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Solution Sheet 9

1. From your notes, for a simple random sample of sizen from theN(µ, σ2) distribution, a
100(1 − α)% confidence interval(cL, cU) for the population varianceσ2 is given by

cL =

∑n
j=1(Xj − X̄)2

χ2
n−1 ; α/2

and cU =

∑n
j=1(Xj − X̄)2

χ2
n−1 ; 1−α/2

.

Now n − 1 = 8,
∑9

1(xi − x̄)2 = 5.1581, α = 0.1 (since we want a90% confidence
interval), and fromR (or the annex sheet)χ2

8 ; 0.95 = qchisq(0.05,8)= 2.733 and
χ2

8 ; 0.05 = qchisq(0.95,8)= 15.507.

Combining this with the data givescL = 5.1581/15.507 = 0.333, cU = 5.1581/2.733 =
1.887 so under our assumptions the required90% confidence interval forσ2 is (0.333, 1.887).

2. We have looked at these data before, so we can assume that the data are:

• the observed values of a simple random sample of sizen = 25

• from the Exponential(θ) distribution with unknown value ofθ.

(a) Summary values of the full data set are:n = 25
∑n

j=1 xj = 95.3
From your notes, for a simple random sample of sizen from the Exponential(θ) distribu-
tion, a100(1 − α)% confidence interval(cL, cU) for θ is given by

cL =
χ2

2n ; 1−α/2

2
∑n

i=1 xi

and cU =
χ2

2n ; α/2

2
∑n

i=1 xi

.

Now 2n = 50, α = 0.05 (since we want a95% confidence interval), and fromR (or the
annex sheet)χ2

50;0.975 =qchisq(0.025,50)=32.36 andχ2
50;0.025 =

qchisq(0.975,50)=71.42. Combining this with the data gives

cL = 32.36/(2 × 95.3) = 0.1698 ≃ 0.17

cU = 71.42/(2 × 95.3) = 0.3747 ≃ 0.37

so the required95% confidence interval forθ based on the full sample is(0.17, 0.37) and
the length of the interval is0.2.

(b) Substituting in theχ2 values from (a), the length of the95% confidence interval based
on a random sample of size 25 is[(71.42 − 32.36)/2]/

∑25
i=1 Xi = 19.53/

∑25
i=1 Xi. This

length will of course vary from sample to sample with the observed values of theXi.
However, from the result given, its expected value isE(1/

∑25
i=1 Xi) = θ/24. Thus the

average length of the interval isθ(19.53/24) = (0.814)θ.

3. Assume that the interview response data are:

• the observed values of a simple random sample of sizen = 1000
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• from a Bernoulli(θ) distribution with unknown values ofθ.

Here the sample sizen = 1000 is very large so the central limit theorem enables us to
assume that

√
n(X̄ − θ)/

√

θ(1 − θ)) has approximately theN(0, 1) distribution and that
the effect of replacing the Bernoulli varianceθ(1 − θ) by the estimatêθ(1 − θ̂) will be
negligible, wherêθ = X̄ = 370/1000 = 0.37.

Thus, from your notes, a100(1 − α)% confidence interval(cL, cU) for θ is given by

cL = X̄ − zα/2

√

θ̂(1 − θ̂)/n and cU = X̄ + zα/2

√

θ̂(1 − θ̂)/n.

Now n − 1 = 8, α = 0.01 (since we want a99% confidence interval), and fromR (or the
annex sheet, recallingqnorm andpnorm are inverses of each other)z0.005 =
qnorm(0.995)=2.5758. Combining this with the data gives

cL = 0.37 − 2.5758 ×
√

0.37 × 0.63/1000 = 0.3307 ≃ 0.331

cU = 0.37 + 2.5758 ×
√

0.37 × 0.63/1000 = 0.4093 ≃ 0.409

and under our assumptions the required95% confidence interval forθ is (0.331, 0.409)

4. Again from your notes, for a simple random sample of sizen from theN(µ, σ2) distribu-
tion, a100(1 − α)% confidence interval(cL, cU) for the population varianceσ2 is given
by

cL =
n

∑

j=1

(Xj − X̄)2/χ2
n−1 ; α/2 and cU =

n
∑

j=1

(Xj − X̄)2/χ2
n−1 ; 1−α/2.

Again,n−1 = 33,
∑33

1 (xi − x̄)2 = 297.7647, α = 0.05, and fromR (or the annex sheet)
we getχ2

33 ; 0.975 =qchisq(0.025,33)= 19.05 andχ2
33 ; 0.025 =

qchisq(0.975,33)= 50.73.

Combining this with the data gives

cL = 297.7647/50.73 = 5.870 cU = 297.7647/19.05 = 15.631

and under our assumptions the required95% confidence interval forσ2 is (5.870, 15.631)

5. The sample histogram is shown below. It doesn’t look that uniform, but is not that unrea-
sonable for the given sample size.

The relevant summary statistics here are:
n = 25

∑n
j=1 xj = 74.64 x̄ = 2.9856 x(25) = max{x1, . . . , x25} = 5.99.

(a) You are given thatP (X(n)/θ < v) = vn, where heren = 25.
HenceP (X(25)/θ < v1) = 0.025 givesv1 = (0.025)1/25 = (0.025)0.04 = 0.8628, and
P (X(25)/θ > v2) = 1 − P (X(25)/θ < v2) = 0.025 givesv2 = (1 − 0.025)0.04 = 0.99990.
Thus0.95 = P (0.8628 ≤ X(25)/θ ≤ 0.99990) = P (X(25)/0.99990 ≤ θ ≤ X(25)/0.8628)
so the interval with end points(X(25)/0.99990, X(25)/0.8628) forms a95% confidence in-
terval forθ.

For the given data,x(25) = 5.99, so a95% confidence interval computed in this way from
the largest observation would have end points(6.00, 6.94) and length0.94.
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(b) The data are a simple random sample of sizen = 25 from the U(0, θ) distribution
with meanθ/2 and varianceθ2/12. The sample size is reasonably large and the underlying
distribution is symmetric, so, using the CLT,̄X has approximately theN(θ/2, θ2/12n)
distribution, i.e.(2X̄ − θ)/(θ/

√
3n) ∼ N(0, 1). Moreover, we can assume that the effect

of replacingθ by the estimatêθ in the variance will not be significant, whereθ̂mom = 2X̄ =
5.9712. Thus, a100(1 − α)% confidence interval(cL, cU) for θ is given by

cL = 2X̄−zα/2θ̂/
√

3n = 2X̄(1−(zα/2/
√

3n)); cU = 2X̄+zα/2θ̂/
√

3n = 2X̄(1+(zα/2/
√

3n)).

Now n = 25, α = 0.05 (since we want a95% confidence interval), and fromR (or the
annex sheet)z0.025 =qnorm(0.975)= 1.96, giving cL = 4.6198 ≃ 4.62 andcL =
7.3226 ≃ 7.32. Thus an approximate95% confidence interval forθ is (4.62, 7.32), with
length2.70.

Note that the interval found usinĝθmle has much shorter length than that found using the
θ̂mom (in fact, the first interval is completely contained within the second). Note also that
the lower end pointcL = 4.62 of the confidence interval based onθ̂mom is inconsistent with
the fact that we already knowθ MUST be≥ x(25) = 5.99; as we saw earlier̂θmom is a
much less efficient estimate thanθ̂mle.

6. Model assumptions: (a) The weights of the 25 packets are a simple random sample from
the population of weights for all packets produced that day.(b) The population distribution
is N(µ, 42), whereµ is unknown.

Hypotheses: H0: µ = 200 versusH1: µ 6= 200.
The null hypothesisH0 corresponds tono difference between the actual mean of the popu-
lation of weights for that day and the advertised weight of200g. The alternative hypothesis
H1 corresponds to there being a difference (which could be either positive or negative).

Test Statistic: SinceX̄ is the natural estimator ofµ, we base our test statistic on̄X −µ0 =
X̄ − 200. Since the population standard deviationσ0 = 4 is known andn = 25, we
can take as our test statisticT (X1, . . . , Xn) =

√
n(X̄ − µ0)/σ0 = 5(X̄ − 200)/4, where

X̄ ∼ N(µ, σ2
0/n) = N(µ, 16/25).

Thus, whenH0 is true (i.e. whenµ = µ0 = 200) we haveT = 5(X̄ − 200)/4 ∼ N(0, 1).

The data givēx = 202.275 so the observed test statistic istobs = 2.84375.

p-value: Since the alternative of interest isH1: µ 6= 200, the values ofT which are less
consistent withH0 thantobs are the set of values{|T | > |tobs|} so

3



p-value = P (|T | > |tobs||H0 true) = P (|Z| > 2.844) where Z ∼ N(0, 1)

= 2(1 − Φ(2.844)) = 2(1-pnorm(2.844)) = 2(1 − 0.9978) = 0.00446.

Critical region : Since the alternative of interest isH1: µ 6= 200, the values ofT which are
less consistent withH0 than a valuet are the set of values{|T | > |t|}. Thus the critical re-
gion of values for which the test would rejectH0 is of the formC = {|T | > c∗}. A test has
significance levelα if P(RejectH0|H0 true)= α. Thus, for a0.01-level test,c∗ is defined

by the condition

0.01 = α = P (RejectH0|H0 true) = P (|T | > c∗ |H0 true)

= P (|Z| > c∗) [where Z ∼ N(0, 1)] = 2(1 − Φ(c∗)),

soc∗ = Φ−1(1 − 0.005) = z0.005 = qnorm(0.995) = 2.576

and the resulting critical region isC = {|T | ≥ 2.576} .

Conclusions: Thep-value is very small, so there is strong evidence that the data are not
consistent withH0 being true. The observed test statistic valuetobs = 2.84375 falls well
within the critical region of the0.01-level test, so we would rejectH0 in favour ofH1, and
conclude that the mean of the population of packet weights isnot equal to200g, at least for
that day’s production.

Note that a test procedure with significance levelα will reject the null hypothesis if the
observedp-value is less than or equal toα. For these data thep-value is0.00446, so an
α-level test would rejectH0 if and only if α ≥ 0.00446.

7. Model assumptions: (a) The valuesX1, . . . , Xn are a simple random sample of sizen
from a given population. (b) The population distribution isN(µ, 52), whereµ is unknown.

Hypotheses: H0: µ = 100 versusH1: µ > 100.

Test Statistic: SinceX̄ is the natural estimator ofµ, we base our test statistic on̄X −µ0 =
X̄ − 100. Since the population standard deviationσ0 = 5 is known we can take as our test
statisticT (X1, . . . , Xn) =

√
n(X̄−µ0)/σ0 =

√
n(X̄−100)/5, whereX̄ ∼ N(µ, σ2

0/n) =
N(µ, 25/

√
n).

Thus, whenH0 is true (i.e. whenµ = µ0 = 100) we haveT =
√

n(X̄ −100)/5 ∼ N(0, 1).

Sample size: We are given that the test procedure rejectsH0 if and only if X̄ > 102, so the
test procedure rejectsH0 if and only if T >

√
n(102 − 100)/5 = 2

√
n/5.

For a test procedure with significance levelα we require
α = P (RejectH0|H0 true) = P (T > 2

√
n/5 |H0 true)

= P (Z > 2
√

n/5) [where Z ∼ N(0, 1)] = 1 − Φ(2
√

n/5).

Thusα < 0.05 ⇒ 1 − Φ(2
√

n/5) < 0.05

⇒ Φ(2
√

n/5) > 0.95

⇒ 2
√

n/5 > Φ−1(0.95) = z0.05 = qnorm(0.95) = 1.645

⇒ n > 16.9.

Since the sample size must be an integer, the smallest suchn satisfying this inequality is
n = 17.
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