
MATH11400 Statistics 1 2010–11
Homepage http://www.stats.bris.ac.uk/%7Emapjg/Teach/Stats1/

Solution Sheet 7

1. (a) Let us interpret the question as meaning ‘from which point on the ruler is the average
distance to 1, 2 and 11 minimised?’. That is, find θ such that d1(θ) = (|1− θ|+ |2−
θ| + |11 − θ|)/3 is as small as possible. You cannot use calculus to solve this, since
this function of θ is not always differentiable. But note that for θ ∈ (1, 2), d1(θ) is
decreasing, since |1 − θ| is getting bigger at rate 1, while |2 − θ| and |11 − θ| are
both getting smaller at rate 1. Similarly on (2, 11), d1(θ) is increasing. In fact d1(θ)
is decreasing for all θ < 2 and increasing for all θ > 2, so the minimum is at θ = 2.
It is not accident that 2 is the median of 1,2 and 11. In fact, it is a general result that
for any odd n, the quantity {|xi− θ|} is minimised when θ is the median of {xi}. For
even n, the function is constant between the middle two data values. These can be
readily proved by generalising the argument for n = 3 given above.

(b) Now we want to minimise (|1−θ|2+|2−θ|2+|11−θ|2)/3, or in general (1/n)
∑n

i=1(xi−
θ)2, which we denote (d2(θ))

2. This is a least squares estimate. You can use calculus,
and it is easy to see that d2(θ) is minimised when θ is the mean x of the data values,
or 14/3 for the flea’s n = 3 example.

(c) In this 3rd version, we want to minimise d∞(θ) = max{|1− θ|, |2− θ|, |11− θ|}, or
in general max{|xi − θ|, i = 1, 2, . . . , n}. It is easy to see that the value of θ making
this as small as possible is the one in the middle of the interval spanned by the data,
i.e. (x(1), x(n)), i.e. the mid-range, (x(1) + x(n))/2, or 6 for the flea’s problem.

(d) All of these three versions of the question ask us to define the ‘centre’ of the set of
numbers, using different criteria. They are all examples of a general family of location
estimators, those minimising dp(θ) = ((1/n)

∑n
i=1 |xi− θ|p)(1/p). You can check that

this definition agrees with those above when p = 1, 2 and → ∞. All of these have
some use in statistics – which is best to use depends on the statistical properties of the
population from which the data can be assumed to be drawn.

2. Let X1, . . . , Xn be a random sample of size n from a distribution with population mean
denoted by µ = E(X) and population variance denoted by σ2 = Var(X), and let X =

(X1 + · · ·+Xn)/n denote the sample mean.

(a) From your notes, the bias of X as an estimator of µ is defined as E(X − µ), and the
mean square error of X as an estimator of µ is defined as E[(X − µ)2].
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Now E(X) = E((X1 + · · ·+Xn)/n) = E(X1/n) + · · ·+ E(Xn/n)

= E(X1)/n+ · · ·+ E(Xn)/n = µ/n+ · · ·+ µ/n = nµ/n

= µ.

Thus, whatever the distribution of X , E(X − µ) = E(X) − µ = µ − µ = 0, so
X has zero bias as an estimator of µ. We say X is unbiased as an estimator for the
population mean.

(b) Also
Var(X) = Var((X1 + · · ·+Xn)/n)

= Var(X1/n) + · · ·+ Var(Xn/n) as theXi are independent
= Var(X1)/n

2 + · · ·+ Var(Xn)/n2

= σ2/n2 + · · ·+ σ2/n2 = nσ2/n2

= σ2/n.

Since E(X) = µ, from above, E[(X − µ)2] = Var(X) = σ2/n.

(c) Let X1, . . . , Xn be a random sample of size n from a distribution with population
mean denoted by the µ = E(X) and population variance denoted by the σ2 =

Var(X). From notes, the condition for the sample variance S2 =
∑n

i=1(Xi−X)2/(n−
1) to be an unbiased estimator of the population variance σ2 is that E(

∑n
i=1(Xi −

X)2/(n− 1)− σ2) = 0.

From the handout
∑n

i=1(Xi − E(X))2 =
∑n

i=1X
2
i − nX

2
.

But E(X2
i ) = Var(Xi) + [E(Xi)]

2 = σ2 + µ2

and E(X
2
) = Var(X) + [E(X)]2 = σ2/n+ µ2 from question 3 above, so

E(
∑n

i=1(Xi −X)2) = E(
∑n

i=1X
2
i )− E(nX

2
) =

∑n
i=1 E(X2

i )− nE(X
2
)

=
∑n

i=1(σ
2 + µ2)− n(σ2/n+ µ2)

= nσ2 + nµ2 − nσ2/n− nµ2 = nσ2 − σ2

= (n− 1)σ2

so E(
∑n

i=1(Xi −X)2/(n− 1)) = σ2 and
∑n

i=1(Xi −X)2/(n− 1) is unbiased as an
estimator for σ2.

3. The hint in the question reminds us that
∫∞
x=0

xa−1e−bxdx = Γ(a)/ba for a > 0 and b > 0.
Now E(Y ) =

∫∞
−∞ xf(x)dx

=
∫∞
x=0

xλαxα−1e−λx(Γ(α))−1dx = λα(Γ(α))−1
∫∞
x=0

xαe−λxdx

= λα(Γ(α))−1Γ(α + 1)/λα+1from above with a = α + 1 > 0 and b = λ > 0

= λα/λα+1 × Γ(α + 1)/Γ(α) = α/λ as Γ(α + 1) = αΓ(α).

and E(1/Y ) =
∫∞
−∞ x

−1f(x)dx =
∫∞
x=0

x−1λαxα−1e−λx(Γ(α))−1dx

= λα(Γ(α))−1
∫∞
x=0

xα−2e−λxdx

= λα(Γ(α))−1Γ(α− 1)/λα−1from above with a = α− 1 > 0 and b = λ > 0

= λα/λα−1 × Γ(α− 1)/Γ(α) = λ/(α− 1) as Γ(α) = (α− 1)Γ(α− 1).
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4. (a) From your notes §6.1(ii) the Exponential(θ) distribution has moment generating func-
tionMX(t) = θ/(θ − t) (defined for t < θ). If X1, . . . , Xn is a random sample from this
distribution then, from your notes §6.1(v), it has moment generating function [MX(t)]n =

θn/(θ − t)n, and from your notes §6.1(ii) this is the moment generating function of the
Gamma(n, θ) distribution. Thus, ifX1, . . . , Xn is a random sample from the Exponential(θ)
distribution, then

∑n
i=1Xi ∼ Gamma(n, θ). Let Y =

∑n
i=1Xi, then, from question 6

above, E(Y ) = n/θ and E(1/Y ) = θ/(n − 1). Note that for a random variable Y it is
generally not true that E(1/Y ) = 1/E(Y ).

(b) Let τ = 1/θ. Then θ̂mle = n/Y and τ̂mle = τ(θ̂mle) = 1/θ̂ = Y/n. Thus E(τ̂mle) =

E(Y/n) = E(Y )/n = n/θn = 1/θ = τ , so τ̂mle is unbiased as as estimator of the
population mean.

(c) Now θ̂mle = n/Y so E(θ̂mle) = E(n/Y ) = nE(1/Y ) = nθ/(n−1) = θ+[θ/(n−1)].
Thus E(θ̂mle)− θ = θ/(n− 1) so θ̂mle has bias θ/(n− 1) as an estimator of θ, i.e. θ̂mle on
average systematically overestimates θ by an amount θ/(n− 1).

3


