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Solution Sheet 10

1. Model assumptions: (a) The lifetimes of the 10 tyres are a simple random sample from the
population of lifetimes for all tyres currently produced by that company. (b) The population
distribution for those lifetimes is N(µ, σ2), where both µ and σ are unknown.

Hypotheses: H0: µ = 42 versus H1: µ < 42.
The null hypothesis H0 corresponds to no difference between the actual mean of the pop-
ulation of lifetimes for that company’s tyres and the claimed mean lifetime of 42(×1000)
miles. In practice, this claim would probably be interpreted as a claim that the mean life-
time was at least 42, for which the alternative hypothesis H1 would corresponds to a mean
lifetime less than 42.

Test Statistic: Since X̄ is the natural estimator of µ, we base our test statistic on X̄−µ0 =
X̄−42. Since σ2 is unknown, we take as our test statistic T (X1, . . . , Xn) =

√
n(X̄−µ0)/S

which has a tn−1 distribution when H0 is true (i.e. when µ = µ0 = 42).

For the given data, n = 10, x̄ = 41, and s2 = 12.89, so the observed test statistic is
tobs =

√
10(41− 42)/

√
12.89 = −0.8808. Also, since n = 10, T ∼ t9 when H0 is true.,

p-value: Since the alternative of interest is H1: µ < 42, the values of T which are less
consistent with H0 than tobs are the set of values {T < tobs} so

p-value = P (T < tobs|H0 true) = P (t9 < −0.8808).

Using R or the hint in the question, P (t9 < −0.8808) =
1-pt(0.8808,9)=1-0.79933=0.20067.

Critical region: Since the alternative of interest is H1: µ < 42, the values of T which
are less consistent with H0 than t are the set of values {T < t}. Thus the critical region
of values for which the test would reject H0 is of the form C = {T < c∗}. A test has
significance level α if P(Reject H0|H0 true) = α. Thus, for a 0.05-level test, c∗ is defined
by the condition

0.05 = α = P (RejectH0|H0 true) = P (T < c∗ |H0 true) = P (t9 < c∗)

so by symmetry P (t9 > −c∗) = 0.05 and−c∗ = t9;0.05 = 1.833 and the resulting critical
region is C = {T < −1.833} which does not contain tobs.

Conclusions: A p-value of 0.2 is relatively large, so there is little evidence that H0 is not
true. The observed test statistic value tobs = −0.8808 falls well outside the critical region
of the 0.05-level test, so we would accept H0, and conclude that there is no reason to reject
the manufacturer’s claim that the mean lifetime of their tyres is equal to 42, 000 miles.

2. (a)
Model assumptions: (a) The 52 measured blood sugar levels are a simple random sample
from the population of blood sugar levels for all pregnant women in their third trimester of
pregnancy. (b) The population distribution is N(µ, 102), where µ is unknown.
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Notes (i) In practice, one might want to look carefully at how these women were chosen for
observation, to be sure that they really were a representative simple random sample from
the population of pregnant women and that there was no common systematic factor that
might have affected their blood glucose level. (ii) Even if the distribution of blood glucose
level in the population of pregnant women does not actually follow a Normal distribution,
the central limit theorem and the sample size of 52 means the distribution of X̄ will be close
to a Normal distribution, especialy since the true distribution is likely to be unimodal. (iii)
It is often realistic to assume to assume that the difference we are investigating will have
had more effect (if any) on the population mean than on the population variability, in which
case it may be reasonable to assume the variance for the population under consideration is
the same as that for the reference population.

Hypotheses: H0: µ = 80 versus H1: µ < 80.
The null hypothesisH0 corresponds to no difference between the mean blood sugar level for
all pregnant women in their third trimester of pregnancy and the known mean blood sugar
level for healthy women who are not pregnant. The alternative hypothesis H1 corresponds
to the mean for pregnant women being lower than that for healthy women who are not
pregnant.

Test Statistic: Since X̄ is the natural estimator of µ, we base our test statistic on X̄−µ0 =
X̄ − 80. Since the population standard deviation σ0 = 10 is known and n = 52, we can
take as our test statistic T (X1, . . . , Xn) =

√
n(X̄ − µ0)/σ0 =

√
52(X̄ − 80)/10, where

X̄ ∼ N(µ, σ2
0/n) = N(µ, 102/25).

Thus, when H0 is true (i.e. when µ = µ0 = 80) we have T =
√

52(X̄− 80)/10 ∼ N(0, 1).

The data give x̄ = 70.12 so the observed test statistic is tobs = −7.1246.

p-value: Since the alternative of interest is H1: µ < 80, the values of T which are less
consistent with H0 than tobs are the set of values {T < tobs} so

p-value = P (T < tobs|H0 true) = P (Z < −7.1246) [where Z ∼ N(0, 1)] = Φ(−7.1246).

R gives 5.204034e-13, so the p-value is tiny!

Conclusions: The p-value is so small that there is overwhelming evidence that the data are
not consistent with H0 being true. We would reject H0 in favour of H1, and conclude that
the mean blood sugar level for the population of pregnant women in their third trimester of
pregnancy is lower than that for the population of healthy womenwho are not pregnant.

(b)
Critical Region for α = 0.01: Now assume the test was carried out using a procedure
with significance level α = 0.01. Since the alternative of interest is H1: µ < 80, the values
of T which are less consistent with H0 than t are the set of values {T < t}. Thus the
critical region of values for which the test would reject H0 is of the form C = {T < c∗}.
A test has significance level α if P(Reject H0|H0 true) = α. Thus, for a 0.01-level test, c∗

is defined by the condition

0.01 = α = P (RejectH0|H0 true) = P (T < c∗ |H0 true)

= P (Z < c∗) [where Z ∼ N(0, 1)] = Φ(c∗),

so c∗ = Φ−1(0.01) = qnorm(0.01) = −2.326

and the resulting critical region is C = {T ≤ −2.326} .
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Type II error: Assume now we are interested in the specific alternativeH1: µ = 79. When
H1 is true X̄ ∼ N(79, 102/52), so

√
52(X̄ − 79)/10 ∼ N(0, 1).

Now P(Type II error) = P(Accept H0|H1 true) = P(T > c∗ |H1 true) = P(T > −2.326 |H1

true). But T > −2.326 ⇔
√

52(X̄ − 80)/10 > −2.326 ⇔ X̄ > 76.77 ⇔
√

52(X̄ −
79)/10 > −1.605. Thus

P (Type II error) = P (T > −2.326 |H1 true) = P (
√

52(X̄ − 79)/10 > −1.605|H1 true)

= P (Z > −1.605) = P (Z < 1.605) = pnorm(1.605) = 0.946

Finally, the power of the test to discriminate between H0 and H1 is 1− P(Type II error) =
0.054. This power is not very large – even if H1 was true the test procedure would only
detect the fact that it was true in 1 in 20 samples of the sort taken here.

3. The t.test() command has default significance level α = 0.05. Thus the test procedure
has a probability 0.05 of rejecting H0 when in fact H0 is true.

Here, you are taking samples from the Normal distribution with your specified mean µ0

and then testing whether the sample looks like it comes from the distribution with mean
µ0. Even though µ0 is the correct mean for the distribution from which the sample was
drawn, the 0.05-level test will reject the null hypothesis H0: µ = µ0 in 100α% = 5% = 1
in 20 of your samples. Of course the actual number of rejections in each batch of twenty
samples you take will vary due to the random nature of the sampling process, but you
should see about one (false) rejection for every 20 samples you take.

You can alter the procedure so that it gives fewer (false) rejections when H0 is true by
decreasing the significance level – but only at the expense of increasing the type II error
for value of µ under the alternative hypothesis.

4. Model assumptions: We assume that, for given x1, . . . , xn, the Yi are independent Nor-
mally distributed random variables with mean α + βxi and variance σ2.

Least squares estimates: Summary statistics for the data set are:
n = 5

∑
xi = 21

∑
yi = 12

∑
x2
i = 111

∑
y2
i = 46

∑
yixi = 69.

From these we get n = 5 (so n− 2 = 3), x̄ = 4.2, ȳ = 2.4, ssxx =
∑
x2
i − (

∑
xi)

2/n =
22.8, ssyy =

∑
y2
i − (

∑
yi)

2/n = 17.2 and ssxy =
∑
xiyi − (

∑
xi

∑
yi)/n = 18.6.

Thus the least squares estimates for α and β are

β̂ = ssxy/ssxx = 0.8158 α̂ = ȳ − β̂x̄ = −1.0263

while the estimates of σ2 and of Var(α̂) and Var(β̂) are σ̂2 =
(ssyy − ss2

xy/ssxx)

(n− 2)
=

0.6754, s2
α̂ = σ̂2(1/n + x̄2/ssxx) = 0.6577 = 0.81102, s2

β̂
= σ̂2/ssxx = 0.02962 =

0.17212.

(a) Hypothesis test for α: Here the hypotheses to be tested areH0: α = 0 versusH1: α 6=
0. Note that the null hypothesis corresponds to the fitted regression line passing through
the origin – in most cases this will not be either a plausible or an interesting hypothesis.

Test Statistic: As in question 1, under these model assumptions (α̂ − α)/sα̂ has the t-
distribution with n − 2 degrees of freedom. Thus we take as test statistic T = α̂/sα̂
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which has the tn−2 (i.e. the t3) distribution when H0 is true (since then α = 0). This gives
tobs = α̂/sα̂ = −1.0263/0.8110 = −1.265.

p-value: The alternative of interest is H1: α 6= 0, so the values of T which are less
consistent with H0 than tobs are the set {|T | > |tobs|}. Thus the p-value = P (|T | >
|tobs||H0 true) = P (|t3| > 1.265) = 2(1−P (t3 < 1.265)). The command pt(1.265,3)
in R gives P (t3 < 1.265) = 0.8524, giving a p-value of 0.2952.

Critical region: Since the values of T which are less consistent with H0 than a value
t are the set {|T | > |t|}, the critical region of values for which an γ-level test would
reject H0 is of the form C = {|T | > c∗}, where c∗ is defined by the condition: γ =
P (RejectH0|H0 true) = P (|T | > c∗ |H0 true) = 2P (t3 > c∗), i.e. P (t3 > c∗) = γ/2.
Thus, for γ = 0.05, c∗ = t3;0.025 = qt(0.975,3) = 3.182 giving C = {|T | > 3.182}.
Note that here C does not contain tobs.

Conclusions: The p-value is not that small and the observed test statistic tobs = −1.265 is
not in the critical region of the 0.05-level test, so there is no evidence that we should reject
H0 in favour ofH1. We therefore conclude that there is no evidence to reject the hypothesis
H0: α = 0 that the fitted regression line does pass through the origin.

(b) Hypothesis test for β: Here the hypotheses of interest are H0: β = 0 versus H1:
β 6= 0. Now the null hypothesis H0 corresponds to the fitted regression line being parallel
to the x-axis, i.e. to the hypothesis that the mean value of Y does not vary with the value
of the predictor variable x.

Test Statistic: Under the model assumptions (β̂ − β)/sβ̂ has the t-distribution with n− 2

degrees of freedom. Thus we take as test statistic T = β̂/sβ̂ which has the tn−2 distribution
when H0 is true (since then β = 0). This gives tobs = β̂/sβ̂ = 0.8158/0.1721 = 4.740.

p-value: The alternative of interest is H1: β 6= 0, so again the values T less consistent
with H0 than tobs are the set {|T | > |tobs|}. Thus the p-value = P (|T | > |tobs||H0 true) =
P (|t3| > 4.740) = 2(1− P (t3 < 4.740)). If you use the command pt(4.740,3) in R,
it gives P (t3 < 4.740) = 0.99110.

Critical region: Exactly the same argument as for α above gives that the critical region of
values for which an γ-level test would reject H0 is of the form C = {|T | > c∗}, where
P (t3 > c∗) = γ/2. Thus, for γ = 0.05, c∗ = t3;0.025 = 3.182 giving C = {|T | > 3.182}.
Note that this time C does contain tobs.

Conclusions: The p-value is very small and the observed test statistic value tobs = 4.740
falls well within the critical region of the 0.05-level test, so there is strong evidence that we
should reject H0: β = 0 in favour of H1: β 6= 0 and conclude that the mean value of Y
does vary with the value of the predictor x.

5. Model assumptions: Let Yi denote the log metabolic rate and let xi denote the log body
mass for the ith dog. From the question we can assume that, for given x1, . . . , xn, the Yi
are independent Normally distributed random variables with mean α + βxi and variance
σ2.

Least squares estimates: From the summary statistics we get
n = 7 (so n − 2 = 5), x̄ = 2.543, ȳ = 6.513, ssxx =

∑
x2
i − (

∑
xi)

2/n = 3.975,
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ssyy =
∑
y2
i − (

∑
yi)

2/n = 1.5056 and ssxy =
∑
xiyi − (

∑
xi

∑
yi)/n = 2.4339.

Thus the least squares estimates for α and β are

β̂ = ssxy/ssxx = 0.6124 α̂ = ȳ − β̂x̄ = 4.9558

while the estimates of σ2 and of Var(α̂) and Var(β̂) are

σ̂2 =
(ssyy − ss2

xy/ssxx)

(n− 2)
= 0.003033,

s2
α̂ = σ̂2(1/n+ x̄2/ssxx) = 0.005367, s2

β̂
= σ̂2/ssxx = 0.0007630.

Confidence interval for α: From §9.6 of your notes, under these model assumptions (α̂−
α)/sα̂ has the t-distribution with n− 2 degrees of freedom, so from §9.2 of your notes the
end points (cL, cU) of a 100(1− γ)% confidence interval for α are given by

cL = α̂− tn−2;γ/2 × sα̂ and cU = α̂ + tn−2;γ/2 × sα̂.

For a 99% confidence interval, 100(1− γ) = 99 so γ/2 = 0.005 and from R, t5;0.005 =
qt(0.995,5)=4.032. Thus the 99% confidence interval for α has end points

cL = 4.9558− 4.032× 0.07326 = 4.661 cU = 4.9558 + 4.032× 0.07326 = 5.251.

Confidence interval for β: In the same way, under these model assumptions (β̂−β)/sβ̂ has
the t-distribution with n−2 degrees of freedom, so the end points (cL, cU) of a 100(1−γ)%
confidence interval for β are given by

cL = β̂ − tn−2;γ/2 × sβ̂ and cU = β̂ + tn−2;γ/2 × sβ̂.

For a 99% confidence interval, 100(1− γ) = 99 so γ/2 = 0.005 and from R, t5;0.005 =
qt(0.995,5)=4.032. Thus the 99% confidence interval for β has end points

cL = 0.6124− 4.032× 0.02762 = 0.501 cU = 0.6124 + 4.032× 0.02762 = 0.724.

6. Model assumptions: Let Yi denote the autumn rainfall and let xi denote the observed
spring rainfall for the ith year. From the question, we can assume that, for given x1, . . . , xn,
the Yi are independent Normally distributed random variables with mean α + βxi and
variance σ2.

Least squares estimates: The summary statistics for the data set are:
n = 10

∑
xi = 49.4

∑
yi = 66.9

∑
x2
i = 311.22

∑
y2
i = 540.49

∑
yixi =

400.26.

From the summary statistics we get: x̄ = 4.94, ȳ = 6.69, ssxx =
∑
x2
i − (

∑
xi)

2/n =
67.184, ssyy =

∑
y2
i − (

∑
yi)

2/n = 92.929 and ssxy =
∑
xiyi − (

∑
xi

∑
yi)/n =

69.774.

Thus the least squares estimate for β is β̂ = ssxy/ssxx = 1.039 while the estimates of σ2

and Var(β̂) are σ̂2 = (ssyy− ss2
xy/ssxx)/(n− 2) = 2.558 and s2

β̂
= σ̂2/ssxx = 0.03808.
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(a) Confidence interval for β: As in question 1, under these model assumptions (β̂ −
β)/sβ̂ has the t-distribution with n − 2 degrees of freedom (here t8), so the end points
(cL, cU) of a 100(1 − γ)% confidence interval for β are given by cL = β̂ − tn−2;γ/2 × sβ̂
and cU = β̂+tn−2;γ/2×sβ̂. For a 90% confidence interval, 100(1−γ) = 90 so γ/2 = 0.05
and from R, t8;0.05 =qt(0.95,8)=1.860. Thus the 90% confidence interval has end
points cL = 1.039− 1.86× 0.1951 = 0.674, cU = 1.039 + 1.86× 0.1951 = 1.404.

(b) Hypothesis test for β: Here the hypotheses of interest are H0: β = 0 versus H1:
β 6= 0. As in question 2, H0 corresponds to the hypothesis that the mean value of Y does
not vary with the value of the predictor variable x.

Test Statistic: Under the model assumptions (β̂ − β)/sβ̂ has the t-distribution with n− 2

degrees of freedom. Thus we take as test statistic T = β̂/sβ̂ which has the tn−2 distribution
when H0 is true (since then β = 0). This gives tobs = β̂/sβ̂ = 1.039/0.1951 = 5.324.

p-value: The alternative of interest is H1: β 6= 0, so again the values of T which are
less consistent with H0 than tobs are the set {|T | > |tobs|}. Thus the p-value = P (|T | >
|tobs||H0 true) = P (|t8| > 5.324) = 2(1 − P (t8 < 5.324)). R gives pt(5.324,8)
= 0.9996462 from which we obtain the p-value as 2(1− 0.9996462) = 0.0007.

Critical region: Exactly the same argument as for question 2 above gives that the critical
region of values for which an test with significance level 0.10 would reject H0 is of the
form C = {|T | > c∗}, where c∗ = t8;0.05 = 1.860 giving C = {|T | > 1.860}. Here
tobs ∈ C.

Conclusions: The p-value is extremely small and the observed test statistic value tobs =
5.324 falls well within the critical region of the 0.10-level test, so there is very strong
evidence that we should reject H0 in favour of H1 and conclude that the mean autumn
rainfall does vary with the value of the rainfall for the previous spring.

(c) The γ-level test of H0: β = 0 against H1: β 6= 0 accepts H0 ⇐⇒ |tobs| ≤ tn−2;γ/2

⇐⇒−tn−2;γ/2 ≤ β̂/sβ̂ ≤ tn−2;γ/2⇐⇒ β̂ − tn−2;γ/2sβ̂ ≤ 0 and β̂ + tn−2;γ/2sβ̂ ≥ 0⇐⇒
cL ≤ 0 ≤ cU ⇐⇒ the 100(1− γ)% confidence interval for β contains the value β = 0.

7. The summary statistics for this data set are:
n = 7

∑
xi = 44

∑
yi = 9.6

∑
x2
i = 344

∑
y2
i = 13.36

∑
yixi = 57.

From the summary statistics we get: x̄ = 6.2857, ȳ = 1.3714, ssxx =
∑
x2
i−(

∑
xi)

2/n =
67.429, ssyy =

∑
y2
i − (

∑
yi)

2/n = 0.19429 and ssxy =
∑
xiyi − (

∑
xi

∑
yi)/n =

−3.3429.

Thus the least squares estimates for α and β are β̂ = ssxy/ssxx = −0.04958 and
α̂ = ȳ − β̂x̄ = 1.683, while the estimates of σ2, Var(α̂) and Var(β̂) are σ̂2 = (ssyy −
ss2
xy/ssxx)/(n − 2) = 0.005712, s2

α̂ = σ̂2(1/n + x̄2/ssxx) = 0.004163 and s2
β̂

=

σ̂2/ssxx = 0.00008471.

We assume the data are observations satisfying the simple linear Normal regression model
Yi = α + βxi + ei, i = 1, . . . , n, where the ei are i.i.d. N(0, σ2).

(a) The values on the line beginning (Intercept) are: (i) α̂ (the estimate of α),
(ii) sα̂ (the standard error, which estimates the standard deviation α̂),
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(iii) tobs = α̂/sα̂ (the observed test statistic for testing H0: α = 0 vs. H1: α 6= 0),
(iv) P (|W | ≥ |tobs), where W ∼ tn−2 (the p-value of the data for the test).

The values on the line beginning pig.littersize are the corresponding quantities
for estimating or testing hypotheses about β (i.e. (i) β̂, (ii) sβ̂ , (iii) tobs = β̂/sβ̂ , and (iv)
P (|W | ≥ |tobs), where W ∼ tn−2.

The values on the line beginning Residual are σ̂ and n− 2.

The line beginning Signif. codes tells us that three asterisks *** indicates that the
corresponding p-value lies between 0.001 and 0, while two asterisks ** indicates that the
corresponding p-value lies between 0.01 and 0.001.

(b) The output indicates that, for a test of H0: β = 0 vs. H1: β 6= 0, the p-value is
0.00297. Since this is extremely small, we would reject H0 and conclude that the mean
weight of the pigs in a given litter does vary with the number of pigs in the litter.

8. The sea-level and high-altitude times for each runner are likely to be dependent – those
who did well at sea level also did well at high altitude. However, the difference in the race
time for each runner may well be independent of the difference for other runners, and these
differences may well have the same variability. Thus we use a paired t-test.
Model assumptions: For i = 1, . . . , 8 let Xi denote the sea-level time for the ith runner,
let Yi denote the high-altitude time for the same runner, and let Wi = Xi − Yi. We assume
W1, . . . ,W8 are a simple random sample from the N(δ, σ2) distribution, where δ and σ2

are unknown.

Hypotheses: H0: δ = 0 versus HA: δ < 0.
The null hypothesis H0 corresponds to a mean of zero for the differences between the
race times at sea level and high altitude. The alternative hypothesis of interest is that race
times at high altitude are systematically larger than those at sea level, i.e. that this mean is
negative.

Test Statistic: As in §9.12 of your notes, we take as our test statistic T =
√
nW̄/σ̂W . Here

n = 8, σ̂2
W = S2

W =
∑8

i=1(Wi − W̄ )2/(8 − 1), and T has the t7 distribution when H0 is
true.

For the given data, the wi values are−2.1, 0.3,−1.6,−2.0, 1.1,−3.4, 0.1,−1.8, with mean
w̄ = −1.175 and variance s2

W = 2.290714. so the observed test statistic is tobs = −2.1958.

p-value: The alternative of interest is HA: δ < 0, so values of T which are less consistent
with H0 than tobs are the set {T < tobs}. Thus the p-value = P (T < tobs|H0 true) =
P (t7 < −2.1958) = P (t7 > 2.1958) (by symmetry) = 1 − P (t7 < 2.1958). If you use
the command pt(2.1958,7) in R, it gives P (t7 < 2.1958) = 0.96794 and a p-value of
0.03206.

Critical region: Since the values of T which are less consistent with H0 than a value
t are the set {T < t}, the critical region of values for which an α-level test would re-
ject H0 is of the form C = {T < c∗}, where c∗ is defined by the condition: α =
P (RejectH0|H0 true) = P (T < c∗ |H0 true) = P (t7 < c∗) = P (t7 > −c∗). Thus,
for α = 0.05, −c∗ = t7;0.05 = qt(0.95,7) = 1.895 and c∗ = −1.895 giving C =
{T < −1.895}.
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Conclusions: The p-value is very small, so there is strong evidence that H0 is not true.
The observed test statistic value tobs = −2.1958 falls well within the critical region of the
0.05-level test. Thus we would reject H0 in favour of HA, and conclude that the mean race
times at high altitude are indeed larger than those at sea level.

9. Here we have two entirely independent samples of salaries, and we are told in the question
that we may assume that the population variances are the same in the private and public
sectors, so it is appropriate to use a pooled two-sample t-test .

Model assumptions: Let X1, . . . , X9 denote the salararies for the nine private sector
posts and let Y1, . . . , Y10 denote the salararies for the ten public sector posts. We assume:
X1, . . . , X9 are a simple random sample from the N(µX , σ

2
X) distribution; Y1, . . . , Y10 are

a simple random sample from the N(µY , σ
2
Y ) distribution; σ2

X = σ2
Y = σ2 (say); and the

two samples are independent of each other.

Hypotheses: H0: µX − µY = 0 versus HA: µX − µY > 0.
The null hypothesis corresponds to there being no systematic difference between the privare
sector and the public sector salaries; the alternative hypothesis corresponds to private sector
salaries being systematically higher, i.e. to a positive difference between the means.

Test Statistic: As in §9.11 and §9.11.1 of your notes, for a pooled t-test we take as test
statistic T = (X̄−Ȳ )/Sp

√
1/n+ 1/m, where S2

p = [(n−1)S2
X+(m−1)S2

Y ]/(n+m−2),
and T has the tn+m−2 distribution (i.e. T ∼ t17) when H0 is true.

Here n = 9,
∑
xi = 104.0,

∑
x2
i = 1218.92, x̄ = 11.5556, s2

x = 2.1428,
m = 10,

∑
yi = 102.3,

∑
y2
i = 1071.69, ȳ = 10.2300, s2

y = 2.7957,
so s2

p = 2.4884 and the observed test statistic is tobs = 1.8289.

p-value: The alternative of interest is HA: µX − µY > 0, so the values of T which are less
consistent withH0 than tobs are the set {T > tobs}. Thus the p-value = P (T > tobs|H0 true)
= P (t17 > 1.8289) = 1− P (t17 < 1.8289). If you use the command pt(1.8289,17) in
R, it gives P (t17 < 1.8289) = 0.9575 and a p-value of 0.0425.

Critical region: The values of T less consistent with H0 than a value t are the set {T > t},
so the critical region of values for which an α-level test would reject H0 is of the form
C = {T > c∗}, where c∗ is defined by the condition: α = P (RejectH0|H0 true) =
P (T > c∗ |H0 true) = P (t17 > c∗). For α = 0.05, c∗ = t17;0.05 = qt(0.95,17) =
1.740 giving C = {T > 1.740}.
Conclusions: The p-value is quite small and gives reasonable evidence that H0 is not true.
The observed test statistic value tobs = 1.8289 falls just within the critical region of the
0.05-level test. Thus we would reject H0 in favour of HA, and conclude that private sector
starting salaries are significantly higher than public sector starting salaries.

10. As in Question 8, we will use a paired t-test.
Model assumptions: For i = 1, . . . , 10 letWi denote the difference between these ’before’
and ’after’ usage for the ith household, and assume W1, . . . ,W10 are a simple random
sample from the N(δ, σ2) distribution, where δ and σ2 are unknown.

Hypotheses: H0: δ = 0 versus HA: δ > 0,
since the alternative hypothesis of interest is that usage has been reduced.
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Test Statistic: T =
√
nW̄/σ̂W . Here n = 10, σ̂2

W = S2
W =

∑10
i=1(Wi− W̄ )2/(10− 1) and

T has the t9 distribution when H0 is true.

For the given data, w̄ = 56 and s2
W = 10937.78, so tobs = 1.6933.

p-value: For HA: δ > 0, the values of T which are less consistent with H0 than tobs are
{T > tobs}. Thus the p-value = P (T > tobs|H0 true) = P (t9 > 1.6933) = 1 − P (t9 <
1.6933). If you use the command pt(1.6933,9) in R, it gives a P (t9 < 1.6933) =
0.93768 and a p-value of 0.06232.

Critical region: Here, the critical region is of the form C = {T > c∗}, where, for a 0.05-
level test, c∗ is defined by the condition: 0.05 = P (T > c∗ |H0 true) = P (t9 > c∗), so
c∗ = t9;0.05 = 1.833, giving C = {T > 1.833}.
Conclusions: The p-value is not very small and the observed test statistic value tobs =
1.6933 does not fall within the critical region of the 0.05-level test. Thus there is not
enough evidence to reject H0 in favour of HA, and hence not enough evidence to conclude
that the monitor is effective at reducing electrical consumption.

11. We will use Welch’s test, since we have two independent samples but σ2
X and σ2

Y may
differ.

Model assumptions: Let X1, . . . , X10 denote the relative changes for the ten subjects with
the calcium supplement and let Y1, . . . , Y11 denote the relative changes for the eleven sub-
jects with the placebo. We assume: X1, . . . , X10 are a simple random sample from the
N(µX , σ

2
X) distribution; Y1, . . . , Y11 are a simple random sample from the N(µY , σ

2
Y ) dis-

tribution; and the two samples are independent of each other.

Hypotheses: H0: µX − µY = 0 versus HA: µX − µY < 0.
Here, reduction in blood pressure corresponds to negative relative changes. The alternative
hypothesis corresponds the reduction for subjects with the calcium supplement being, on
average, greater than that for subjects using the placebo.

Test Statistic: From §9.11.2 of your notes, Welch’s test uses T = (X̄−Ȳ )/
√
S2
X/n+ S2

Y /m,
where T has approximately the tν distribution when H0 is true,
and where ν = (S2

X/n+ S2
Y /m)2/((S2

X/n)2/(n− 1) + (S2
Y /m)2/(m− 1)).

Here, n = 10, m = 11, x̄ = −5, s2
x = 76.444, ȳ = 0.2727, s2

y = 34.818,
so ν = 15.591 and the observed test statistic is tobs = −1.6037.

p-value: The alternative of interest is HA: µX − µY < 0, p-value = P (T < tobs|H0 true)
= P (t15.591 < −1.6037). As ν is non-integer, you can use pt(-1.6037,15.591) in R,
which gives the p-value as P (t15.591 < −1.6037) = 0.06442.

Conclusions: The p-value is similar to that of Question 5. Again, there is not really enough
evidence to reject H0 in favour of HA. Thus we would conclude that there is not enough
evidence to reject the hypothesis that the calcium supplement has no more effect than using
a placebo.
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