $\theta=P($ Tick $1 \mid$ Asked about tax $) \times P($ Asked about tax $)+P($ Tick $1 \mid$ Asked to toss coin $) \times P($ Asked to toss coin $)=\tau \times 1 / 2+1 / 2 \times 1 / 2=\tau / 2+1 / 4$, so $\tau=2 \theta-1 / 2$. Note that since $0 \leq \tau \leq 1$, the set of possible values for the parameter θ is $0.25 \leq \theta \leq 0.75$.
(b) Let $X_{i}=1$ if the i th subject ticks box 1 and let $X_{i}=0$ if the i th subject ticks box 0 . Then X_{1}, \ldots, X_{n} is a random sample from a $\operatorname{Bernoulli}(\theta)$ distribution. Thus

$$
\begin{aligned}
p(x ; \theta) & =\theta^{x}(1-\theta)^{1-x} \\
\log p(x ; \theta) & =x \log (\theta)+(1-x) \log (1-\theta) \\
\frac{\partial}{\partial \theta} \log p(x ; \theta) & =\frac{x}{\theta}-\frac{(1-x)}{(1-\theta)} \\
\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log p\left(x_{i} ; \theta\right) & =\left(\frac{x_{1}}{\theta}-\frac{\left(1-x_{1}\right)}{(1-\theta)}\right)+\cdots+\left(\frac{x_{n}}{\theta}-\frac{\left(1-x_{n}\right)}{(1-\theta)}\right)=\frac{\sum_{1}^{n} x_{i}}{\theta}-\frac{\left(n-\sum_{1}^{n} x_{i}\right)}{(1-\theta)}
\end{aligned}
$$

This is clearly a decreasing function of θ, and so there is a unique solution $\tilde{\theta}$ to the equation

$$
\frac{\sum_{1}^{n} x_{i}}{\tilde{\theta}}-\frac{\left(n-\sum_{1}^{n} x_{i}\right)}{(1-\tilde{\theta})}=0
$$

i.e.

$$
\begin{aligned}
\sum_{1}^{n} x_{i}-\tilde{\theta} \sum_{1}^{n} x_{i} & =\tilde{\theta} n-\tilde{\theta} \sum_{1}^{n} x_{i} \\
\tilde{\theta} & =\sum_{1}^{n} x_{i} / n=\bar{x}
\end{aligned}
$$

The likelihood is increasing in θ for $\theta<\tilde{\theta}$, and decreasing for $\theta>\tilde{\theta}$. Thus the mle $\hat{\theta}=\tilde{\theta}$ if this is in the range $0.25<\tilde{\theta}<0.75$, but otherwise the likelihood is maximised at 0.25 or 0.75 accordingly. In summary

$$
\hat{\theta}= \begin{cases}0.25 & \text { if } \bar{x}<0.25 \\ \bar{x} & \text { if } 0.25<\bar{x}<0.75 \\ 0.75 & \text { if } \bar{x}>0.75\end{cases}
$$

For the given data, $\sum_{1}^{n} x_{i} / n=8 / 20=0.4$, so the maximum likelihood estimate of θ is $\hat{\theta}=0.4$. Since $\tau=2 \theta-1 / 2$, the maximum likelihood estimate of τ is just $2 \hat{\theta}-1 / 2=0.3$. Note how this allows us to compute a maximum likelihood estimate for τ without ever knowing for each individual subject whether or not they cheated on their tax return, since we do not know which question an individual subject was asked to answer.

