Solution Sheet 9

1. From your notes, for a simple random sample of size n from the $N\left(\mu, \sigma^{2}\right)$ distribution, a $100(1-\alpha) \%$ confidence interval $\left(c_{L}, c_{U}\right)$ for the population variance σ^{2} is given by

$$
c_{L}=\frac{\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2}}{\chi_{n-1 ; \alpha / 2}^{2}} \quad \text { and } \quad c_{U}=\frac{\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2}}{\chi_{n-1 ; 1-\alpha / 2}^{2}}
$$

Now $n-1=8, \quad \sum_{1}^{9}\left(x_{i}-\bar{x}\right)^{2}=5.1581, \alpha=0.1$ (since we want a 90% confidence interval), and from \mathbf{R} (or the annex sheet) $\chi_{8 ; 0.95}^{2}=\operatorname{qchisq}(0.05,8)=2.733$ and $\chi_{8 ; 0.05}^{2}=\operatorname{qchisq}(0.95,8)=15.507$.
Combining this with the data gives $c_{L}=5.1581 / 15.507=0.333, c_{U}=5.1581 / 2.733=$ 1.887 so under our assumptions the required 90% confidence interval for σ^{2} is $(0.333,1.887)$.
2. We have looked at these data before, so we can assume that the data are:

- the observed values of a simple random sample of size $n=25$
- from the Exponential (θ) distribution with unknown value of θ.
(a) Summary values of the full data set are: $n=25 \quad \sum_{j=1}^{n} x_{j}=95.3$

From your notes, for a simple random sample of size n from the Exponential (θ) distribution, a $100(1-\alpha) \%$ confidence interval $\left(c_{L}, c_{U}\right)$ for θ is given by

$$
c_{L}=\frac{\chi_{2 n ; 1-\alpha / 2}^{2}}{2 \sum_{i=1}^{n} x_{i}} \quad \text { and } \quad c_{U}=\frac{\chi_{2 n ; \alpha / 2}^{2}}{2 \sum_{i=1}^{n} x_{i}} .
$$

Now $2 n=50, \alpha=0.05$ (since we want a 95% confidence interval), and from \mathbf{R} (or the annex sheet $) \chi_{50 ; 0.975}^{2}=$ qchisq $(0.025,50)=32.36$ and $\chi_{50 ; 0.025}^{2}=$ qchisq $(0.975,50)=71.42$. Combining this with the data gives

$$
\begin{aligned}
& c_{L}=32.36 /(2 \times 95.3)=0.1698 \simeq 0.17 \\
& c_{U}=71.42 /(2 \times 95.3)=0.3747 \simeq 0.37
\end{aligned}
$$

so the required 95% confidence interval for θ based on the full sample is $(0.17,0.37)$ and the length of the interval is 0.2 .
(b) Substituting in the χ^{2} values from (a), the length of the 95% confidence interval based on a random sample of size 25 is $[(71.42-32.36) / 2] / \sum_{i=1}^{25} X_{i}=19.53 / \sum_{i=1}^{25} X_{i}$. This length will of course vary from sample to sample with the observed values of the X_{i}. However, from the result given, its expected value is $\mathrm{E}\left(1 / \sum_{i=1}^{25} X_{i}\right)=\theta / 24$. Thus the average length of the interval is $\theta(19.53 / 24)=(0.814) \theta$.
3. Assume that the interview response data are:

- the observed values of a simple random sample of size $n=1000$
- from a $\operatorname{Bernoulli}(\theta)$ distribution with unknown values of θ.

Here the sample size $n=1000$ is very large so the central limit theorem enables us to assume that $\sqrt{n}(\bar{X}-\theta) / \sqrt{\theta(1-\theta)})$ has approximately the $N(0,1)$ distribution and that the effect of replacing the Bernoulli variance $\theta(1-\theta)$ by the estimate $\hat{\theta}(1-\hat{\theta})$ will be negligible, where $\hat{\theta}=\bar{X}=370 / 1000=0.37$.
Thus, from your notes, a $100(1-\alpha) \%$ confidence interval $\left(c_{L}, c_{U}\right)$ for θ is given by

$$
c_{L}=\bar{X}-z_{\alpha / 2} \sqrt{\hat{\theta}(1-\hat{\theta}) / n} \quad \text { and } \quad c_{U}=\bar{X}+z_{\alpha / 2} \sqrt{\hat{\theta}(1-\hat{\theta}) / n}
$$

Now $n-1=8, \alpha=0.01$ (since we want a 99% confidence interval), and from \mathbf{R} (or the annex sheet, recalling qnorm and pnorm are inverses of each other) $z_{0.005}=$ qnorm (0.995) $=2.5758$. Combining this with the data gives

$$
\begin{aligned}
& c_{L}=0.37-2.5758 \times \sqrt{0.37 \times 0.63 / 1000}=0.3307 \simeq 0.331 \\
& c_{U}=0.37+2.5758 \times \sqrt{0.37 \times 0.63 / 1000}=0.4093 \simeq 0.409
\end{aligned}
$$

and under our assumptions the required 95% confidence interval for θ is $(0.331,0.409)$
4. Again from your notes, for a simple random sample of size n from the $N\left(\mu, \sigma^{2}\right)$ distribution, a $100(1-\alpha) \%$ confidence interval $\left(c_{L}, c_{U}\right)$ for the population variance σ^{2} is given by

$$
c_{L}=\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2} / \chi_{n-1 ; \alpha / 2}^{2} \quad \text { and } \quad c_{U}=\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2} / \chi_{n-1 ; 1-\alpha / 2}^{2} .
$$

Again, $n-1=33, \sum_{1}^{33}\left(x_{i}-\bar{x}\right)^{2}=297.7647, \alpha=0.05$, and from \mathbf{R} (or the annex sheet) we get $\chi_{33 ; 0.975}^{2}=$ qchisq $(0.025,33)=19.05$ and $\chi_{33 ; 0.025}^{2}=$ qchisq $(0.975,33)=50.73$.
Combining this with the data gives

$$
c_{L}=297.7647 / 50.73=5.870 \quad c_{U}=297.7647 / 19.05=15.631
$$

and under our assumptions the required 95% confidence interval for σ^{2} is $(5.870,15.631)$
5. The sample histogram is shown below. It doesn't look that uniform, but is not that unreasonable for the given sample size.
The relevant summary statistics here are:
$n=25 \quad \sum_{j=1}^{n} x_{j}=74.64 \quad \bar{x}=2.9856 \quad x_{(25)}=\max \left\{x_{1}, \ldots, x_{25}\right\}=5.99$.
(a) You are given that $P\left(X_{(n)} / \theta<v\right)=v^{n}$, where here $n=25$.

Hence $P\left(X_{(25)} / \theta<v_{1}\right)=0.025$ gives $v_{1}=(0.025)^{1 / 25}=(0.025)^{0.04}=0.8628$, and $P\left(X_{(25)} / \theta>v_{2}\right)=1-P\left(X_{(25)} / \theta<v_{2}\right)=0.025$ gives $v_{2}=(1-0.025)^{0.04}=0.99990$. Thus $0.95=P\left(0.8628 \leq X_{(25)} / \theta \leq 0.99990\right)=P\left(X_{(25)} / 0.99990 \leq \theta \leq X_{(25)} / 0.8628\right)$ so the interval with end points $\left(X_{(25)} / 0.99990, X_{(25)} / 0.8628\right)$ forms a 95% confidence interval for θ.

For the given data, $x_{(25)}=5.99$, so a 95% confidence interval computed in this way from the largest observation would have end points $(6.00,6.94)$ and length 0.94 .

(b) The data are a simple random sample of size $n=25$ from the $\mathrm{U}(0, \theta)$ distribution with mean $\theta / 2$ and variance $\theta^{2} / 12$. The sample size is reasonably large and the underlying distribution is symmetric, so, using the CLT, \bar{X} has approximately the $N\left(\theta / 2, \theta^{2} / 12 n\right)$ distribution, i.e. $(2 \bar{X}-\theta) /(\theta / \sqrt{3 n}) \sim N(0,1)$. Moreover, we can assume that the effect of replacing θ by the estimate $\hat{\theta}$ in the variance will not be significant, where $\hat{\theta}_{\text {mom }}=2 \bar{X}=$ 5.9712. Thus, a $100(1-\alpha) \%$ confidence interval $\left(c_{L}, c_{U}\right)$ for θ is given by
$c_{L}=2 \bar{X}-z_{\alpha / 2} \hat{\theta} / \sqrt{3 n}=2 \bar{X}\left(1-\left(z_{\alpha / 2} / \sqrt{3 n}\right)\right) ; c_{U}=2 \bar{X}+z_{\alpha / 2} \hat{\theta} / \sqrt{3 n}=2 \bar{X}\left(1+\left(z_{\alpha / 2} / \sqrt{3 n}\right)\right)$.
Now $n=25, \alpha=0.05$ (since we want a 95% confidence interval), and from \mathbf{R} (or the annex sheet) $z_{0.025}=$ qnorm (0.975) $=1.96$, giving $c_{L}=4.6198 \simeq 4.62$ and $c_{L}=$ $7.3226 \simeq 7.32$. Thus an approximate 95% confidence interval for θ is $(4.62,7.32)$, with length 2.70 .
Note that the interval found using $\hat{\theta}_{m l e}$ has much shorter length than that found using the $\hat{\theta}_{\text {mom }}$ (in fact, the first interval is completely contained within the second). Note also that the lower end point $c_{L}=4.62$ of the confidence interval based on $\hat{\theta}_{\text {mom }}$ is inconsistent with the fact that we already know θ MUST be $\geq x_{(25)}=5.99$; as we saw earlier $\hat{\theta}_{\text {mom }}$ is a much less efficient estimate than $\hat{\theta}_{\text {mle }}$.
6. Model assumptions: (a) The weights of the 25 packets are a simple random sample from the population of weights for all packets produced that day. (b) The population distribution is $N\left(\mu, 4^{2}\right)$, where μ is unknown.
Hypotheses: $H_{0}: \mu=200$ versus $H_{1}: \mu \neq 200$.
The null hypothesis H_{0} corresponds to no difference between the actual mean of the population of weights for that day and the advertised weight of 200 g . The alternative hypothesis H_{1} corresponds to there being a difference (which could be either positive or negative).
Test Statistic: Since \bar{X} is the natural estimator of μ, we base our test statistic on $\bar{X}-\mu_{0}=$ $\bar{X}-200$. Since the population standard deviation $\sigma_{0}=4$ is known and $n=25$, we can take as our test statistic $T\left(X_{1}, \ldots, X_{n}\right)=\sqrt{n}\left(\bar{X}-\mu_{0}\right) / \sigma_{0}=5(\bar{X}-200) / 4$, where $\bar{X} \sim N\left(\mu, \sigma_{0}^{2} / n\right)=N(\mu, 16 / 25)$.
Thus, when H_{0} is true (i.e. when $\mu=\mu_{0}=200$) we have $T=5(\bar{X}-200) / 4 \sim N(0,1)$.
The data give $\bar{x}=202.275$ so the observed test statistic is $t_{o b s}=2.84375$.
\boldsymbol{p}-value: Since the alternative of interest is $H_{1}: \mu \neq 200$, the values of T which are less consistent with H_{0} than $t_{o b s}$ are the set of values $\left\{|T|>\left|t_{o b s}\right|\right\}$ so

$$
\begin{aligned}
p \text {-value } & =P\left(|T|>\left|t_{\text {obs }}\right| \mid H_{0} \text { true }\right)=P(|Z|>2.844) \text { where } Z \sim N(0,1) \\
& =2(1-\Phi(2.844))=2(1-\text { pnorm }(2.844))=2(1-0.9978)=0.00446 .
\end{aligned}
$$

Critical region: Since the alternative of interest is $H_{1}: \mu \neq 200$, the values of T which are less consistent with H_{0} than a value t are the set of values $\{|T|>|t|\}$. Thus the critical region of values for which the test would reject H_{0} is of the form $C=\left\{|T|>c^{*}\right\}$. A test has significance level α if $\mathrm{P}\left(\right.$ Reject $H_{0} \mid H_{0}$ true $)=\alpha$. Thus, for a 0.01 -level test, c^{*} is defined
by the condition

$$
\begin{aligned}
& \begin{aligned}
0.01 & =\alpha=P\left(\text { Reject } H_{0} \mid H_{0} \text { true }\right)=P\left(|T|>c^{*} \mid H_{0} \text { true }\right) \\
& =P\left(|Z|>c^{*}\right)[\text { where } Z \sim N(0,1)]=2\left(1-\Phi\left(c^{*}\right)\right), \\
\text { so } c^{*} & =\Phi^{-1}(1-0.005)=z_{0.005}=\text { qnorm }(0.995)=2.576
\end{aligned} \\
& \text { and the resulting critical region is } C=\{|T| \geq 2.576\}
\end{aligned} .
$$

Conclusions: The p-value is very small, so there is strong evidence that the data are not consistent with H_{0} being true. The observed test statistic value $t_{o b s}=2.84375$ falls well within the critical region of the 0.01 -level test, so we would reject H_{0} in favour of H_{1}, and conclude that the mean of the population of packet weights is not equal to 200 g , at least for that day's production.
Note that a test procedure with significance level α will reject the null hypothesis if the observed p-value is less than or equal to α. For these data the p-value is 0.00446 , so an α-level test would reject H_{0} if and only if $\alpha \geq 0.00446$.
7. Model assumptions: (a) The values X_{1}, \ldots, X_{n} are a simple random sample of size n from a given population. (b) The population distribution is $N\left(\mu, 5^{2}\right)$, where μ is unknown.
Hypotheses: $H_{0}: \mu=100$ versus $H_{1}: \mu>100$.
Test Statistic: Since \bar{X} is the natural estimator of μ, we base our test statistic on $\bar{X}-\mu_{0}=$ $\bar{X}-100$. Since the population standard deviation $\sigma_{0}=5$ is known we can take as our test statistic $T\left(X_{1}, \ldots, X_{n}\right)=\sqrt{n}\left(\bar{X}-\mu_{0}\right) / \sigma_{0}=\sqrt{n}(\bar{X}-100) / 5$, where $\bar{X} \sim N\left(\mu, \sigma_{0}^{2} / n\right)=$ $N(\mu, 25 / \sqrt{n})$.
Thus, when H_{0} is true (i.e. when $\mu=\mu_{0}=100$) we have $T=\sqrt{n}(\bar{X}-100) / 5 \sim N(0,1)$.
Sample size: We are given that the test procedure rejects H_{0} if and only if $\bar{X}>102$, so the test procedure rejects H_{0} if and only if $T>\sqrt{n}(102-100) / 5=2 \sqrt{n} / 5$.

For a test procedure with significance level α we require

$$
\begin{aligned}
\alpha & =P\left(\text { Reject } H_{0} \mid H_{0} \text { true }\right)=P\left(T>2 \sqrt{n} / 5 \mid H_{0} \text { true }\right) \\
& =P(Z>2 \sqrt{n} / 5)[\text { where } Z \sim N(0,1)]=1-\Phi(2 \sqrt{n} / 5) .
\end{aligned}
$$

Thus $\alpha<0.05 \Rightarrow 1-\Phi(2 \sqrt{n} / 5)<0.05$
$\Rightarrow \Phi(2 \sqrt{n} / 5)>0.95$
$\Rightarrow 2 \sqrt{n} / 5>\Phi^{-1}(0.95)=z_{0.05}=$ qnorm $(0.95)=1.645$
$\Rightarrow \quad n>16.9$.
Since the sample size must be an integer, the smallest such n satisfying this inequality is $n=17$.

