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Comment

Arnoldo Frigessi

In the beginning there was the Gibbs sampler and
the Metropolis algorithm. We are now becoming
more and more aware of the variety and power of
MCMC methods. The article by Besag, Green, Hig-
don and Mengersen is a further step toward full
control of the MCMC toolbox. I like the three appli-
cations, which show how to incorporate MCMC
methods into inference and which also give rise to
several methodological contributions. As the au-
thors write, out of five main issues in MCMC, they
concentrate primarily on the choice of the specific
chain. The other four issues regard, in one way or
another, the question of convergence of MCMC pro-
cesses. I believe that choosing an MCMC algorithm
and understanding its convergence are two steps
that cannot be divided. Estimating rates of conver-
gence (in some sense) before running the chain or

" stopping the iterations when the target is almost
hit are needed operations if we would like to trust
the inferential conclusions drawn on the basis of
MCMC runs. This is especially true because conver-
gence of MCMC processes is much harder to detect
as compared to convergence of, say, Newton—Raph-
son.
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We can often read in applied papers that “100
iterations seem to be enough for approximate con-
vergence,” the number being sometimes supported
by studies on simulated data (see, e.g., Frigessi and
Stander, 1994). This is really too weak to rely on
the statistical conclusions, and more can be done. If
X® is the MCMC process with target distribution
7 on (), the burn-in can be estimated by comput-
ing a t* such that

1) V>, [P(XD={xD) -7l <e,

for some fixed accuracy ¢ and for some chosen
norm, say, total variation. Several techniques are
available to bound the total variation error from
above,

(2 [P(X® = |x®) — ()l < g(2),

where g(t) is a nonincreasing function decaying to
zero. Then an upper bound on t* can be derived by
inversion of g, probably a pessimistic estimate of
the burn-in, but a “safe” choice. Tight bounds of the
type (2) are hard to get and there are no precise
general guidelines for the length of the burn-in.
However a very rough reference value for ¢* is
available if 7 is a lattice-based Markov random
field (MRF). In Section 1 of Frigessi, Martinelli and
Stander (1993) we extend and adapt results origi-
nally developed in statistical mechanics and rather
unknown to statisticians. Let 7 be a MRF on a



42 BESAG, GREEN, HIGDON AND MENGERSEN

lattice A and consider a reversible MCMC that
updates at each step one of the |A| = n variables
chosen uniformly at random and that satisfies two
further not too restrictive conditions [Frigessi, Mar-
tinelli and Stander, 1993, equation (8) and point (i)
in Theorem 1]. If 7 satisfies some sort of mixing
condition (SZ or MO in Frigessi, Martinelli and
Stander, 1993), then, for n large enough,

3) t* > Cnlogn,

where C > 0 does not depend on n. Before com-
menting on this result, I warn immediately that
checking mixing for complex MRF is hard. How-
ever, for large signal-to-noise ratio, mixing condi-
tions (of Dobrushin type) that are easier to check
and also imply (3) can be considered.

Choosing a burn-in of order nlogn for large
lattices is reasonable as a rough guideline. When
restoring an image of 256 X 256 pixels, with low
noise variance, this reads as 12 full updates of the
lattice. Of course there is a constant C that may be
large (but smaller compared to n). Hence 120 or
1,200 full updates is a rough estimate of the needed
burn-in. In Section 6.4 of the article by Besag,
Green, Higdon and Mengersen we read that the
first 500 full sweeps were discarded, which is in
agreement.

A related question is: How should we choose
among the many MCMC alternatives? How should
we argue in favor of a new method? Comparison
with other algorithms is needed and many valid
criteria are available: choose the method that is
easier to implement, modify or adapt; prefer the
algorithm that is easier to understand. More impor-
tant for large data sets, use the algorithm that
converges faster, something that can be understood
intuitively, by numerical experimentation or by rig-
orous estimates of rates of convergence, obtained at
least in the case of some simple =, possibly only
asymptotically.

A more prudent, yet very reasonable approach, is"

to use the algorithm for which either upper bounds
on t* (or similar quantities) are explicitly available
or on-line monitoring is easier, say, by regeneration
points; and this regardless of the chosen algorithm
being possibly less efficient than others whose con-
vergence, however, cannot be precisely measured.
In other words, we will prefer an MCMC chain for
7 whose t* can be estimated to another MCMC
chain intuitively likely to converge faster, but whose
t* cannot be bounded: being able to rely on the
results of inference is indispensable.

I wonder if the potential MCMC user will feel
puzzled and abandoned in front of the many op-
tions offered: regular scan of the components or

random choice; grouping; auxiliary variables or
Gibbs sampler; and: Is it convenient to design a
Hastings algorithm that has a high acceptance
probability? To this point, although very cautiously
expressed, I read in Besag, Green, Higdon and
Mengersen that “an acceptance rate between about
30 and 70% for each variable often produces satis-
factory results.” On what evidence are these values
based?

Adopting the prudent approach mentioned above,
I will measure the speed of convergence, for finite
Q, with p,, by the second-largest eigenvalue in
absolute value of the transition matrix P. Let

exp[(1/T)U(x)]
Zp )

a(x) =

By stochastic domination one can show that
Metropolis has, for sufficiently large T, the small-
est p, among all #-reversible Markov chains on ()
that update a single variable at every step (chosen
at random) and that depend only on the ener-
gy difference U(x©?P) — U(x®*") (see Frigessi,
Martinelli and Stander, 1993). In this class one
can easily find MCMC chains both with larger and
with smaller acceptance probabilities than min(1,
w(x@W) /7 (xCD)), In general the Gibbs sampler
does not only depend on such energy differences,
but this is true for the two-dimensional Ising model.
Hence, for sufficiently large T, always accepting
(like the Gibbs sampler) is not the best. For low
values of T the situation is flipped: the Gibbs
sampler has a smaller p, than Metropolis, and here
accepting more (always) is an advantage. General
rules must be quite tricky and hard to summarize
in some values.

Besag, Green, Higdon and Mengersen hide some
very nice new ideas in the appendices. I end this
comment with some simple remarks on the use of
random proposal probabilities. 1 apologize for the
triviality of my examples, by means of which I try
to understand possibilities and limitations of such
random proposal distributions.

I take the multivariate normal distribution
40,27 1) as the target 7 and I first consider as
nonrandom proposal density R(x — y) the (sic!)
multivariate normal .#(u,37!), for some fixed
mean vector u. The acceptance probability (2.9) is

A(x > y) = min(l,exp[(x - y)TE;L]).

In order to estimate the rate of convergence of this
Hasting algorithm, I will use the remarkable neces-
sary condition for geometric decay of the total vari-
ation error given in Mengersen and Tweedy (1994,
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Theorem 2.1), which says that if R(x — y) = R(y)

and
R(x) 1
T|x: <—|>0
( m(x) ~ m )

for all m, then ||[P(X® = -|x®) — 7(-)|| tends to
zero in ¢t slower than geometrically. It is straight-
forward to check these conditions in the Gaussian
example, and hence convergence is very slow.

With a random proposal density we can get a
geometrically convergent MCMC: Let R(x — y) =
R(y) be, with probability 1, a multivariate normal
M, 371) and, with probability 3, a multivariate
normal #(—u,3"1). To bound the rate of conver-
gence one can use directly the uniform minorization
technique in Roberts and Polson (1994). Since

P(x > y) = m(y)exp| - uSpu],
it follows that

IP(X® = {x®) — 7()l| < (1 - exp(—$u"3p)),

and convergence is geometric. Hence, randomizing
the proposal density helps. The mixture is somehow
reminiscent of antithetic variables. We get a burn-in
of order O(exp(3u” = w)), which may be quite over-
estimated because the uniform minorization tech-
nique is sometimes poor. Consider again, for in-
stance, the two-dimensional Ising model with T
sufficiently large. For a uniform proposal probabil-
ity the best estimate of the burn-in for Metropolis,
based on uniform minorization, is O(exp[(2/T)n),
while one can show in this case (see Frigessi, Mar-
tinelli and Stander, 1993) that always ¢t* < O(e®/")

Comment

Alan E. Gelfand and Bradley P. Carlin

We heartily endorse the authors’ conclusion that
Markov chain Monte Carlo (MCMC) “represents a
fundamental breakthrough in applied Bayesian
modeling.” We laud the authors’ effective unifica-

Alan E. Gelfand is Professor of Statistics, Depart-
ment of Statistics, University of Connecticut, Box
U-120, Storrs, Connecticut 06269. Bradley P. Carlin
is Assistant Professor of Biostatistics, Division of
Biostatistics, School of Public Health, University of
Minnesota, Box 303 Mayo Building, Minneapolis,
Minnesota 55455.

and under condition (MO) in that paper t* =
O(nlog n). For the Gibbs sampler the bound is
even worse.

The next simple example shows that sometimes
a random proposal density does not speed up con-
vergence w.r.t. a deterministic density. Take 7 to
be the exponential density with parameter A. Let
R(x — y) = R(y) be also exponential with parame-
ter 0 < A’ < A. Then the acceptance probability is

A(x - y) = min(1, exp[ — (A — A')(y — x)])

and the uniform minimization bound yields

)L’ t
P(X® = [x®) — 7 ()] < (1 - —/\—) .

As before, consider now the random proposal den-
sity (again a symmetric mixture)

R(x - y) = R(y) = 5(X exp(—A'y)
+(2A — AMexp[—(2A — A)y]).
Via uniform minimization we obtain

IP(X® = {xD) — 7 (]

Alt Alt
<{l-—] >1-—}.
[-z) > (-3

Under a prudent policy, that is, trusting only cer-
tain bounds, here in this example randomizing can
slow down convergence. Of course lack of symmetry
plays a role. Summarizing, a blind use of random
proposal densities may not be advantageous. Are
there some guidelines for a successful application of
this potentially powerful idea?

tion of spatial, image-processing and applied
Bayesian literature, with illustrative examples from
each area and a substantial reference list. (As an
aside, one of us pondered the significance of the fact
that roughly one-fourth of the entries in this list
have lead authors whose surname begins with the
letter “G™")

We begin with a few preliminary remarks. First,
with regard to practical implementation, the artifi-
cial “drift” among the variables alluded to in Sec-
tion 2.4.3 is well known to those who fit structured
random effects models and is a manifestation of
weak identification of the parameters in the joint
posterior. Reparametrization and more precise hy-
perprior specification are common tricks to improve
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the behavior of the sample chains in such settings
(Gelfand, Sahu and Carlin, 1994a, b; Vines, Gilks
and Wild, 1994). Also, in Section 2.3.3 we find the
assertion that for single-site updating of variables
on R!“a simple Metropolis proposal,...that has a
spread similar to that of the marginal posterior for
that variable, is usually effective” (italics ours).
Recent work of Gelman, Roberts and Gilks (1995)
applied to the Metropolis-within-Gibbs setting sug-
gests something potentially quite different, namely,
a spread in the proposal that is 2.38 times the
spread of the full conditional distribution for that
variable. The associated acceptance rate is approxi-
mately 0.44, supporting the ad hoc recommendation
in Section 2.3.3. In practice, “on-the-fly” tuning of
the acceptance rate is usually adopted, since nei-
ther marginal nor conditional spreads are known.
We have some concerns regarding the authors’
treatment of the Gibbs sampler. Their use of prod-
uct set notation, though simplifying, obscures the
valuable application of the sampler to constrained

Algorithm #1
G&R 32.83, acf1 0.933

Algorithm #2
G&R 1, acf1 0.04

Algorithm #3
G&R 3.4, acf1 0.965

parameter space problems (Gelfand, Smith and Lee,
1992). In such cases, the single-site Gibbs sampler
may provide the only feasible means for analyzing
the associated posterior. Also, the discussion of time
reversibility of the Gibbs sampler near the end of
Section 2.3.2 can be confusing. The customary Gibbs
sampler (i.e., with systematic visitation) is not re-
versible unless implemented with a forward—back-
ward scan, following Section 2.4.3. Componentwise
transitions, x; conditional on a fixed x_j, are
individually time-reversible. They are also margin-
ally reversible, that is, w(x{{"D)P(xP|x§~V) =
m(xP)VP(xE D]xOp).

Hence the authors’ advice on switching transition
kernels in Section 2.3.4 and Appendix 1 must be
used with care. For instance, Gelfand and Sahu
(1994), fleshing out an example due to Roberts
(1993), show that using the current state of the
chain to choose among transition kernels all having
a common stationary distribution can result in a
chain which does not have this stationary distribu-

Algorithm #5
G&R 1.01, acf1 0.624

Algorithm #4
G&R 27.99 , acft 0.941
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Fic. 1. Monitoring plots for additive two-way ANOVA example: I =J = K = 5, 0, = 1, 0, = 10 and g = 1. Algorithm #5 cycles evenly
and deterministically through the other four.
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tion. Effectively, their example chooses between
running a customary Gibbs sampler under one of
two parametrizations. Thus there is no contradic-
tion to Appendix 1, since the component kernels in
this example do not satisfy detailed balance.

This leads us to the crux of our comment, an
important point regarding selection among MCMC
algorithms. Given a collection of transition kernels
all having the same stationary distribution, an
MCMC algorithm which deterministically cycles
through this collection will achieve convergence
performance which is no worse than that of the best
of them without the user’s having to identify which
kernel is best. Moreover, in practical development
of deterministic cycling schedules, convergence is
often abetted by spending few (perhaps one) consec-
utive iterations with each kernel. Analytic argu-
mentation and challenging exemplification with
hierarchical generalized linear mixed models

Algorithm #1
G&R 32.83, acf1 0.933

Algorithm #2
G&R 1, acf1 0.037

Algorithm #3
G&R 39.35, acf1 0.674
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(GLMM’s) are the subject of current investigation
by us jointly with W. R. Gilks and G. O. Roberts. In
this Comment we present an illustration for fitting
an elementary linear model where the set of transi-
tion kernels is defined as the set of single-site
Gibbs samplers under a collection of parameteriza-
tions.

In the context of fitting GLMM’s, Gelfand, Sahu
and Carlin (1994a, b) develop the notion of hierar-
chical centering and demonstrate when transforma-
tion to hierarchically centered parameters may be
expected to produce a better-behaved posterior sur-
face, hence more rapid Gibbs sampler convergence.
Unfortunately, their discussion has two limitations.
First, fully hierarchial centering can only be
achieved with models having nested structure; oth-
erwise, only partial centering is available. Second,
the decision to center or not, particularly in
nonnested cases, depends heavily upon the relative

Algorithm #5
G&R 1.01, acf1 0.627

Algorithm #4
G&R 42.65 , acf1 0.71

- ® . - - &l oped i
© 8 « g © $ © g . :
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
iteration iteration iteration iteration iteration
G&R 33.42, acf1 0.864 G&R 1, acf1 0.022 G&R 39.32, acf1 0.443 G&R 42.66 , acf1 0.492 G&R 1.01, acf1 0.622
& < & & ]
o~ . . 1,
4 o de ’-*tn P P 4o W
= s o fn. - a o [-%
w Q @ © © ® o
Y 8 3 3 ’ :
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
iteration h iteration iteration iteration iteration
G&R 56.87 , acf1 0.902 G&R 53.36 , acf1 0.911 G&R 1, acf1 0.035 G&R 39.03, acf1 0.973 G&R 1, acf1 0.585
eff | _s[fT | . ¢® A . ¥ ¢l
I il < I (i 7. v ‘
2 R ) 2 R R 2 I 2 = 4 ’
§ U § = — § §
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
iteration iteration « iteration iteration iteration
G&R 57.11 , acf1 0.662 G&R 53.46 , acf1 0.687 G&R 1, acf1 0.032 G&R 39.09, acf1 0.638 G&R 1, acf1 0.566
e < e < <
N oo Y o N o . . N o N o . .
g g £ M g C g W
8 $ ¥ . Y 3
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
iteration iteration iteration iteration fteration
G&R 104.67 , acf1 0.819 G&R 10.18, acf1 0.147 G&R 4.58 , acf1 0.04 G&R 70.28 , acf1 0.872 G&R 1.01, acf1 0.586
) ? ————— Q
...................... . e t_____.____ . _ .
E g. ............ — H | g o ______.__,_ g 8
gl T 8 gl g Ll
8 P

0 100 200 300 400 500
iteration

0 100 200 300 400 500
iteration

evenly and deterministically through the other four.

0 100 200 300 400 500
iteration

Fic. 2. Monitoring plots for additive two-way ANOVA example: I =J = K = 5,

g,

0 100 200 300 400 500
iteration

e

0 100 200 300 400 500
iteration

=1, o, =10 and gy = 20. Algorithm #5 cycles



46 BESAG, GREEN, HIGDON AND MENGERSEN

magnitudes of dispersion hyperparameters which
are often unknown. As an example, consider the
simple balanced, additive, two-way ANOVA model,

Yijk =pt ai+Bj+€ijk, i1=1,...,1,
Jj=1,...,J,k=1,...,K,
where Eijk ~ N(O, o-ez)’ a ~ N(O, 0.a2)’ Bj ~ N, %2)

13

and we place a flat prior on u. Let n; = u + «; and
p; = m + Bj, so that 7, centers «;, and p; centers B;.
Then we can consider four possible parameteriza-
tions: (1) w-a-B; (2) w-n-B; (3) w-a-p; (4) p-n-p.
Gelfand, Sahu and Carlin (1994b) discuss, under
varying relative magnitudes for o,, o, and o3, which
of these parametrizations is best in terms of mixing
(using the diagnostic of Gelman and Rubin, 1992b),
which affects the rate of convergence, and in terms
of within-chain autocorrelation, which affects the
variability of resultant ergodic averages used for
inference.

Each of the four parametrizations produces a
distinct Gibbs sampler. Following our earlier re-
marks, we create a fifth MCMC algorithm, which
consists of cycling through these four parametriza-
tions in sequence, running one complete single-site
updating for each. To keep matters simple, we fix
the values of the variance components, set I = J =
K = 5 and use a sample of data generated from our
assumed likelihood. Two interesting cases are
shown in Figures 1 and 2, which display monitoring
plots, estimated Gelman and Rubin scale reduction
factors (labeled “G & R”) and lag 1 sample autocor-
relations (labeled “acfl”) for five initially overdis-
persed parallel chains of 500 iterations each under
the five algorithms. (To conserve space, we show
results only for &, a,, B;, B, and w.) The first
figure sets o, = 1, o, = 10 and g; = 1, while the
second sets o, = 1, o, = 10 and g = 20. In Figure
1, the algorithm based on parametrization #2 (a’s

Comment

Charles J. Geyer

The authors are to be congratulated on this very
nice paper, a tour de force in which all of various
aspects of MCMC are completely mastered. I find
myself largely in agreement with everything in this
paper. What comments I have are not really dis-
agreements but mere differences in emphasis.

Charles J. Geyer is Assistant Professor, School of
Statistics, University of Minnesota, Minneapolis,
Minnesota 55455.

centered) is unequivocally the best of the first four,
as predicted by the theoretical work in Gelfand,
Sahu and Carlin (1994a, b). Matters are less clear
in Figure 2, with each of the individual parametri-
zations having problems with one or more of the
parameters. Notice that in both figures, for each
component of the parameter space, the fifth algo-
rithm achieves mixing which is as good as that of
any of the first four. In fact, in Figure 2, the
behavior of u is satisfactory only for this composite
algorithm. Note also, however, that the lag 1 auto-
correlations for the fifth algorithm are fairly high,
arising as weighted averages of those from the first
four, so the corresponding samples must be used
carefully in computing expectations via Monte Carlo
integration.

Hence with regard to convergence, in using deter-
ministic cycling through a medley of transition ker-
nels, the analyst is able to achieve the benefits of
each (and possibly more) without having to identify
their relative quality. The computational effort in
switching transition kernels in our examples only
requires changing from one linear parametrization
to another, and thus is quite efficient. Lastly, in
situations where Metropolis steps are to be used
within Gibbs samplers, thus necessitating proposal
densities, adaptive adjustment of the dispersion of
these proposals can be implemented concurrently
with the deterministic switching of transition ker-
nels.
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SEPARATION OF CONCERNS

Let me begin my comments with a digression.
Dijkstra (1976) in his seminal book on formal anal-
ysis of the correctness of computer programs intro-
duces the notion of “separation of concerns.” In
computing we have “the mathematical concerns
about correctness [of algorithms and programs im-
plementing them] and the engineering concerns
about execution [speed, memory requirements, user-
friendliness, featurality]” and these should be kept
separate. There is no point in worrying about speed
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before one has a program that produces correct
results.

In MCMC, of course, speed and correctness can-
not be kept completely separate, since a sampler
that is perfectly correct in the sense that the com-
puter code correctly implements a Markov chain
with a specified stationary distribution can mix so
slowly that astronomical computing times would be
required before the samples were representative of
the stationary distribution. So a millionfold in-
crease in speed might be the difference between a
useful sampler and a useless one. A 10-fold or even
a 100-fold increase will usually not make such a
difference, however much it may affect ease of use.
Thus speed and correctness are concerns that can
usually but not always be separated.

This notion of “separation of concerns” can be
extended beyond computing. We have scientific con-
cerns about how well our statistical models and
methods mesh with the scientific facts and theories
that apply to the data at hand. We have concerns
about the philosophy of statistics, whether to apply
Bayesian, likelihood, decision-theoretic and so on
theories and methods, and we have purely technical
statistical concerns about details of procedures.
These concerns should also be kept clearly sepa-
rated, from each other and from the correctness
and efficiency concerns, although they often are
not.

The authors deserve high marks for dealing with
scientific concerns. The analysis of gamma-camera
images in Section 6 and the even more impressive
analysis of SPECT images in Weir and Green (1994)
fully incorporate the relevant physics. There seem
to be no places where computational or mathemati-
cal statistical convenience is permitted to interfere
with analyzing what is the scientifically correct
model.

I am less happy about the separation of philo-
sophical and computational concerns. Indeed, the
first two words of the title “Bayesian computation”

confuse the two. Although no one seems to have"

exactly said “MCMC is a strong reason to become
Bayesian,” many people seemr to have picked up
this message somewhere. Some of the statements in
this paper could be interpreted to say something
like this, whether or not this is what the authors
intend. Although commonplace, it bears repeating
that there is nothing Bayesian about MCMC. It is
potentially useful anywhere in statistics where
there are technical difficulties in computing proba-
bilities, expectations and distributions. As this pa-
per and many others show, MCMC has brought
tremendous progress in Bayesian statistics. As is
shown by Geyer and Thompson (1992) and other
papers cited in the Introduction, to which I would

like to add Gelfand and Carlin (1993) and Geyer
and Mgller (1994), similar progress has been made
in likelihood inference. Complex dependence, miss-
ing data, conditional likelihood inference, inequal-
ity constraints on the parameters are all easily
handled. It seems likely that this pattern would be
repeated if MCMC were applied to other areas.
Computational convenience is a poor substitute for
philosophy.

I realize that Besag, Green, Higdon and
Mengersen probably did not intend what they said
to be read with the meaning I am criticizing. The
point about Bayesian methods being most useful for
ranking and selection, for example, is philosophical
rather than computational. I say this only to fore-
stall a very common reading of such language.

I am also somewhat unhappy with the emphasis
on “full conditionals” as a basis for MCMC, explic-
itly stated in the first sentence of Section 2.3.1. This
shows inadequate separation of concerns. Strictly
speaking, conditional probability has nothing what-
soever to do with MCMC. It plays no role, for
example, in a “random walk Metropolis” sampler. I
realize the tremendous role that the local Markov
property has played in spatial statistics, following
Besag (1974), and in many other areas, such as
graphical models. However, this is a philosophical
concern relating to what distribution to simulate—
what is the statistical model? It should have no
effect on our computational concerns. We should
start writing code with a clean slate. If Gibbs-like
samplers using full conditionals are most efficient,
well and good. If not, they should be avoided. Be-
sag, Green, Higdon and Mengersen realize this,
since they always avoid Gibbs whenever it becomes
difficult. But why any preference for Gibbs?

CHOICE AMONG SAMPLING SCHEMES

Separation of concerns tells us to keep apart
choices of sampling schemes made to avoid slow
mixing or nonconvergence and choices that make
minor improvements in efficiency. Mode jumping,
mentioned in Section 4.1, is a remedy for slow
mixing in some problems, but it requires a great
deal of problem-specific knowledge. The Swenden-—
Wang algorithm and similar algorithms (grouped
under the name “cluster algorithms” by the physi-
cists) provide tremendous improvement over
single-site updating but are not applicable to all
problems. No cluster algorithms have been pro-
posed for large graphical models in genetics and
expert systems. Simulated tempering is a general
solution potentially applicable to all problems. It
may not provide convergence if the wrong form of
“heating” is chosen, but if a good form is found, it
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will force convergence. Whenever there are worries
about convergence, and no better problem-specific
acceleration scheme comes to mind, simulated tem-
pering should be tried.

Curiously, the existence of one possibly impor-
tant acceleration scheme seems to be denied in the
last paragraph of Section 2.4.5. It is not true that
block updating is “rarely practicable,” unless by
“small and discrete” state space the authors refer to
the state space at a single site. It is practicable,
although difficult. Jensen, Kong and Kjarulff (1993)
use block Gibbs sampling with very large blocks to
sample a genetics problem on a pedigree with 20,000
individuals. The secret is that sampling the large
blocks can only be done using so-called peeling
methods (Cannings, Thompson and Skolnick, 1978;
Lauritzen and Spiegelhalter, 1988). This entails
much computational complexity and theory going
far beyond ordinary Gibbs sampling, but it does
work, at least for some large problems.

The other choices among sampling schemes dis-
cussed here seem to help only with efficiency, not
with convergence. There the standard should be
computing time necessary to get a specified Monte
Carlo error (as used to select ¢ in Section 6.2).
Analogy with computer science says that there are
two important strategies for improving efficiency:
(1) radically change the algorithm and (2) speed up
the inner loop. The first really applies more to
methods such as mode jumping, cluster algorithms
and simulated tempering. In regard to the second, a
very good suggestion is the simple Hastings update
with a uniform proposal used in Section 6.2. It may
not be as efficient in terms of number of iterations
for a fixed precision-as more complicated samplers,
but the inner loop runs as fast as possible. This
may not always turn out to be the best, but it
should always be one of the samplers under consid-
eration.

From a somewhat different angle, it may be that
another simple sampler should always be a strong

candidate, at least for continuous state spaces. This
is the single “random walk” Metropolis or Hastings
update that updates all variables at once using a
Gaussian proposal. The reason here is not so much
computational efficiency (although because of its
extreme simplicity it may win here too), but be-
cause of its theoretical simplicity. Roberts and
Tweedie (1994b) give a geometric ergodicity theo-
rem for this algorithm that depends only on the
stationary distribution having exponential tails and
asymptotically round contours. It does not depend
in any way on the proposal distribution. Such a
result seems unlikely for more complicated sam-
plers composed of many elementary update steps.
Even if the complicated samplers are slightly more
efficient, something rarely investigated, the theo-
retical simplicity obtained when all variables are
updated simultaneously may be worth some loss of
efficiency. I am not sure I agree with this point
myself, but it is worth thinking about.

That having been said, I should like to propose a
reversible scan to add to those in Section 2.4.2.
Choose a variable uniformly at random, excluding
the one last updated. Then scan forward or back-
ward in numerical order, choosing the directions
with equal probabilities. This consumes only one or
two uniform random variates per scan, has little
other overhead, never updates the same variable
twice in succession, updates each variable once per
scan and is reversible.

SENSITIVITY ANALYSIS

I should like to point out Geyer (1991b) as an-
other independent proposal of sensitivity analysis
via importance sampling besides those of Besag
(1992) and Smith (1992) mentioned in Appendix 3.
Of course the real credit goes to those who actually
implement the proposals, as Besag, Green, Higdon
and Mengersen have done. Some other nice work
along the same lines has been done by Doss and
Narasimhan (1994).
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Comment

G. O. Roberts, S. K. Sahu and W. R. Gilks

We congratulate the authors on a magnificent
paper, providing a nicely paced introduction to
Markov chain Monte Carlo and its applications,
together with several new ideas. In particular the
class of pairwise difference priors is bound to have
a substantial impact on future applied work. Other
ideas given less prominence in the paper are also
valuable, for example, the construction of simulta-
neous credible regions based on MCMC output.
There are several issues which we wish to comment
on in detail.

MCMC ON IMPROPER POSTERIORS

We would like to consider the issues raised by
possible impropriety of posterior distributions and
the use of MCMC on such target posteriors. For
instance, consider the logistic regression model in
Section 4. The model specification in (4.1) together
with the postulated priors make the model uniden-
tifiable. So the resulting posterior distribution is
improper. If the posterior is improper no notion of
convergence in distribution is meaningful for the
associated MCMC. However, we may ask if the
associated sequence of draws of a lower-dimen-
sional vector converges in distribution. When are
we allowed to use samples from this nonconvergent
MCMC to infer about our “identifiable” parameters
of interest? To date there is no literature address-
ing all of these concerns in total generality, but in
the context of generalized and normal linear mod-
els some of these issues have been addressed in
Sahu and Gelfand (1994).

Improper Posteriors from Generalized Linear
Models

Consider the usual linear model Y = XB + &,
where Yis n X1, XisnXp(n>p),Bis p X1
and € ~ N(0, 02I) with o2 known. Let X have

G. O. Roberts and S. K. Sahu are Lecturer and
Research Associate, respectively, at the Department
of Pure Mathematics and Mathematical Statistics,
University of Cambridge, United Kingdom. W. R.
Gilks is Senior Scientist at the Medical Research
Council. Biostatistics Unit, Institute of Public
Health, Cambridge, United Kingdom.

column rank r < p. Assuming a flat prior for B, the
posterior for B is improper. However, the complete
conditional distributions w( 8| B;, j # I, Y) are all
proper, so the Gibbs sampler can be implemented.
Note also that Xp has a singular normal posterior
distribution given by

m(XBIY) = N(X(XTX) X"Y,

o2X(XTX) XT).

Now we can choose a full-rank matrix R, p —r
X p, whose rows are linearly independent of the
rows of X, that is, Rp is a maximal set of nones-
timables. Suppose we take as a prior w(RB) =
N(0,V), where V is a positive-definite matrix of
appropriate order, and retain a flat prior for Xp.
Then we can show that B has a proper posterior
distribution given by

=(Bly) = N((c"2X"X + R"V-'R) ' X"y/0o?,
(c72X"X + RTV-'R) ).

It is easy to check that m(XB[Y) is exactly the same
singular normal distribution as in (1). Further, the
posterior of R is the same as the prior, and R is
a posteriori independent of XB. So any proper prior
for Rp does not alter the posterior for XB but
makes the posterior distribution for B proper. If the
rank of R is less than p — r, we do not have a
proper posterior for B. Thus the propriety of the
posterior depends upon the propriety of the nones-
timables Rf.

Much of the above can be extended to the case of
structured generalized linear models (Sahu and
Gelfand, 1994). With unknown scale parameters,
checking propriety of posterior distributions is
somewhat complex. See Hobert and Cassella (1993),
Ibrahim and Laud (1991) for more in this regard.

(D

Implications for MCMC

For the linear models discussed above, there are
several possible choices for the prior specification of
the nonestimables RB. We consider three possibili-
ties and examine the consequences for MCMC.

1. We could use a degenerate point prior, for exam-
ple, R =0, which is equivalent to putting
“usual constraints” in the classical analysis of
linear models. Then we arrive at a lower-dimen-
sional model with proper posterior, for which
standard MCMC methods will work effectively.
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2. We could use a proper but vague prior for Rp.
Then convergence for the full vector B would be
slow, because the MCMC will try to sample from
the almost improper posterior distribution of B.
But even in this situation the estimable func-
tions will converge very quickly. Whatever vague
prior we use for R, in the limit the MCMC will
sample from the exact posterior distribution of
XB.

3. We could use an improper prior for Rf. Then the
posterior distribution for B will be improper. As
shown in Sahu and Gelfand (1994), the MCMC
will retrieve the marginal posterior distribution
of the estimable functions while the nones-
timable functions will exhibit transient or null-
recurrent behavior. As the authors suggest,
numerical problems can arise due to the mean-
dering of the nonestimable parameters, and re-
centering may be required.

MCMC on General Improper Posteriors

The random-effects models considered in the pa-
per do not fall within the class of models considered
by Sahu and Gelfand (1994). Further theoretical
work is required to establish whether MCMC ap-
plied to improper posteriors from these models is
safe.

In general, justification of the use of MCMC on
improper posterior distributions in order to esti-
mate a subset of identifiable parameters is difficult.
To fix ideas, suppose 7 is the improper posterior
measure, and let P denote the transition probabili-
ties for the constructed Markov chain. Since 7 is
improper, P cannot be positive recurrent and is
therefore either null-recurrent or transient. How-
ever, since we know that an invariant measure (1)
exists for P, there are a collection of Markov chain
results which are relevant. Under these conditions,
we can make statements about ratios or ergodic
averages if and only if P is Harris recurrent. This
is part of Theorem 17.3.2 of Meyn and Tweedie
(1993), and we are grateful to Richard Tweedie for
drawing our attention to this result.

» Specifically, suppose f and g are two functions
integrable with respect to 7, that is,

@ [If®)Im(8) 6, [I2(0)Im(8) d < =
such that
@  [f(®)m(8)ds, [g(6)m(0) b * 0.

Define S,(f) = X7_,f(8,), where {8} denotes the
Markov chain with transition probabilities given by

P. Define S,(g) similarly. Then if {0} is Harris
recurrent,

S,.(f) R /f(0)7(0) d6
S.(g) [g(8)m(8)do

almost surely as n — o, If {8} is not Harris recur-
rent, there is at least one pair of functions f and g
satisfying (2) and (3), but such that (4) does not
hold.

The usefulness of this result is limited by the fact
that functionals of interest are commonly not =-
integrable. For example, returning to the Sahu and
Gelfand (1994) example above, one might be inter-
ested in functions such as f,(B) = I[XB < K] for
some vector k. (Here I denotes the indicator func-
tion and the inequality needs to hold for each com-
ponent.) We might perhaps hope that S,(f,)/S,(f.)
would converge to the posterior cdf of XB evalu-
ated at k. Unfortunately, for all k, f;, is not an
integrable function, and the above result cannot be
directly applied. However, if B has rank 1 or 2, and
with a flat prior on R, the resulting algorithm is
Harris recurrent. Let C, denote a ball centered at
the origin of radius N. Then letting fy , denote
I[XB <k, RB € Cy],

4)

(5) Sn(fN,k)
Sn(fN,oo)

— the multivariate
posterior cdf of X

almost surely as n — o, Note that this problem is
especially simple because of the factorization of the
posterior into functions of Xp and RP. Therefore
the result is independent of the choice of N. This
approach can be extended to situations where

y J/IRBl € Cy, xB <k 7(0) dO
N JIRBIE Cy(8)d0

exists, although care must be taken in the interpre-
tation of these results.

A word of caution is in order about generating
from improper posteriors. Algorithms constructed
from such posterior measures are not usually geo-
metrically ergodic, so that they will often converge
slowly. Another consequence of lack of geometric
convergence is that assessment of Monte Carlo er-
rors is difficult: this is at the forefront of current
theoretical research.

OPTIMAL ACCEPTANCE RATES
FOR METROPOLIS ALGORITHMS

As the authors suggest at the end of Section
2.3.3, monitoring the average acceptance rate of a
simple Metropolis algorithm is an extremely ap-
pealing and simple way of monitoring the Markov
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chain output. Consider a set of possible algorithms
indexed by the standard deviation o of the pro-
posal distribution. Each algorithm has an average
acceptance rate p;,,,(o), and suppose we agree on
some well-defined criterion for efficiency, such as
asymptotic variance of ergodic averages. (In general
such criteria are not unique and will depend on the
statistical context.) Call this measure of efficiency
e(o). It is reasonable to suppose that in the vast
majority of practical problems, pj,, (") will be a
monotone decreasing function. In this case, it makes
sense to consider efficiency as a function of accep-
tance rate, f(a) = e(pj, 5, (a).

The authors suggest that an acceptance rate
somewhere between 0.3 and 0.7 often produces sat-
isfactory results. The simulations in Gelman,
Roberts and Gilks (1995) suggest that, for updating
one-dimensional components at a time, an accep-
tance rate of between 0.4 and 0.5 is usually optimal
and supports the claims of the authors, that effi-
ciency in the wider range [0.3,0.7] is satisfactorily
close to optimal.

For updating multidimensional components,
however, a somewhat lower value for p;,,, is to be
preferred. Roberts, Gelman and Gilks (1994) give
an asymptotic approximation (valid as dimension
approaches ©) which gives the optimal acceptance
rate as approximately 0.234. More important, ac-
ceptance rates in the range [0.1,0.5] all perform
satisfactorily close to optimal according to this ap-
proximation.

It is important to remember that the recommen-
dations made by the authors and ourselves are only
rough guides. It is easy to construct examples where
average acceptance rates of reasonable strategies
can be arbitrarily close to 0 or 1. Also, these recom-
mendations cannot be carried over to other types of
Hastings algorithm. For updating schemes which
try to update (perhaps approximately) according to
the full conditional distribution, acceptance rates
much closer to 1 will be preferable.

CHOICE OF HASTINGS ALGORITHM

As the authors describe in Section 2.3.4, the prac-
titioner is often faced with a choice of possible
samplers. Often, two possible types of strategy ex-
ist: use a blanket strategy which should work rea-
sonably effectively on most problems, such as the
random walk Metropolis algorithm; or use a tailor-
made algorithm, such as the Langevin-Hastings

algorithm described at the end of Section 2.3.4.
Although Langevin algorithms frequently work very
effectively, care has to be taken when using these
methods since they often converge at a subgeomet-
ric rate. See Roberts and Tweedie (1995) for further
details. (We are grateful to Julian Besag for sug-
gesting the problems considered in this paper.) In
contrast, the random walk Metropolis algorithm is
geometrically ergodic for large classes of target den-
sities with exponential or lighter tails (see Roberts
and Tweedie, 1994).

CURTAILMENT IN ADAPTIVE REJECTION
SAMPLING

Appendix 1 of the paper discusses adaptive rejec-
tion sampling methods (ARS and ARMS) for sam-
pling from full conditional distributions. The au-
thors point out that these methods are open ended,
in the sense that there is no upper bound on the
number of adaptive steps required to sample one
point from the full conditional. They suggest cur-
tailing ARS /ARMS after a fixed number of adapta-
tions. Unfortunately it is not clear from the paper
how this should be done. It seems to us that an
appropriate curtailment procedure would be as fol-
lows.

Let h,(x;) denote the piecewise-exponential ap-
proximation to the full conditional 7(x,|x_;) gen-
erated at the kth adaptive step of ARS or ARMS.
Let ¢ denote a prescribed upper limit on the num-
ber of adaptive steps. Let x7. denote a sample from
h,(xp). If x; passes the ARS/ARMS rejection test,
perform a Hastings—Metropolis step with R, (x; —
xp; x_p) = min{h,(x7), m(x7lx_;)} in equation
(29). If x; fails the ARS/ARMS rejection test
and k = ¢, perform a Hastings—Metropolis step
with Ryp(x; = x7p; x_7) = hy(xp) — min{h,(x7),
7 (xp|x_7)}). Otherwise construct A, ;(x;) and con-
tinue with ARS/ARMS.

Curtailment is unlikely to offer worthwhile com-
putational savings with log-concave full condi-
tional, since adaptive steps rarely exceed 6 or 7 and
probabilities of failure in the ARS rejection test
decrease substantially with each adaptation. For
non-log-concave full conditionals the situation is
less clear-cut, and it may be that in certain situa-
tions it will be more computationally efficient to
curtail ARMS, jettisoning information on
m(xp|x_7) accumulated in A,(x;), and attempt to
move in a different direction away from x.
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Comment

Wing Hung Wong

The authors have presented a clear and elegant
exposition of the MCMC methodology, illustrated
by three substantial applications. Their descrip-
tions of the background of the applications and
insightful discussions of the modelling and compu-
tational issues will be helpful to all seriously inter-
ested in Bayesian computation.

A QUESTION ON THE CHOICE OF PRIORS

There is quite a bit of arbitrariness in the choice
of the prior models. For instance, in the prostate
cancer example, the scale parameters are assumed
to have independent proper gamma distributions.
Thus, for each scale parameter one needs to intro-
duce two free constants to describe the gamma
prior. Why is it necessary to have this extra level of
randomness? On the other hand, the parameter &
in the pairwise-difference prior (6.1) in the nuclear
medicine imaging example is treated as a free con-
stant and given the value 2. It seems to me that the
role of this latter parameter is quite similar to the
scale parameters in the prostate cancer example,
namely, to control the strength of local regularity in
space or time. Why should it be given a fixed value
in this case?

COMMENTS ON NUCLEAR MEDICINE
IMAGING

(a) Would the authors please discuss why it is
controversial to use Bayesian modelling in measur-
ing uncertainty in image analysis? I am very inter-
ested in further elaborations of their position on
this issue.

(b) In Section 6.1, it was remarked that the “point

spread function” is often known from calibration

experiments. Is this the case for the actual study in
Section 6.4? The “raw data” presented there consist
of a 256 X 256 image where the photon counts in
individual pixels vary between 0 and 93. The direct
use of the Poisson model of Section 6.1 would re-
quire us to assume, in effect, that there are 256 X
256 independent counting elements. In actuality,
the counting elements in a traditional gamma cam-
era are photomultiplier tubes whose diameters typ-

Wing Hung Wong is Professor, Department of
Statistics, Chinese University of Hong Kong, Shatin,
NT, Hong Kong.

ically are of the order 1-3 cm. Each scintillation
event would generate many thousands of light pho-
tons collected by several nearby photomultiplier
tubes, and the location of the scintillation event is
“computed” by the circuitry based on the relative
strength of the signals from the several tubes. In
principle, the signals from the individual tubes are
available and the “computation” of the position of
the scintillation event would then become a statisti-
cal inference problem! In many cases, it may be
reasonable, as a first approximation, to use a
Gaussian point spread function with a suitable
standard deviation to represent the uncertainty in
this measurement of the scintillation position. This
depends on the thickness of the scintillating crys-
tal, collimator design and the sizes of the photomul-
tiplier tubes, and I do not necessarily disagree with
the authors’ treatment in this example. I merely
wish to point out that statisticians should not auto-
matically leave the issue of the point spread func-
tion to the medical physicists. This is particularly
true in more sophisticated imaging modalities such
as SPECT and PET. For example, for the 510-keV
gamma photons in PET, the effect of Compton scat-
tering would contribute much more significantly to
the blurring. Since part of the scattering occurs
inside the body, it is not possible to determine the
exact effect of this by calibration experiments.

SEQUENTIAL BUILDUP BY MARKOV
CHAIN MONTE CARLO

In Section 7, the authors presented a useful up-
date on promising recent developments on the con-
struction of efficient Monte Carlo algorithms. I will
supplement their discussion by venturing to outline
an idea which I hope will be helpful in this regard.
Let us first consider the method of simulated tem-
pering (Marinari and Parisi, 1992) in more detail.
Let f(z) be an unnormalized density on a space Z,
that is, f(z) is nonnegative but needs not integrate
to 1. To sample from f( ), Marinari and Parisi
propose to create a Markov chain with an enlarged
state vector (k, z), where z takes value in Z and &
ranges from 1 to m. For any k, z is updated
according to a transition kernel which has an in-
variant density proportional to the 1/7T}, power of
f(). For example, the update may be one complete
Gibbs sampling scan over the components of z.
After each update of z, # may be moved to the next
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larger or smaller value, or it may remain the same.
This is done using the Metropolis—Hastings rule so
as to ensure that the joint stationary density is
proportional to

a, - [V,

where «, and T, are tunable parameters satisfying
a,>0and Ty, >Ty,> -~ >T,, =1; T, is inter-
preted as a temperature parameter, such that when
T, is large the system for z is supposed to be
fast-mixing. The idea is that by including the
higher-temperature distributions the system has a
chance to move from a low-temperature local mini-
mum to a higher-temperature one which is much
easier to escape from. This will increase the mixing
rate of the whole system. It is clear that the condi-
tional distribution of z given 2 = m is proportional
to f( ). Hence, samples from f( ) can be obtained
from the equilibrium states of (%, z) by selecting
those 2z’s corresponding to 2 = m. Marinari and
Parisi (1992) had successfully applied this method
to simulate from the random field Ising model where
other methods had been ineffective.

Geyer and Thompson (1994) generalized this
scheme by allowing the joint stationary distribution
to take the form «,-g(z|k), where, for each £,
g(z|k) is a unnormalized density on Z. These densi-
ties are usually obtained by choosing the value of
an adjustable parameter in the specification of the
basic density. It is required that g(z|m) = f(z) and
g(z|1) is easy to sample from. In applying the
method to ancestral inference, Geyer and Thomp-
son created the sequence of densities g( |k) by
setting the penetrances to be various convex combi-
nations of two basic sets of values. One corresponds
to the genetic model of interest, the other corre-
sponds to a model that is easy to simulate.

To outline our approach, we first take the simu-
lated tempering strategy to its natural limit. We
would use a Markov chain with a state space (%, x,)
where, for different %, the sample spaces for «,
need not be the same. The joint distribution for
(k, x,) is required to be proportional to a,, - g(x,|%),
where g( |m) is assumed to give the same density
as f(), but, for & less than m, g( |k) will give
densities on different spaces. As long as the transi-
tions are designed to satisfy some mild conditions
on the communication between states, the scheme
will work in the same way as in the original simu-
lated tempering case. .

The above scheme is so general that perhaps it
cannot qualify as a concrete approach. The impor-
tant step is to explain when and how the extra
generality can be put to good use. For example,
suppose after suitable parameterization, z can

be written as z = (24, 2,,..., 2,), and the informa-
tion used to determine the density of z can be
partitioned correspondingly as y = (¥4, ¥5,-.-, ¥,)-
It is assumed that, based on the partial informa-
tion w; = (¥4, ¥3,...,y,), we have a way to specify
an unnormalized density g(x;lw;) for «x; =
(24, 25,...,2)). It is required that g(zlw,) =f(2)
and that, for all j, g(x;lw,) has reasonable overlap
with the marginal density of x; under the joint
density g(x;,,lw;, ). We will say that such a prob-
lem has a “sequential buildup” structure. Note that
there is no need for g(x,lw,) to be close to the
marginal of x; under f( ), although that would be
an ideal situation. The method should work under
the much weaker requirement stated above. Sev-
eral examples with such a structure, including com-
plex missing data pattern in Gaussian models and
nonparametric Bayesian analysis of binary data,
have already been discussed in Kong, Liu and Wong
(1994). They did not use Markov chain Monte Carlo
in that paper, but instead “sequentially imputed” z;
by drawing from g(z;lx;_;,w;) and then updated
the corresponding importance weight by a multi-
plicative factor reflecting the consistency of x;_,;
with respect to the new information y;. Thus the
“sequential imputation” procedure is a specialized
application of the importance sampling idea. De-
spite its simplicity, the method is effective in many
problems. Recently, it was applied with spectacular
success to handle some supposedly unmanageable
computation in multiloci genetic linkage analysis
(Irwin, Cox and Kong, 1994). Since our dynamic
Monte Carlo approach exploits the same “sequen-
tial buildup” structure, we expect it to be effective
whenever sequential imputation does so.

The dynamic approach, however, has some im-
portant advantages. First, the condition in sequen-
tial imputation that certain conditional distribu-
tions be simple is no longer needed because the
Metropolis—Hastings rule allows great flexibility in

. the proposed moves. Second, in large problems the

distribution of the importance weights may eventu-
ally become very skewed in sequential imputation,
and there is a need to “restart” the process. So far
there is no entirely satisfactory way to do this. Such
a difficulty does not exist in the dynamic approach.
Finally, there is the tantalizing possibility that dif-
ferent “buildup” structures may be used in differ-
ent cycles. Admittedly this would make the dynam-
ics very complex, but the extra freedom it offers
may be helpful in hard problems.

Clearly, the method is effective only if we can
identify a good buildup structure. This can often be
achieved by attempting to drop variables and relax
constraints, one small set at a time, by optimizing
some heuristic criterion.
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Comment: Extracting More Diagnostic
Information from a Single Run

Using Cusum Path Plot

Bin Yu

The article by Besag, Green, Higdon and
Mengersen adds to a series of recent papers (Besag
and Green, 1993; Geyer and Thompson, 1992; and
Gelman and Rubin, 1992b) in making Markov chain
Monte Carlo (MCMC) methods accessible to more
statisticians, especially applied statisticians. I am
glad to see that different algorithms are reviewed
in a unified way and many examples are given.
Although the article gives general recommenda-
tions as to which algorithms and sampling scans to
choose, there is not much discussion on the empiri-
cal monitoring of convergence of the Markov chains.
Since the convergence issue is very critical to the
success of MCMC methods, and something close to
my heart, I will make this issue my topic here. In
particular, using the prostate cancer example in
the article by Besag, Green, Higdon and Mengersen
and the Ising model example in Gelman and Rubin
(1992a), I illustrate that the cusum path plot in Yu
and Mykland (1994) can effectively bring out the
local mixing property of the Markov chain.

It had been believed by many MCMC researchers
(including this author) that information solely from
a single run of a Markov chain can be misleading
since, for example, it can get trapped at a local
mode of the target density. Consequently, addi-
tional information beyond that from a single run
has been introduced to the convergence diagnostics.
Gelman and Rubin (1992b) proposed a multiple
chain approach in the MCMC context, followed by
Liu, Liu and Rubin (1992) and Roberts (1992). Yu"
(1994) introduced additional information to a single
run by taking advantage of the unnormalized tar-
get density. In the context of Gibbs samplers, Ritter
and Tanner (1992) and Cui, Tanner, Sinhua and
Hall (1992) suggested diagnostic statistics based on
importance weights, using either multiple chains or
a single chain. A priori bounds on the convergence
rate can be found in Rosenthal (1993) and
Mengersen and Tweedie (1993), but unfortunately
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these theoretical bounds are currently known only
in some very special cases. For other references on
existing diagnostic tools, see the recent and thor-
ough review by Cowles (1994).

On the other hand, Yu and Mykland (1994) sug-
gest that more information can be extracted from a
single run than previously believed. The device is
the cusum path plot, which brings out the local
mixing behavior of the Markov chain in the direc-
tion of a chosen one-dimensional summary statistic,
more effectively than the sequential plot. The cases
where the cusum path plot works well are those
where the mixing behavior is homogeneous across
the sample space. For example, in some multimodal
examples, the reason that the chain gets trapped at
a local mode is because the chain moves around
very slowly, even within one mode, and the cusum
path plot brings out this local mixing speed even
when the sampler is trapped at one mode. As shown
below, the Ising model example of Gelman and
Rubin (1992a) has a slow local mixing property.
One situation in which the cusum path plot fails is
a variant on the witch’s hat (cf. Cui, Tanner, Sin-
hua and Hall, 1992; Yu and Mykland, 1994), where
the chain has a split mixing behavior: fast in one
region and slow in another.

Now we introduce the cusum path plot formally.
Let X,, X,,..., X, be a single run of a Markov
chain, and let T(X) the chosen one-dimensional
summary statistic. Let n, be the “burn-in” time,
and we construct our cusum statistics based on
T(X,,+1),---,T(X,) to avoid the initial bias of the
chain. What we get out of the cusum plot is the
more detailed information we cannot see in the
sequential plot of T(X) which MCMC users have
been plotting all along.

Denote the observed cusum or partial sum as

A

¢
S, = Y [T(Xj)—ﬁ,] fort=n,+1,...,n,

Jj=ne+1
where

n

1
- >

n =Ny j—p,+1

T(X)).
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Fic. 1. Ising model: sequential plots for two runs.

Cusum path plot: Plot {S,} against ¢ for ¢ = n,
+1,...,n and connect the successive points with
line segments. Since ¥, S, = 0, the cusum path plot
ends at 0.

The mixing speed of T(X) is reflected in the
smoothness of the cusum plot path, that is, the
more “hairy” the cusum path is, the faster the
mixing speed of T'(X); the smoother the cusum

path, the slower the mixing speed of T(X). More-
over, the bigger the excursion the cusum path plot
takes, the slower the mixing speed. See Yu and
Mykland (1994) for the supporting arguments.

The cusum path plot should be compared to the
“benchmark” cusum path plot, which is the cusum
path plot of an iid sequence of normal random
variables with their mean and variance matched
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Fic. 2. Ising model: first run (solid line, benchmark path; dotted line, Gibbs sampler path).
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Fic. 3. Ising model: second run (solid line, benchmark path; dotted line, Gibbs sampler path).

with the estimated mean and variance of {T'(X)): where Y, ,1,...,Y, is an iid sequence of N(fir, s7.)
J=ng+1,...,n} thatis, for t =n, + 1,...,n, let random variables with i, as above and sZ being
¢ the sample variance of {T(X)): j = n, + 1,...,n}.
.§f =y [YJ - fLY] , By the invariance principle for the partial sums
J=no+1 of weakly dependent process (cf. Philipp and Stout,
PR 1975), the benchmark path approximates, to the
where fy=(n — ng) XY, second order, the “ideal” cusum path of an iid
J=netl sequence from the same target distribution. If the
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FiG. 4. Prostate cancer example: 50-cycle gaps and block updates; sequential plots for z; | and £, ;.
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Fi16. 5. Prostate cancer example: 50-cycle gaps and block updates; cusum path plots for z;  and &, | (solid lines, benchmark paths;

dotted lines, Gibbs sampler paths).
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Fi1G. 6. Prostate cancer example: equivalent model with 10-cycle gaps and single component updates; sequential and cusum path plots
for z; . In the cusum plot: solid line, benchmark path; dotted line, Gibbs sampler path.
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benchmark cusum path is comparable with the T
cusum path in terms of smoothness of the path and
size of the excursion, then we conclude that the
sampler is mixing well [in the direction specified by
T(X), to be precise]. Otherwise, we conclude that
the sampler is not mixing well, in the direction
specified by 7'(X). When two Markov chains are
compared for the same target distribution, one may
omit the “benchmark” cusum path plot.

Now we are ready to illustrate the use of the
cusum path plot in the Ising model example in
Gelman and Rubin (1992a) and in the prostate
cancer example from the article by Besag, Green,
Higdon and Mengersen. Note that we know that
the mixing speed is slow in the Ising example, and
Besag, Green, Higdon and Mengersen have con-
cluded that there seems no significant multimodal-
ity problem in the prostate cancer example.

For the Ising model, professor Andrew Gelman
kindly provided the two runs which appeared in
Gelman and Rubin (1992a). For n, = 1,000 and
n = 2,000, the sequential and cusum path plots are
in Figures 1-3. Each of the cusum plots shows
clearly that the mixing is slow, while each of the
sequential plots suggests that things have stabi-
lized.

For the prostate cancer example, the authors
kindly offered the simulation data presented in
their paper. For n, = 2,000 and »n = 7,000, we
monitored the 49 log-odds ratios ¢;; and the corre-
sponding reconstructed z;;. The cusum path plots
for all 98 parameters compare well with the bench-
mark plots, indicating good mixing behaviors, con-

Rejoinder %

sistent with the claims of Besag, Green, Higdon
and Mengersen. In this note, I include only the
sequential and cumsum plots for two of them: &; ;
and z; ; (Figures 4 and 5). The cusum plots display
comparable paths of the data and the benchmark
paths, in terms of smoothness and exclusion size.
As the authors note in Section 4.2, fast mixing
arises because of the block updates and a large
sampling interval or gap. Note that, since the 0’s,
¢’s and ’s are themselves unidentifiable, it would
be necessary to monitor them via appropriate con-
trasts. It is interesting to point out the effect on the
cusum plots when single component updates are
used and in addition the sampling interval is re-
duced from 50 to 10. Figure 6 shows the results for
a burn-in of 20,000 cycles and data collection over a
further 25,000 cycles. It is clear that the cusum
plots bring out the mixing properties more explic-
itly than the sequential plots, and in order to obtain
valid inference based on MCMC methods, extreme
care is needed with convergence diagnostics.

In conclusion, MCMC users have to explore suffi-
ciently the convergence issue before trusting the
estimates that the Markov chain gives. Among other
diagnostic tools such as sequential plot and auto-
correlation plot, the cusum path plot is a simple
and an effective device to monitor the local mixing
speed of a Markov chain.
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We thank the discussants for their contributions
and insights, and for raising numerous interesting
points. We shall respond to these as best we can,
although obviously there are many questions for
which, as yet, only partial solutions exist. We shall
also try to rectify some misunderstandings that
have arisen as a result of possible ambiguities in
the paper. Our response is organized primarily by
topic, rather than by discussant.

“ON BEING BAYESIAN”

Separation of Concerns

We have pondered Geyer’s call for a separation of
concerns, particularly between philosophy and com-

putational technology, and we agree that the aim is
an attractive one, but have come to a different
conclusion, because in this case there are interac-
tions that are too strong to be discounted. For
example, the agricultural experiment in Section 5
of the paper is concerned with ranking and selec-
tion in comparing 75 varieties of spring barley. We
contend that here it is a point of philosophy that
the Bayesian paradigm provides an approach that
is more useful than (indeed, we would say vastly
superior to) any non-Bayesian approach. However,
even in quite straightforward formulations, it is
exceedingly difficult to implement a fully Bayesian
analysis without MCMC. The simultaneous credi-
ble regions in the paper provide another example,
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and the story is the same much more generally,
with researchers now able to choose their models
freely and hence argue the philosophical and prac-
tical advantages of a Bayesian approach.

While of course we recognize the importance and
intellectual standing of the long debate about
philosophies of inference at a more fundamental
level, nevertheless it is surely true that some of the
main historical objections to Bayesian inference
have included the difficulty of computation, the
need to approximate, the necessity to use stylized
priors and the inability to assess the impact of
arbitrary assumptions in prior specifications.
Markov chain Monte Carlo methodology answers
these objections amazingly well and, indeed, also
allows one to perturb the likelihood function. For
those of us who were closet Bayesians, or at least
are open-minded enough to discover what the
paradigm can provide, MCMC does remove reasons
not to be Bayesian.

Geyer’s claim that similar progress has been
made in likelihood inference is surely grossly over-
stated. Integration is central to the Bayesian
paradigm but runs into problems for almost any
moderately complicated formulation—and for many
simple ones when it comes to sensitivity analysis or
if posterior probabilities of complicated events are
to be evalulated. Thus, MCMC is becoming a stan-
dard computational tool in Bayesian inference,
whereas its non-Bayesian role, in evaluating awk-
ward normalizing constants and in dealing with
missing values, random effects models and so on, is
much more specialized. Indeed, some of the applica-
tions to spatial point process models which Geyer
cites are fueled more by curiosity about MCMC
feasibility than by scientific considerations.

The Role of Hyperparameters

Wong questions the arbitrariness of our gamma
hyperpriors. We should have mentioned that, in
Section 4.2, we chose the same negative exponen-

tial distribution with mean 200 in each case, so, -

rather than eight constants, there is only one. Of
course, this is still arbitrary, as is our use of certain
" independence assumptions. It would be of concern if
such choices had any material effect on the conclu-
sions. Somewhat fortuitously, we made the same
choices for the hyperpriors in Section 5.5 and there
we do discuss some aspects of sensitivity analysis.
Wong contrasts our decision in Section 4 with
that in Section 6 to choose a constant value for two
hyperparameters. We suggest the choice depends
on the context. Many, but not all, tasks in image
analysis are sufficiently routine that certain hyper-
parameters can be considered to be known con-
stants or should at any rate be held fixed, for

example, to ensure comparability between subjects.
There is no computational barrier to the estimation
of the scale parameter y in Section 6, where this is
warranted. For examples, see Besag and Maitra
(1995) and, in a different context, Besag and Hig-
don (1993, Section 4).

Priors for Spatial Processes

We shall return later to Wong’s other comments
on gamma-camera imaging, but he does ask us
more generally why we feel it is controversial to use
Bayesian modeling to measure uncertainty in im-
age analysis. What we have in mind here is that, in
many spatial applications, the prior distribution
plays an important role in representing certain
known aspects of spatial structure. This can be at a
low level (as, e.g., in the use of Potts models for
classification problems) or at a high level (as, e.g.,
with Grenander’s stochastic templates). In either
case, but especially when low-level priors are used,
the prior provides only a partial description of the
true scene. Such crude representations may work
perfectly well in providing point estimates for im-
age functionals, as may many other methods of
regularization; but their use additionally to quan-
tify uncertainty is far more precarious. We briefly
mention two examples.

In an agricultural experiment, interest focuses on
treatment or variety estimates and there is some
replication usually present. Thus, a quite crude
model for spatial fertility structure will generally
suffice to provide not only good point estimates, but
also an adequate representation of posterior beliefs
about treatment effects. Replication is crucial to
this argument, as in any corresponding frequentist
analysis.

In image analysis, the issue is also one of replica-
tion. For example, in gamma-camera imaging, the
longer the acquisition time, all other things being
equal, the more informative is the likelihood and
the less is the effect of the prior distribution. This is
just another application of Savage’s principle of
precise measurement. Of course, all things are not
equal and it is therefore desirable to incorporate
prior information into the eventual reconstruction.
The Bayesian paradigm provides a very attractive
means of achieving this but clearly some care is
needed in interpreting posterior probability state-
ments, until we really know how to represent be-
liefs about images properly.

MCMC METHODOLOGY

Product Sets and Constraints

In introducing the product set notation in Section
2.1, we seem to have given Gelfand and Carlin the
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impression that the support of the target vector X
needs to satisfy the positivity condition &= I'lZ,.
However, there is no such restriction, and formula-
tions involving order or other constraints on the
parameters are certainly included. For example,
the probability statement (2.6) remains true irre-
spective of the constraints built in to the full condi-
tional 7(xp|x_7). Incidentally, the device referred
to in Gelfand, Smith and Lee (1992) amounts to the
simulation of a conditional Markov random field
and also has applications in pedigree analysis,
where it has been used to circumvent reducibility of
the state space (Sheehan and Thomas, 1993). How-
ever, we doubt that there is any constrained formu-
lation for which “the single-site Gibbs sampler may
provide the only feasible means for analyzing the
associated posterior”!

Nonidentifiability and Drift

There is possible ambiguity in Section 2.4.3 where
Gelfand and Carlin misread our remark on “drift.”
The form we describe there is a consequence of
systematic scans and has nothing at all to do with
identifiability; a clearer description is in the sub-
section below on time reversibility. We do en-
counter the other type of drift in the prostate can-
cer analysis and discuss this specifically at the end
of Section 4.1, noting that it is legitimate to recen-
ter the parameters, so as to avoid numerical prob-
lems. Gelfand and Carlin make the point that such
drift is the manifestation of weak identification of
the parameters in the joint posterior and may be
remedied by more- precise hyperpriors and repa-
rameterization. This is of course often the case and
might be thought to be useful in Section 4. How-
ever, some of our parameters there are not just
weakly identifiable, they are nonidentifiable in the
likelihood and in the prior and hence in the poste-
rior. This holds whether we use priors based on
first or second differences and is entirely deliberate.
Nevertheless, the important point here is that the

main objects of attention, the log-odds ratios ¢;;

and, for example, the predicted numbers of future
, deaths, do have proper distributions which can be
rigorously estimated from the MCMC output. The
reader will notice that here the discussion by
Roberts, Sahu and Gilks takes over and so there is
no need to duplicate their presentation. Note that a
frequentist analysis fudges the identifiability issue
by providing exact fits to the observed data when
there is only a single observation on a cohort (i.e.,
for cohorts 1 and 13 in Table 1). Incidentally, it is
true that our basic formulation in Section 2.1 would
need some refinement to cope with the above type
of improper posterior distributions.

The Gibbs Sampler

Geyer notes our emphasis on full conditionals
and appears to link this to a preference for Gibbs
sampling. However, the full conditional 7(xp|x_y)
is basic to the construction of any MCMC kernel
that updates x; while holding x_, fixed; note the
implications of (2.4) for the acceptance ratio expres-
sion (2.9), for example. Even in our discussion of
partial conditioning in Appendix 2, full conditional
distributions play an essential role. The only MCMC
methods where they do not are those updating all
variables at once.

That said, there are some good reasons to pro-
mote Gibbs as the basic MCMC sampler. Some
points in its favor include the following: (i) its
intuitive explanation, in that, if a group of r.v.’s has
joint distribution 7 and any set of components is
replaced by new ones sampled from the correspond-
ing full conditionals induced by 7, this clearly leaves
the joint distribution unchanged; (ii) its entirely
adequate performance in very many applications;
(iii) its uniqueness (apart from blocking and update
schedules), so that Gibbs never needs to be tuned,
whereas other Hastings algorithms usually require
one or more pilot runs to fix the scaling of the
proposal distributions; (iv) the wide applicability of
log-concave full conditionals; and (v) its historical
status within statistical science. In particular, it is
easily accessible to undergraduates and to nonspe-
cialists, and provides a gentle but quite wide rang-
ing introduction to MCMC in Bayesian inference
and elsewhere. We have ourselves stressed the dan-
ger of “Gibbs exclusivity,” but believe that this is
evaporating as researchers continue to discover that
merely to have Gibbs in one’s toolkit is clearly
insufficient.

Incidentally, there is no historical justification
for the “Metropolis-within-Gibbs” terminology that
has become prevalent in the Bayesian literature
and is used in Gelfand and Carlin’s contribution. In
the original paper (Metropolis et al., 1953), it is
clear that the algorithm operates on a single com-
ponent at a time, so the new term is quite unneces-
sary. Equation (2.4) reminds us that it is immate-
rial whether we consider this as a Metropolis step
applied to the conditional distribution or as one
addressing the whole joint distribution but with a
proposal that only changes one component.

Reversibility

Time-reversibility of a Markov chain has the ad-
vantage that stronger and/or cleaner theoretical
results are available in its presence, as regards
both convergence rates and efficiency of estimation.
Lack of reversibility does not normally in itself
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hinder performance, but note our comments below
about deterministic cycling around a set of kernels.
Again in response to Gelfand and Carlin, we did not
imply that the reversibility (why “marginal”?) of
the Gibbs step (2.6) is necessarily inherited by a
corresponding Gibbs chain; see Section 2.4.3 for an
explicit statement to the contrary. Also, whereas
the forward-backward systematic scan does indeed
ensure reversibility, we nevertheless avoid it on
two counts. First, it does not treat all components
equally, since the first and last are in effect up-
dated only once each (i.e., twice in succession from
the same conditional distributions). Second, we do
not advocate the use of simple systematic visita-
tion, since, in image analysis at least, raster scan
can lead to artificial drift across the screen (and so
slows mixing), which is the point we intended in
Section 2.4.3. Instead, we prefer to adopt the sorts
of randomized but balanced scans described in Sec-
tions 2.4.3 and 2.4.4 and by Geyer toward the end of
his discussion. The former often adapt immediately
to parallel and distributed computing, which is es-
pecially useful in some imaging applications.

Switching between Samplers

There are two places in the paper, Section 2.3.4
and Appendix 1, where we refer to opportunities for
switching between kernels, the first deterministi-
cally, the second under control of some random
mechanism. In both cases, we consider our reason-
ing to be rigorous, although perhaps abbreviated.

Of course, deterministic switching has to be just
that: it cannot be done adaptively, depending on
the current state or the past history of the realiza-
tion; at least, not. without some new theory. In
particular, burn-in must normally end at a prede-
termined point, and it is legitimate here (or at any
other fixed point) to switch from a kernel giving
rapid convergence to one offering high MCMC esti-
mation efficiency. Equally, the suggestion of “on-

the-fly” tuning of a proposal spread is legal only if

done effectively off-line.

However, the design of adaptive samplers is a
, legitimate goal. In the context.of the random pro-
posal distributions discussed in Appendix 1, where
the component kernels P§ do satisfy detailed bal-
ance, the possibility of adaptivity is carefully delim-
ited. See also our further discussion of random
proposals in response to Frigessi’s contribution.

Cycling around Kernels

Gelfand and Carlin suggest that the crux of their
discussion concerns the strategy of using several
MCMC kernels, all of which have the same station-
ary distribution. Of course, this is how any stan-
dard MCMC sampler is constructed, but what they

have in mind is to combine kernels that are already
ergodic and would individually deliver the correct
limit distribution. The aim then is to accelerate
convergence of any single kernel. This is a natural
strategy, immediately one contemplates algorithms
other than the Gibbs sampler, and would seem to
have considerable potential in the way that Gelfand
and Carlin discuss. However, while we agree that,
in the types of situations they describe, the multi-
ple-hit strategy can be very effective, there are two
important caveats to be made.

First, this is not quite the free lunch Gelfand and
Carlin seem to claim, since the computation time is
proportional to the number of kernels, other things
being equal. We discuss this point briefly at the
beginning of Section 2.3.4. Second, they remark
that the strategy of cycling deterministically
through the kernels “will achieve convergence per-
formance which is no worse than that of the best of
them.” This requires further comment.

For a reversible ergodic kernel P, the rate of
convergence of P"(x — B) to the (equilibrium) limit
7(B) is given unambiguously by the spectral ra-
dius p(P), which is the same as the norm of P
considered as a bounded linear operator. Given fwo
reversible ergodic kernels P, and P,, both with
limiting distribution =, it is true that p(P,P,) <
p(P)p(P,), a stronger statement than the one
quoted above, in that the effective rate of conver-
gence of P, P,, allowing for the additional computer
time, is no worse than the geometric mean of the
two individual rates. The above inequality may be
proved by standard Hilbert space methods and of
course extends to any succession of reversible ker-
nels, each with limiting distribution 7. For a finite
state space, there is an elementary proof of the
result, based on writing P as EDETB, where B is
diag(w), D is a diagonal matrix of eigenvalues of P
and where ETBE = I.

However, if either P, or P, is not reversible, the
situation is different (though not as clear-cut). It is
easy to construct finite kernels P,, P, and P, P,,
each of which is diagonalizable so that the spectral
radius is still the appropriate measure of conver-
gence, yet for which p(P,P,) > min{ p(P,), p(P,)}.
As a simple numerical example, the two kernels

27 18 3 12
p_Lll12 8 8 32
1760127 18 3 12
12 8 8 32
and
112 48 8 12
p 72 48 48 12
2

“180| 24 96 12 48
9 6 12 153
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both have limiting distribution (0.3, 0.2,0.1, 0.4) but
p(P,), p(Py) and p(P,P,) are 0.1667, 0.7699 and
0.2222, respectively. In such a case, using the sec-
ond kernel not only consumes computer time, it
also slows convergence!

In practice, explicit calculation of the spectral
radius is rarely feasible, and one might consider
readily computable bounds for the rate of conver-
gence. For a (finite) stochastic matrix P, Seneta
(1981, page 136) defines a general coefficient
of ergodicity 7. Such coefficients always satisfy
7(P,Py) < 7(P)r(Py), 7(P) <1 and 7(P)=0 if
and only if P(x, x') does not depend on x. Thus
7(P") can be used as a measure of the difference
between P" and its limit, and, when 7(P) < 1, we
have a bound on the rate of convergence. For a class
of such coefficients based on vector norms, it is also
true that p(P) < 7(P); but the example above
shows that this is not enough to draw comparisons
between repeated use of P, P, and that of P, or P,
alone. For example, Dobrushin’s coefficient 7,(P) is
one-half of the maximum total variation between
any two rows of P, and, with P, and P, as above,
- 7(P,) = 0.4167, 7,(P,) = 0.8056 and 7,(P,P,) =
0.2778; however, 7,(P;P,)") > 7,(P*) for n > 3,
concurring with the comparison drawn above on
the basis of the p’s. This sounds a warning that
ergodic coefficients require careful interpretation.

Simultaneous Updating Using Gaussian Proposals

We were very interested in the Roberts, Gelman
and Gilks result on optimal acceptance rates, espe-
cially as it seems from simulations that the asymp-
totic result is valid down to rather few dimensions.
It is good to have theoretical evaluation of what is a
very attractive sampling strategy. It makes an in-
teresting contrast, also, with the classical Langevin
diffusion method mentioned in Section 2.3.4. We
noted there the desirability of treating the diffusion
move as a proposal, to be subject to the usual
Hastings accept-or-reject decision. However, the
philosophy of the approach is clearly to use a time
increment 7 in simulating the diffusion that is
sufficiently small for the rejection probability to be
negligible. The drift term is important in achieving
this. By contrast, the Roberts, Gelman and Gilks
result says that, for Gaussian proposals with zero
drift, the optimal rejection rate is about 0.76.

Spread of Proposal Distribution

Despite their initial claim to the contrary, Gelfand
and Carlin apparently go on to acknowledge that
the marginal standard deviation and 2.38 times the
conditional standard deviation are not as “poten-
tially quite different” as they seem. We might note,

for example, that a large number of jointly Gauss-
ian variables with equal correlations of 0.58 exhibit
about this ratio of marginal to conditional spread.
Our response has greater relevance in the context
of a Hastings proposal, as the Roberts, Gelman and
Gilks study suggests that the curve of efficiency
against spread is fairly flat around the optimum,
which explains why the resulting optimal accep-
tance rate supports our “ad hoc” recommendation.

Convergence Estimates

An important consequence of using MCMC for
statistical inference has been the resurgence of in-
terest in obtaining convergence rates for Markov
chains. Frigessi mentions several strategies for
quantifying such rates, and others are referenced in
Section 1 of our paper. Numerical results have been
obtained for some relatively simple specific applica-
tions but these have yet to be generalized; for ex-
ample, use of equation (3) in Frigessi’s discussion
requires the evaluation of a constant C and accep-
tance or identification of certain mixing conditions.
This same problem arises in the expressions for
rates of convergence used by Mengersen and
Tweedie (1994) and in the generalization to the
multidimensional case by Roberts and Tweedie
(1994). We are somewhat surprised that Frigessi
seems prepared to use numerical convergence esti-
mates so explicitly: on what basis is C = 10 or 100,
rather than 107! or 10%?

Frigessi correctly observes that replacement of
an independent Gaussian proposal density with a
mixture of Gaussians overcomes the problem of
nongeometric convergence identified in Mengersen
and Tweedie’s Theorem 2.1, since a uniform bound
is obtained at both ends, from different parts of the
mixture. It appears, however, that his resolution of
the rate of convergence using the result of Roberts
and Polson (1994) is based on considering only one
component of the mixture, a point to which we

. return below in discussing random proposals.

MCMC Diagnostics

Another important ingredient of MCMC, not ad-
dressed in our paper, is that of diagnostics. Thus,
we welcome the discussion by Yu, in promoting
cusum plots as a means of monitoring mixing rates.
However, we note her warning that cusums are
unlikely to help when the target distribution is
multimodal and mixing within modes is fast but
between modes is very slow. Indeed, such behavior
in multimodal distributions is likely to be the norm.
There is no doubt that it is insufficient to rely on a
single diagnostic procedure, especially for depen-
dent output as in MCMC. By presenting the com-
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parison plot in Figure 3, we may have wrongly
given a different impression. In practice, we always
monitor autocorrelation times, in one form or an-
other, and routinely calculate Monte Carlo stan-
dard errors of our estimates, which, when large,
provide evidence of slow mixing. Again we stress
the importance of exploratory analysis in detecting
severe multimodality and of designing mode-jump-
ing algorithms, when appropriate. Having said this,
we venture that at least some of the suspect time-
series plots in Yu’s contribution and in Yu and
Mykland (1994) do indeed look suspect!

Fast mixing is important both for convergence to
7 and, subsequently, for efficiency of estimation. As
regards the former, regeneration via simulated
tempering provides a rigorous but highly computa-
tionally intensive alternative, as we mention in
Section 7 of our paper.

Another very recent innovation, due to Johnson
(1994a), provides a nice twist to the usual notion of
coupled Markov chains. The idea here is that if it
were possible to run an MCMC algorithm from
every point of the (finite) state space, with exactly
the same stream of random numbers, then eventu-
ally all paths would coalesce, at which point the
chain would have lost its memory. At first sight, the
strategy seems totally impracticable, but Johnson
shows that this is not necessarily the case if, for
example, a Gibbs sampler is implemented via the
inverse cumulative distribution function method.
Examples include the pure Ising model, with posi-
tive interaction, for which complete coalescence co-
incides with that of initially all-black and all-white
images. Although the state of the chain at coales-
cence is generally not a draw from the stationary
distribution, some rigorous theoretical statements
can be made and there would seem considerable
scope for further progress. '

NEW DEVELOPMENTS IN MCMC

Random versus Mixture Proposals

We thank Frigessi for elaborating on the random
proposal distributions which we introduce in Ap-
pendix 1. However, it is not clear what conclusions
‘can be drawn from his comparisons of the conver-
gence performance obtained using two proposal dis-
tributions in a Hastings method: one a mixture, the
other a single (arbitrarily chosen) component of
that mixture. These might a priori be expected to
behave differently. In any case, the sampler he
discusses, which uses what we might call a mixture
proposal, is not an example of the random proposal
method described in Appendix 1.

We can gain further insight by specializing our
construction to the case where Pf; is a Hastings

step based on a proposal density R%. The random
proposal method first draws o« from u(a;x_g),
then x from R$(x; — x7;x_5) and finally ac-
cepts this choice with probability

Af(xp = x7;2_7)

m(x")RF(xp = xp; x_7p)

= min
" (0)RE(xp > xp;x_g) |

from (2.9). On the other hand, the mixture proposal
method draws x7 from

RP*(xp —> xp; % _7)
= fR%(xT - xp;x_p)dula; x_p),

and accepts it with probability
AP (xp > xp; %_1)
m(x)RP*(xlp = xp; X_7p) }

= min{1, -
{ m(x)RF*(xp = xp; x_7p)

Of course, the realized x7 have the same distribu-
tion in each case, but the acceptance probabilities
are different: in fact, conditional on x and x’, the
mean acceptance probability in the random case is

JAF(xp > xp; x_p)RF(ap > a7 x_p) dula; x_p)

R}™(xp > a3 % 1) ’
which is less than or equal to AT*(xp — xip; X_p).
This follows from the general result E(min{U,V})
< min{E(U), E(V)}, by making the substitutions

U= w(x)Rj(xp —> xp;%_7),
V=m(x)RE(xp > xp; x_p),

and taking expectations with respect to du(a; x_r).
Thus the random proposal method accepts fewer
proposals and hence, by Peskun (1973), offers infe-
rior efficiency in MCMC estimation, as measured
by integrated autocorrelation time.

The advantage of the random proposal method
comes from another quarter altogether: it can be
implemented by calculating only R7 and A7 for
the « that is actually drawn at the first stage. This
is an immense computational advantage when gen-
erating a involves a complex construction; in the
case of ARMS, in particular, computing R®* would
be completely impossible; that is, we see no way to
apply the usual computational tricks in dealing
with this mixture proposal density, since not only
do we need to draw from RF*(x; — xfp; x_7p), we
need to evaluate RE*(xp — xip; x_p) and RE*(x7p
= Xp; X_p)

Our original motive in constructing a framework
for random proposals was the provision of a one-line
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proof of the validity of ARMS, including possible
curtailment. The scope for flexibility here is very
wide but, in the notation of Roberts, Sahu and
Gilks, the simplest rule with a fixed curtailment
time ¢ would be as follows. Proceed as in ARMS for
the first ¢ — 1 attempts, and, on the cth attempt,
do not test whether the x7 generated from A (x;)
passes the ARMS /ARS rejection rule. Instead, treat
it as a standard Hastings proposal, to be accepted
with probability (2.9), where R;(x; — xp; x_p) =
h (x7), and otherwise leave x4, = x; and move on.
The algorithm spelt out by Roberts, Sahu and Gilks
is also correct but a little more involved. More
generally, reverting to the notation of Appendix 1,
but considering only Hastings algorithms, all that
is required for validity is that a “black box” with
input x_; generates a function 2%(x;), where the
parameter « can be quite abstract, and a value x7.
that is realized from A%(x;). It is A*(x%) that is
used in place of R;(x; — x7; x_7) in (2.9).

In the event, the random proposals framework
grew into something more substantial and we hope
it will find quite wide applicability. For an illustra-
tive example, in the context of our paper, we again
refer to the pairwise-difference priors in equation
(38.1). For certain choices of ®, the corresponding
posterior distribution may lead to full conditionals
for the ¢;’s that are multimodal, at least when the
data are rather uninformative about . One obvi-
ous but cumbersome method of updating ¢, would
use a proposal density that is a mixture of, say,
Gaussians centered at each ¥;, J € di. Rather than
draw from this mixture and calculate the usual
acceptance probability AT™*, the corresponding ran-
dom proposal method 1nvolves choosing a neighbor
J € di at random and using only the Gaussian cen-
tered there for proposing a move and calculating its
acceptance probability.

Sequential Buildup and Simulated Tempering

The idea of sequential buildup, proposed by Wong,
seems to combine simulated tempering and multi-
grid MCMC by allowing the distribution and its
support to vary with the auxiliary parameter %
through the specification of densities

ay g(xcklk), k—l,...,K,

with C, C - cCx =/ and w(x) ag(x|K). As
Wong states, such a scheme is especially attractive
when large amounts of missing data can trap the
sampler in a particular region of 2. Here alter-
nately updating the model parameters given the
missing data and then the missing data given the
model parameters can result in a very slow-mixing
sampler. Note that the prostate cancer application
avoids this difficulty by using forward prediction

for the unobserved cells, as described in Section 4.3.
Generally, the coarsest level (2 = 1) would be de-
fined so that x; contains no missing data, and
then an update via g(x¢ [1) is not affected by the
current values of the missing data.

We agree that in such examples, choosing g(xe D
to approximate 7(x;) may be the ideal choice.
However, in other apphcatlons there are likely to
be better alternatives. Furthermore, one need not
specify the C,’s so that their dimension is gradually
reduced to that of C;. Figure 1 of this Rejoinder
shows a sampler that moves between different im-
ages x and scales & while preserving the joint
stationary distribution over (x, k). At k =
a(x[16) is an Ising model on a 32 X 32 grid; at
k =1, x¢ is an Ising model on a 16 X 16 grid. Both
use first-order neighborhoods and are at the critical
temperature. Rather than reduce the dimensional-
ity as k& decreases, the interaction strength is grad-
ually altered to ensure appreciable overlap between
adjacent distributions and that each auxiliary dis-
tribution remains at criticality. Within coarser 2 X
2 pixels the interaction parameter §;; is gradually
increased to infinity, while each B;; correspondlng
to a boundary between coarse pixels is gradually
reduced to half its original value. Here, g(xC 1)
represents the distribution of a coarser version of
the image x, not an approximation to the corre-
sponding marginal distribution. This example could
certainly be extended so that coarsening continues.
At the coarsest level one can simulate exactly from
its equilibrium distribution so that regeneration
occurs.

As mentioned, simulated tempering was first de-
fined (and applied to the random field Ising model)
by Marinari and Parisi. Each component of the
external field is independently assigned to be +1 or
—1 with probability ;. At near-critical tempera-
tures, this yields a multlmodal distribution, with-
out the symmetry of the standard Ising model.
Varying the temperature, both above and below the

" temperature of interest, allows the sampler to visit

this collection of relatively nearby modes. In appli-
cations relevant to image analysis and spatial
statistics, the external field is likely to have more
structure and may lead to local modes that are
quite far apart. Allowing the temperature to vary
may not facilitate movement between more distant
modes. See Higdon (1994) for an example. Cluster
algorithms such as partial decoupling (Higdon,
1993) which control cluster size have proven useful
in the presence of multimodality.

Modeling Gamma-Camera Data

In the analysis of the gamma-camera data, the
point spread function was taken to be Gaussian
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Fic. 1. One thousand iterations of a multi-grid MCMC scheme. The Markov chain sampler moves between different images x and scales
k while preserving the joint stationary distribution over (x, k). Fourteen auxiliary levels for k are used to facilitate movement between the

32 X 32 and 16 X 16 scales.

with (marginal) s.d. 2 pixels by assumption, as
stated in Section 6.1. This was the recommendation
from the medical physicists, rather than the prod-
uct of a calibration experiment. Wong’s elaboration
of our description of the inner workings of the
gamma camera (see Section 6.1) is quite correct,
and we agree that these considerations influence
the effective point spread function relevant to the

recorded photon counts, as distinct from that which -

would be relevant to hypothetical data counted in
the collimator. This influence could indeed be mod-
" eled explicitly. However, it would be wrong to con-
clude that this dilation of the point spread function,
by itself, casts doubt on the Poisson linear model
derived in Section 6.1. Independent Poisson counts
will be obtained without the assumption of “256 X
256 independent counting elements.” All that is
needed is that the fluorescing crystal, photomulti-
pliers and electronic circuitry result in a measure-
ment process that does not introduce any depen-
dence among recorded events and that records each
photon at most once. It may well be that “dead-time”
effects in the circuitry do introduce dependence, but

we have been unable to detect departures from the
independent Poisson assumption conclusively, from
the data. :

The issue of scattering is an important one, which
one of us (Green) has been pursuing elsewhere,
with H. M. Hudson. Again, it does not inherently
threaten the Poisson linear model, but further mod-
ifies the weights {A,,}, to an extent that is limited
in practice by the energy thresholding set by the
operators of the gamma camera.
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