
SCORER 2.0: An algorithm for distinguishing parallel
dimeric and trimeric coiled-coil sequences
Craig T. Armstrong 1 † and Thomas. L. Vincent 1,2 †, Peter J. Green 3 ∗

and Derek N. Woolfson 1,4 ∗

1School of Chemistry, University of Bristol, Bristol, BS8 1TS.
2Bristol Centre for Complexity Science, University of Bristol, Bristol, BS8 1TR.
3Department of Mathematics, University of Bristol, Bristol, BS8 1TW.
4School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol, BS8 1TD.

ABSTRACT
Motivation: The coiled coil is a ubiquitous α-helical protein-structure
domain that directs and facilitates protein-protein interactions in a
wide variety of biological processes. At the protein-sequence level,
coiled coils are quite straightforward and readily recognised via
the conspicuous heptad repeats of hydrophobic and polar residues.
However, structurally they are more complicated, existing in a range
of oligomer states and topologies. Here we address the issue of
predicting coiled-coil oligomeric state from protein sequence.
Results: The predominant coiled-coil oligomer states in Nature are
parallel dimers and trimers. Here we improve and retrain the first-
published algorithm, SCORER, that distinguishes these states, and
test it against the current standard, MultiCoil. The SCORER algorithm
has been revised in two key respects: First, the statistical basis for
SCORER is improved markedly. Second, the training set for SCORER
has been expanded and updated to include only structurally validated
coiled coils. The result is a much-improved oligomer-state predictor
that outperforms MultiCoil, particularly in assigning oligomer state to
short coiled coils, and those that are diverse from the training set.
Availability: SCORER 2.0 is available via a web-interface at
http://coiledcoils.chm.bris.ac.uk/Scorer. Source code, training sets
and Supporting Information can be downloaded from the same site.
Contact: D.N.Woolfson@bristol.ac.uk or P.J.Green@bristol.ac.uk

1 INTRODUCTION
The coiled coil is a protein-structure domain comprising two
or more α-helices wound around each other, usually in a left-
handed fashion (Crick, 1953; Lupas and Gruber, 2005)(Fig. 1).
By using the SUPERFAM method to detect coiled-coil containing
superfamilies of proteins, it has been estimated that on average
2.9% of open reading frames across all genomes contain regions
that encode coiled coils (range, 0.3– 6.5%) (Rackham et al., 2010).
Moreover, coiled-coil domains play roles in mediating protein-
protein interactions across a wide array of biological functions
from transcription, through membrane remodeling, to cell and
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Fig. 1: Cartoon representations of (A) a dimeric and (B) a trimeric
coiled coil shown from the ends of the helices (PDB identifiers
1KD9 and 1BB1, respectively).

tissue structure and stability. Despite this ubiquity and diversity, a
relatively straightforward sequence motif of hydrophobic (H) and
polar (P) residues HPPHPPP underlies most coiled-coil structures.
The positions in these so-called heptad repeats are labeled a through
g, with the hydrophobic sites falling at the a and d positions.
Traditionally, it is these repeats that are identified by coiled-coil-
region prediction algorithms (vide infra). However, this apparent
simplicity of coiled-coil sequences hides considerable complexity
in their 3D structures: coiled-coil assemblies can have different
numbers of helices, which may be in parallel or anti-parallel
arrangements, and may be formed from the same (homo) or different
(hetero) helical sequences (Lupas and Gruber, 2005; Moutevelis
and Woolfson, 2009). Coiled-coil-structure prediction, then, can be
aimed at one or more of three problems:

1. Given a protein sequence, can we accurately identify coiled-
coil regions?

2. Given a coiled-coil sequence, can we correctly assign its
architecture and topology?

3. Given two or more coiled-coil sequences, can we predict how
these combine to form functional assemblies?
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Here we focus on the second problem, and specifically on oligomer-
state prediction. However, the first problem of locating coiled-coil
regions in protein sequences per se is also pertinent here. This is
because the identification of coiled-coil regions is a prerequisite to
predicting coiled-coil oligomer state.

Several algorithms exist to tackle the first problem: the widely
used COILS (Lupas et al., 1991) utilises residue frequencies
at different positions of the heptad repeats (Parry, 1982) of
known coiled-coil structures to predict whether new sequences
are coiled coils or not. PAIRCOIL (Berger et al., 1995) — and
its successor, PAIRCOIL2 (McDonnell et al., 2006) — builds
upon this method by utilising correlations in amino acid usage
at the different heptad positions. Algorithms such as MARCOIL
(Delorenzi and Speed, 2002) and CCHMM (Fariselli et al., 2007)
find coiled-coil regions using Hidden Markov Models (HMMs).
Some more recent algorithms attempt to incorporate evolutionary
information into coiled-coil search strategies: CCHMM-PROF
(Bartoli et al., 2009) and PCOILS (Gruber et al., 2006) — the
sequels to CCHMM and COILS, respectively — subject query
sequences to rounds of PSIBLAST searches, and predict coiled-
coil regions from profiles made from these searches. SOSUIcoil
(Tanizawa et al., 2008) uses physico-chemical parameters — such
as predicted sequence amphiphilicity — in conjunction with amino-
acid propensities to predict coiled-coil regions, including breaks
or non-canonical patches within them. SPIRICOIL (Rackham
et al., 2010) incorporates coiled-coil-containing proteins into the
SUPERFAM database (Gough et al., 2001), and predicts coiled-
coil regions by comparison with homologous proteins of known
structure. Spiricoil has been shown to perform better than the
other algorithms when predicting coiled-coil regions, but its
reliance on structurally resolved homologues is limiting. Of the
truely ab initio coiled-coil prediction algorithms, MARCOIL
and PCOILS are thought to perform best (Gruber et al., 2006),
although SOSUIcoil, CCHMM, and CCHMM-PROF are yet to be
independently benchmarked.

Three algorithms exist to tackle the architecture problem:
SCORER (Woolfson and Alber, 1995), MultiCoil (Wolf et al.,
1997), and the aforementioned SPIRICOIL (Rackham et al., 2010).
SCORER uses a log-odds-based scoring system to distinguish
whether coiled-coil sequences are more similar to a profile derived
from parallel dimeric coiled coils, or a profile derived from
parallel trimeric coiled coils. The MultiCoil algorithm is a hybrid
of 2 algorithms: PairCoil is used to predict coiled-coil regions,
and differences in pairwise residue correlations in known parallel
dimeric and parallel trimeric coiled-coils are then used to assign
oligomeric state. Again, SPIRICOIL assigns oligomeric state based
on homology to proteins of known 3D structure. SPIRICOIL has
been shown to outperform other methods, and has the advantage of
being able to predict higher-order coiled-coil architectures, i.e., it is
not limited to dimers and trimers. However its use is voided when
dealing with proteins with no structurally resolved homologues. Of
the ab initio methods, MultiCoil has enjoyed the most popularity.

A large body of work has been performed to address the issue of
how partner selection is determined in coiled coils. In particular,
the interactions that stabilise dimeric assemblies of coiled coils
have been analysed using experimental and bioinformatic methods
(Krylov et al., 1998; Newman and Keating, 2003; Acharya et al.,
2006; Mason et al., 2006; Hadley et al., 2008; Steinkruger et al.,
2010; Reinke et al., 2010), and rules gleaned from these analyses

have been used to design sets of mutually exclusive coiled-coil
dimers (Bromley et al., 2009; Reinke et al., 2010).

Given the abundance of observed and possible coiled-coil
architectures and topologies (Walshaw and Woolfson, 2001; Lupas
and Gruber, 2005; Moutevelis and Woolfson, 2009) and the current
limits of homology based coiled-coil prediction such as SPIRICOIL,
one of our focuses has been on improving ab initio methods for
coiled-coil oligomer-state prediction. Both of the aforementioned
algorithms, MultiCoil and SCORER were written in the 1990s,
and neither has been updated since. Although both SCORER and
MultiCoil are limited to the prediction of parallel dimers and
trimers, these structures represent ∼ 50% of known coiled-coil
structures (Moutevelis and Woolfson, 2009). Thus, attempts to
update these algorithms seemed like a logical step towards the goal
of better and broader (i.e., multi-state) coiled-coil predictors.

Here we present SCORER 2.0, a significantly revised and
updated version of the SCORER algorithm, which uses advanced
statistical methods and is trained on a pristine set of coiled-coil
sequences of known 3D structure. The latter were culled from
the RCSB PDB (Berman et al., 2000) using SOCKET (Walshaw
and Woolfson, 2001). The SOCKET algorithm finds the knobs-
into-holes packing between coiled-coil helices that is dictated by
the underlying heptad sequences repeat. Application of SOCKET
to the RCSB PDB has rendered CC+ (Testa et al., 2009), a
database of all known structurally resolved coiled coils. It was
from CC+ that the pristine set was ultimately selected. SCORER
2.0 classifies coiled-coil sequences of unknown oligomeric state
by using statistically significant differences in the frequencies of
the 20 proteogenic amino acids at the 7 heptad positions in dimer
and trimer profiles. This is achieved by using a Bayes factor
method, which accounts for the uncertainty that may arise in profile
tables. Finally, SCORER 2.0 was compared to MultiCoil using
a variety of PAIRCOIL parameters, circumventing the issue of
MultiCoil having an obligatory PAIRCOIL front-end. SCORER 2.0
is available online, and has the option of being used in conjunction
with a MARCOIL front-end.

2 METHODS

2.1 Coiled-coil training and test sets
The sequences of parallel dimeric and parallel trimeric canonical — that
is, heptad based — coiled coils longer than 14 residues in length were
obtained from the CC+ database (Testa et al., 2009), aligned using Clustalw2
(Larkin et al., 2007) (maximum gap penalties were used to conserve the
alignment of the heptad repeat), and then culled using CD-HIT (Li and
Godzik, 2006) at redundancy cutoff intervals of 5% in the range 40% – 95%.
The corresponding structures were validated to ensure no coiled coils were
part of higher-order assemblies. We named the resulting set of structures
corresponding to 50% maximum identity cutoff the pristine dataset. The
identity threshold of 25 − 30%, often used for culling protein datasets,
is too restrictive for coiled-coil sequences, which have a restricted amino
acid usage, and therefore regarded as regions of low complexity (this is
addressed in greater depth in the Supporting Information to this manuscript).
The pristine dataset comprised 133 dimeric and 33 trimeric coiled-coil
sequences. Position-specific Scoring Matrices, PSSMs (Parry, 1982), were
derived for both dimer and trimer sequences by counting the occurrence of
the 20 proteogenic amino acids at each of the heptad positions, yielding
two 20 × 7 tables. Each element of these tables was denoted PSSMo,a,r

where o can take the values 2 or 3 to denote the dimer and trimer PSSMs,
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respectively; a represents each of the 20 proteogenic amino acids in standard
single-letter code; and r denotes the heptad register. The total number of
counts across each register is denoted TOTo,r .

A dataset of divergent dimeric and trimeric coiled-coil sequences was
also created. From the full list of dimers and trimers available to us,
any sequence with below 40% identity to any other entry was labeled as
divergent. Pairwise identity between each sequence was computed using the
Smith-Waterman algorithm (Smith and Waterman, 1981) implemented in the
EMBOSS suite (Rice et al., 2000). The final divergent dataset comprised 95

dimeric and 25 trimeric coiled-coil sequences.
Full details are given at http://coiledcoils.chm.bris.ac.uk/Scorer.

2.2 Scoring
The original SCORER algorithm reports the relative likelihood that a test
coiled-coil sequence is representative of a dimer or a trimer profile using a
log-likelihood ratio:

Score =
l∑

i=1

log
PROF2,ai,ri

PROF3,ai,ri

(1)

where A = {a1, ..., al} and R = {r1, ..., rl} represents the amino-acid
residues and associated register positions of the test coiled coil sequence
S, with residues numbered i = 1, 2, . . . , l and observed oligomeric state
O = {2, 3}.

By selecting the terms in the dimer and trimer PSSMs for which the
values were significantly different, and using only those to discriminate
between dimeric and trimeric coiled coil sequences, the SCORER algorithm
achieves a good rate of prediction. However, this method of scoring contains
a few unsatisfactory features that we propose to resolve in SCORER 2.0:

1. The original SCORER algorithm uses a decision threshold of 0 to
classify coiled coils, and does not take into account the prior odds of
dimer and trimer occurrence in the user’s study. While this would not be
a problem if the odds of dimers vs trimers were 1:1, we know that this is
typically not the case, with dimers being far more common than trimers
(133:33 in our database for example); the background probabilities of
dimers and trimers should be accounted for. Accordingly, the log prior
odds of dimer vs trimer relative to the users experiment should be added
to the score, and the subsequent result can then be properly interpreted
as the log posterior odds, and used to make a decision.

2. The original SCORER method makes no allowance for errors in
estimation in the profile probabilities PROFo,a,r for example, if a
particular residue a is rare for a particular oligomeric type o and
register r then PROFo,a,r will have a large associated standard error
and may even be estimated incorrectly to be zero, potentially skewing
the results. The statistical analysis in the original SCORER algorithm
circumvented this problem by only including PSSM values for those
amino acids that made up at least 5% of the residues at a given site in
both the dimer and trimer databases. As a consequence, amino acids
that were poorly represented at a particular heptad position in one
dataset, but reasonably well represented in the other were ignored, and
some amino acids that could contribute to oligomer discrimination may
have been overlooked. Rather than suppressing insignificant or poorly
populated terms, it is better to modify the score in a principled way
that has the effect of diluting the influence of poorly estimated profile
values.

Assuming that the probabilities of obtaining amino acid a for any
combination of oligomeric state o and register r are independent, SCORER
2.0 assigns a score to an amino-acid sequence according to:

Score2.0 = log

7∏
r=1

[
(TOT3,r + 20δ)(yr )

(TOT2,r + 20δ)(yr )
×

20∏
a=1

(PSSM2,a,r + δ)(xa,r )

(PSSM3,a,r + δ)(xa,r )

]
(2)

where xa,r is the number of a residues at register r in the test sequence,
yr =

∑
a xa,r is the total number of amino acids at register r in the test

sequence, and m(x) stands for the rising factorial symbol m(m+ 1)(m+

2) . . . (m+x−1). The constant δ is a prior parameter that provides stability
in estimation. By introducing this parameter, we adjusted the probability of
rare, but not impossible events, artificially so that no probability is estimated
as zero; as can be seen, the relative impact of adding δ is negligible on cells
with large counts. Cross-validation indicated that a value of δ = 1 provided
optimal performance; this corresponds to an uninformative (uniform) prior
assumption.

2.3 MultiCoil
MultiCoil uses PAIRCOIL to locate coiled-coil regions in protein sequences,
and then assigns whether each residue deemed to be in a coiled-coil
conformation is part of a dimeric or trimeric assembly. As a consequence,
it is not possible to uncouple the coiled-coil region and oligomeric-state
predictions, and known coiled-coil sequences can only be assigned an
oligomeric state if they are recognised by PAIRCOIL. Also, coiled-coil
regions submitted to MultiCoil as part of a full native protein chain may be
truncated or extended depending on where PAIRCOIL assigns the domain
boundaries. Nonetheless, with no alternative, coiled-coil containing protein
sequences were submitted to the publically available MultiCoil web server,
using a PERL script. For each amino-acid residue, a, in a protein sequence,
S, MultiCoil assigns a coiled-coil probability, Ca, and oligomeric-state
scores, Da and Ta (dimer and trimer scores, respectively), where Ca =

Da+Ta. For the purpose of this work, this method of scoring was converted
into a single oligomeric-state score:

Sa =
Da − Ta
Ca

(3)

Thus, positive score will indicate a dimeric prediction, while a negative score
will indicate a trimeric prediction. This conversion of the MultiCoil scores
is necessary, as it allows the performance measures discussed in the next
section. The conversion does not impact the performance of MultiCoil in any
way, and simply represents an alternative method of displaying the MultiCoil
output.

2.4 Assessing the performance
The performance of both SCORER 2.0 and MultiCoil were compared using
Receiver Operator Characteristic (ROC) curves (for example, see (Fawcett,
2006)). ROC curves are plots of the True Positive Rate (TPR) as a function
of the False Positive Rate (FPR). The True Positive Rate is the probability of
correctly classifying a true instance and is defined as:

TPR =
TP

TP + FN
(4)

The False Positive Rate is the probability of assigning a false instance as
true, and is defined as:

FPR =
FP

FP + TN
(5)

Here, TP, FN, FP and TN represent counts of true positives, false
negatives, false positives and true negatives, respectively. Data points are
plotted in descending order of confidence; that is, the most confident
predictions are plotted first and occur nearer to the origin. One advantage
of this method is that the Area Under the Curve (AUC) lies between zero
and unity, and gives a metric of how well a prediction algorithm separates
the data sets. In the hypothetical case of the perfect separation of two data
sets, 100% of true positives would be identified without the occurrence of
a single false positive, for which a ROC curve depicting this would yield a
single point at [0,1] and an AUC of 1. All AUC values and ROC curves were
generated using the ROCR package freely available in the R software (Sing
et al., 2005).
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3 RESULTS
3.1 Optimal redundancy cutoff in the SCORER 2.0

training set
As far as possible, sequence similarity or redundancy between
training and test sets should be eliminated in the assessment of
prediction software to prevent returning artificially high accuracies.
A difficulty arises here with coiled-coil sequences, however, as
they share the heptad repeat, which increases the potential for
similarity even in the absence of homology. Therefore, we assessed
how SCORER 2.0 predicted a number of divergent sequences after
being trained on training sets culled at different redundancy cutoffs.
This investigated whether there was an optimal redundancy cutoff
for the training set, and assessed how robust the SCORER 2.0
algorithm was to the inclusion or deletion of training data. This is
analogous to the bias-variance tradeoff (Geman et al., 1992), which
looks at how the introduction of a certain amount of bias in an
otherwise unbiased estimator may improve its performance. This is
of relevance here as we anticipate retraining SCORER 2.0 as more
sequence and structural data become available. For each sequence
redundancy cutoff in a training set, an AUC score was obtained for
divergent sequences of different lengths. Regardless of redundancy
in the training set, AUC scores for sequences longer than 14, 21
and 28 residues in the test set were found to be in the range of
0.8 ± 0.01, 0.89 ± 0.02, 0.94 ± 0.003 respectively. The results
showed SCORER 2.0 to be robust to changes in its training set, and
that it provided comparable predictions and performance for any
redundancy cutoff above 40% (Fig. S1, Supporting Information).

3.2 Comparison with the original SCORER algorithm
using a pristine set of coiled-coil sequences

The original SCORER algorithm assigned scores to 103/133
dimers and 30/33 trimers of the pristine set of coiled-coil sequences
used in this new work; the remaining sequences were not scored as
they did not contain features deemed to discriminate between dimer
and trimer formation according to the significance cut-off criteria
defined in the original SCORER paper (Woolfson and Alber, 1995).
For all the dimeric and trimeric sequences that could be assigned
a score, SCORER achieved an AUC value of 0.63. SCORER
2.0 scored all of the sequences, yielding an AUC of 0.77. When
restricted to analysing only the sequences that the original SCORER
algorithm assigned, SCORER 2.0 achieved an AUC of 0.76 (Fig.
S2, Supporting Information). Thus in all cases SCORER 2.0 offers
a distinct improvement in performance over SCORER.

3.3 Comparison with MultiCoil on a pristine set of
coiled-coil sequences

The abilities of SCORER 2.0, SCORER and MultiCoil to predict
accurately the oligomeric state of the coiled coils in the pristine
dataset (see Methods) were compared. SCORER 2.0 and SCORER
were assessed using leave-one-out cross-validation to provide
independent tests of the utility of the algorithm. These data differ
from those discussed in section 3.2 due to the fact that MultiCoil
can only score sequences longer than 21 residues. The results of
these tests are shown as ROC curves in Figure 2.

The AUC values and ROC curves in Figure 2 show that
SCORER 2.0 achieves a better discrimination rate of coiled-coil
oligomeric state than SCORER and MultiCoil (0.86 vs 0.75 and

Fig. 2: ROC curves of SCORER 2.0, SCORER and MultiCoil when
used to classify the oligomeric state of coiled coils using leave-one-
out cross-validation in our pristine test set. Only coiled coils with
sequence > 20 amino acids were used, as MultiCoil will not accept
any input shorter than 21 characters. Solid line, SCORER 2.0;
dashed line, SCORER; dotted line, MultiCoil. AUC for SCORER
2.0: 0.86; AUC for SCORER: 0.75; AUC for MultiCoil: 0.63. Test
set comprised 72 dimeric sequences and 25 trimeric sequences.

0.63, respectively). We found the improvement over MultiCoil to
be particularly marked for short dimeric coiled coils, which is
important as this oligomeric state accounts for a large proportion
of the total coiled-coil population. However, the results reported in
this section reflect the performance of SCORER 2.0 and MultiCoil
under somewhat contrived conditions: all the data were obtained
from experimental and SOCKET-derived annotations. In real-
life predictions, most coiled-coil sequence data will not be as
well delimited and defined as our training set, since coiled-coil-
region prediction software rather than high-resolution structures
will provide the input data. To ensure a fair comparison between
SCORER 2.0 and MultiCoil, the PAIRCOIL predicted regions,
along with their register assignments, were used by SCORER 2.0
in place of the known SOCKET-derived coiled-coil regions. For
these reasons, we suggest that the results presented in the next
section are a more representative comparison test of SCORER 2.0
and MultiCoil.

3.4 SCORER 2.0 vs MultiCoil, using a PAIRCOIL
front-end

As mentioned above, comparing SCORER 2.0 and MultiCoil is
complicated, as MultiCoil’s oligomeric-state and coiled-coil region
prediction function are coupled. Conversely, SCORER 2.0 requires
input of a sequence thought to be a coiled coil, and its corresponding
register, and will return an oligomer-state prediction regardless
of whether there is a true coiled-coil present or not. Put another
way, the performance of the two algorithms depends on the front-
end coiled-coil-region predictions, and these are different in the
two cases. To avoid this problem and provide a better head-to-
head test, the two algorithms were compared using the same
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PAIRCOIL-predicted regions as input, thus allowing SCORER 2.0
to classify the same sequences as MultiCoil’s oligomeric-state-
prediction function. This represents a better real-world scenario
where a user might not know where coiled-coil regions lie in their
protein of interest. The full protein sequences of our pristine dataset
were submitted to the MultiCoil web server with parameters for
which PAIRCOIL correctly recognized the majority of our coiled-
coil test set. For a window length of 21 and a detection cutoff
of 0.01, PAIRCOIL successfully predicted 77/133 dimeric and
29/33 trimeric coiled-coil regions. A coiled-coil region prediction
by PAIRCOIL was considered successful if it encompassed at least
11 SOCKET-assigned coiled-coil residues. This ensures that the
predicted coiled-coil regions are structurally verified coiled coils
and are not a false-positive assigned by PAIRCOIL. The successful
coiled-coil region assignments were then submitted to SCORER 2.0
and subsequently compared to the MultiCoil predictions.

Fig. 3: ROC curves for SCORER 2.0 and MultiCoil when used to
classify the oligomeric state of coiled coils using the PAIRCOIL-
predicted regions. Solid line SCORER 2.0; dotted line MultiCoil.
AUC for SCORER 2.0: 0.89, AUC for MultiCoil: 0.59. Test set
comprised 72 dimeric sequences and 29 trimeric sequences.

Again, the AUC values and ROC curves in Figure 3 show
that SCORER 2.0 achieved a higher discrimination rate than
MultiCoil (0.89 vs 0.59, respectively). Table 1 compares the
performance of SCORER 2.0 and MultiCoil across a wide range
of PAIRCOIL parameters. For each of these parameter-sets, AUC
scores and the fraction of correctly assigned dimers and trimers
were used as a metric of how well the two algorithms performed
in assigning oligomeric state. From these data two major trends
are apparent: first, there is a correlation between the confidence
of PAIRCOIL predictions and the accuracy of the corresponding
MultiCoil oligomeric-state prediction. Whilst this is also true for
SCORER 2.0, the effect is much greater for MultiCoil. We found
that the median Spearman’s rank correlation coefficient between
AUC values and PAIRCOIL cut-off was 0.98 for MultiCoil (i.e.,
a strong positive correlation), while a value of −0.27 is found for
SCORER 2.0 (a weak negative correlation). As an example, for

coiled coils 14 amino acids and longer using a window length of 21
and a PAIRCOIL cut-off of 0.01, MultiCoil achieved an AUC score
of 0.59. When the PAIRCOIL cut-off was increased to 0.90, the
equivalent score is 0.88. For those same PAIRCOIL parameters, the
AUC values obtained when using SCORER 2.0 were 0.89 and 0.85.
A closer look at the predictions reveals that MultiCoil performs very
well on long, parallel dimers, but fails to replicate this for shorter
dimers and trimers, suggesting it is tuned to output safe predictions,
an observation that has been made by others (Gruber et al., 2006).

In summary, SCORER 2.0 shows a sustained strong discrimination
rate across a diverse range of coiled-coil sequences, while MultiCoil
performs best for a more restricted set of long coiled-coil dimers.
We suggest that this is a consequence of the redundancy in the
MultiCoil training set, reflecting the availability of data at the time
this software was released, rather than a flaw with the MultiCoil
algorithm itself. Generally, SCORER 2.0 outperforms MultiCoil
as an oligomeric state predictor, both in terms of AUC scores and
correct predictions (Table 1).

3.5 Web-based interface for SCORER 2.0
An online resource has been constructed as an interface for the
SCORER 2.0 algorithm at http://coiledcoils.chm.bris.ac.uk/Scorer.
The SCORER 2.0 web server, source code and training set is freely
available for academic users. Two options are made available for the
user:

• A full protein sequence can be submitted as input. It is first
processed by MARCOIL, where it is left to the user to freely
choose a MARCOIL coiled-coil probability threshold (default
is 50%). The SCORER 2.0 algorithm is then run on these
MARCOIL-predicted coiled-coil regions.

• A coiled-coil sequence with assigned heptad register can also
be submitted as input. In this case, SCORER 2.0 is run on the
sequence immediately. It should be noted that the SCORER 2.0
algorithm also allows non-canonical coiled-coil sequences to
be submitted as input, i.e., those containing non-heptad repeats,
although we emphasize that SCORER 2.0 was trained only on
canonical coiled-coil sequences.

4 CONCLUSION
By retraining and revising the SCORER algorithm, a coiled-coil
classifier written in 1995 (Woolfson and Alber, 1995), we have
successfully predicted the oligomeric state of a range of dimeric
and trimeric coiled-coil sequences with experimentally verified 3D
structures. In nearly all cases, SCORER 2.0 offers improvement
over the current standard in the field, MultiCoil. MultiCoil is
good when classifying strongly defined coiled-coil sequences, but
performs less well in other cases. We propose that this is most
likely linked to redundancy in the MultiCoil training set reinforcing
the redundancies found in the front-end PAIRCOIL algorithm. On
the other hand, SCORER 2.0 was found to accurately distinguish
between dimeric and trimeric coiled coils across the whole range of
coiled-coil sequences used.

We propose that coiled-coil oligomeric state prediction is
currently limited by two factors, (1) the accuracy of the coiled-coil-
region prediction software used as the front-end, and (2) the number
of oligomeric states included in the prediction, as coiled coil can be
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PAIRCOIL PARAMETERS TEST SET SIZE MULTICOIL SCORER 2.0

cc length window threshold Dimers Trimers AUC Correctly assigned AUC Correctly assigned
(Dimer/Trimer) (Dimer/Trimer)

21

0.01 77 29 0.59 0.44 / 0.69 0.89 0.86 / 0.72
0.10 53 21 0.64 0.68 / 0.48 0.85 0.85 / 0.57
0.50 32 11 0.79 0.94 / 0.45 0.87 0.94 / 0.73
0.90 12 7 0.88 0.92 / 0.43 0.85 0.83 / 0.57

≥ 14

28

0.01 70 29 0.67 0.41 / 0.86 0.90 0.87 / 0.69
0.10 54 19 0.68 0.55 / 0.74 0.92 0.89 / 0.74
0.50 36 11 0.71 0.86 / 0.54 0.91 0.86 / 0.73
0.90 23 8 0.79 0.96 / 0.50 0.91 0.91 / 0.62

21

0.01 57 24 0.63 0.51 / 0.67 0.92 0.84 / 0.83
0.10 42 18 0.66 0.73 / 0.50 0.90 0.86 / 0.67
0.50 24 9 0.80 1.00 / 0.44 0.89 0.92 / 0.89
0.90 11 7 0.93 1.00 / 0.43 0.84 0.82 / 0.57

≥ 21

28

0.01 55 24 0.67 0.45 / 0.83 0.91 0.87 / 0.75
0.10 44 17 0.69 0.59 / 0.70 0.92 0.89 / 0.76
0.50 31 11 0.73 0.87 / 0.54 0.91 0.87 / 0.73
0.90 20 8 0.81 1.00 / 0.50 0.93 0.89 / 0.62

21

0.01 35 16 0.74 0.63 / 075 0.95 0.94 / 0.87
0.10 28 10 0.78 0.78 / 0.50 0.88 0.86 / 0.70
0.50 18 6 0.96 1.00 / 0.67 0.93 0.89 / 0.83
0.90 10 4 0.99 1.00 / 0.75 0.85 0.80 / 0.75

≥ 28

28

0.01 35 16 0.77 0.57 / 0.94 0.91 0.86 / 0.75
0.10 28 12 0.84 0.71 / 0.83 0.90 0.86 / 0.75
0.50 22 8 0.95 0.95 / 0.75 0.92 0.91 / 0.75
0.90 17 5 0.98 1.00 / 0.80 0.93 0.88 / 0.80

Table 1. Comparison of SCORER 2.0 and MultiCoil performance across a range of PAIRCOIL parameters. The PAIRCOIL parameters that were varied
were the input coiled-coil sequence length (cc length), the PAIRCOIL window size (window) and the PAIRCOIL decision threshold (threshold). The test set
obtained for each combination of these PAIRCOIL parameters was submitted to SCORER 2.0 for oligomeric state prediction (see text for details).

found in higher-order and more-complex oligomer states, as well as
being parallel or anti-parallel (Walshaw and Woolfson, 2001; Lupas
and Gruber, 2005; Moutevelis and Woolfson, 2009). We have used
the PAIRCOIL front-end in this paper to ensure the results obtained
from SCORER 2.0 and MultiCoil are comparable. However, other
front-ends exist, MARCOIL (Delorenzi and Speed, 2002), PCOILS
(Gruber et al., 2006) and CCHMM-PROF (Bartoli et al., 2009) have
been shown to offer the best performances (Gruber et al., 2006).
At present, we use MARCOIL as a front-end to SCORER 2.0.
Predicting oligomeric states beyond parallel dimers and trimers is
limited mostly by the availability of sequence and structural data
for other alternative oligomeric states. Homology based approaches
such as SPIRICOIL (Rackham et al., 2010) improve upon this by
providing coiled-coil oligomeric state annotation as part of a Hidden
Markov model used to classify whole proteins into families, but
cannot be used to classify the oligomeric state of de novo coiled-
coil sequences; i.e., those without structurally defined precedents.
Still, this kind of method may provide enough data of a high enough
confidence to train algorithms such as SCORER 2.0 to predict
between multiple oligomeric states, rather than just de novo dimeric
and trimeric coiled coils. SCORER 2.0 shows little discrimination
between the next two biggest classes of coiled-coil architecture —
parallel tetramers and antiparallel dimers — when forced to assign

an oligomeric state (Fig. S3, Supporting Information). We see the
development of multi-state predictors to be the next logical step in
coiled-coil structure analysis and prediction.

SCORER 2.0 is publicly and freely available via the world-
wide web at http://coiledcoils.chm.bris.ac.uk/Scorer and can be
used as stand-alone software for known coiled-coil regions, or in
conjunction with MARCOIL, for coiled-coil region detection and
oligomeric state assignment

ACKNOWLEDGEMENT
The authors would like to thank Dr. Beth Bromley and Dr. Gail
Bartlett, and members of the Woolfson lab for several useful
discussions. The authors would also like to acknowledge Dr. Mauro
Delorenzi for allowing the free use of MARCOIL on the SCORER
2.0 web server.

Funding: CTA is funded by the BBSRC, TLV is funded by the
EPSRC.

6

 at U
niversity of B

ristol Inform
ation S

ervices on M
ay 17, 2011

bioinform
atics.oxfordjournals.org

D
ow

nloaded from
 

http://coiledcoils.chm.bris.ac.uk/Scorer
http://bioinformatics.oxfordjournals.org/


REFERENCES
Acharya, A., Rishi, V., and Vinson, C. (2006). Stability of 100 Homo and Heterotypic

Coiled-Coil a-a’ Pairs for Ten Amino Acids (A, L, I, V, N, K, S, T, E, and R).
Biochemistry, 45(38), 11324–11332.

Bartoli, L., Fariselli, P., Krogh, A., and Casadio, R. (2009). CCHMM PROF: a HMM-
based coiled-coil predictor with evolutionary information. Bioinformatics, 25(21),
2757–2763.

Berger, B., Wilson, D. B., Wolf, E., Tonchev, T., Milla, M., and Kim, P. S. (1995).
Predicting coiled coils by use of pairwise residue correlations. Proc. Natl. Acad.
Sci. U.S.A., 92(18), 8259–8263.

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H.,
Shindyalov, I. N., and Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids
Res, 28(1), 235–242.

Bromley, E. H. C., Sessions, R. B., Thomson, A. R., and Woolfson, D. N. (2009).
Designed α-helical tectons for constructing multicomponent synthetic biological
systems. J Am Chem Soc, 131(3), 928–930.

Crick, F. H. C. (1953). The packing of α-helices - simple coiled coils. Acta
Crystallographica, 6(8-9), 689–697.

Delorenzi, M. and Speed, T. (2002). An HMM model for coiled-coil domains and a
comparison with PSSM-based predictions. Bioinformatics, 18(4), 617–625.

Fariselli, P., Molinini, D., Casadio, R., and Krogh, A. (2007). Prediction of structurally-
determined coiled-coil domains with hidden Markov models. In Lect Notes Comput
Sc, volume 4414, pages 292–302.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recogn Lett, 27(8),
861–874.

Geman, S., Bienenstock, E., and Doursat, R. (1992). Neural networks and the
bias/variance dilemma. Neural Comput, 4, 1–58.

Gough, J., Karplus, K., Hughey, R., and Chothia, C. (2001). Assignment of homology
to genome sequences using a library of hidden Markov models that represent all
proteins of known structure. J Mol Biol, 313(4), 903–19.
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