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1. Summary statistics for the data set are:
n = 8

∑

xi = 492
∑

yi = 379
∑

x2

i = 32, 894
∑

y2

i = 20, 115
∑

yixi = 21, 087
giving x̄ = 61.5, ȳ = 47.375, ssxx = 2636, ssxy = −2221.5 and ssyy = 2159.875.
Thus the least squares estimates are

β̂ =

∑

yixi − nȳx̄
∑

x2

i − nx̄2
=

ssxy

ssxx

= −0.842754 α̂ = ȳ − β̂x̄ = 99.204

giving the fitted regression line y = α̂ + β̂x = 99.20 − 0.84x.

Since the coefficient ofx is negative, we can immediately conclude that the model predicts
that the assessed stress level (y) will on average decrease with increasing skill level (x).

The predicted stress level for a student with skill levelx = 60 is α̂ + β̂x = 99.204 −
0.842754 × 60 = 48.64.

2. Summary statistics for the data set are:
n = 5

∑

xi = 21
∑

yi = 12
∑

x2

i = 111
∑

y2

i = 46
∑

yixi = 69
giving x̄ = 4.2, ȳ = 2.4, ssxx = 22.8, ssxy = 18.6 and ssyy = 17.2.
Thus the least squares estimates are

β̂ =

∑

yixi − nȳx̄
∑

x2

i − nx̄2
=

ssxy

ssxx

= 0.8518 α̂ = ȳ − β̂x̄ = −1.0263

giving the fitted regression line y = α̂ + β̂x = −1.0263 + 0.8518x.

Calculating the fitted values and residuals according to the formulae:

Predictor values (xi) 1 3 4 6 7

Response values (yi) 0 1 2 5 4

Fitted values (̂yi) −0.2105 1.4211 2.2368 3.8684 4.6842

Residuals (̂ei = yi − ŷi) 0.2105 −0.4211 −0.2368 1.1316 −0.6842

Finally, you were asked in this question to estimateσ2 directly from the residuals, giving

σ̂2 =

∑n

i=1
(yi − α̂ − β̂xi)

2

n − 2
=

∑n

i=1
(yi − ŷi)

2

n − 2
=

∑n

i=1
ê2

i

n − 2
= 0.6754.

The sum of the residuals is 0. This can easily be verified algebraically.

3. The summary statistics for the data set are:
n = 7

∑

xi = 44
∑

yi = 9.6
∑

x2

i = 344
∑

y2

i = 13.36
∑

yixi = 57, giving x̄ =
6.285714, ȳ = 1.371429, ssxx = 67.42857, ssxy = −3.342857 and ssyy = 0.1942857.
Thus the least squares estimates are

β̂ =

∑

yixi − nȳx̄
∑

x2

i − nx̄2
=

ssxy

ssxx

= −0.04957627 α̂ = ȳ − β̂x̄ = 1.68305085
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giving the fitted regression line

y = α̂ + β̂x = 1.68 − 0.05x.

For a litter of sizex = 6, this would predict an average piglet weight of

E(Y |x = 6) = α̂ + 6β̂ = 1.68 − 0.05 × 6 = 1.38.

Once you have computed the linear regression analysis inR with the commands:
> attach(pig); piglets <- lm(wt ˜ littersize)
you can check your calculations using the commandcoef which gives the output:
> coef(piglets)
(Intercept) pig.littersize

1.68305085 -0.04957627

The fitted values and the residuals can be calculated from theleast squares estimates using
the formulaêyi = α̂+β̂xi andêi = yi−ŷi or with the commandsfitted andresiduals
in R which give the following output:

> fitted(piglets)
1 2 3 4 5 6 7

1.633475 1.534322 1.435169 1.286441 1.286441 1.236864 1.187288
> residuals(piglets)

1 2 3 4 5
-0.03347458 -0.03432203 0.06483051 0.01355932 0.11355932

6 7
-0.03686441 -0.08728814

A scatter plot of the data is shown on the left below, togetherwith the fitted regression
line. There seems to be a reasonably good fit of the straight line to the data. A plot of the
residuals against the corresponding spring rainfall is shown on the right. Note that there are
two residual values atx = 8. There is no obvious sign of any systematic pattern. Overall,
the fit is sufficiently good that we would have no reason to reject the linear regression model.
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4. (a) Following the example in Section 4.7 of the notes to fit the regression line, and give the
plot, below left:

> source("http://www.stats.bris.ac.uk/%7Emapjg/Teach /Stats1/crabs.R")
> attach(crabs)
> plot(postmoult,premoult)
> crabsfit<-lm(premoult˜postmoult)
> abline(coef(crabsfit))
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(b) We can print out the fitted values and residuals easily, but more usefully make a plot
(above right) – the linear fit seems very good but there is a large outlier at the left hand
end of the range:

> fitted(crabsfit)
1 2 3 4 5 6

141.2521 127.7030 141.3623 121.0937 132.2194 137.6170
....
> residuals(crabsfit)

1 2 3 4
1.0478638826 -2.6030210395 -0.5622915245 1.3063033888

....

> plot(postmoult,residuals(crabsfit))
> segments(postmoult,0,,residuals(crabsfit))
> abline(h=0)

(c) Histogram of the residuals (below left): the impressionis of a roughly symmetric shape
centred at 0, but with several large positive outliers:

> hist(residuals(crabsfit))
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Histogram of residuals(crabsfit)
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(d) We can make the prediction forx = 130 by calculatingα̂ + β̂ × 130 by hand:

> coef(crabsfit)
(Intercept) postmoult

-29.268434 1.101554
> -29.268434+1.101554 * 130
[1] 113.9336

and compare to the histogram of data values fory from x near to 130 (above right); the
prediction seems perfectly consistent with these data:

> hist(premoult[postmoult>127&postmoult<133])

(e) Finally we check the 3 assertions numerically – for the first we chose to make a plot
(below), but there are other ways we could have done it, e.g. by typing
range(fitted(crabsfit)+residuals(crabsfit)) :

> plot(premoult,fitted(crabsfit)+residuals(crabsfit))
> sum(residuals(crabsfit))
[1] 1.170244e-14
> fit2<-lm(fitted(crabsfit)˜postmoult)
> residuals(fit2)

1 2 3 4
1.603193e-13 -3.088760e-15 4.482824e-15 -1.041277e-15

....
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5. The least squares estimates of the regression parameter(s) are defined to be the values that
minimise the sum of squares of the differences between the observedyi and the fitted values,
i.e. the values that minimise

∑n

i=1
(yi − E(Yi|xi))

2. For this model, E(Yi |xi) = γxi, so the
least squares estimate ofγ here is the value that minimises

∑n

i=1
(yi − γxi)

2.

From standard calculus, the minimising value satisfies the equation

∂

∂γ

n
∑

i=1

(yi − γxi)
2 = 0

giving

0 =
∑n

i=1
(yi − γxi)(−2xi)

i.e. 0 = −2[
∑n

i=1
yixi − γ

∑n

i=1
x2

i ]

so the least square estimate under the new model is

γ̂ =

∑n

i=1
yixi

∑n

i=1
x2

i

.

Finally, the residual sum of squares is given by

RSS =
∑n

i=1
(yi − ŷi)

2

=
∑n

i=1
(yi − γ̂xi)

2

=
∑n

i=1
y2

i − 2γ̂
∑n

i=1
yixi + γ̂2

∑n

i=1
x2

i

=
∑n

i=1
y2

i − 2

(

∑n

i=1
yixi

∑n

i=1
x2

i

)

∑n

i=1
yixi +

(

∑n

i=1
yixi

∑n

i=1
x2

i

)

2

∑n

i=1
x2

i

=
∑n

i=1
y2

i −
(
∑n

i=1
yixi)

2

∑n

i=1
x2

i

Since the values ofyi − ŷi (i = 1, . . . , n) satisfy the equation above determiningγ̂, there are
effectively only(n− 1) independent values ofyi − ŷi in the sum, so the appropriate estimate
of σ2 is

σ̂2 =
RSS

(n − 1)
=

∑

y2

i − (
∑

yixi)
2/
∑

x2

i

(n − 1)

5


