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 benchmark cusum path is comparable with the T

 cusum path in terms of smoothness of the path and

 size of the excursion, then we conclude that the

 sampler is mixing well [in the direction specified by
 T(X), to be precise]. Otherwise, we conclude that
 the sampler is not mixing well, in the direction
 specified by T(X). When two Markov chains are
 compared for the same target distribution, one may

 omit the "benchmark" cusum path plot.
 Now we are ready to illustrate the use of the

 cusum path plot in the Ising model example in

 Gelman and Rubin (1992a) and in the prostate
 cancer example from the article by Besag, Green,
 Higdon and Mengersen. Note that we know that
 the mixing speed is slow in the Ising example, and

 Besag, Green, Higdon and Mengersen have con-

 cluded that there seems no significant multimodal-
 ity problem in the prostate cancer example.

 For the Ising model, professor Andrew Gelman
 kindly provided the two runs which appeared in

 Gelman and Rubin (1992a). For no = 1,000 and
 n = 2,000, the sequential and cusum path plots are
 in Figures 1-3. Each of the cusum plots shows

 clearly that the mixing is slow, while each of the

 sequential plots suggests that things have stabi-
 lized.

 For the prostate cancer example, the authors
 kindly offered the simulation data presented in

 their paper. For no = 2,000 and n = 7,000, we
 monitored the 49 log-odds ratios (ij and the corre-
 sponding reconstructed zij The cusum path plots
 for all 98 parameters compare well with the bench-
 mark plots, indicating good mixing behaviors, con-

 sistent with the claims of Besag, Green, Higdon
 and Mengersen. In this note, I include only the

 sequential and cumsum plots for two of them: (7,1
 and Z7,1 (Figures 4 and 5). The cusum plots display
 comparable paths of the data and the benchmark
 paths, in terms of smoothness and exclusion size.
 As the authors note in Section 4.2, fast mixing
 arises because of the block updates and a large
 sampling interval or gap. Note that, since the 0's,

 O's and q's are themselves unidentifiable, it would
 be necessary to monitor them via appropriate con-
 trasts. It is interesting to point out the effect on the
 cusum plots when single component updates are
 used and in addition the sampling interval is re-
 duced from 50 to 10. Figure 6 shows the results for
 a burn-in of 20,000 cycles and data collection over a
 further 25,000 cycles. It is clear that the cusum
 plots bring out the mixing properties more explic-
 itly than the sequential plots, and in order to obtain
 valid inference based on MCMC methods, extreme
 care is needed with convergence diagnostics.

 In conclusion, MCMC users have to explore suffi-
 ciently the convergence issue before trusting the
 estimates that the Markov chain gives. Among other
 diagnostic tools such as sequential plot and auto-
 correlation plot, the cusum path plot is a simple
 and an effective device to monitor the local mixing
 speed of a Markov chain.
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 Rejoinder
 Julian Besag, Peter Green, David Higdon and Kerrie Mengersen

 We thank the discussants for their contributions
 and insights, and for raising numerous interesting
 points. We shall respond to these as best we can,
 although obviously there are many questions for
 which, as yet, only partial solutions exist. We shall
 also try to rectify some misunderstandings that
 have arisen as a result of possible ambiguities in
 the paper. Our response is organized primarily by
 topic, rather than by discussant.

 "ON BEING BAYESIAN"

 Separation of Concerns

 We have pondered Geyer's call for a separation of
 concerns, particularly between philosophy and com-

 putational technology, and we agree that the aim is
 an attractive one, but have come to a different
 conclusion, because in this case there are interac-
 tions that are too strong to be discounted. For
 example, the agricultural experiment in Section 5
 of the paper is concerned with ranking and selec-
 tion in comparing 75 varieties of spring barley. We
 contend that here it is a point of philosophy that
 the Bayesian paradigm provides an approach that
 is more useful than (indeed, we would say vastly
 superior to) any non-Bayesian approach. However,
 even in quite straightforward formulations, it is
 exceedingly difficult to implement a fully Bayesian
 analysis without MCMC. The simultaneous credi-
 ble regions in the paper provide another example,
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 and the story is the same much more generally,
 with researchers now able to choose their models
 freely and hence argue the philosophical and prac-
 tical advantages of a Bayesian approach.

 While of course we recognize the importance and
 intellectual standing of the long debate about
 philosophies of inference at a more fundamental
 level, nevertheless it is surely true that some of the
 main historical objections to Bayesian inference
 have included the difficulty of computation, the
 need to approximate, the necessity to use stylized
 priors and the inability to assess the impact of
 arbitrary assumptions in prior specifications.
 Markov chain Monte Carlo methodology answers
 these objections amazingly well and, indeed, also
 allows one to perturb the likelihood function. For
 those of us who were closet Bayesians, or at least
 are open-minded enough to discover what the
 paradigm can provide, MCMC does remove reasons
 not to be Bayesian.

 Geyer's claim that similar progress has been
 made in likelihood inference is surely grossly over-
 stated. Integration is central to the Bayesian
 paradigm but runs into problems for almost any
 moderately complicated formulation-and for many
 simple ones when it comes to sensitivity analysis or
 if posterior probabilities of complicated events are
 to be evalulated. Thus, MCMC is becoming a stan-
 dard computational tool in Bayesian inference,
 whereas its non-Bayesian role, in evaluating awk-
 ward normalizing constants and in dealing with
 missing values, random effects models and so on, is
 much more specialized. Indeed, some of the applica-
 tions to spatial point process models which Geyer
 cites are fueled more by curiosity about MCMC
 feasibility than by -scientific considerations.

 The Role of Hyperparameters

 Wong questions the arbitrariness of our gamma
 hyperpriors. We should have mentioned that, in
 Section 4.2, we chose the same negative exponen-
 tial distribution with mean 200 in each case, so,
 rather than eight constants, there is only one. Of
 course, this is still arbitrary, as is our use of certain
 independence assumptions. It would be of concern if
 such choices had any material effect on the conclu-
 sions. Somewhat fortuitously, we made the same
 choices for the hyperpriors in Section 5.5 and there
 we do discuss some aspects of sensitivity analysis.

 Wong contrasts our decision in Section 4 with
 that in Section 6 to choose a constant value for two
 hyperparameters. We suggest the choice depends
 on the context. Many, but not all, tasks in image
 analysis are sufficiently routine that certain hyper-
 parameters can be considered to be known con-
 stants or should at any rate be held fixed, for

 example, to ensure comparability between subjects.
 There is no computational barrier to the estimation
 of the scale parameter y in Section 6, where this is
 warranted. For examples, see Besag and Maitra
 (1995) and, in a different context, Besag and Hig-
 don (1993, Section 4).

 Priors for Spatial Processes

 We shall return later to Wong's other comments
 on gamma-camera imaging, but he does ask us
 more generally why we feel it is controversial to use
 Bayesian modeling to measure uncertainty in im-
 age analysis. What we have in mind here is that, in
 many spatial applications, the prior distribution
 plays an important role in representing certain
 known aspects of spatial structure. This can be at a
 low level (as, e.g., in the use of Potts models for
 classification problems) or at a high level (as, e.g.,
 with Grenander's stochastic templates). In either
 case, but especially when low-level priors are used,
 the prior provides only a partial description of the
 true scene. Such crude representations may work
 perfectly well in providing point estimates for im-
 age functionals, as may many other methods of
 regularization; but their use additionally to quan-
 tify uncertainty is far more precarious. We briefly
 mention two examples.

 In an agricultural experiment, interest focuses on
 treatment or variety estimates and there is some
 replication usually present. Thus, a quite crude
 model for spatial fertility structure will generally
 suffice to provide not only good point estimates, but
 also an adequate representation of posterior beliefs
 about treatment effects. Replication is crucial to
 this argument, as in any corresponding frequentist
 analysis.

 In image analysis, the issue is also one of replica-
 tion. For example, in gamma-camera imaging, the
 longer the acquisition time, all other things being
 equal, the more informative is the likelihood and
 the less is the effect of the prior distribution. This is
 just another application of Savage's principle of
 precise measurement. Of course, all things are not
 equal and it is therefore desirable to incorporate
 prior information into the eventual reconstruction.
 The Bayesian paradigm provides a very attractive
 means of achieving this but clearly some care is
 needed in interpreting posterior probability state-
 ments, until we really know how to represent be-
 liefs about images properly.

 MCMC METHODOLOGY

 Product Sets and Constraints

 In introducing the product set notation in Section
 2.1, we seem to have given Gelfand and Carlin the
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 impression that the support of the target vector X
 needs to satisfy the positivity condition X= H1g.
 However, there is no such restriction, and formula-

 tions involving order or other constraints on the
 parameters are certainly included. For example,

 the probability statement (2.6) remains true irre-
 spective of the constraints built in to the full condi-

 tional T(X I x_ T). Incidentally, the device referred
 to in Gelfand, Smith and Lee (1992) amounts to the
 simulation of a conditional Markov random field
 and also has applications in pedigree analysis,
 where it has been used to circumvent reducibility of
 the state space (Sheehan and Thomas, 1993). How-
 ever, we doubt that there is any constrained formu-
 lation for which "the single-site Gibbs sampler may
 provide the only feasible means for analyzing the
 associated posterior"!

 Nonidentifiability and Drift

 There is possible ambiguity in Section 2.4.3 where
 Gelfand and Carlin misread our remark on "drift."
 The form we describe there is a consequence of
 systematic scans and has nothing at all to do with
 identifiability; a clearer description is in the sub-
 section below on time reversibility. We do en-
 counter the other type of drift in the prostate can-
 cer analysis and discuss this specifically at the end
 of Section 4.1, noting that it is legitimate to recen-
 ter the parameters, so as to avoid numerical prob-
 lems. Gelfand and Carlin make the point that such

 drift is the manifestation of weak identification of

 the parameters in the joint posterior and may be
 remedied by more- precise hyperpriors and repa-
 rameterization. This is of course often the case and

 might be thought to be useful in Section 4. How-
 ever, some of our parameters there are not just
 weakly identifiable, they are nonidentifiable in the
 likelihood and in the prior and hence in the poste-
 rior. This holds whether we use priors based on
 first or second differences and is entirely deliberate.

 Nevertheless, the important point here is that the
 main objects of attention, the log-odds ratios
 and, for example, the predicted numbers of future
 deaths, do have proper distributions which can be
 rigorously estimated from the MCMC output. The
 reader will notice that here the discussion by
 Roberts, Sahu and Gilks takes over and so there is
 no need to duplicate their presentation. Note that a
 frequentist analysis fudges the identifiability issue
 by providing exact fits to the observed data when
 there is only a single observation on a cohort (i.e.,
 for cohorts 1 and 13 in Table 1). Incidentally, it is
 true that our basic formulation in Section 2.1 would

 need some refinement to cope with the above type
 of improper posterior distributions.

 The Gibbs Sampler

 Geyer notes our emphasis on full conditionals
 and appears to link this to a preference for Gibbs

 sampling. However, the full conditional T(XT I X - T)
 is basic to the construction of any MCMC kernel

 that updates XT while holding X-T fixed; note the
 implications of (2.4) for the acceptance ratio expres-
 sion (2.9), for example. Even in our discussion of
 partial conditioning in Appendix 2, full conditional
 distributions play an essential role. The only MCMC
 methods where they do not are those updating all
 variables at once.

 That said, there are some good reasons to pro-
 mote Gibbs as the basic MCMC sampler. Some
 points in its favor include the following: (i) its
 intuitive explanation, in that, if a group of r.v.'s has
 joint distribution 7r and any set of components is
 replaced by new ones sampled from the correspond-
 ing full conditionals induced by 7r, this clearly leaves
 the joint distribution unchanged; (ii) its entirely
 adequate performance in very many applications;
 (iii) its uniqueness (apart from blocking and update
 schedules), so that Gibbs never needs to be tuned,
 whereas other Hastings algorithms usually require
 one or more pilot runs to fix the scaling of the
 proposal distributions; (iv) the wide applicability of
 log-concave full conditionals; and (v) its historical
 status within statistical science. In particular, it is
 easily accessible to undergraduates and to nonspe-
 cialists, and provides a gentle but quite wide rang-
 ing introduction to MCMC in Bayesian inference
 and elsewhere. We have ourselves stressed the dan-
 ger of "Gibbs exclusivity," but believe that this is
 evaporating as researchers continue to discover that
 merely to have Gibbs in one's toolkit is clearly
 insufficient.

 Incidentally, there is no historical justification
 for the "Metropolis-within-Gibbs" terminology that
 has become prevalent in the Bayesian literature
 and is used in Gelfand and Carlin's contribution. In

 the original paper (Metropolis et al., 1953), it is
 clear that the algorithm operates on a single com-
 ponent at a time, so the new term is quite unneces-
 sary. Equation (2.4) reminds us that it is immate-
 rial whether we consider this as a Metropolis step

 applied to the conditional distribution or as one
 addressing the whole joint distribution but with a
 proposal that only changes one component.

 Reversibility

 Time-reversibility of a Markov chain has the ad-
 vantage that stronger and/or cleaner theoretical
 results are available in its presence, as regards
 both convergence rates and efficiency of estimation.
 Lack of reversibility does not normally in itself
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 hinder performance, but note our comments below
 about deterministic cycling around a set of kernels.
 Again in response to Gelfand and Carlin, we did not
 imply that the reversibility (why "marginal"?) of
 the Gibbs step (2.6) is necessarily inherited by a
 corresponding Gibbs chain; see Section 2.4.3 for an
 explicit statement to the contrary. Also, whereas
 the forward-backward systematic scan does indeed
 ensure reversibility, we nevertheless avoid it on
 two counts. First, it does not treat all components
 equally, since the first and last are in effect up-
 dated only once each (i.e., twice in succession from
 the same conditional distributions). Second, we do
 not advocate the use of simple systematic visita-
 tion, since, in image analysis at least, raster scan
 can lead to artificial drift across the screen (and so
 slows mixing), which is the point we intended in
 Section 2.4.3. Instead, we prefer to adopt the sorts
 of randomized but balanced scans described in Sec-
 tions 2.4.3 and 2.4.4 and by Geyer toward the end of
 his discussion. The former often adapt immediately
 to parallel and distributed computing, which is es-
 pecially useful in some imaging applications.

 Switching between Samplers

 There are two places in the paper, Section 2.3.4
 and Appendix 1, where we refer to opportunities for
 switching between kernels, the first deterministi-
 cally, the second under control of some random
 mechanism. In both cases, we consider our reason-
 ing to be rigorous, although perhaps abbreviated.

 Of course, deterministic switching has to be just
 that: it cannot be done adaptively, depending on
 the current state or the past history of the realiza-
 tion; at least, not, without some new theory. In
 particular, burn-in must normally end at a prede-
 termined point, and it is legitimate here (or at any
 other fixed point) to switch from a kernel giving
 rapid convergence to one offering high MCMC esti-
 mation efficiency. Equally, the suggestion of "on-
 the-fly" tuning of a proposal spread is legal only if
 done effectively off-line.

 However, the design of adaptive samplers is a
 legitimate goal. In the context. of the random pro-
 posal distributions discussed in Appendix 1, where
 the component kernels Pa do satisfy detailed bal-
 ance, the possibility of adaptivity is carefully delim-
 ited. See also our further discussion of random
 proposals in response to Frigessi's contribution.

 Cycling around Kernels

 Gelfand and Carlin suggest that the crux of their
 discussion concerns the strategy of using several
 MCMC kernels, all of which have the same station-
 ary distribution. Of course, this is how any stan-
 dard MCMC sampler is constructed, but what they

 have in mind is to combine kernels that are already
 ergodic and would individually deliver the correct
 limit distribution. The aim then is to accelerate
 convergence of any single kernel. This is a natural
 strategy, immediately one contemplates algorithms
 other than the Gibbs sampler, and would seem to
 have considerable potential in the way that Gelfand
 and Carlin discuss. However, while we agree that,
 in the types of situations they describe, the multi-
 ple-hit strategy can be very effective, there are two
 important caveats to be made.

 First, this is not quite the free lunch Gelfand and
 Carlin seem to claim, since the computation time is
 proportional to the number of kernels, other things
 being equal. We discuss this point briefly at the
 beginning of Section 2.3.4. Second, they remark
 that the strategy of cycling deterministically
 through the kernels "will achieve convergence per-
 formance which is no worse than that of the best of
 them." This requires further comment.

 For a reversible ergodic kernel P, the rate of
 convergence of Pf(x -7( B) to the (equilibrium) limit
 s-(B) is given unambiguously by the spectral ra-
 dius p(P), which is the same as the norm of P
 considered as a bounded linear operator. Given two
 reversible ergodic kernels P1 and P2, both with
 limiting distribution 7T, it is true that P(PlP2) <
 p(P )P(P), a stronger statement than the one
 quoted above, in that the effective rate of conver-
 gence of P1P2, allowing for the additional computer
 time, is no worse than the geometric mean of the
 two individual rates. The above inequality may be
 proved by standard Hilbert space methods and of
 course extends to any succession of reversible ker-
 nels, each with limiting distribution vr. For a finite
 state space, there is an elementary proof of the
 result, based on writing P as EDETB, where B is
 diag(7r), D is a diagonal matrix of eigenvalues of P
 and where ETBE = I.

 However, if either P1 or P2 is not reversible, the
 situation is different (though not as clear-cut). It is
 easy to construct finite kernels P1, P2 and P1P2,
 each of which is diagonalizable so that the spectral
 radius is still the appropriate measure of conver-
 gence, yet for which P(P1P2) > min{ p(P1), p(P2)}.
 As a simple numerical example, the two kernels

 27 18 3 12
 1 12 8 8 32

 l- 60 27 18' 3 12
 12 8 8 32)

 and

 112 48 8 12
 1 72 48 48 12
 180 24 96 12 48

 9 6 12 153
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 both have limiting distribution (0.3,0.2,0.1,0.4) but

 p(P1), p(P2) and P(PlP2) are 0.1667, 0.7699 and
 0.2222, respectively. In such a case, using the sec-
 ond kernel not only consumes computer time, it

 also slows convergence!

 In practice, explicit calculation of the spectral
 radius is rarely feasible, and one might consider

 readily computable bounds for the rate of conver-
 gence. For a (finite) stochastic matrix P, Seneta
 (1981, page 136) defines a general coefficient
 of ergodicity r. Such coefficients always satisfy
 r(P1P2) < r(P1)r(P2), r(P) < 1 and r(P) = 0 if
 and only if P(x, x') does not depend on x. Thus
 T(pn) can be used as a measure of the difference
 between pn and its limit, and, when r(P) < 1, we
 have a bound on the rate of convergence. For a class
 of such coefficients based on vector norms, it is also
 true that p(P) < r(P); but the example above
 shows that this is not enough to draw comparisons
 between repeated use of P1P2 and that of P1 or P2
 alone. For example, Dobrushin's coefficient r1(P) is
 one-half of the maximum total variation between
 any two rows of P, and, with P1 and P2 as above,

 r1(Pl) = 0.4167, r1(P2) = 0.8056 and rl(PlP2) =
 0.2778; however, n1((P1P2)f) 2 _,(P n) for n 2 3,
 concurring with the comparison drawn above on
 the basis of the p's. This sounds a warning that
 ergodic coefficients require careful interpretation.

 Simultaneous Updating Using Gaussian Proposals

 We were very interested in the Roberts, Gelman
 and Gilks result on optimal acceptance rates, espe-
 cially as it seems from simulations that the asymp-
 totic result is valid down to rather few dimensions.
 It is good to have theoretical evaluation of what is a
 very attractive sampling strategy. It makes an in-
 teresting contrast, also, with the classical Langevin
 diffusion method mentioned in Section 2.3.4. We

 noted there the desirability of treating the diffusion

 move as a proposal, to be subject to the usual
 Hastings accept-or-reject decision. However, the
 philosophy of the approach is clearly to use a time
 increment T in simulating the diffusion that is
 sufficiently small for the rejection probability to be
 negligible. The drift term is important in achieving
 this. By contrast, the Roberts, Gelman and Gilks
 result says that, for Gaussian proposals with zero
 drift, the optimal rejection rate is about 0.76.

 Spread of Proposal Distribution

 Despite their initial claim to the contrary, Gelfand
 and Carlin apparently go on to acknowledge that
 the marginal standard deviation and 2.38 times the
 conditional standard deviation are not as "poten-
 tially quite different" as they seem. We might note,

 for example, that a large number of jointly Gauss-
 ian variables with equal correlations of 0.58 exhibit

 about this ratio of marginal to conditional spread.
 Our response has greater relevance in the context
 of a Hastings proposal, as the Roberts, Gelman and
 Gilks study suggests that the curve of efficiency
 against spread is fairly flat around the optimum,
 which explains why the resulting optimal accep-
 tance rate supports our "ad hoc" recommendation.

 Convergence Estimates

 An important consequence of using MCMC for
 statistical inference has been the resurgence of in-
 terest in obtaining convergence rates for Markov
 chains. Frigessi mentions several strategies for
 quantifying such rates, and others are referenced in
 Section 1 of our paper. Numerical results have been
 obtained for some relatively simple specific applica-
 tions but these have yet to be generalized; for ex-
 ample, use of equation (3) in Frigessi's discussion
 requires the evaluation of a constant C and accep-
 tance or identification of certain mixing conditions.
 This same problem arises in the expressions for
 rates of convergence used by Mengersen and
 Tweedie (1994) and in the generalization to the
 multidimensional case by Roberts and Tweedie
 (1994). We are somewhat surprised that Frigessi
 seems prepared to use numerical convergence esti-
 mates so explicitly: on what basis is C = 10 or 100,
 rather than 10-1 or 104?

 Frigessi correctly observes that replacement of
 an independent Gaussian proposal density with a
 mixture of Gaussians overcomes the problem of
 nongeometric convergence identified in Mengersen
 and Tweedie's Theorem 2.1, since a uniform bound
 is obtained at both ends, from different parts of the
 mixture. It appears, however, that his resolution of
 the rate of convergence using the result of Roberts
 and Polson (1994) is based on considering only one
 component of the mixture, a point to which we
 return below in discussing random proposals.

 MCMC Diagnostics

 Another important ingredient of MCMC, not ad-
 dressed in our paper, is that of diagnostics. Thus,
 we welcome the discussion by Yu, in promoting
 cusum plots as a means of monitoring mixing rates.
 However, we note her warning that cusums are
 unlikely to help when the target distribution is
 multimodal and mixing within modes is fast but
 between modes is very slow. Indeed, such behavior
 in multimodal distributions is likely to be the norm.
 There is no doubt that it is insufficient to rely on a
 single diagnostic procedure, especially for depen-
 dent output as in MCMC. By presenting the com-
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 parison plot in Figure 3, we may have wrongly

 given a different impression. In practice, we always
 monitor autocorrelation times, in one form or an-
 other, and routinely calculate Monte Carlo stan-
 dard errors of our estimates, which, when large,
 provide evidence of slow mixing. Again we stress

 the importance of exploratory analysis in detecting
 severe multimodality and of designing mode-jump-
 ing algorithms, when appropriate. Having said this,
 we venture that at least some of the suspect time-
 series plots in Yu's contribution and in Yu and
 Mykland (1994) do indeed look suspect!

 Fast mixing is important both for convergence to

 X7 and, subsequently, for efficiency of estimation. As
 regards the former, regeneration via simulated
 tempering provides a rigorous but highly computa-
 tionally intensive alternative, as we mention in
 Section 7 of our paper.

 Another very recent innovation, due to Johnson
 (1994a), provides a nice twist to the usual notion of
 coupled Markov chains. The idea here is that if it
 were possible to run an MCMC algorithm from
 every point of the (finite) state space, with exactly
 the same stream of random numbers, then eventu-

 ally all paths would coalesce, at which point the
 chain would have lost its memory. At first sight, the
 strategy seems totally impracticable, but Johnson
 shows that this is not necessarily the case if, for
 example, a Gibbs sampler is implemented via the
 inverse cumulative distribution function method.

 Examples include the pure Ising model, with posi-
 tive interaction, for which complete coalescence co-
 incides with that of initially all-black and all-white
 images. Although the state of the chain at coales-
 cence is generally not a draw from the stationary
 distribution, some rigorous theoretical statements
 can be made and there would seem considerable
 scope for further progress.

 NEW DEVELOPMENTS IN MCMC

 Random versus Mixture Proposals

 We thank Frigessi for elaborating on the random
 proposal distributions which we introduce in Ap-
 pendix 1. However, it is not clear what conclusions
 can be drawn from his comparisons of the conver-
 gence performance obtained using two proposal dis-
 tributions in a Hastings method: one a mixture, the
 other a single (arbitrarily chosen) component of
 that mixture. These might a priori be expected to
 behave differently. In any case, the sampler he
 discusses, which uses what we might call a mixture
 proposal, is not an example of the random proposal
 method described in Appendix 1.

 We can gain further insight by specializing our
 construction to the case where Pa is a Hastings

 step based on a proposal density RT. The random

 proposal method first draws a from ,( a; X -0
 then X4 from RT(XT - X'T; XT) and finally ac-
 cepts this choice with probability

 A(XT > X'T; XT)
 T f i~(x')R~(x'T > XT XXT) \

 min\1, vT(x)R a~ X~ X)I
 | 1rX )T(XT >X'T; X-T)

 from (2.9). On the other hand, the mixture proposal
 method draws x' from

 RTm( XT > XT; X_T)

 = fRT(XT > XT; X_T) dg(a; X_T)

 and accepts it with probability

 Amx(XT > X' ; XT) T T T -

 mf (x )R ( XT T XT; XT) \
 = min\1, (x)Rmix(xT XT; X_T) f

 Of course, the realized x' have the same distribu-
 tion in each case, but the acceptance probabilities
 are different: in fact, conditional on x and x', the
 mean acceptance probability in the random case is

 fAT(XTTX4; XT)RT(xT >XT;,XT) dpt(a; X-T)
 RTi (XT > XT; X-T)

 which is less than or equal to AnIX(XT > X4; X_T).

 This follows from the general result E(min{U, V})
 < min{E(U), E(V)}, by making the substitutions

 U = T(x)Ra(xT > 4; X_)

 V = 1T(x')R(TXT > XT; X-T)

 and taking expectations with respect to dt,(a; X-T).
 Thus the random proposal method accepts fewer
 proposals and hence, by Peskun (1973), offers infe-
 rior efficiency in MCMC estimation, as measured
 by integrated autocorrelation time.

 The advantage of the random proposal method
 comes from another quarter altogether: it can be
 implemented by calculating only Ra and AT for
 the a that is actually drawn at the first stage. This
 is an immense computational advantage when gen-
 erating a involves a complex construction; in the
 case of ARMS, in particular, computing Rmix would
 be completely impossible; that is, we see no way to
 apply the usual computational tricks in dealing
 with this mixture proposal density, since not only
 do we need to draw from Rmix(xT > 4; X_) we
 need to evaluate Rmix(XT X4T; X_T) and Rmix(X

 XT; XT).
 Our original motive in constructing a framework

 for random proposals was the provision of a one-line
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 proof of the validity of ARMS, including possible
 curtailment. The scope for flexibility here is very
 wide but, in the notation of Roberts, Sahu and
 Gilks, the simplest rule with a fixed curtailment
 time c would be as follows. Proceed as in ARMS for
 the first c - 1 attempts, and, on the cth attempt,
 do not test whether the X4 generated from hC(xT)
 passes the ARMS/ARS rejection rule. Instead, treat
 it as a standard Hastings proposal, to be accepted

 with probability (2.9), where RT(XT - XT; X-T) =
 hc(x ), and otherwise leave X = XT and move on.
 The algorithm spelt out by Roberts, Sahu and Gilks
 is also correct but a little more involved. More
 generally, reverting to the notation of Appendix 1,
 but considering only Hastings algorithms, all that
 is required for validity is that a "black box" with
 input X-T generates a function ha(XT), where the
 parameter a can be quite abstract, and a value X4
 that is realized from ha(XT). It is ha(X) that is
 used in place of RT(XT - XT; X_T) in (2.9).

 In the event, the random proposals framework
 grew into something more substantial and we hope
 it will find quite wide applicability. For an illustra-
 tive example, in the context of our paper, we again
 refer to the pairwise-difference priors in equation
 (3.1). For certain choices of (F, the corresponding
 posterior distribution may lead to full conditionals
 for the fri's that are multimodal, at least when the

 data are rather uninformative about qi. One obvi-
 ous but cumbersome method of updating J'i would
 use a proposal density that is a mixture of, say,
 Gaussians centered at each >, j E di. Rather than
 draw from this mixture and calculate the usual
 acceptance probability A"ix, the corresponding ran-
 dom proposal method involves choosing a neighbor
 j E di at random and using only the Gaussian cen-
 tered there for proposing a move and calculating its
 acceptance probability.

 Sequential Buildup and Simulated Tempering

 The idea of sequential buildup, proposed by Wong,
 seems to combine simulated tempering and multi-
 grid MCMC by allowing the distribution and its
 support to vary with the auxiliary parameter k
 through the specification of densities

 atk *g(XCk 1k) k = 1)... v K~
 with C1 c c CK=X4/ and 1T(x) og(xlK). As
 Wong states, such a scheme is especially attractive
 when large amounts of missing data can trap the
 sampler in a particular region of X. Here alter-
 nately updating the model parameters given the
 missing data and then the missing data given the
 model parameters can result in a very slow-mixing
 sampler. Note that the prostate cancer application
 avoids this difficulty by using forward prediction

 for the unobserved cells, as described in Section 4.3.
 Generally, the coarsest level (k = 1) would be de-

 fined so that xcl contains no missing data, and
 then an update via g(xc11) is not affected by the
 current values of the missing data.

 We agree that in such examples, choosing g(xclll)
 to approximate 1T(xcl) may be the ideal choice.
 However, in other applications there are likely to
 be better alternatives. Furthermore, one need not
 specify the Ck'S so that their dimension is gradually
 reduced to that of C1. Figure 1 of this Rejoinder
 shows a sampler that moves between different im-
 ages x and scales k while preserving the joint
 stationary distribution over (x, k). At k = 16,
 I(x116) is an Ising model on a 32 x 32 grid; at
 k = 1, Xc1 is an Ising model on a 16 x 16 grid. Both
 use first-order neighborhoods and are at the critical
 temperature. Rather than reduce the dimensional-
 ity as k decreases, the interaction strength is grad-
 ually altered to ensure appreciable overlap between
 adjacent distributions and that each auxiliary dis-
 tribution remains at criticality. Within coarser 2 x

 2 pixels the interaction parameter 3ij is gradually
 increased to infinity, while each 3ij corresponding
 to a boundary between coarse pixels is gradually

 reduced to half its original value. Here, g(xclIl)
 represents the distribution of a coarser version of
 the image x, not an approximation to the corre-
 sponding marginal distribution. This example could
 certainly be extended so that coarsening continues.
 At the coarsest level one can simulate exactly from
 its equilibrium distribution so that regeneration
 occurs.

 As mentioned, simulated tempering was first de-
 fined (and applied to the random field Ising model)
 by Marinari and Parisi. Each component of the
 external field is independently assigned to be + 1 or
 -1 with probability 2. At near-critical tempera-
 tures, this yields a multimodal distribution, with-
 out the symmetry of the standard Ising model.
 Varying the temperature, both above and below the
 temperature of interest, allows the sampler to visit
 this collection of relatively nearby modes. In appli-
 cations relevant to image analysis and spatial
 statistics, the external field is likely to have more
 structure and may lead to local modes that are

 quite far apart. Allowing the temperature to vary
 may not facilitate movement between more distant

 modes. See Higdon (1994) for an example. Cluster
 algorithms such as partial decoupling (Higdon,
 1993) which control cluster size have proven useful
 in the presence of multimodality.

 Modeling Gamma-Camera Data

 In the analysis of the gamma-camera data, the
 point spread function was taken to be Gaussian
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 FIG. 1. One thousand iterations of a multi-grid MCMC scheme. The Markov chain sampler moves between different images x and scales
 k while preserving the joint stationary distribution over (x, k). Fourteen auxiliary levels for k are used to facilitate movement between the
 32 x 32 and 16 X 16 scales.

 with (marginal) s.d. 2 pixels by assumption, as
 stated in Section 6.1. This was the recommendation
 from the medical physicists, rather than the prod-
 uct of a calibration experiment. Wong's elaboration
 of our description of the inner workings of the
 gamma camera (see Section 6.1) is quite correct,
 and we agree that these considerations influence
 the effective point spread function relevant to the
 recorded photon counts, as distinct from that which
 would be relevant to hypothetical data counted in
 the collimator. This influence could indeed be mod-
 eled explicitly. However, it would be wrong to con-
 clude that this dilation of the point spread function,
 by itself, casts doubt on the Poisson linear model
 derived in Section 6.1. Independent Poisson counts
 will be obtained without the assumption of "256 x
 256 independent counting elements." All that is
 needed is that the fluorescing crystal, photomulti-
 pliers and electronic circu.itry result in a measure-
 ment process that does not introduce any depen-
 dence among recorded events and that records each
 photon at most once. It may well be that "dead-time"
 effects in the circuitry do introduce dependence, but

 we have been unable to detect departures from the
 independent Poisson assumption conclusively, from

 the data.
 The issue of scattering is an important one, which

 one of us (Green) has been pursuing elsewhere,
 with H. M. Hudson. Again, it does not inherently
 threaten the Poisson linear model, but further mod-

 ifies the weights {htSq} to an extent that is limited
 in practice by the energy thresholding set by the
 operators of the gamma camera.
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