MATH11400 Statistics 1 2010-11

Homepage http://www.stats.bris.ac.uk/%7Emapjg/Teach/Stats1/

Solution Sheet 5

1. Summary statistics for the data set are:
n=_8 Y. x; =492 Y y; =379 Y x?=132,894 > y?=20,115 > y;x; = 21,087
giving = = 61.5, § = 47.375, ss,, = 2636, ss,, = —2221.5 and ss,,, = 2159.875.
Thus the least squares estimates are

b ZYTTIHE _ SSw_ guomsy = § — BT = 99.204

ST — nz? SSux

giving the fitted regression line  y = & + Bz = 99.20 — 0.84z.
Since the coefficient of is negative, we can immediately conclude that the modeligised
that the assessed stress lew@Mill on average decrease with increasing skill level (

The predicted stress level for a student with skill lewvel= 60 is & + Bz = 99.204 —
0.842754 x 60 = 48.64.

2. Summary statistics for the data set are:
n=5 Y x;=21 Yy =12 Y22 =111 > y? =46 > yz; =69
giving z = 4.2, g = 2.4, ss,;, = 22.8, ss,, = 18.6 and ss,,, = 17.2.
Thus the least squares estimates are

3= 2 Yii — YT _ SSey _ 0.8518 & =g — 3z = —1.0263

ST — na? SSux

giving the fitted regression line  y = & + 3z = —1.0263 + 0.8518z.
Calculating the fitted values and residuals according todhadlae:

Predictor valuesa(;) 1 3 4 6 7
Response valueg; 0 1 2 5 4
Fitted valuesg;) —0.2105  1.4211 2.2368 3.8684  4.6842

Residualsd; = y; — ;) 0.2105 —0.4211 —0.2368 1.1316 —0.6842

Finally, you were asked in this question to estimatelirectly from the residuals, giving

n ~ A 2 n ~A\2 n a9
g2 — Zi:1(yi — & — ;) _ Zi:l(yi — Ui) _ Zizl € _ 0.6754.
n—2 n—2 n—2

The sum of the residuals is 0. This can easily be verified asgedly.

3. The summary statistics for the data set are:
n=7 Yx; =44 Y y; =96 > x?=344 >y} =1336 > yuw; = 57,0iving T =
6.285714, y = 1.371429, ss,, = 67.42857, ss,, = —3.342857 and ss,,, = 0.1942857.
Thus the least squares estimates are

§o LT T IIT Sy 04057697 G = — O = 1.68305085

S a2 — nz? SSuw



giving the fitted regression line
y = a+ Bz = 1.68 — 0.05z.
For a litter of sizer = 6, this would predict an average piglet weight of

E(Y|z =6) =&+ 66 =1.68 —0.05 x 6 = 1.38.

Once you have computed the linear regression analy$§tsmth the commands:
> attach(pig); piglets <- Im(wt ~ littersize)
you can check your calculations using the commemef which gives the output:
> coef(piglets)
(Intercept) pig.littersize

1.68305085 -0.04957627

The fitted values and the residuals can be calculated frortedst squares estimates using
the formulag); = &+ (x; andé; = y; —y; or with the commandftted  andresiduals
in R which give the following output:

> fitted(piglets)

1 2 3 4 5 6 7
1.633475 1.534322 1.435169 1.286441 1.286441 1.236864 1.187288
> residuals(piglets)

1 2 3 4 5
-0.03347458 -0.03432203 0.06483051 0.01355932 0.11355932
6 7

-0.03686441 -0.08728814

A scatter plot of the data is shown on the left below, togethigh the fitted regression
line. There seems to be a reasonably good fit of the straighttdi the data. A plot of the
residuals against the corresponding spring rainfall isvshon the right. Note that there are
two residual values at = 8. There is no obvious sign of any systematic pattern. Overall
the fit is sufficiently good that we would have no reason toatdjee linear regression model.

Piglets - scatter plot Piglets - residuals
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4. (a) Following the example in Section 4.7 of the notes tdétregression line, and give the
plot, below left:

\Y

source("http://www.stats.bris.ac.uk/%7Emapjg/Teach /Stats1/crabs.R")
attach(crabs)

plot(postmoult,premoult)

crabsfit<-Im(premoult”postmoult)

abline(coef(crabsfit))
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(b) We can print out the fitted values and residuals easilynimre usefully make a plot
(above right) — the linear fit seems very good but there isgelautlier at the left hand
end of the range:

> fitted(crabsfit)
1 2 3 4 5 6
141.2521 127.7030 141.3623 121.0937 132.2194 137.6170

> residuals(crabsfit)
1 2 3 4
1.0478638826 -2.6030210395 -0.5622915245 1.3063033888

> plot(postmoult,residuals(crabsfit))
> segments(postmoult,0,,residuals(crabsfit))
> abline(h=0)

(c) Histogram of the residuals (below left): the impress&of a roughly symmetric shape
centred at 0, but with several large positive outliers:

> hist(residuals(crabsfit))



(d)

(€)

Histogram of residuals(crabsfit) premoult for postmoult approx 130
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We can make the prediction for= 130 by calculatings + 3 x 130 by hand:

> coef(crabsfit)

(Intercept) postmoult
-29.268434 1.101554

> -29.268434+1.101554 =130
[1] 113.9336

and compare to the histogram of data values,/fstom x near to 130 (above right); the
prediction seems perfectly consistent with these data:

> hist(premoult[postmoult>127&postmoult<133])

Finally we check the 3 assertions numerically — for th&t five chose to make a plot
(below), but there are other ways we could have done it, @'g/p)ng
range(fitted(crabsfit)+residuals(crabsfit))

> plot(premoult,fitted(crabsfit)+residuals(crabsfit))
> sum(residuals(crabsfit))
[1] 1.170244e-14
> fit2<-Im(fitted(crabsfit) " postmoult)
> residuals(fit2)
1 2 3 4
1.603193e-13 -3.088760e-15 4.482824e-15 -1.041277e-15
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5. The least squares estimates of the regression parag)ets(defined to be the values that
minimise the sum of squares of the differences between thereédy; and the fitted values,

i.e. the values that minimisg.;" , (y; — E(Y;|z;))?. For this model, EX; | z;) = yx;, so the
least squares estimate-phere is the value that minimis@s’”_, (v; — yx;)?.

From standard calculus, the minimising value satisfies tjuagon
0 <« 9
oy Z(yz —yz;)" =0

=1

giving
0 = > sy —yxi)(—2x;)
Le. 0 = =200, s — X, 7]
so the least square estimate under the new model is
4= D i Yili
D i1 T

Finally, the residual sum of squares is given by
RSS = 3 (vi — i)’
= i —gzi)?
= DY =2y D v+ Y

2
n Z;L: YiZs n Z?: Yi X n
= ¥ —2 <—n1 2 D ic Yii + nl 5 Doy T

nzz‘:l xé > e T
o no_92 (Zi:l yﬂ%)
- Zizl Yi n 2
Do T
Since the values af; — ¢; (i = 1,. .., n) satisfy the equation above determinipghere are

effectively only(n — 1) independent values @f — y; in the sum, so the appropriate estimate

of o2 is , ) ,
52 = RSS N Yoy — Qo yi)?) Y

(=1 (n—1)




