
MATH11400 Statistics 1 2010–11
Homepage http://www.stats.bris.ac.uk/%7Emapjg/Teach/Stats1/

Solution Sheet 8
1. The plots are shown below. I plotted the probability density function for theN(0, 1) distri-

bution over the range(−4, 4), and added the probability density function for thet1 distri-

bution, with the commands:
> range<-seq(-4,4,0.01)

> plot(range,dnorm(range), type="l", ylim=c(0,0.4))

> lines(range,dt(range,1))
Extra plots of the pdf fromt5, t10 andt15 can be added with additional commands of the

form lines(range,dt(range,***)), replacing*** by 5,10 and15 as required.

Theχ2 plots were done similarly, by setting an appropriate range and using the command

dchisq with appropriate degrees of freedom.

To tell which pdf is which, note that the peak of thetr distribution increases upwards

towards that of theN(0, 1) with increasingr while the peak of theχ2
r distribution moves

right with increasingr.
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2. (a) From your notes,
∑n

i=1
(Xi −X)2/σ2 ∼ χ2

n−1 = Gamma((n− 1)/2, 1/2), with mean

((n− 1)/2)/(1/2) = (n− 1) and variance((n− 1)/2)/(1/2)2 = 2(n− 1).

Now S2 =
∑n

i=1
(Xi −X)2/(n− 1) = (σ2/(n− 1))

∑n
i=1

(Xi −X)2/σ2

so E(S2) = (σ2/(n− 1)) E[
∑n

i=1
(Xi −X)2/σ2] = (σ2/(n− 1))(n− 1) = σ2

and Var(S2) = (σ2/(n− 1))2 Var[
∑n

i=1
(Xi −X)2/σ2] = (σ2/(n− 1))22(n− 1)

= 2σ4/(n− 1).
Similarly
σ̂2
mle =

∑n
i=1

(Xi −X)2/n = (σ2/n)
∑n

i=1
(Xi −X)2/σ2

so E(σ̂2
mle) = (σ2/n) E[

∑n
i=1

(Xi −X)2/σ2] = (σ2/n)(n− 1) = σ2(n− 1)/n

and Var(σ̂2
mle) = (σ2/n))2 Var[

∑n
i=1

(Xi −X)2/σ2] = (σ2/n)22(n− 1)

= 2σ4(n− 1)/n2.
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(b) The bias of an estimator̂σ2 for σ2 is defined asE(σ̂2 − σ2). Thus the bias ofS2 is

E(S2−σ2) = E(S2)−σ2 = σ2−σ2 = 0, soS2 is unbiased as an estimator ofσ2. Similarly,

the bias of̂σ2
mle is E(σ̂2

mle − σ2) = E(σ̂2
mle) − σ2 = σ2(n − 1)/n − σ2 = −σ2/n, soσ̂2

mle

is a biased estimator ofσ2 with bias−σ2/n.

The mean square error of an estimatorσ̂2 for σ2 is defined asE[(σ̂2 − σ2)2] = Var(σ̂2) +

[E(σ̂2) − σ2]2 = Var(σ̂2) + [bias(σ̂2)]2. Thus the mean square error ofS2 is Var(S2) +

[bias(S2)]2 = 2σ4/(n − 1) + 0 = 2σ4/(n − 1), and the mean square error ofσ̂2
mle is

Var(σ̂2
mle) + [bias(σ̂2

mle)]
2 = 2σ4(n− 1)/n2 + [−σ2/n]2 = σ4(2n− 1)/n2.

Note that(2n−1)/n2 < 2/(n−1), so overall the maximum likelihood estimator ofσ2 has

smaller mean square error than the sample variance, even though it is biased.

3. (a) Xi/θ andYi/θ are i.i.d. N(0, 1), soTi/θ
2
i ∼ χ2

2 by 6.7 and 6.8. By 6.13,χ2
2 is the

same as Gamma(1, 1/2), which is in turn the same as Exponential(1/2). Therefore,Ti ∼
Exponential(1/(2θ2)).

Thust1, t2, . . . , tn are an observed random sample from this distribution, whichhas proba-

bility density functionfT (t; θ) = (1/2θ2) exp(−t/2θ2) for t > 0. Then(∂/∂θ) log fT (t; θ) =

−2/θ + t/θ3. Thus the likelihood equation is

0 =
n∑

i=1

∂

∂θ
log fT (ti; θ) = −2n/θ +

1

θ3

n∑

i=1

ti

and the solution iŝθmle =
√∑n

i=1
ti/2n.

(b) Working directly in terms ofxi andyi, both of these are drawn from N(0, θ2), with

density functionfX(x; θ) = (1/
√
2πθ2) exp(−x2/(2θ2)). Now (∂/∂θ) log fX(x; θ) =

−1/θ + x2/θ3. So now the likelihood equation is

0 =
n∑

i=1

∂

∂θ
{log fX(xi; θ) + log fX(yi; θ)} = −2n/θ +

1

θ3

n∑

i=1

(x2
i + y2i ).

Sinceti = x2
i + y2i , this is the same equation, so has the same solution.

(c) From sheet 2, question 2, the method of moments estimatorbased on thex sample

alone isθ̂mom =
√∑

i x
2
i /n. Working the question through again, with bothx andy data

simultaneously, giveŝθmom =
√∑n

i=1
ti/2n again. So all three versions of the estimation

problem have the same solution.

4. We would usually assume that the data are:

• the observed values of a simple random sample of sizen = 9

• from the Normal distributionN(µ, σ2) with unknown values of bothµ andσ2.
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Note that, although the stem and leaf plot of the data inR shown below looks roughly

symmetric and bell-shaped, it is not clear how the new cars were chosen or how comparable

the driving conditions were, so the observations may not necessarily be asimple random

sample from the population of fuel consumption figures forall cars of this type.

> stem(fuel)

The decimal point is at the |

9 | 9

10 | 00

10 | 579

11 | 2

11 | 8

12 | 1

Summary values of the data are:
n = 9

∑n
j=1

xj = 97.1 giving x̄ =
∑n

j=1
xj/n = 10.78889∑n

j=1
x2
j = 1052.759 s2 =

∑n
j=1

(xj − x̄)2/(n− 1) = 0.6447611

From your notes, for a simple random sample of sizen from theN(µ, σ2) distribution, a

100(1− α)% confidence interval(cL, cU) for the population meanµ is given by

cL = X̄ − tn−1;α/2S/
√
n and cU = X̄ + tn−1;α/2S/

√
n.

Now n − 1 = 8, α = 0.1 (since we want a90% confidence interval), and fromR or

statistical tablest8;0.05 = 1.860. Combining this with the data gives

cL = 10.7889− 1.860×
√
0.6448/

√
9 = 10.2912 ≃ 10.291

cU = 10.7889 + 1.860×
√
0.6448/

√
9 = 11.2866 ≃ 11.287

and under our assumptions the required90% confidence interval forµ is (10.291, 11.287)

5. Assume that the data are:

• the observed values of a simple random sample of sizen = 34

• from a distribution with unknown population meanµ and population varianceσ2.

The sample sizen = 34 is reasonably large and the sample histogram below is roughly

symmetric and bell-shaped, so the central limit theorem enables us to assume
√
n(X̄ −

µ)/S ≃ tn−1. However, no information is given about how the children were chosen, or

what population they were chosen from, and in practice we might want to explore these

aspects further. Summary values of the data are:
n = 34

∑n
j=1

xj = 124 giving x̄ =
∑n

j=1
xj/n = 3.647059∑n

j=1
x2
j = 750 s2 =

∑n
j=1

(xj − x̄)2/(n− 1) = 9.023173
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If we assume
√
n(X̄ − µ)/S ≃ tn−1, then using the same argument as that given in your

notes for a simple random sample of sizen from theN(µ, σ2) distribution, a100(1− α)%

confidence interval(cL, cU) for the population meanµ is given by

cL = X̄ − tn−1;α/2S/
√
n and cU = X̄ + tn−1;α/2S/

√
n.

Now n − 1 = 33, α = 0.05 (since we want a95% confidence interval), and fromR or

statistical tablest33;0.025 = 2.0345 (for the tables you have to interpolate betweent32;0.025 =

2.037 andt34;0.025 = 2.032). Combining this with the data gives

cL = 3.6470− 2.0345×
√
9.0232/

√
34 = 2.5990 ≃ 2.6

cU = 3.6470 + 2.0345×
√
9.0232/

√
34 = 4.6951 ≃ 4.7

and the required95% confidence interval forµ is (2.6, 4.7)
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