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 SUMMARY

 Markov chain Monte Carlo (MCMC) algorithms, such as the Gibbs sampler, have provided
 a Bayesian inference machine in image analysis and in other areas of spatial statistics for
 several years, founded on the pioneering ideas of Ulf Grenander. More recently, the
 observation that hyperparameters can be included as part of the updating schedule and
 the fact that almost any multivariate distribution is equivalently a Markov random field
 has opened the way to the use of MCMC in general Bayesian computation. In this paper,
 we trace the early development of MCMC in Bayesian inference, review some recent
 computational progress in statistical physics, based on the introduction of auxiliary variables,
 and discuss its current and future relevance in Bayesian applications. We briefly describe
 a simple MCMC implementation for the Bayesian analysis of agricultural field experiments,
 with which we have some practical experience.
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 1. INTRODUCTION

 In this paper, we trace the early development of Markov chain Monte Carlo (MCMC)
 methods in Bayesian inference, review some comparatively recent computational
 progress in statistical physics and describe how this may be developed in future Bayesian
 applications. We emphasize the essentially spatial flavour of current MCMC
 algorithms, particularly in their relationship to Markov random fields in spatial
 statistics. In common with the other authors at this meeting, we have to work within
 tight page restrictions and, in our case, we have chosen not to present numerical
 examples. However, we cite several case studies in spatial statistics, some of which
 we hope will be taken up in discussion, and briefly describe a Bayesian approach
 to the analysis of agricultural field experiments, with which we have some practical
 experience.

 Almost all MCMC algorithms originate in statistical physics (for a recent review,
 see, for example, Sokal (1989) or Gidas (1992)), though there are some novel variations
 in the statistical literature, including Hastings (1970), Barone and Frigessi (1989), Besag
 and Clifford (1989, 1991), Clifford and Middleton (1989), Grenander and Keenan
 (1989), Wright (1989), Geman et al. (1990), Mardia et al. (1991), Ripley and
 Sutherland (1990), Amit et al. (1991), Grenander et al. (1991), Tierney (1991) and
 references therein, Geyer (1991, 1992), Geyer and Thompson (1992), including some
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 26 BESAG AND GREEN [No. 1,

 contributions to the discussion, Green and Han (1992), Grenander and Miller (1992)
 and Sheehan and Thomas (1992); some of these are modifications of the Gibbs sampler
 (Geman and Geman, 1984) and several contain interesting applications.

 The physicist's primary interest is in the macroscopic behaviour of ostensibly
 infinite, usually lattice, systems of particles, with each particle having an associated
 discrete or continuous state, which is specified stochastically through a potential
 function. The interactions in the potential function may be spatially localized
 and yet result in non-zero correlation between the states of particles infinitely far
 apart. The most famous example is the two-state Ising model, to which we shall return
 later.

 Of course, in practice, simulation can only be carried out over a finite lattice and,
 in this setting, there is no general advantage in restricting attention to regular arrays
 of sites. Furthermore, for any joint (or Gibbs) distribution, specified by a finite
 potential function, it is now well known that there is an equivalent definition through
 the local characteristics of the system, by which is meant the conditional distribution
 of the random variable (state) at each site, given the values at all other sites. This
 alternative specification is called a Markov random field and the equivalence is widely
 referred to in the statistical literature as the Hammersley-Clifford theorem; see, for
 example, Besag (1974) and, for a historical perspective, Clifford (1990). The fact that
 there are no usable direct methods for simulating general multivariate distributions
 suggests the idea that satisfactory algorithms might instead be based on the
 corresponding univariate local characteristics. Thus, it is these that drive the single-
 component, Metropolis-Hastings algorithms, described in the companion paper by
 Smith and Roberts (1993). In particular, the Gibbs sampler (or heat bath algorithm),
 which successively updates each component according to its current local characteristic,
 is guaranteed to converge to the corresponding joint distribution under rather general
 conditions, essentially those for which the Brook expansion (Besag, 1974) is still valid.

 We have already seen the close link between statistical physics and spatial statistics,
 through the equivalence of Gibbs distributions and Markov random fields, and it
 is no coincidence that the original concept and the early development of MCMC in
 Bayesian inference should take place exclusively in the spatial statistics literature. The
 earliest and most important single reference is Grenander (1983), especially chapters
 4, 5 and 6, in which the Bayesian agenda is clearly set out in an image analysis context.
 A rather crude description is that a true image x* is subject to degradation, according
 to a known (stochastic) mechanism, and results in an observable y. A prior distribution
 on x* induces a corresponding posterior distribution among all possible images. For
 relatively simple degradations, there is a close relationship between the local
 characteristics of prior and posterior distributions, though this is not a necessary
 ingredient. Grenander applies the Gibbs sampler as his Bayesian inference machine,
 though it is only later that his co-workers, Geman and Geman (1984), introduce that
 term. In the latter, also seminal, paper, it is equally clear that the authors are well
 aware of the Bayesian implications of MCMC in image analysis, though they focus
 on the particular problem of global maximum a posteriori (MAP) estimation through
 simulated annealing. Both works contain many other ideas, which were developed
 subsequently. These include the use of conceptual regularizing agents, such as bond
 relations and edge variables, the introduction of stochastic differential equations in
 working with continuum images, higher level tasks such as image understanding, initial
 overdispersion in the early stages of MCMC as a means of escaping from local maxima

This content downloaded from 
������������137.222.114.233 on Sun, 28 Mar 2021 09:22:57 UTC������������ 

All use subject to https://about.jstor.org/terms



 1993] SPATIAL STATISTICS AND BAYESIAN COMPUTATION 27

 and the enormous speed-ups that would result from the introduction of truly parallel
 computation, implementation of which now exists.

 Although the above papers recognize the general implications of MCMC in Bayesian
 image analysis, their specific concern was with point estimates. This was partly because
 of computing limitations but perhaps also because the priors were thought to be too
 crude to sustain interval estimates and posterior probability maps. These received
 more emphasis in Besag (1989), though associated numerical results were restricted
 to analogous but computationally less demanding problems that occur in conventional
 spatial settings, such as epidemiology and archaeology; see Besag and York (1989),
 which eventually became the discussion paper, Besag et al. (1991). These papers, while
 still relying on the Gibbs sampler, added some new ingredients, such as the use of
 non-conjugate priors, some attempt at model checking and sensitivity analysis, missing
 data predictions and the inclusion of hyperparameters in the updating cycle; the last
 of these, but perhaps the most significant, at the suggestion of David Clayton. We
 refer to the companion papers for corresponding developments in the mainstream
 Bayesian literature.

 We follow the notation for MCMC used by Smith and Roberts (1993), in this issue.
 In particular, we study the distribution -r(x) for xeE 9%using a partial realization x',
 x2.... xN, from a Markov chain with transition function P(x-+x'). Typically, wX(x)
 is a posterior distribution, but we shall suppress the data from our notation. Any
 required probability or expectation induced by wr can be considered as the expectation

 under 7r of some functional f of x, E,(f) = Ef (x) w(x). Often, as in the calculation
 of quantiles, f is an indicator function. Unless otherwise stated our estimator will
 be the corresponding empirical average, namely fN= N'- Ef (x(t)).

 Smith and Roberts (1993) describe advantages of MCMC over traditional forms
 of Bayesian computation. In particular, MCMC invites one to go beyond simple point
 and interval estimates. For example, in a comparative experiment, one may be
 interested in the posterior probability that any particular treatment is best, or in which
 treatments should be carried over to the next stage of experimentation to have
 prescribed probability of including the best. Such questions can be easily answered
 and need not necessarily be formulated in advance of the simulation, if one stores
 a large number, say between 1000 and 10000, of the x(t)s as a matter of course,
 perhaps restricted to the components of primary interest in a high dimensional problem.
 Thus, for the agricultural experiments in Section 6, we store variety effects but not
 fertility effects. Of course, there are also tasks for which MCMC is ill suited, notably
 those that refer directly to the posterior density; this is a similar problem as arises
 in drawing inference about densities using an independent random sample. The
 determination of the MAP estimate is the most obvious example, though this particular
 summary can often be calculated by other means.

 How well MCMC can perform is a question that requires considerable further
 research. In particular, there is a need here to distinguish between speed of convergence
 and efficiency of estimation, as we discuss further in Section 2. Then, in Section 3,
 we consider one way to achieve variance reduction by using antithetic variables in
 MCMC algorithms. In Section 4, the problems caused by multimodality are discussed
 in general terms, setting the scene for Section 5, which considers the introduction
 of auxiliary variables. These allow the design of simple chains that make substantial
 changes to many components at once and have been used with great success in some
 physical systems to combat multimodality, through the Swendsen-Wang algorithm
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 and its derivatives. We also discuss generalizations that can be applied to other lattice
 models and which may prove useful in a wider Bayesian context. Finally, in Section 6,
 we describe our experience with an application of MCMC to the Bayesian analysis
 of field experiments.

 2. CONVERGENCE AND EFFICIENCY

 Both speed of convergence and efficiency of estimation can be addressed in terms
 of the spectrum of the Markov transition function P. For simplicity of explanation,
 and to avoid technical difficulties, consider the finite, reversible, irreducible aperiodic

 case. Denote the eigenvalues of P by 1 = XI > X2 >. . . XK>- 1, and write
 R = maXk21 k I and A = maXk>2(Xk). Then the rate of weak convergence of x(t) to
 7r(x) is governed by R, but this is not immediately relevant to the performance of
 the estimator fN, which is obtained from the sample path of the process as an
 ergodic average, not an expectation. This estimator has bias and variance, both of
 order N-1, and the mean-squared error is asymptotically

 var74f r(f )
 Ef IfN-E7r(f)I121 N ADf

 Here r(f) is the doubly infinite sum of the equilibrium autocorrelations of f(x(t)),
 which we call the integrated autocorrelation time (differing from Sokal's definition
 (1989) by a factor of 2); this can be written

 (f) = E Wk I+Xk
 k 2 1 Xk

 for certain non-negative weights Wk, summing to 1, that depend on f and P. In the
 worst case, r(f) = (1 + A)/(1 - A). For more detail on these matters, see Peskun (1973),
 Sokal (1989), Sokal and Thomas (1988, 1989), Frigessi et al. (1992), Amit (1991),
 Diaconis and Stroock (1991), Rosenthal (1991) and Green and Han (1992).

 Thus rapid weak convergence to equilibrium is obtained by having all eigenvalues
 Xk other than X1 = 1 small in absolute value, while good asymptotic mean-squared
 error of estimation is suggested by having (1 + Xk)/(l - Xk) small: 'negative
 eigenvalues help'.

 In practice, with a finite Monte Carlo sample size N, both of these factors are
 important. The very complexity of the distribution 7r which led to consideration of
 MCMC in the first place inhibits explicit calculation of eigen-decompositions, so in
 the routine use of MCMC methods we need both diagnostics for studying the rate
 of weak convergence (see Roberts (1991) and Tierney (1991)) and methods for
 estimating the integrated autocorrelation time. The latter is a standard problem from
 the analysis of stationary time series, usually tackled by spectral methods (see Sokal
 (1989), Green and Han (1992) and Han (199la)). A nonparametric estimator of r(f)
 based on blocking is recommended by Hastings (1970), and is effectively a spectral
 density estimator based on the Bartlett window. These matters are considered in an
 image analysis application by Aykroyd and Green (1991).

 The conflicting demands of small SUpk>2 1 Xk I and small (1 + Xk)/(l - Xk) suggest a
 revised strategy of switching from a rapidly converging to a statistically efficient
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 1993] SPATIAL STATISTICS AND BAYESIAN COMPUTATION 29

 transition mechanism as the simulation proceeds, producing a time inhomogeneous
 Markov chain. Detailed study of the spectrum of P can also help to decide the relative
 merits in terms of statistical and computational efficiency of using several independent
 runs of MCMC in place of one long one, or of subsampling the chain at equally spaced
 times at which f(x(t)) is computed, when this computation is itself expensive, with
 a corresponding modification to the definition of autocorrelation time.

 3. ANTITHETIC VARIABLE METHODS

 The Gibbs sampler is a Metropolis-Hastings method with zero rejection probability,
 but not the only one. Barone and Frigessi (1989) derive a broader class of single-
 component samplers for Gaussian processes. The Gibbs sampler proceeds by drawing

 the new value xi' from N(1ti, o2), where /ui and uv are the expectation and variance
 of the conditional distribution 7r(xi' Jx_i). Barone and Frigessi's co-stochastic
 relaxation approach draws instead from N{(1 + 0),i - Oxi, (1 - 02)U2J for some
 constant 0E (- 1, 1). The acceptance probability cY(x, x') is still 1. Barone and Frigessi
 prove that, in the case of entirely positive association between the variables (all non-
 diagonal entries in the inverse of the variance matrix non-positive), the spectral radius
 R of the corresponding Markov chain is a decreasing function of 0 at 0= 0. An intuitive
 explanation for this advantage of using 0 > 0 in the case of positive association follows
 from noting that then the current value xi is positively correlated with the values of
 its neighbours, and hence with E(xi x_i).

 A simpler yet stronger result holds for the asymptotic variance: for any linear
 function of x, the asymptotic variance when using Barone and Frigessi's modified
 sampler, with systematic scanning of pixels, is proportional to (1 - 0)/(1 + 0) (Green
 and Han, 1992). Thus in the Gaussian case, and considering only the asymptotic
 variance for linear functionals, best performance in this class is obtained by letting
 0-- + 1. This is a dynamic analogue of the idea of using antithetic variables to reduce
 variance in static simulation, and the effect is anticipated, without explanation, in
 a simple example in Hastings (1970), p. 101.

 All this applies only to Gaussian distributions -w(x). Only in rather special cases
 could we expect to find a family of samplers analogous to that of Barone and Frigessi,
 indexed by an 'antithetic parameter' 0 and including the Gibbs sampler, yet convenient
 for simulation. Rather generally, however, a Gaussian proposal of the form

 xi' - N{(1 + 0)/t - Xi, (1 -02)ur2J

 may be used in the Metropolis-Hastings algorithm, with appropriately chosen ,u, a2
 and 0 (these can depend on all variables in the model except xi). The acceptance
 probability simplifies to exp [min0, g(xi') - g(xi)J], where

 g(Xi') = log7r(xi' I x_ ) + (x1' -t)2/2U2

 note that it does not depend on the antithetic parameter 0. We can now choose /4
 and a, depending on x i, to ensure that g(xi') is approximately constant over an
 appropriate range, so that oa(x, x') is close to 1 with high probability.

 A full analysis of the spectrum of such a Markov chain is a challenging problem,
 but empirical evidence (Green and Han, 1992) suggests that, as 0 increases towards 1,
 the spectral radius may approach or even attain the value 1, underlining the need
 to monitor convergence carefully as the simulation proceeds.
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 4. MULTIMODALITY

 When there is a high degree of interaction between some of the variables xi, one
 may anticipate that the probability surface ir(x) will be multimodal, and the question
 then arises whether this surface can be adequately explored by an MCMC method
 within a practicable computing time. Clearly, multimodality requires careful treatment.
 It follows directly from detailed balance that a single-component algorithm will be
 very slow to leave a region where all variables are close to their most probable values,
 given the rest, unless there is another local mode whose location differs only in a
 single co-ordinate.

 As a potential remedy, it has sometimes been suggested that several or many different
 runs be used, starting from different points, scattered around the parameter space.
 As an exploratory strategy, this may be quite informative, particularly if the modes
 can be used as starting points. In practice, the main modes will often be induced
 separately by the prior and by the likelihood and it will then be possible to locate
 them, by deterministic hill climbing, from knowledge of the posterior distribution
 (up to scale). However, the problem then arises of how to combine the separate runs
 into coherent inferences. Ideally, one would like each run to be sufficient in length
 that it samples all the modes frequently, and hence in almost the correct long run
 proportion, in which case, multiple runs have no intrinsic merit.

 Thus, our general view is that multimodality should be tackled by deliberately
 redesigning algorithms to change modes frequently, during a single run, and that each
 mode should be visited in the correct proportion by maintaining detailed balance at
 all times. This may be achieved, either by amending the basic algorithm appropriately
 or by seeking an entirely new one. In each case, the move is away from very general
 recipes towards ones that are designed for specific applications. Nevertheless, we believe
 that a common underlying theme may be the introduction of auxiliary variables, which
 we describe in the next section, first from a general standpoint and then with particular
 application to multiple modes.

 There are some exceptions to the above discussion. The first occurs when there
 are symmetries that can be exploited, even by the basic single-component samplers.
 This happens for the Ising or Potts models in the absence of any external magnetic
 field. (The exceedingly slow convergence of single-component samplers for the Ising
 model has been highlighted by Ripley and Kirkland (1990).) However, in Bayesian
 applications, any symmetries present in the prior are not inherited by the corresponding
 posterior, though multimodality may survive. The second exception arises when a
 difficult-to-correct deficiency in the prior introduces a spurious mode into the posterior
 density; an MCMC run that does not stray into this region will then still produce
 relevant results (see the reply to the discussion in Besag et al. (1991)). Finally, given
 a very long simulation run starting from a particular mode: if the mode is not left,
 one cannot infer that other modes have negligible probability. If it is left and not
 returned to, however, qualitative inferences can be made; see Section 6.

 5. AUXILIARY VARIABLE METHODS

 The introduction of auxiliary variables enables us to design simple chains that make
 substantial changes to many components at once, these components displaying strong
 (conditional) dependence in the original formulation. In effect, the auxiliary variables
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 1993] SPATIAL STATISTICS AND BAYESIAN COMPUTATION 31

 remove (or 'kill') the interactions. Other multiple-updating algorithms do not share
 these goals. Thus, the use of Langevin stochastic differential equations (see, for
 example, Amit et al. (1991) and Gidas (1992)) generally results in slow incremental
 changes, though Grenander and Miller (1992) introduce a mechanism for jumping
 from one continuum to another in configuration space; simultaneous updating through
 'coding' depends on conditional independence of the particular components; and the
 grouping together of components into large blocks, as in the theory of renormalization
 groups in statistical physics, leads precisely to the problems that MCMC is intended
 to avoid (though, see Gidas (1989)).

 In the method of auxiliary variables, the state variable x is augmented by one or
 more additional variables uE U; in some contexts, u may have a physical interpretation
 in the original process, but often it is quite abstract. The joint distribution of x and
 u will be defined by taking the given distribution of interest 7r(x) as the marginal for

 x, and specifying the conditional 7r(ulx); for the moment this can be chosen quite
 arbitrarily. We write 7r(x, u) = 7r(x) 7r(ulx), so that 7r(xlu)oc 7r(x, u). We now construct
 a Markov chain on 7x U that alternates between two types of transition: first, u
 is drawn from ir(ulx); then, x' is generated given u and x, using any method preserving
 detailed balance for the conditional 7r(xlu), i.e. using a Markov transition function
 P(x-+x'; u) such that

 7r(xJ u) P(x-x '; u) = 7r(x ' I u) P(x ' -X; u).

 The simplest example of such a transition function is

 P(x-+x'; u) = 7r(x' Iu), (1)
 for which the resulting method amounts to the Gibbs sampler applied blockwise to
 x and u in turn, but there are many other choices that can be made. In each case,
 the double transition preserves 7r(x) as stationary distribution, since

 ir(x) E 'i(uIx)P(x-+x'; u) = E r(u) ir(xIu)P(x-+x'; u)
 u u

 is evidently symmetric in x and x'. Such an approach defines a valid MCMC procedure
 for 7r(x), provided that irreducibility and aperiodicity can be demonstrated; for the
 case of equation (1) it is clearly sufficient that there exists u* such that lr(u* Ix) is
 positive for all x.

 To demonstrate how auxiliary variables help to kill awkward interactions among
 components of x, suppose that 7r(x) can be written in the form

 r(X) oC ro (X) H bk (X),
 k

 where 7r0(x) is a simple distribution under which, perhaps, the [xij are independent
 (compare the general G-function expansion in Besag (1974), equation (3.3)). Then,
 if we introduce one auxiliary variable Uk for each 'interaction' bk(x), and define
 ir(ulx) to be the uniform distribution on the rectangle 1k [0, bk(x) ], we have

 lr(x, u) = lr(x) lr(u Ix)

 = ro(x) bk(XIIO'k<bk(x)] bk(x)]1
 k

 = 'ro(x)i0[ nto <ukbk (X)1]I
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 where I[ ] is the indicator function. Thus 7r(xju) is simply 7ro(x), conditional on the
 constraints fbk(x) > UwJ. This construction was introduced into statistical physics by
 Edwards and Sokal (1988).

 The use of auxiliary variables has achieved spectacular success in statistical physics,
 following the paper by Swendsen and Wang (1987), which has led to many others
 and, in particular, provided the motivation for the Edwards and Sokal construction.
 The Swendsen-Wang algorithm is the auxiliary variable method, using equation (1),
 for the Potts (1952) model, the multicolour generalization of the Ising model. Variables

 xi take values ('colours') in an unordered finite set f 1, 2, . . ., LI and each xi is
 associated with a node i of a graph. In the simplest case, 7r(x) is taken to be proportional
 to expf - 3 P(x)}, where P(x) is the number of edges (i, j) of the graph for which
 xi1?xj. Thus, in the terminology used above, there is one interaction bk(x) for each
 neighbour pair k= (i, j), with bk(x) = 1 if xi=xj, otherwise exp( - ,). The auxiliary
 Uk is a bond variable: absent if Uk < exp( - /), otherwise present, and the conditions
 nktbk(X) > UkI simply constrain x to have constant value within clusters of sites
 connected by bonds that are present. The base density lro(x) is constant, so the
 structure of 7r(xlu) is trivial: uniform random colouring subject to the constraints,
 which can be generated directly.

 The algorithm provides a remarkably simple means with which to combat the
 problems of critical slowing-down, encountered by single-component updating. It

 is also applicable when the Os are edge dependent, and in the presence of an external
 magnetic field. These extensions are of special interest in spatial statistics and Bayesian
 image analysis, that to external magnetic fields because it caters for the posterior
 distribution when Potts variables are observed subject to noise. A corresponding
 implementation has been carried out by Alison Gray on the archaeological example
 in Besag et al. (1991), section 3.

 When dealing with more complicated models, direct simulation from ir(xl u) is
 unlikely to be available. Two possibilities remain open: the first is to draw x from
 xo0(x), and to impose the conditions t bk(x) > Ukj by rejection. For example, Han
 (1991b) has conducted experiments with such an auxiliary variables method applied
 to an 'ordered grey level' modification to the Potts model, in which bk(x) becomes
 any decreasing function of xi - xj 1. It can be shown that in general the equilibrium
 expected number of attempts before acceptance is IHksupbk(x)J, if both X and r0
 are normalized. Some ingenuity may therefore be needed to devise practical algorithms
 of this type when the number of variables is large. There is an interesting comparison
 that can be drawn here with two ostensibly similar approaches: ordinary rejection
 sampling for r(x), based on drawing from iro, which produces independent samples
 but requires normalization of both ir and iro, and Metropolis-Hastings sampling of
 the whole of x at once, using ix0 as proposal distribution, which seems on the basis
 of some limited experiments to give increased autocorrelation times.

 The second possibility is not to use equation (1), but some other P(x-+x'; u). This
 needs further study, but a simple example is to use the rejection method just described
 for only a fixed number of attempts, before settling on the current x instead (see
 Fredenhagen and Marcu (1987)).

 Future statistical applications that might benefit from auxiliary variables
 methods include hierarchical Bayes models, when the prior information is sufficiently
 diffuse to create computational black holes from which no single-component updating
 scheme can escape; see, for example, the spatial epidemiology application in

This content downloaded from 
������������137.222.114.233 on Sun, 28 Mar 2021 09:22:57 UTC������������ 

All use subject to https://about.jstor.org/terms



 1993] SPATIAL STATISTICS AND BAYESIAN COMPUTATION 33

 Besag et al. (1991) or the random effects proportional hazards model of Clayton
 (1992).

 More recent 'cluster' methods in statistical physics can also be interpreted as
 particular instances of auxiliary variables using equation (1). For example, Wolff (1989)
 describes a single-cluster version of the Swendsen-Wang method, in which one site
 is chosen at random, a cluster grown from it, inserting bonds at random in the same
 way as above, and then that single cluster flipped to a new colour. The corresponding
 auxiliary variables u represent both coding for the sites that are in the cluster and
 the x values at those sites not in the cluster.

 There are more exotic variants: detailed balance seems to be a very resilient concept!
 Thus, Kandel et al. (1988, 1989) propose a stochastically blocked version of the
 Swendsen-Wang method for the Potts model, which permits incorporation of multigrid
 ideas. The stochastic blocking works in the following way. When generating u given
 x, a subset of the sites is first designated as 'coarse'; these typically lie on a coarser
 sublattice of the original, and the degree of coarseness will be varied cyclically in
 multigrid fashion as the simulation proceeds. Bond variables u are assigned
 sequentially: each now takes one of three values, present, absent or ignored. A bond

 between sites i and j will be ignored if there are already paths along present bonds
 from each of i and j to coarse sites. Otherwise, bonds are present or absent with the

 same probabilities, depending on xi and xj, as in the Swendsen-Wang procedure.
 Note that the auxiliary variables u are no longer conditionally independent given x.
 It can be shown that the resulting joint distribution for x and u has the property that

 -r(xlu) is proportional to the product of the interaction terms bk(x) over ignored
 bonds k alone, constrained so that x is constant on clusters connected by present bonds.
 This is a somewhat awkward model, but has effectively fewer variables, and, although

 we would not sample from -r(xl u) directly, we can use some other Metropolis-Hastings
 update.

 To capture the multigrid effect, multiple levels of auxiliary variables are introduced,
 a device that may be useful elsewhere. For the Potts model, at each level 1= 1, 2,

 . L, the array of auxiliary variables ul represents the pattern of present, absent
 and ignored bonds, corresponding to the lth level of coarsening, 1=1 being the finest.
 In general, the set-up is as follows. We specify the joint equilibrium distribution of

 (X, U1, U2, . . ., UL) through the given lr(x) and chosen 'r(ulIx, u<1), for 1= 1, 2,
 . L. For each level 1, we choose a transition function PI(x-+x'; us1) satisfying

 detailed balance with respect to i-(xlu,1). It can be shown that if (x, u<1) have the
 correct equilibrium distribution, and we then update by first drawing ul' from
 'r(ullx, u<1), and then x' from P1(x-+x'; u<1, ul'), we obtain (x', u<1, ul') with their
 correct equilibrium distribution. If we call this a transition at level 1, it follows that
 any sequence of transitions, at levels beginning at 1, and never increasing by more
 than 1 at a time, defines an inhomogeneous Markov chain that preserves the
 equilibrium distribution ir(x). A typical sequence that might be used (the 'W'-cycle)
 has the form (1, 2, 3, 4, 5, 5, 4, 5, 5, 3, 4, 5, 5, 4, 5, 5), in this notation, when L = 5.

 These multigrid auxiliary variable ideas have yet to find statistical application but
 they have an obvious potential in speeding up simulation in problems defined on large
 regular lattices, especially those involving categorical values, such as arise in
 classification and segmentation problems in image analysis.

 Finally, we mention an interesting variation on auxiliary variables, namely auxiliary
 processes! The idea, due to Geyer (1991), is to run a single-component sampler for
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 a related process fir '(x ')1, as well as for the process f ir(x)j of interest, and, periodically,
 to propose a complete swap between the current values of x and x'. The swap is
 accepted or rejected according to a Metropolis update (since swapping is symmetric),
 based on the odds ratio -r(x') ir '(x)/7r(x) ir '(x'). This procedure will often be very
 easy to implement, particularly when the two processes differ only in the values of
 fixed parameters. The Metropolis update ensures that both samplers maintain their
 own limiting distributions, despite the swaps, while the act of swapping provides
 another means of moving more freely around the state space. The individual chains
 are no longer Markov, of course. In practice, one might adopt several such related
 chains rather than a single one; see Geyer (1992) for examples.

 6. APPLICATION TO AGRICULTURAL FIELD TRIALS

 Here, we briefly describe a spatial application of MCMC methods to the Bayesian
 analysis of agricultural field experiments. We do not discuss individual analyses but
 summarize our experience with data from 10 different variety trials for winter wheat
 and spring barley in the UK. All but one of the trials consisted of three separate
 replicates, in single columns, with the blocking structure of an alpha-design (Patterson
 and Williams, 1976), the number of varieties ranging from 17 to 75. Although it is
 the lay-out itself that is crucial to a Bayesian analysis, nevertheless (partial) balance
 may help to produce an approximately exchangeable posterior distribution for variety
 effects.

 Our formulation has three parts; in the basic version, each is Gaussian, though
 later we indicate how this assumption can be relaxed. First, we suppose that the data
 y are generated according to a linear model whose mean is the aggregate of variety
 effects r and fertility effects X, with independent errors having unknown precision
 Xy. Our prior for x in each replicate is a random walk, with independent increments
 from plot to plot, having unknown precision Xx; for some motivation, see Besag and
 Kempton (1986) and, for some additional validation, Baird and Mead (1991), though
 other assumptions might be adopted, as for example in Green et al. (1985). Note that
 the prior here is just improper, allowing arbitrary levels within each replicate, so that
 separate inclusion of replicate effects is unnecessary. For r, we adopt a white noise

 prior, having unknown precision X,; as usual, we are concerned only with relative
 effects of varieties. As priors for the Xs, we take conventional independent gamma
 distributions; again this assumption can be easily relaxed.

 The above formulation leads to conditional distributions for rk and Xi that are
 extremely intuitive and that do not depend directly on the hyperpriors for the Xs.
 Thus, the conditional mean for rk is the mean difference between the yis and the
 current xis on plots that contain variety k, shrunk towards the origin according to
 the current relative values of X7 and Xy times the number of replicates. The
 conditional mean for Xi is a weighted mean of the current mean fertility of
 neighbouring plots and the difference between the yield on plot i and the current variety

 effect there, with weights dictated by the number of neighbours, Xx and Xy. Such
 results indicate that the Markov random field interpretation of a posterior distribution
 provides not only a computational tool for Bayesian inference but also a useful
 perspective on the implications of the model.

 With strict adherence to the above formulation, the conditional distributions are
 all ideally suited to the Gibbs sampler, though a more efficient choice might be made;

This content downloaded from 
������������137.222.114.233 on Sun, 28 Mar 2021 09:22:57 UTC������������ 

All use subject to https://about.jstor.org/terms



 1993] SPATIAL STATISTICS AND BAYESIAN COMPUTATION 35

 see Section 3. Also, the inclusion of missing values, present in two of the trials, merely
 adds one extra component for each missing yi in the updating schedule. This
 automatically produces an appropriate decrease in precision in the MCMC posterior
 distributions for variety effects that have missing observations and, if required,
 predictive distributions for the missing values. Other posterior probability statements,
 such as the probability that any particular variety is best or the probability that any
 particular group of varieties contains the best, are also immediately available.

 Sensitivity analysis to the choice of parameter values in the hyperpriors can be carried
 out from multiple runs, though mere brute force can surely be improved on; see Geyer
 (1992), Geyer and Thompson (1992) and the discussion therein. Not surprisingly,
 almost improper hyperpriors led to multimodality in the joint posterior and, indeed,
 the prior-induced modes had densities that were many orders of magnitude larger
 than that of the likelihood-induced mode. Yet, despite this, it was the latter mode
 that carried all the probability, unless the choice of hyperparameters was quite bizarre.
 This was inferred as at the end of Section 4, using run lengths up to 100 000 cycles;
 escapes occurred within about 5000 cycles at most, sometimes via a region of even
 lower density. This was surprising, and encouraging for the use of single-component
 samplers. Note that the modes themselves were located, first crudely and then
 accurately by iterated conditional modes (Besag, 1986). Incidentally, the final point
 estimates can be polished by running a hill climbing algorithm, but keeping the values
 of the precision parameters fixed, to obtain a decomposition of yields into fertilities,
 variety effects and residuals that satisfies the standard text-book constraints.

 Returning to robustness, the sensitivity of results of structural changes in the
 likelihood for y or in the priors for r and x are perhaps of greater concern; for example,
 one can replicate the Gaussian prior for X by heavy-tailed alternatives, such as those
 in Geman and McClure (1987), Geman (1991), Green (1990) or Besag et al. (1991).
 The Gibbs sampler then becomes cumbersome and it is prudent to switch to some
 form of Metropolis-Hastings algorithm. Such robustness studies have been carried
 out for some of the above trials. Further results, including two-dimensional adjustment
 for fertility effects, where appropriate, will be reported in due course.
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