
EXAMINERS REPORT & SOLUTIONS – STATISTICS 1 (MATH 11400) – May-June 2009

Examiners Report

A1. Most plots were well done. Some candidates muddled hinges and quartiles and gave the wrong
one. Generally candidates correctly identified F−1

X (u), but some failed to find F−1
X (k/(n + 1)) or

got the coordinates the wrong way round.

A2. Generally answered correctly.

A3. Parts (i) and (ii) generally answered correctly. Some candidates incorrectly took P (X =
20) = 0.2 rather than 0.1, and some computed E(X2) rather than Var(X). Part (iii) was less
well done and some candidates seemed totally confused. Many candidates correctly identified the
distribution of U −T to be Normal, but some took it to have variance σ2

U −σ2
T rather than σ2

U +σ2
T .

A4. One common error was to transpose S and σ, and incorrectly write
√
n(X̄ − µ)/S ∼ N(0, 1)

or
∑

(Xi − X̄)2/S2 ∼ χ2
n−1, in place of the correct statements

√
n(X̄ − µ)/σ ∼ N(0, 1) and∑

(Xi − X̄)2/σ2 ∼ χ2
n−1. Otherwise both parts were generally answered correctly.

A5. In Part (i) some candidates lost marks by failing to state the distribution of
√
n(X̄ − µ)/σ0.

Most candidates correctly computed the end points of the confidence interval, though one or two
incorrectly used a t-distribution or even a chi-square distribution. In part (ii), most candidates
correctly answered (a) and (b) correctly, but not many got (c) completely correct.

B1. Most candidates found parts (a) and (b) straightforward, though some candidates incorrectly
defined the bias as E(θ− θ̂) (it should be E(θ̂−θ)) and some took mse(θ̂) = Var(θ̂)+ bias(θ̂)2 as the
definition of the mse (it should be mse(θ̂) ≡ E(θ̂−θ)2). A small number of candidates forgot that θ
here is the fixed constant value of the parameter, and tried to compute E(θ). Candidates seemed to
find part (c) harder; some got as far as τ̂ = exp{log(2)/θ̂} − 1, without realising that exp{log(2)}
is just 2. Most candidates answered part (d), but some did not make the step from the median of
each distribution (shown in the boxplot) to the mean (required for the bias and variance).

B2. Part (a) was attempted by almost all candidates, and generally answered correctly. Most can-
didates attempted part (b) – usually correctly identifying the appropriate test (paired t-test) and
the correct hypotheses, finding the correct form of test statistic, and using the correct approach to
computing the the p-value. However candidates did not always identify the correct model assump-
tions (i.e. that d1, . . . , dn are the observed values of a random sample from the Normal distribution
with unknown mean and variance); a surprising number made numerical slips in computing the
variance estimate s2 = (

∑
d2
i −nd̄2)/(n−1); some failed to state the distribution of the test statis-

tic under H0; and some failed to correctly interpret their p-value or draw appropriate conclusions.
Candidates generally found part (c) harder, and many failed to relate the occurrence of, say, a type
II error to a range of D̄ values for which the probability could then be easily computed under H1.

B3. This question was significantly less popular than B1 or B2. In part (a), most students cor-
rectly computed the estimates, but very few were able to derive the equations satisfied by the least
squares estimates. Candidates attempting part (b) generally identified the correct formulae for the
end points of the confidence intervals, but many made numerical slips in the calculation – often
computing an incorrect value for sα̂ even having found the correct value for σ̂2. Again, candidates
found part (c) testing, and only a small number worked their way through to the end.
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A1. (i) The ordered observations are:
0.50, 0.66, 0.71, 0.92, 0.94, 1.02, 1.06, 1.12, 1.20, 1.23, 1.47.
The values used to construct the boxplot are: the smallest observation o1 = 0.050; the
lower hinge = median of {data values≤median}= (0.71+0.92)/2 = 0.815; the median
o6 = 1.02; the upper hinge = median of {data values ≥ median} = (1.12 + 1.20)/2 =
1.16, and the largest observation o11 = 1.47.

(ii) FX(x) = x/2 has inverse F−1
X (u) = 2u

so the fitted quantiles are F−1
X (k/(n+ 1)) = 2k/(n+ 1) for k = 1, . . . , n.

The smallest observation is o1 = 0.50 and the corresponding fitted quantile (as n = 11)
is F−1

X (1/12) = 0.167, so the coordinates of the point are (0.17, 0.50).
The upper tail values are smaller than expected (shorter upper tails) and the lower tail
values are larger than expected (shorted lower tails), so overall the data is more concen-
trated about its centre than expected under the fitted distribution.

A2. (i) For two unknown parameters we use the equations involving the two smallest moments
of the distribution. Here E(X2;µ, σ2) = Var(X;µ, σ2) + [E(X;µ, σ2)]2 = σ2 + µ2. Let
m1 = (x1 + · · · + xn)/n and m2 = (x2

1 + · · · + x2
n)/n. Then the method of moments

estimators satisfy
E(X; µ̂, σ̂2) = m1 and E(X2; µ̂, σ̂2) = m2

i.e. µ̂ = m1 and σ̂2 + µ̂2 = m2

(ii) Solving the first equation in (a) gives µ̂ = m1 = x̄. Substituting this into the second
equation gives σ̂2 +m2

1 = m2, so σ̂2 = m2 −m2
1 =

∑
x2
i /n− x̄2 =

∑
(xi − x̄)2/n.

A3. (i) Let X denote the value of a randomly chosen card.
P (X = 5) = 0.6; P (X = 10) = 0.3, P (X = 20) = 0.1
so µX = 3 + 3 + 2 = 8, E(X2) = 15 + 30 + 40 = 85, σ2

X = E(X2)− µ2
X = 21

(ii) The customer collects n = 50 cards, so from the central limit theorem T =
∑n

1 Xi '
N(nµX , nσ

2
X) = N(400, 1050).

(iii) Exactly the same argument gives U ' N(400, 1050). Since T and U are independent,
U − T ' N(µU − µT , σ

2
U + σ2

T ) = N(0, 2100) and (U − T )/
√

2100 ' N(0, 1).
Thus P (U − T > 20) = P ((U − T )/

√
2100 > 20/

√
2100) = P ((U − T )/

√
2100 >

20/45.82576) = P (Z > 0.4364358) = 1− P (Z < 0.4364358) = 1− 0.6687 = 0.3313

A4. (i) Let U ∼ N(0, 1) and let V ∼ χ2
r with U and V independent. Then from notes W =

U/
√
V/r has the t distribution with r degrees of freedom and we write W ∼ tr.

(ii) From notes, X̄ ∼ N(µ, σ2/n) so that
√
n(X̄ − µ)/σ ∼ N(0, 1). Also from notes,

(n− 1)S2/σ2 =
∑

i(Xi − X̄)2/σ2 ∼ χ2
n−1.

But
√
n(X̄ − µ)/S = [

√
n(X̄ − µ)/σ]/[

√
(n− 1)S2/(n− 1)σ2], so

√
n(X̄ − µ)/S =

U/
√
V/(n− 1), where U ∼ N(0, 1) and V ∼ χ2

n−1. Hence from the result in (i),√
n(X̄ − µ)/S ∼ tn−1.
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A5. (i) When σ is known to take value σ0, from notes
√
n(X̄ − µ)/σ0 ∼ N(0, 1).

Thus the end points of a 100(1− α)% confidence interval are cL = x̄− zα/2σ0/
√
n and

cU = x̄+ zα/2σ0/
√
n, where zα/2 is such that P (Z > zα) = α when Z ∼ N(0, 1).

Here n = 10, α/2 = 0.05, z0.05 = 1.645, x̄ = 5, σ0 = 3 so
cL = 5− 1.645× 3/

√
10 = 5− 1.56 = 3.44

cU = 5 + 1.645× 3/
√

10 = 5 + 1.56 = 6.56

(ii) a) It would become shorter since 1/
√
n decreases as n increases – intuitively more ob-

servations⇒ more information⇒ smaller interval needed for same confidence level;
(b) it would become larger since zα/2 increases as α decreases – intuitively more confi-
dence⇒ larger interval needed;
(c) it might increase since tα/2;n−1 > zα/2 – intuitively more uncertainty over σ ⇒ less
information⇒ larger interval needed. However in this case the end point is also affected
by the value of the estimate of σ – if this was smaller than σ0, it would tend to decrease
the interval length.

3



B1.

(a) For observations from the given Pareto distribution,
f(x; θ) = θ/(1 + x)θ+1

log f(x; θ) = log(θ)− (θ + 1) log(1 + x)
∂

∂θ
log f(x; θ) =

1

θ
− log(1 + x)∑n

i=1

∂

∂θ
log f(xi; θ) =

(
1

θ
− log(1 + x1)

)
+ · · ·+

(
1

θ
− log(1 + xn)

)
=

n

θ
−

n∑
1

log(1 + xi)

so the likelihood equation satisfied by the maximum likelihood estimate θ̂ is
n

θ̂
−

n∑
1

log(1 + xi) = 0

giving θ̂ = n/
∑n

1 log(1 + xi)

(b) bias(θ̂) = E(θ̂ − θ), mse(θ̂) = E(θ̂ − θ)2, and (from notes) mse(θ̂) = Var(θ̂)+ bias(θ̂)2.

Here E(θ̂) = nθ/(n− 1), so bias(θ̂) = E(θ̂ − θ) = E(θ̂)− θ = nθ/(n− 1)− θ = θ/(n− 1).

(c) You are given that (1 + τ)θ = 2, so τ = τ(θ) = 21/θ − 1.

The maximum likelihood estimate has the property that τ̂(θ) = τ(θ̂)

Thus τ̂ = 21/θ̂ − 1 = 2
∑

log(1+xi)/n − 1

(d) Despite the outliers in the boxplot for the sample median, both boxplots appear roughly sym-
metric about the median, possibly with some positive skew. This would imply that, in the
distribution of each estimator, the median is approximately equal to, or slightly less than, the
mean. The plot indicates that for each distribution, the median is close to 1, so for each dis-
tribution the mean is also (approximately) close to 1, so both estimators are approximately
unbiased for τ = 1 (though the plot seems to indicate that the median/mean of the distribution
of τmle is slightly less than 1, indicating a slight negative bias).

However, the plot indicates that estimates based on the sample median have substantially
greater variability about their median than the maximum likelihood estimates, with the hinges
and whisker ends in the sample median boxplot noticeably further away from the median than
in the mle plot. Since the median and the mean are not that dissimilar here, this indicates that
the sample median has a greater variability about its mean. Since both estimators are unbiased,
this indicates the sample median has greater variability about τ and hence greater mean square
error than the mle, as an estimator of τ .
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B2.

(a) (i) Type I error occurs if we reject H0 when it is in fact true;
(ii) Type II error occurs if we accept H0 when it is in fact false;
(iii) The significance level of the test is P(Type I error) = P(Reject H0|H0 true );
(iv) The power is 1− P(Type II error) = P(Reject H1|H1 true) = 1− P(Accept H0|H1 true).

(b) A student’s body fat percentage both before and after the course is likely to depend on the
student as well as the effect of the course – some students may have naturally high levels
of body fat, others some may have naturally lower levels. However, the difference in the
percentage of body fat for each student may well be independent of the difference for other
subjects. Thus it is sensible to use a paired t-test based on the differences, say di = xi − yi.
Model assumptions: Let Xi denote the percentage of body fat before the course for the ith
student, let Yi denote the percentage of body fat after the course for the same student, and
let Di = Xi − Yi. Assume D1, . . . , D10 are a simple random sample from the N(µ, σ2)
distribution, where µ and σ2 are unknown.

Hypotheses: H0: µ = 0 versus HA: µ > 0. H0 corresponds to a zero mean difference
between the before and after body fat percentages; H1 corresponds to the percentages after the
course being systematically smaller than before the course, so the mean difference is positive.

Test Statistic: Let T =
√
nD̄/σ̂D, where here n = 10, σ̂2

D = S2
D =

∑10
i=1(Di−D̄)2/(10−1),

so T has the t9 distribution when H0 is true. For the given data, the di values have mean
d̄ = 1.71 and variance s2

D = 3.8299. so the observed test statistic is tobs = 2.7631.

p-value: For HA: µ > 0, the values of T which are at least as extreme as tobs are the set
{T ≥ tobs}. Thus the p-value = P (T ≥ tobs|H0 true) = P (t9 ≥ 2.7631) = 1−P (t9 ≤ 2.7631).
From tables P (t9 ≤ 2.7) = 0.9878 and P (t9 ≤ 2.8) = 0.9896, so linear interpolation gives
P (t9 ≤ 2.76) = 0.9878 + 0.6× (0.0018) = 0.9888, giving a p-value of 0.0112.

[Not required but may replace the computation of the p-value.]
Critical region: The critical region of values where an α-level test would reject H0 has form
C = {T ≥ c∗}, where c∗ is defined by: α = P (RejectH0|H0 true) = P (T ≥ c∗ |H0 true) =
P (t9 ≥ c∗). Thus, for α = 0.05, c∗ = t9;0.05 = 1.833 giving C = {T ≥ 1.833}.]
Conclusions: The p-value is very small, so there is very strong evidence that H0 is not true.
[ or The observed test statistic value tobs = 2.7631 falls well within the critical region of the
0.05-level test.] Thus we would reject H0 in favour of HA, and conclude that the mean body
fat percentages after taking the course are indeed smaller those before taking the course.

(c) Under H1, the power of the test is 1 - P(Type II error) = 1 - P(Accept H0|H1 true) = P(Reject
H0|H1 true) = P(T > 1.645|H1 true) = 1 - P(T < 1.645 |H1 true).

But when H1: µ = 1 is true, D ∼ N(1, 4), so D̄ ∼ N(1, 4/10), so
√

10(D̄ − 1)/2 ∼ N(0, 1)
and T < 1.645⇔

√
10D̄/2 < 1.645⇔ D̄ < 1.0404⇔

√
10(D̄ − 1)/2 < 0.0638.

So Power = 1 − P (
√

10(D̄ − 1)/2 < 0.0638|H1 true) = 1 − P (Z < 0.0638) [where
Z ∼ N(0, 1)] = 1− Φ(0.0638) = 1− 0.5254 = 0.4746.
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B3.

(a) The least squares estimates minimise the sum of squares
∑

(yi − α − βxi)2, so they satisfy
the equations obtained by setting ∂/∂α = 0 and ∂/∂β = 0.

The first equation gives −2(
∑
yi − nα̂−

∑
β̂xi) = 0, i.e. ȳ − α̂− β̂x̄ = 0, so α̂ = ȳ − β̂x̄.

The second eqn gives −2(
∑
yixi −

∑
α̂xi −

∑
β̂x2

i ) = 0, i.e.
∑
yixi − α̂nx̄− β̂

∑
x2
i = 0.

Substituting in for α̂ gives
∑
yixi − (ȳ − β̂x̄)nx̄− β̂

∑
x2
i = 0,

and rearranging gives β̂(
∑
x2
i −nx̄2) =

∑
yixi−nȳx̄, so β̂ = (

∑
yixi−nȳx̄)/(

∑
x2
i −nx̄2)

or equivalently β̂ = (
∑
yixi −

∑
yi
∑
xi/n)/(

∑
x2
i − (

∑
xi)

2/n).

Here
∑
xi = 30;

∑
yi = 73.62;

∑
x2
i = 110;

∑
y2
i = 599.8738;

∑
yixi = 254.3 giving:

β̂ = (254.3− 30× 73.62/10)/(110− 302/10) = 1.672,
α̂ =

∑
yi/n− β̂

∑
xi/n = 73.62/10− 1.672× 30/10 = 2.346.

The definitions of xi and yi were inadvertently swapped at some point when the question
was being revised, so ‘times’ became ‘distances’ and vice versa. The intended answer was
that the estimated time y to reach an address a distance x from the base is y = α̂ + β̂x, so
the estimated time taken to reach an address 2.5 miles from the base is α̂ + 2.5β̂ = 6.526.
However, as printed, x denoted the ‘time’ and y = 2.5 the ‘distance’, so the estimated time
became x = (y − α̂)/β̂ = 0.092. Both answers were awarded full marks.

(b) From the R output we can read off that the estimate of σ is 0.4964 and the corresponding value
of sα̂ is 0.3682.

Alternatively, σ̂2 = [
∑
y2
i −nȳ2− (

∑
xiyi−nx̄ȳ)2/(

∑
x2
i −nx̄2)]/(n−2] = 0.24646 giving

s2
α̂ = σ̂2(1/n+ x̄2/

∑
(xi − x̄)2) = 0.1356 and sα̂ = 0.3682.

You are given that (α̂−α)/sα̂ has the t-distribution with n− 2 degrees of freedom, so the end
points (cL, cU) of a 100(1− γ)% confidence interval for α are given by

cL = α̂− tn−2;γ/2 × sα̂ and cU = α̂ + tn−2;γ/2 × sα̂.

For a 95% confidence interval, γ/2 = 0.025 and from tables t8;0.025 = 2.30. Thus the 95%
confidence interval for α has end points

cL = 2.346− 2.3× 0.368 = 1.4996 cU = 2.346 + 2.3× 0.368 = 3.1924.

(c) For fixed x, you are given that α̂ + β̂x can be expressed in the form

α̂ + β̂x =
n∑
i=1

Yi(1/n+ bi(x− x̄)) where bi = (xi − x̄)/sxx and sxx =
∑

(xi − x̄)2.

Now
∑n

1 bi =
∑

(xi − x̄)/sxx = 0/sxx = 0

and
∑n

1 b
2
i =

∑n
1 (xi − x̄)2/(sxx)

2 = sxx/(sxx)
2 = 1/sxx.

Since the Yi are independent and each has the same variance σ2, we have
Var(α̂ + β̂x) = Var(

∑
Yi(1/n+ bi(x− x̄)) =

∑
Var(Yi(1/n+ bi(x− x̄))

=
∑

Var(Yi)(1/n+ bi(x− x̄))2 = σ2
∑

(1/n+ bi(x− x̄))2

= σ2
∑

(1/n2 + 2bi(x− x̄)/n+ b2i (x− x̄)2)
= σ2[

∑
1/n2 + 2(xi − x̄)(

∑
bi)/n+ (x− x̄)2

∑
b2i ]

= σ2[1/n+ (x− x̄)2/sxx] since
∑
bi = 0 and

∑
b2i = 1/sxx.
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