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We consider a broad class of nonlinear statistical inverse prob-
lems from a Bayesian perspective. This provides a flexible and in-
terpretable framework for their analysis, but it is important to un-
derstand the relationship between the chosen Bayesian model and
the resulting solution, especially in the ill-posed case where in the
absence of prior information the solution is not unique.

Following earlier work about consistency of the posterior distribu-
tion of the reconstruction, we obtain approximations to the posterior
distribution in the form of a Bernstein–von Mises theorem for nonreg-
ular Bayesian models. Emission tomography is taken as a canonical
example for study, but our results hold for a wider class of generalised
linear models with constraints.

1. Introduction. Inverse problems are almost ubiquitous in applied
science and technology, and because of the need for rigorous analysis to
characterise such problems, derive numerical solutions and assess their per-
formance, not to mention intrinsic mathematical interest, they have long
been the subject of intense mathematical study. In the corresponding ‘direct
problem’, (macroscopic, global) observational data are predicted from the
(microscopic, local) model parameters of the system. In the inverse problem
conclusions about model parameters are inferred from data.

This paper is a contribution to the theory of inverse problems from a
Bayesian perspective. Motivated by important problems in tomographic re-
construction, taken as a canonical example, we consider asymptotic prop-
erties of Bayesian procedures in the small-noise limit, for a class of models
that we call generalised linear inverse problems.

1.1. Inverse problems from a Bayesian perspective. Inverse problems en-
countered in nature are commonly ill-posed: their solutions fail to satisfy at
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least one of the three desiderata of existing, being unique, and being stable.
Thus, the focus is not on a unique solution x ∈ Rp of

(1) A(x) = yexact,

for given function A and data vector yexact ∈ Rn, but rather on the cor-
responding set of solutions. Even when the solution x to (1) exists and is
unique for each possible yexact, lack of stability means that the solution can
be extremely sensitive to small errors, either in the observations or in com-
putations. To circumvent this, the inverse problem is typically regularised,
that is, re-formulated to include additional criteria, such as smoothness of
the solution:

x⋆ = argminA(x)=yexactpen(x),

where pen(x) is a suitable scalar penalty function. If the inverse problem is
ill-posed, the regularised solution x⋆ may differ from the actual value xtrue
that generated the data yexact = A(xtrue).

If the data is observed with error, for example if we observe y modelled
as a random variable with p.d.f. or p.m.f. p(y | yexact) then, allowing for the
possibility of lack of existence or uniqueness, the likelihood is penalised, and
a commonly considered solution of the inverse problem is that maximising
the penalised likelihood, that is,

(2) x̂ = argminx [− log p(y | A(x)) + λpen(x)] ,

with λ a positive constant controlling the trade-off between accuracy and
smoothness.

Penalised least squares was one of the first approaches of this kind in
inverse problems. While often natural, this corresponds to a Gaussian like-
lihood, which may not always be appropriate. For instance, Dupé et al.
(2011) study inverse problems where the observations are counts and where
a Poisson likelihood would have been more appropriate.

We now discuss the penalisation. Smoothness, or other ‘regular’ behaviour
of the solution to an inverse problem, is a prior assumption on the unknown
x, information about the model parameters known or assumed before the
data are observed. To use such information thus accepts that the required
solution must combine data with prior information. In a statistical context
it is then natural to follow the Bayesian paradigm.

From this perspective, the solution to (2) is immediately recognisable as
the maximum a posteriori (MAP) estimate of x, the mode of its posterior
distribution in a Bayesian model with likelihood p(y | A(x)), and in which
the prior distribution of x has density proportional to exp{−λpen(x)}.
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However, the Bayesian perspective brings more than a different charac-
terisation of a familiar numerical solution. Formulating a statistical inverse
problem as one of inference in a Bayesian model has great appeal, notably
for what this brings in terms of coherence, the interpretability of regulari-
sation penalties, the integration of all uncertainties, and the principled way
in which the set-up can be elaborated to encompass broader features of the
context, such as measurement error, indirect observation, etc. The Bayesian
formulation comes close to the way that most scientists intuitively regard the
inferential task, and in principle allows the free use of subject knowledge in
probabilistic model building (see, for instance, Rover et al. (2007) and Davis
et al. (1995)). For an interesting philosophical view on inverse problems,
falsification, and the role of Bayesian argument, see Tarantola (2006).

Mathematical analysis of nonlinear inverse problem (1) is typically far
more difficult and technical than for the linear case A(x) = Ax. However, a
modest generalisation is enough to formulate and analyse a broad range of
nonlinear statistical inverse problems of considerable practical importance.
The model class we consider – that of generalised linear inverse problems –
is formally defined in Section 3.

1.2. Convergence of the posterior distribution. The main mathematical
focus in inverse problems concerns how well the true solution can be recov-
ered in the presence of noise, as the size of that noise goes to zero. In the
case of a Bayesian analysis, the focus is on the small-variance asymptotic
behaviour of the posterior distribution of x.

For a differentiable identifiable likelihood and prior distribution positive
and continuous at the “true” value of the parameter, the posterior distri-
bution is asymptotically Gaussian in the case where the “true” parameter
is an interior point of the parameter space. This result is known as the
Bernstein–von Mises theorem. van der Vaart (1998) gives a total variation
distance version of the theorem, adapted from Le Cam (1953) and Le Cam
and Yang (1990), under mild additional assumptions on the error model.
The theorem implies that, under the above conditions, the prior has no
asymptotic influence on the posterior, that posterior inference is consistent
and efficient in the frequentist sense, and that posterior credible regions are
asymptotically the same as frequentist ones.

However, for our motivating example of the Poisson inverse problem, and,
more generally for the class of models we consider, the assumptions of the
theorem do not hold. Firstly, the assumption of identifiability of the likeli-
hood may not hold if the inverse problem is ill-posed. Secondly, the assump-
tion that the “true” value of the parameter is interior to the parameter space
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may not be satisfied. For the tomography example, the unknown parameter
is the vector of image intensities, which are nonnegative and can be zero,
corresponding to holes in an organ for example.

Investigating the literature showed that there has been little study of the
asymptotics of the posterior distribution for so called nonregular models, i.e.
models where the above assumptions are not satisfied. Theoretical founda-
tions for the study of the models where the Bernstein–von Mises theorem’s
assumption of the existence of the first derivative of the loglikelihood is
violated were laid by Ibragimov and Has’minskij (1981), for the case of a
one-dimensional parameter. These authors considered two types of densi-
ties, those with jumps and those with singularities. They gave expressions
for distributions approximating the posterior, differing from the Gaussian
in both cases, and for the rates of contraction of the posterior distribution
(and hence for the correct order rescaling of the parameter) that also dif-
fers from the 1/

√
n obtained under the regular assumptions. There were

further developments in this area by Ghosal and Samanta (1995), Ghosh
et al. (1994), and Ghosal et al. (1995); these extend the results of Ibragimov
and Has’minskij (1981) to i.i.d. models with a regular nuisance parame-
ter (Ghosal and Samanta 1995), where the joint approximating distribution
asymptotically factorises into the approximating distribution for the “non-
regular” one-dimensional parameter and a Gaussian distribution for the reg-
ular nuisance parameter. For densities with jumps, when the limit exists it is
a shifted exponential distribution for the recentred “nonregular” parameter,
with the rate of contraction 1/n; for densities with singularities the limiting
distribution is more complex.

Under the conditions of Ibragimov and Has’minskij (1981), Ghosal et al.
(1995) proved the existence of the limit of the posterior for the appropriately
centred and rescaled p-dimensional parameter, without specifying the limit
explicitly in a general setting. Ghosh et al. (1994) characterised the limit of
the posterior distribution (for i.i.d. observations) in the particular case where
the posterior distribution can be “properly centred”. Such a setting applies
to the regular case, to densities with jumps or singularities, as considered
in Ibragimov and Has’minskij (1981), who showed that for densities with
jumps the limit of the posterior does not always exist. Chernozhukov and
Hong (2004) considered a class of nonlinear regression models with additive
errors, where the error density has a jump at 0, that arise in econometric ap-
plications. The authors showed that the limit of the appropriately rescaled
posterior distribution was a product of shifted multivariate exponential dis-
tributions for the “nonregular” parameter and a Gaussian distribution for
the “regular” nuisance parameter of the distribution of errors. A particular
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case of this model where the error density has support on the non-negative
semiline was considered by Hirano and Porter (2003).

In this paper, we extend the Bernstein–von Mises theorem in two direc-
tions, by relaxing both the assumption of identifiability of the likelihood
and the assumption that the “true” value of the parameter is interior to
the parameter space. We consider a broad class of probability distributions
for the data, generalised linear inverse problems, allowing the likelihood to
be unidentifiable, and a broad class of prior distributions. We allow linear
constraints on the solution of the inverse problem and allow the solution of
the exact linear inverse problem to be on the boundary.

We will show that for these models a consequence of relaxing these two
assumptions is that the limit of the posterior distribution, as well as the
rate of convergence, depend on the choice of the prior distribution and that
the limiting distribution is a product of Gaussian and exponential in dif-
ferent directions. We identify the directions in parameter space where the
posterior distribution contracts at different rates. We also show how to de-
rive approximations for Bayesian estimators for a given loss function, how
to study asymptotic distribution of functionals of the parameter, and how
these can be used in practice.

We motivate our study by presenting in Section 2 a nonlinear inverse
problem important in medical imaging, and Section 3 establishes the class
of models we study. In Section 4 we study geometry of the parameter space
determined by the posterior distribution, with an illustration for the linear
inverse problems with Gaussian likelihood and a Gaussian prior. In Section
5 we study local behaviour of the posterior distribution in a neighbourhood
of the limit that is formulated as a version of Bernstein–von Mises theorem
that is illustrated on the motivating example in Section 6. We conclude with
a discussion. All proofs are deferred to the Appendix.

2. Motivation. In this section we consider an important example mo-
tivating the class of models studied in this paper, generalised linear inverse
problems.

2.1. Single photon emission computed tomography. Single photon emis-
sion computed tomography (SPECT) is a medical imaging technique in
which a radioactively-labelled substance, known to concentrate in the tissue
to be imaged, is introduced into the subject. Emitted particles are detected
in a device called a gamma camera, forming an array of counts. Tomographic
reconstruction is the process of inferring the spatial pattern of concentration
of the radioactive isotope in the tissue from these counts.
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The Poisson linear model

(3) yt ∼ Poisson(Atx)

independently for different t, is close to reality for the SPECT problem (there
are some dead-time effects and other artifacts in recording). Here x repre-
sents the spatial distribution of the isotope, typically discretised on a grid,
x = {xs}, and y the array of detected photons, also discretised y = {yt} by
the recording process. The array A = (ats) quantifies the emission, trans-
mission, attenuation, decay and recording process; ats is the mean number
of photons recorded at t per unit concentration at pixel/voxel s.

See Green (1990) for further detail about the model, and an approach
based on EM estimation for MAP reconstruction of x, in a Bayesian formu-
lation in which spatial smoothness of the solution is promoted by using a
pairwise difference Markov random field prior. Later, Weir (1997) investi-
gated fully Bayesian reconstruction.

Since Poisson distributions form an exponential family, this model can
be seen as a generalised linear model (Nelder and Wedderburn 1972), with
identity link function, and since A is ill-posed we can call this a generalised
linear inverse problem.

We formalise the notion of small-noise limit for this Poisson model in a
practically-relevant way, by supposing that the exposure time for photon
detection is extended by a factor T , and then consider the rate of detection
of photons, letting T → ∞. Thus the data-generation model becomes

T Yt|xtrue ∼ Poisson(T Atxtrue),

independently, for t = 1, 2, . . . , n.

2.2. Prior distributions. From the beginning of Bayesian image analysis
(Geman and Geman 1984; Besag 1986), use has been made of prior dis-
tributions for image scenes that express generic, qualitative beliefs about
smoothness, yet do not rule out abrupt changes for real discontinuities (for
example, at tissue type boundaries in the case of medical imaging).

In common with much of the literature, we will concentrate here on
Markov random field prior distributions. The ‘true image’ xtrue in emis-
sion tomography corresponds to a physical reality, the discretised spatial
distribution of concentration of a radioactive isotope. Of course, this is non-
negative, so we impose the constraints x ≥ 0 (interpreted componentwise),
written x ∈ X = [0,∞)p ⊂ Rp.
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The first prior model we consider is Gaussian, apart from possible trun-
cation by the constraint,

p(x) ∝ exp

{
− 1

2γ2
||x− x0||2B

}
, x ∈ X ,

where ||u||2B = uTBu and B is a non-negative definite matrix. An impor-
tant special case is where x0 = 0 and B satisfies Bss′ = 1 if s and s′ are
neighbouring pixels (written s ∼ s′), otherwise Bss′ = 0. Then we have
||x − x0||2B =

∑
s∼s′(xs − xs′)

2, a pairwise-interaction model. In this and
other important cases B is singular.

A second prior model is a log cosh pairwise-interaction Markov random
field (Green 1990):

p(x) ∝ exp

(
−δ(1 + δ)

2γ2

∑
s∼s′

log cosh((xs − xs′)/δ)

)
, x ∈ X .(4)

Here the parameter δ is considered to be fixed.
This model has some attractive properties. While giving less penalty to

large abrupt changes in x compared to the Gaussian, it remains log-concave.
It bridges the extremes δ → ∞, the Gaussian model just mentioned, and
δ = 0, the corresponding Laplace pairwise-interaction model, sometimes
called the ‘median prior’.

These distributions are improper since they are invariant to perturbing x
by an arbitrary additive constant, but lead to proper posterior distributions,
save in exceptional pathological circumstances.

3. Model formulation.

3.1. Generalised linear inverse problems. Motivated by the emission to-
mography example, we formulate a general class of inverse problems with
similar properties that we call generalised linear inverse problems (GLIP).

We assume that the joint density of the observable responses Y taking
values in Y ⊂ Rn (with respect to Lebesgue or counting measure) can be
written

p (y|x) = F (y,Ax, τ) = Cy, τ exp

{
−1

τ
f̃y(Ax)

}
, y ∈ Y(5)

for some n × p matrix A. The key feature of these models is that the dis-
tribution depends on x ∈ X only via Ax, where τ is a scalar dispersion
parameter; in the Gaussian model, τ is the variance σ2. The observed data
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are generated from this distribution, with x = xtrue, and we aim to recover
xtrue as τ → 0.

We assume a continuous bijective link function G : Y → Rn and write
G(yexact) = Axtrue. (In generalised linear models – see Example 3 below –
commonly G has identical component functions.)

We make the following assumptions about the error distribution:

1. If Y ∼ F (y,G(µ0), τ), then Y
Pxtrue→ µ0 as τ → 0, for all µ0 ∈ G−1(AX ).

2. For all µ0 ∈ G−1(AX ), f̃µ0(η) has a unique minimum over AX at
η = G(µ0).

Assumption 1 states that τ is not only the dispersion parameter in the model
but also that the distribution of Y contracts to its expected value as τ → 0.
Assumption 2 establishes identifiability of the likelihood with respect to the
linear predictor η = Ax. It is sufficient to assume that these conditions hold
for µ0 = yexact where yexact is the “exact” data defined in the Introduction.

A particular case of such models is a linear inverse problem with inde-
pendent observations, where all A is independent of n and τ = 1/n.

For example, Assumption 1 is not satisfied for the Cauchy distribution
(or indeed any distribution with polynomial decay and with scale depending
on τ) since the density cannot be cast in the form (5) for any choice of τ .
Assumption 1 is satisfied for the power exponential (Subbotin) distributions
F (y, µ, σ) = Cσ,β exp{−[(y− µ)2]β/2/σβ} (β > 0), with τ = σβ and f̃y(µ) =
[(y − µ)2]β/2.

Assumption 1 is satisfied by generalised linear models.

Example 1. In the generalised linear models of Nelder and Wedderburn
(1972), an important class of nonlinear statistical regression problems, re-
sponses yt, t = 1, 2, . . . , n are drawn independently from a one-parameter
exponential family of distributions in canonical form, with density or prob-
ability function

p(yt;µt, τ) = exp

(
ytb(µt)− c(µt)

τ
+ d(yt, τ)

)
,

using the mean parameterisation, for appropriate functions b, c and d char-
acterising the particular distribution family. The parameter τ is a common
dispersion parameter shared by all responses. The expectation of this distri-
bution is E(yt;µt, τ) = µt = c′(µt)/b

′(µt). Both assumptions are satisfied for
this example.

The tomography example given in Section 2 belongs to this class of mod-
els, with τ = T −1, b(µt) = logµt, c(µt) = µt, µt = Atx and X = [0,∞)p.
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As the link function G is continuous and monotonic, we could consider a
linear inverse problem Ax = ỹexact where ỹexact = G(yexact), Ỹ = G(Y ) and
Ỹ = G(Y). Hence, to simplify the notation, we assume below that the link
function is the identity.

3.2. Bayesian formulation of GLIP. We adopt a Bayesian paradigm, us-
ing a prior distribution with density given by

p (x) ∝ exp(−g(x)/γ2), x ∈ X ,(6)

where γ2 is a scalar dispersion parameter for the prior, that may depend
functionally on τ ; we relate this to the data dispersion parameter τ by
γ2 = τ/ν, and express most of our results below in terms of τ and ν. Thus
the posterior distribution satisfies

p (x| y) ∝ exp(−[f̃y(Ax) + ν g(x)]/τ), x ∈ X ,(7)

where f̃y(Ax) was defined by (5).
Denote fy(x) = f̃y(Ax) and hy(x) = fy(x) + ν g(x), so that p (x| y) ∝

e−hy(x)/τ .
We will assume throughout this paper that X = [0,∞)p. We could assume

that the parameter x is restricted to an arbitrary convex polyhedron; this
could be reduced to [0,∞)p by a linear change of variables, and indeed some
of the ideas we discuss would hold true for more general subsets of Rp.

We shall also assume that yexact is either an interior or a lower boundary
point of AX . Otherwise, if yexactj is an upper boundary point, one can
replace Aj, with −Aj, for the corresponding j. We also assume that matrix
A has no zero rows or columns.

We shall use the default norms ||z|| = ||z||2 for both vectors and matrices.
The limiting statements are given in terms of σ =

√
τ .

4. Geometrical perspective. In this paper, we study inference for x
given observed y, in the limit as a noise parameter τ = σ2 (in the SPECT
example, 1/T ) goes to 0. We generally assume an identity link function, so
that y becomes concentrated on Axtrue as σ2 → 0.

Because of the ill-posed/ill-conditioned character of the problem, we can-
not expect consistency in inference about xtrue based on the likelihood alone.
Even as σ2 → 0, so that y converges to ‘exact data’ yexact = Axtrue, we will
not be able to distinguish between {x : Ax = Axtrue}.

One of the roles of the prior in the Bayesian approach is to resolve this
ambiguity (as well as generally improve reconstruction through ‘regulari-
sation’, even without σ2 → 0). We recall the ‘physical’ constraint in the
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SPECT problem, that x is componentwise non-negative, that is, x ∈ X ,
since it quantifies the isotope concentration.

Insight into the interplay between the possibly ill-posed likelihood and
the possibly degenerate prior, and the role of the constraint x ∈ X can be
obtained from a geometrical view of the problem.

4.1. Gaussian likelihood and prior. In this section, we focus on the Gaus-
sian prior p(x) ∝ exp(−1/(2γ2)||x − x0||2B) and Gaussian likelihood y|x ∼
N (Ax, σ2I).

In the limit as σ2 → 0, we are interested in solutions of Ax = yexact, where
yexact = Axtrue, under the influence of the prior p(x) ∝ exp(−1/(2γ2)||x −
x0||2B). To obtain convergence to a degenerate limit, we will need γ2 → 0
as well (though, as shown by Hofinger and Pikkarainen (2007) for the case
B = I, at a slower rate than σ2).

Thus the posterior is proportional to

exp(−1/(2σ2)||y −Ax||2 − 1/(2γ2)||x− x0||2B) subject to x ∈ X .

Let us first ignore any constraint on x. By standard manipulations, we can
write this posterior as

(8) x|y ∼ N
(
(ATA+ νB)−1(AT y + νBx0), σ

2(ATA+ νB)−1
)
,

assuming the inverse matrix exists. A rank condition is needed to ensure
this, so that the information from the likelihood and prior together define a
proper posterior.

Proposition 1. Suppose that A is a real n × p matrix, and B a real
symmetric non-negative definite p×p matrix, both possibly of deficient rank.
Suppose also that the p × 2p block matrix [B : ATA] has full rank p (or
equivalently, the rows are linearly independent). Then for all ν > 0, ATA+
νB is nonsingular.

It follows that there exists a nonsingular real matrix P , not necessarily
orthogonal, such that P TBP , P TATAP , and P T (ATA+ νB)P (for all ν >
0) are all diagonal.

Furthermore, there exist well-defined finite non-negative definite matrices
C and D with ranks p− q and q respectively, where q = rank(A), such that
ν(ATA+ νB)−1 = C +Dν + o(ν) as ν → 0.

The last part of the proposition gives us a full description of the posterior
variance matrix as σ2 → 0, γ2 → 0 while ν = σ2/γ2 → 0. In summary,
the posterior distribution is Gaussian, with variance scaling differently in
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different directions. If q is the rank of A, then asymptotically the variance
has q eigenvalues scaling like σ2 and the remaining (p−q) like the (larger) γ2.
Geometrically, contours of equal posterior density are concentric ellipsoids
in Rp.

As σ2 → 0 and γ2 → 0 in such a way that ν = σ2/γ2 → 0, the posterior
converges to the point

(9) x⋆ = argminx∈X :Ax=yexact ||x− x0||2B,

a point that is uniquely determined under the conditions of Proposition 1.

4.2. Constrained Gaussian model and KKT theory. When X is a proper
subset of Rp, the ellipsoidal contours are truncated by the constraints x ∈ X .
In the case of interest in SPECT, where we have simply componentwise non-
negativity constraints, the ellipsoids are truncated into the non-negative
orthant. As σ2 and γ2 become small, there are clear qualitative differences
in the impact of this truncation according to whether the centre (ATA +
νB)−1(AT y + νBx0) of the ellipsoids lies in the interior of the orthant, on
its boundary, or outside it.

Equation (9) is a quadratic programming problem, and could be solved
numerically by standard software.

x0 

x* 

Ax=yexact 

m ATl 

Fig 1. Illustrating the geometry in the case p = 2, n = 1, with B = I. Contours of
posterior when γ2 > σ2 > 0.

We can get a theoretical handle on the solution through Karush–Kuhn–
Tucker theory (Kuhn and Tucker 1951). In the non-negativity constrained
case, X = [0,∞)p, to minimise ||x− x0||2B subject to x ≥ 0 and Ax = yexact
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it is necessary and sufficient to find (x⋆, µ, λ) ∈ Rp × Rp × Rn such that

B(x⋆ − x0)− µ+ATλ = 0

x⋆ ≥ 0, Ax⋆ = yexact, µ ≥ 0

for all s, µs = 0 or x⋆s = 0

The feasible set X ⋆ = {x ∈ X : Ax = yexact} is closed and convex, and x⋆

may be an interior point, or satisfy one or more of the constraints xs = 0.
In the case where all entries of A are non-negative (in accordance with

physical reality), and for each s there is at least one t withAts > 0 (and if not,
then xs is unidentifiable, so might as well be omitted from the model), X ⋆

is a bounded polyhedron (or polytope). Otherwise, X ⋆ may be unbounded.
If γ2 remains bounded away from 0 as σ2 → 0, then, in the limit, the

posterior has support X ⋆.
If x⋆ is an interior point of X ⋆, there exists a neighbourhood of x⋆ that

lies inside X , and hence, on this neighbourhood, the posterior distribution
is not truncated. In this case, as σ2 and γ2 → 0, the posterior distribution
behaves as in the unconstrained case. If x⋆ lies on the boundary of X ⋆, there
are two possibilities: either the unconstrained minimum is achieved at x⋆, or
outside X . In the first case it is easy to see that the posterior distribution of
x recentred by x⋆ is “half–Gaussian” (a multivariate Gaussian distribution
centred at 0 and truncated at 0 where x⋆ is on the boundary). Thus, in
a neighbourhood of x⋆, the posterior distribution has similar concentration
ellipsoids as in the unconstrained case, but truncated at x⋆ in some directions
(these directions will be defined precisely in Section 4.3). However, in the
second case, where the unconstrained solution to the optimisation problem
lies outside X , for small σ and γ, the posterior distribution no longer exhibits
Gaussian behaviour in the directions orthogonal to the boundary (where x⋆

is on the boundary). This is essentially a consequence of the tail behaviour
of the Gaussian: if ξ ∼ N (0, 1) and x > 0,

lim
t→∞

P(ξ > t+ x/t | ξ > t) = e−x.

The precise formulation of the limit of the posterior distribution is given in
the Section 5, in a more general case.

4.3. Geometry in a general constrained case. The form of (9) strongly
suggests that analogous properties for the limit of the posterior should hold
in a much broader class of models. Provided that σ2 → 0 and γ2 → 0 in
such a way that ν = σ2/γ2 → 0, we would expect similar limiting behaviour
under the assumptions in Section 3.
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In a general setting, more delicate, analytic, arguments will be needed to
quantify the convergence precisely. However, for regular problems, the broad
qualitative features of the solution for the Gaussian–Gaussian case (Section
4.1) continue to hold: the posterior becomes increasingly concentrated near
the hyperplane {x : Ax = yexact}, with its variation about this hyperplane
controlled by τ , while the variance parallel to the hyperplane is of order γ2.
The effect of the truncation onto x ∈ X depends on whether in the absence
of the constraint, the maximum of the posterior would lie in the interior of
X , on its boundary, or outside it.

Now we describe the local geometry of the posterior distribution around
the point x⋆, under the assumption that functions f̃yexact and g are differen-
tiable, relaxing the assumption that x⋆ is an interior point by allowing it to
lie on the boundary of X . Such a model is nonregular.

Throughout, we use ∇i = ∂
∂xi

as the derivative operator, and ∇ =

(∇1, . . . ,∇p)
T as the gradient. Similarly, ∇ij and ∇ijk are operators of the

second and third derivatives, with ∇2 = (∇ij) being the matrix of second
derivatives.

In the limit of zero noise, the Bayesian analysis has solved two optimisa-
tion problems:

X ⋆ = arg min
x∈[0,∞)p, Ax=yexact

fyexact(x),

x⋆ = arg min
x∈X ⋆

g(x).(10)

We assume that the prior distribution is such that x⋆ is a unique solution.
Denoting η = Ax, the first problem can be reformulated as follows:

yexact = arg min
η∈AX

f̃yexact(η).(11)

This condition is the identifiability of the likelihood with respect to η = Ax.
The second expression is the definition of x⋆, the point where the posterior
distribution concentrates, which depends on the prior distribution.

Now we use the Karush–Kuhn–Tucker (KKT) theory to study the local
geometry of the solution. If the solution of the optimisation problem x⋆ is
an interior point of X ⋆ = {x ∈ X : Ax = yexact}, then

0 =

(
∂

∂zi
g(x⋆ + (I − PAT )z)|z=0

)p

i=1

= (I − PAT )∇g(x⋆),(12)

where PAT is the projection on the range of A. However, if x⋆ is on the
boundary, the gradient ∇g(x⋆) may not be zero. This corresponds to the
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maximum in the unconstrained case lying outside X . In this case, the KKT
conditions are:

∇j f̃yexact(Ax
⋆) ≥ 0 & [Ax⋆]j ∇j f̃yexact(Ax⋆) = 0, j = 1, . . . , n,(13)

∇g(x⋆) = ATλ+ ζ & ζix
⋆
i = 0, i = 1, . . . , p(14)

for some λ ∈ Rn and ζ ∈ [0,∞)p.
Define the sets of the nonregular boundary components of yexact and of

x⋆ by

S = {i ∈ 1, 2, . . . , p : ζi > 0}, Z = {j ∈ 1, 2, . . . , n : ∇j f̃yexact(Ax⋆) > 0},
S∗ = {i ∈ 1, 2, . . . , p : x⋆i = 0}, Z∗ = {j ∈ 1, 2, . . . , n : [Ax⋆]j = 0}.

By the KKT conditions, Z ⊆ Z∗ and S ⊆ S∗. If S ̸= S∗ or Z ̸= Z∗, the
corresponding minimum is achieved on the boundary and the gradient is
zero.

In the small noise limit, we will show that the posterior distribution ex-
hibits different types of behaviour on 4 subsets W0,W1,W2,W3 of Rp such
that X−x⋆ = {z = x−x⋆, x ∈ X} = W0⊕W1⊕W2⊕W3. These four subsets
are determined by p× pk matrices Vk of rank pk: Wk = {

∑pk
j=1[Vk]j,αj , α ∈

Rpk} for k = 0, 1 and Wk = {
∑pk

j=1[Vk]j,αj , α ∈ Rpk
+ } for k = 2, 3, and pk

are their dimensions, where the matrices Vk satisfy the following conditions:

AZ,V0 = 0, AV1 = 0, AV3 = 0

V T
0 AT

Zc,AZc,V0 and V T
1 V1 are positive definite,

V1
T ζ = 0, V3

T ζ is a vector with positive coordinates (ζS ∈ R|S|
+ ),

V T
2 ∇fyexact(x

⋆) is a vector with positive coordinates.(15)

where V0 and V1 are the matrices of the largest size satisfying the conditions.
These conditions imply that

p0 = rank(A)− rank(AZ,), p1 = p− rank(AT : ∇g(x⋆)),(16)

p2 = rank(AZ,), p3 = rank(AT : ∇g(x⋆))− rank(A).

Note that p3 can be either 0 or 1. The four subsets can be characterised as
follows:

a) W0: likelihood is identifiable, projection of ∇fyexact(x
⋆) on W0 is 0;

b) W1: likelihood is not identifiable, projection of ∇g(x⋆) on W1 is 0;
c) cone W2: likelihood is identifiable, projection of ∇fyexact(x

⋆) on W2 is
nonzero (projection of x⋆ on W2 is on the boundary of W2);
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d) cone W3: likelihood is not identifiable, projection of ∇g(x⋆) on W3 is
nonzero (projection of x⋆ on W3 is on the boundary of W3).

The four matrices Vk define a transform from x to w = (wT
0 , w

T
1 , w

T
2 , w

T
3 )

T ∈
Rp0+p1 × Rp2+p3

+ :

x = x⋆ +
3∑

k=0

Vkwk.(17)

Lemma 1. If (Vk) satisfy conditions (15), then the matrix V = (V0 : V1 :
V2 : V3) has full rank.

Now we propose a way to construct the matrices V and V −1.

Definition 1. Define Z2 to be a subset of Z such that rank(AZ,) =
rank(AZ2,) = |Z2|, so that for every j ∈ Z, AT

j, can be written as a linear

combination of vectors (AT
j,, j ∈ Z2) with nonnegative coefficients: AZ, =

αAZ2, where α ∈ [0,∞)|Z|×|Z2|.
Define Z0 ⊂ Zc such that (Aj,, j ∈ Z0) are linearly independent and

(Aj,, j ∈ Z2 ∪ Z0) are linearly independent. In particular, p0 = |Z0| =
rank(A)− |Z2|.

The subset Z2 exists by Caratheodory’s theorem (p. 37 of Bertsekas
(2006)).

Here is one way of constructing the matrix U = V −1. Let V1 ∈ Rp×p1

satisfy

(AT : ∇g(x⋆))TV1 = 0, V T
1 V1 = Ip1 ,(18)

rank(V1) = p− rank(AT : ∇g(x⋆))

such that the matrix [V1]Sc, is of highest possible rank. Take U = (UT
0 : UT

1 :
UT
2 : UT

3 )
T with

U0 = AZ0,, U1 = V T
1 , U2 = AZ2,, U3 = ζT .(19)

In Proposition 2 below, we give the explicit expression for V = U−1, and
study the image of X − x⋆ under the transformation U , rescaled as follows.

Define the following scaling transform S = Sσ,γ : X−x⋆ → Rp0+p1×Rp2+p3
+ :

(20) S(x− x⋆) = D−1
σ,γV

−1(x− x⋆),

where Dσ,γ = diag(σIp0 , γIp1 , σ
2Ip2 , γ

2Ip3) and V = (V0 : V1 : V2 : V3)
is defined by (15). This corresponds to rescaling each of the four subsets
independently. As we shall see in Theorem 1, this is the appropriate scaling
for the posterior distribution.
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Proposition 2. Let the matrix U be defined by (19) with V1 satisfying
(18). Then,

1) the matrix V = U−1 satisfies conditions (15),
2) the matrices V0, V2 and V3 are defined by

V3 = ζ̃/||ζ̃||2, Vk = (I − P̃m,ζ)A
T
Zk,

(AZk,(I − P̃m,ζ)A
T
Zk,

)−1,(21)

for (k,m) ∈ {(0, 2), (2, 0)}, with projections on the range of AT
Z0,

(P0),

on the range of (I − P0)A
T
Z2,

(P̃2,0) and on the range of (I − Pζ)A
T
Zk,

(P̃k,ζ):

P0 = PAT
Z0,

, P̃2,0 = (I − P0)A
T
Z2,(AZ2,(I − P0)A

T
Z2,)

−1AZ2,(I − P0),

Pζ = ζζT /||ζ||2, P̃k,ζ = (I − Pζ)A
T
Zk,

[AZk,(I − Pζ)AZk,]
−1AZk,(I − Pζ)

ζ̃ = (I − P̃2,0)(I − P0)ζ

(if pk = 0, then the projection matrix that uses the corresponding Uk

is zero);
3) if Z = Z∗ and S = S∗ and |S| = p2 + p3, the linear transform S =

D−1
σ,γV

−1 maps X − x⋆ onto Rp0+p1 × Rp2+p3
+ under conditions (29);

4) more generally, under conditions (29), the linear transform S = D−1
σ,γV

−1

maps X − x⋆ onto V⋆ ⊂ Rp0+p1 × Rp2+p3
+ defined by

V⋆ =

{
{(v0, v1, v2, v3) : [Vk]Sk,vk ≥ 0, k = 0, 1, 3} if c = 0,
{(v0, v1, v2, v3) : c[V0]S03,v0 + [V3]S03,v3 ≥ 0& [V1]S1,v1 ≥ 0} if c > 0,

where the inequalities are component-wise, S03 = S0 ∪ S3 and

S1 = {ℓ ∈ S∗ : [V1]ℓ, ̸= 0},
S3 = {ℓ ∈ S∗ : [V1]ℓ, = 0& [V3]ℓ ̸= 0},(22)

S0 = {ℓ ∈ S∗ : [V1]ℓ, = 0& [V3]ℓ = 0& [V0]ℓ, ̸= 0}.

In particular, |S0| ≤ |Z0 ∩ Z∗| and S1 has at most s = |S∗| − p2 − p3
constraints.

In Section 5 we show that the posterior distribution has different asymp-
totic behaviour in these four sets of directions. Now we shall look at some
examples.

Example 2. Consider the Poisson likelihood with identity link: Y/σ2 ∼
Pois(Ax/σ2) (n = 1, p = 2), with A = (1, 1). We take xtrue = (1, 0)T , so
that y⋆ = Axtrue = 1. The linear inverse problem Ax = y⋆, i.e. x1 + x2 = 1,
subject to constraints x1, x2 ≥ 0, is ill-posed. To resolve the ambiguity, we
use the penalty ||x− x0||2, with two different x0.
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1. x0 = (4, 2)T . Then x⋆ = (1, 0)T . In this case, p2 = 0 since for η =
y⋆ = 1, ∇ηf̃y⋆(η) = −1/η + 1 = 0. Thus, p0 = rank(A) = 1, and
we take U0 = A = (1, 1). The null space of A is {α(1,−1)T , α ∈ R}.
The gradient of the negative log prior at x⋆ (up to a factor 1/γ2) is
−(3, 2)T = −3AT+ζ where ζ = (0, 1)T . The gradient is not orthogonal
to the null space, hence p3 = 1 and thus p1 = 0, with U3 = (0, 1)T .
The corresponding V0 and V3 are V0 = (1, 0)T and V3 = (−1, 1)T . The
conditions of item 3) in Proposition 2 are satisfied hence the image of
X − x⋆ under S in the limit is R× R+.

2. x0 = (3, 3)T . Then x⋆ = (0.5, 0.5)T . Since y⋆ is unchanged, we again
have p2 = 0. We can take the same U0 = (1, 1)T . The gradient of g at
x⋆ here is x⋆−x0 = −2.5 (1, 1)T and is orthogonal to the null space of
A, {α(−1, 1)T , α ∈ R}. Therefore, we have V1 = UT

1 =
√
0.5(−1, 1)T .

Since the kernel is one-dimensional, p3 = 0. Here V0 = 0.5(1, 1)T .
Here we are again under conditions of item 3) in Proposition 2, hence
V⋆ = R2.

Further examples can be found in Sections 5.4 and 6.1.

5. Analogue of the Bernstein–von Mises theorem.

5.1. Assumptions on the likelihood and the prior. In addition to assum-
ing that we have a GLIP model with τ = σ2, we make the four main assump-
tions that the posterior distribution is proper, that the log likelihood and log
prior density have bounded third order derivatives with respect to x, that
the log likelihood and its first two derivatives are continuous with respect
to y, and that the posterior distribution is concentrated in a neighbourhood
of x⋆.

Assumption P.
We assume that the prior distribution is such that the posterior distribu-

tion is proper:

∃σ0 > 0 : ∀σ 6 σ0,

∫
X
e−hy(x)/σ2

dx < ∞ forPyexact almost all y ∈ Y.

Assumption S (smoothness in x).
There exist δk > 0, k = 0, 1, 2, 3, such that there exist uniformly bounded

derivatives up to third order: ∃f (m)
y , ∃g(m) on Bδ(x

⋆) for Pyexact almost all
y ∈ Y, m = 1, 2, 3, and ∃Cf3, Cg3 < ∞ such that for all x ∈ Bδ(x

⋆), with
probability → 1 as σ → 0 and all 1 6 i, j, k 6 p,

|∇ijkfy(x)| 6 Cf3, |∇ijkg(x)| 6 Cg3,(23)
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whereBδ(x
⋆) = {x ∈ X : V −1(x−x⋆) ∈ Bδ} and Bδ = B2(0, δ0)×B2(0, δ1)×

B∞(0, δ2)×B∞(0, δ3).
Assumption C (continuity in y).
The derivatives of fY (x

⋆) converge to the corresponding derivatives of
fyexact(x

⋆) with probability → 1 as σ → 0, i.e. for all 1 6 j1, . . . , jd 6 p with
d = 0, 1, 2,

∇j1,...,jdfY (x
⋆)−∇j1,...,jdfyexact(x

⋆) → 0 as σ → 0.(24)

These assumptions are satisfied if ∃∇d
µ0
fµ0(x) for d = 1, 2, 3 and these

derivatives are bounded for Pyexact almost all µ0 ∈ Y.
Assumption L.
For δk > 0 defined in Assumption S,

P(∆0(δ) → 0) → 1 as σ → 0,(25)

where

∆0(δ) = σ−p0−2p2γ−p̃1−2p̃3

∫
X\Bδ(x⋆)

e−(hy(x)−hy(x⋆))/σ2
dx,(26)

where p̃k is the non-degenerate dimension of Uk(X − x⋆), k = 0, . . . , 3. For
k = 0 and k = 2, p̃k = pk. This assumption implies that for small σ, the
posterior distribution is concentrated on Bδ(x

⋆).

5.2. Notation. The limiting behaviour of the posterior distribution is
characterised by the matrices of second derivatives:

Vy(x) = ∇2f̃y(Ax), B(x) = ∇2g(x),

Hy(x) = ∇2hy(x) = ATVy(x)A+ νB(x),

Ω00 = V T
0 ∇2fyexact(x

⋆)V0 = V T
0 ATVyexact(x

⋆)AV0,

and by the following projections of the gradients:

a = V T
2 ∇fyexact(x

⋆), ay = V T
2 [∇fy(x

⋆) + ν∇g(x⋆)],

b = V T
3 ∇g(x⋆),(27)

where H00 = V T
0 Hy(x

⋆)V0, and Bij = V T
i BVj , i, j = 0, 1, 2, 3. By the con-

ditions (15), a is a vector with positive coordinates, b > 0 if p3 > 0, and
Ω00 and B11 are positive definite. For U and V considered in Proposition 2,
b = 1 if p3 > 0. The smallest components of the vectors ay and a will be
denoted by ay,min = mini ay,i and amin = mini ai respectively.
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5.3. The Bernstein–von Mises theorem. In the theorem below, which is
an analogue of the Bernstein-von Mises theorem, we show that the posterior
distribution converges to a finite limit, after the rescaling and the change of
variables defined in Section 4.3. This can be used to approximate the poste-
rior distribution in practice, for small values of σ, and to study asymptotic
properties of Bayes estimates.

Theorem 1. Consider the Bayesian GLIP model defined in Section 3
such that matrix A has no zero rows or columns, and let Assumptions P, S,
C and L on fy and g stated in Section 5.1 hold. Assume also that, as σ → 0,

σ

γ
→ 0, γ → 0, c = lim

σ→0

σ

γ2
< ∞.(28)

For Vk, k = 0, . . . , 3, satisfying conditions (15), we assume that B00 −
B01B

−1
11 B10 is positive semi-definite, and that the following limit exists for

all ω:
a0(ω) = Ω−1

00

[
lim
σ→0

[σ−1V T
0 ∇fY (ω)(x

⋆)] + cV T
0 ∇g(x⋆)

]
.

Define a random probability measure on V⋆ = limσ→0 S(X−x⋆) ⊆ Rp0+p1×
Rp2+p3
+ :

µ⋆(ω) = {Np0

(
a0(ω),Ω

−1
00

)
× Np1

(
0, B−1

11

)
× Expp2 (a) × Expp3 (b)}1V⋆ ,

where transform S is defined by (20), Expm (v) is the distribution of an m-
dimensional vector ξ with independent coordinates ξi ∼ Exp(vi), and 1V⋆ is
the indicator function of set V⋆. If support V⋆ degenerates to a manifold of
a smaller dimension, then µ⋆(ω) is normalised be a probability measure on
this manifold, and it has mass 1 on the degenerate part of Rp.

Then, as σ → 0,

||PS(x−x⋆)|Y − µ⋆||TV
Pxtrue→ 0.

If pk = 0 then the corresponding factor in the definition of µ⋆ disappears.
In particular, if x⋆ is an interior point, the limit is Gaussian distribution
with no constraint on its support. If the likelihood is also identifiable, the
statement is the classical Bernstein-von Mises theorem.

If x⋆ or Ax⋆ is on the boundary of its corresponding parameter space,
then there is at least one direction where the posterior distribution con-
verges faster than the convergence around an interior point. If the plane
Ax = yexact does not intersect the boundary at the right angles, i.e. if the
positivity constraints on the coordinates imply nontrivial constraints after
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the change of variables, it is possible to have degeneration of the support of
the posterior distribution of S(x−x⋆) due to mutually exclusive constraints
(see Examples 4 and 5).

Assumption of finiteness of a0(ω) implies that V T
0 (∇fY (ω)(x

⋆)−∇fyexact(x
⋆))

not only converges to zero (Assumption C) but also that it converges at rate
σ or faster. This holds in the case where Yj are independent and their distri-
bution belongs to the exponential family, since f̃Y (η) = −

∑n
j=1 b(ηj)a(Yj)−∑n

j=1 c(ηj), and its variance is proportional to σ2.
The assumption of the existence and boundness of the third derivatives

of fy and g can be relaxed. It is sufficient to assume that the supremum
of the absolute value of each component of V T

0 ∇2fy(x
⋆)V0, V

T
1 ∇2g(x⋆)V1,

V T
2 ∇fy(x

⋆) and V T
3 ∇g(x⋆) on Bδ(x

⋆) converges to zero as δ → 0 at the
appropriate rate, with probability 1.

We will also state a nonasymptotic bound on the distance between the
posterior distribution of the rescaled parameter and its limit.

Proposition 3. Take δk > 0, k = 0, . . . , 3, satisfying the following
conditions

max[0.5ν||B00||/κA, σ||a0(ω)||] < δ0 < min[0.2λmin(Ω00)/κA, ||U0x
⋆||],

δ1 < min[λmin(B11)/κB, ||U1x
⋆||], δk ≤ ||Ukx

⋆||∞, k = 2, 3,

0.5ν||V T
2 ∇g(x⋆)|| < max

k=0,1,2
[δkc2,k] < 0.2amin/3,

max
k=0,1,2,3

[δkc3,k] < bmin/4,

where constants cmk are defined in the proof, and the inequality δ0 > σ||a0(ω)||
holds with high probability.

Define the following events

A1(δ) = {ω : ||V T
2 [∇fY (ω)(x

⋆)−∇fyexact(x
⋆)]||∞ ≤ M1max

k
δk},

A2(δ) = {ω : ||V T
0 [∇2fY (ω)(x

⋆)−∇2fyexact(x
⋆)]V0|| ≤ M2δ0},

A3 =
{
ω : ||Ω00a0(ω)− cV T

0 ∇g(x⋆)− σ−1V T
0 ∇fY (ω)(x

⋆)|| ≤ ρ
}
,

for some ρ → 0 as σ → 0 and positive constants M1 and M2.
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Then, under the assumptions of Theorem 1, on A = A1 ∩ A2 ∩ A3,

||PS(x−x⋆)|Y − µ⋆||TV ≤ 2p0max

{
C0δ0, 1− Γ

(
λmin(Ω00)(δ0/σ − ||a0||)2

2
| p0
2

)}
+ 2p̃1max

{
C1δ1, 1− Γ

(
λmin(B11)δ

2
1

2γ2
| p1
2

)}
+ 2p2max

{
C2δ2, exp{−aminδ2/σ

2}
}

+ 2p̃3max
{
C3δ3, exp{−bδ3/γ

2}
}

+ CB

{
C4 [δ0/γ + δ2/γ + δ3/γ]

|S1| + C5[δ2/γ
2]m5

}
+ C∆∆0(δ),

where p̃k is the dimension of the non-degenerate part of Uk(X−x⋆), k = 1, 3,
and the constants are defined explicitly in the proof.

The upper bound implies that for the total variation to be small in prac-
tical applications, the dimensions pk should not be too large compared to
the corresponding rate, and that the smallest values of the parameters amin,
b and the smallest eigenvalues of the precision matrices Ω00 and B11 cannot
be too small, namely cannot be smaller than the corresponding rate.

It is interesting to note that the smallest δk satisfying the local con-
straints (given in the first four lines of the upper bound) coincide with an
upper bound on the Ky Fan distance between the posterior distribution and
its limit δx⋆ on the corresponding subspace/cone of the parameter space
(Bochkina 2012). Thus, it appears that the Ky Fan distance determines
the radius of the largest ball centred at x⋆ where the concentration of the
posterior distribution can take place.

5.4. Examples of degenerate support. It follows from Theorem 1 and
Proposition 2, that in some cases the limit of the posterior distribution
of S(x− x⋆) can degenerate due to degeneration of its support.

In a first example we consider the degeneracy where the solution of the
unconstrained optimisation problem coincides with that of the constrained
problem and occurs on on the boundary of the parameter space.

Example 3. Consider the Gaussian likelihood with the identity link:
Y ∼ N(Ax, σ2) (n = 1), with A = (1, 1). We take xtrue = (0.8, 0.2)T , so
that y⋆ = Axtrue = 1. The linear inverse problem Ax = y⋆, i.e. x1 + x2 =
1, subject to constraint x1, x2 ≥ 0, is ill-posed. To resolve the ambiguity,
we use the penalty ||x − x0||2, with x0 = (3, 2)T . Then the solution to the
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constrained optimisation problem is x⋆ = (1, 0)T , the same as the solution
to the unconstrained problem.

The gradient ∇f̃yexact(Ax
⋆) = −yexact/(Ax⋆)+ 1 = 0 implies W2 is empty

and p2 = 0. The gradient of g at x⋆ is x⋆−x0 = −(2, 2)T = −2AT +ζ where
ζ = (0, 0)T . Thus, W3 is also empty even though x⋆ occurs on the boundary.

Therefore, we have that W1 and W0 are nonempty, with U0 = (1, 1) and
U1 = V T

1 =
√
0.5(−1, 1)T , since the kernel of A is {α(1,−1)T , α ∈ R}. The

corresponding V0 is V0 = 0.5(1, 1)T . By statement 4) in Proposition 2, the
image of X − x⋆ under S is R× R+, since the only constraint is [V1]Sv1 =√
0.5v1 ≥ 0, i.e. v1 ≥ 0. Hence, µ⋆ is normal distribution N (Z(ω), 1) ×

N (0, 1) truncated to V⋆ = R× R+ where Z(ω) = (Y (ω)− 1)/σ ∼ N (0, 1).

Another case where the support can degenerate is where the kernel of A
intersects the constrained parameter space at a single point. We give two
examples.

Example 4. Consider a linear inverse problem with A = (1, 1) and
xtrue = (0, 0)T . Then y⋆ = Axtrue = 0. Under the Poisson error model with
the identity link, the true distribution of data is degenerate: Ptrue(Y = 0) =
1. Even though ill-posed, the linear inverse problem Ax = 0, i.e. x1+x2 = 1,
subject to constraints x1, x2 ≥ 0, has a solution x⋆ = (0, 0)T that is unique
due to the constraints, for any penalty.

Since yexact = 0 and ∇f̃yexact(Ax⋆) = 1, we have Z = {1} and thus
U2 = (1, 1) and p0 = 0. Take penalty ||x−x0||2 with x0 = (α, β)T ∈ (0,∞)2.
The kernel of A is {a(1,−1)T , a ∈ R}, ∇g(x⋆) = −x0.

If α = β, (1,−1)∇g(x⋆) = 0 and hence V1 = UT
1 =

√
0.5(1,−1)T and

p3 = 0. By Proposition 2, V2 = 0.5(1, 1)T and the constraints are
√
0.5v1 ≥ 0

and −
√
0.5v1 ≥ 0 due to S1 = {1, 2}, that imply that v1 must be zero.

If α ̸= β, then p1 = 0 and U3 = ((β − α)+, (α − β)+). Taking β = 1 and
α = 2, we have U3 = (0, 1), V2 = (1, 0)T and V3 = (−1, 1)T . By statement 4)
of Proposition 2, the constraints are −v3 ≥ 0 and v3 ≥ 0, implying v3 = 0.

Hence, in both cases, the limit of the posterior distribution of S(x − x⋆)
is Exp(1) for the first component, and the second component is 0 with prob-
ability 1 with V⋆ = R+ × {0}.

Now we consider a higher-dimensional example of this phenomenon.

Example 5. Take A =

(
1 1 1 1
1 1 0 0

)
and xtrue = (0, 0, 1, 1)T . Then y⋆ =

Axtrue = (2, 0)T . The likelihood is Poisson with the identity link: Yi/σ
2 ∼

Pois(Aix/σ
2). The linear inverse problem Ax = y⋆, i.e. x1 + x2 = 0 and
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i=1 xi = 2, subject to constraints xi ≥ 0 ∀i, is ill-posed. The constraints are

equivalent to x3+x4 = 2, x3, x4 ≥ 0, x1 = x2 = 0. To resolve the ambiguity,
we use the penalty ||x− x0||2 with x0 = (1, 3, 4, 1)T . Then x⋆ = (0, 0, 2, 0)T .

To construct U2, find ∇ηi f̃y⋆(η) = −y⋆i /ηi + 1, thus ∇ηf̃y⋆(y
⋆) = (0, 1)T

and Z = {2}. Thus, U2 = (1, 1, 0, 0) and U0 = (1, 1, 1, 1).
The null space of A is {α(1,−1, 0, 0)T + β(0, 0, 1,−1)T , α, β ∈ R}. The

gradient of g at x⋆, x⋆−x0 = (−1,−3,−2,−1)T , is orthogonal to α(1,−1, 0, 0)T+
β(0, 0, 1,−1)T – a direction in the null space of A – if β = 2α. Thus,
V1 =

√
0.1(1,−1, 2,−2)T is the direction of W1. A vector ζ that satisfies

(14) is ζ = (2, 0, 0, 1)T implying S = {1, 4}, and U3 = (2, 0, 0, 1). This
implies that U1 =

√
0.1(1,−1, 2,−2) and

V0 = 0.2(−1, 1, 3, 2)T , V2 = 0.1(3, 7,−4,−6)T , V3 = 0.2(2,−2,−1, 1)T .

Now we check the constraints using Proposition 2. We have s = |S∗| − p2 −
p3 = 1, and the constraints are [V1]ℓv1 ≥ 0 for ℓ ∈ S1 = S∗ = {1, 2, 4}, i.e.
we must have v1 = 0.

Hence, µ⋆ = N (
√
2Z(ω) − 4c, 2) × δ{0} × Exp(1) × Exp(1) truncated to

V⋆ = R × {0} × R2
+ where Z(ω) = limσ→0(Y1(ω))/

√
2 − 1) ∼ N (0, 1) in

probability.

5.5. Approximate Bayes estimators. Now we apply the approximation
of the posterior distribution stated in Theorem 1 to approximate the dis-
tribution of Bayes estimators. We use a similar approach to that of Cher-
nozhukov and Hong (2004), by approximating the distribution of recentered
and rescaled Bayes estimates with the distribution of the corresponding
Bayes estimates obtained under the limiting distribution, for a wide class
of loss functions. The approach of Chernozhukov and Hong (2004) relies on
Theorem I.10.2 in Ibragimov and Has’minskij (1981) that implies this result
from an analogue of Theorem 1, under some additional conditions.

Assumption Q. We consider loss functions Q : Rp → [0,∞) satisfying
the following properties:

1. Q(z) ≥ 0, Q(z) = 0 if and only if z = 0, and Q is convex;
2. Q(z) is dominated by a polynomial in ||z||∞ as ||z||∞ → ∞.

This loss function is applicable to the modified parameter v = S(x − x⋆),
and the corresponding Bayes estimate of v is

v̂Q = arg inf
v∈S(X−x⋆)

∫
S(X−x⋆)

Q(v − v′)pS(x−x⋆)|y(v
′)dv′,

where pS(x−x⋆)|y is the density of the posterior distribution of S(x−x⋆) with
respect to Lebesgue measure. Since S is a bijection, the corresponding Bayes
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estimate of x is

x̂Q = arg inf
x∈X

∫
X
Q(S(x− x′))p(x′ | y)dx′,

and v̂Q = S(x̂Q−x⋆). Thus, the corresponding loss function for x is Q̃(x) =
Q(Sx).

In the next theorem we state the asymptotic distribution of x̂Q as σ → 0.
If c = limσ→0 σ/γ

2 = 0 and there is no degeneracy of the support (the
conditions of item 3) in Proposition 2 are satisfied), then V⋆ factorises to
V⋆ = ⊗3

k=0Vk where Vk ⊆ Rpk for k = 0, 1 and Vk ⊆ Rpk
+ for k = 2, 3. If

c > 0 and there is no degeneracy, then the factorisation is V03 ×V1 ×V2, up
to a permutation of the coordinates, since in this case the scales of V0 and
V3, σ and γ2, are of the same order and there are joint constraints on v0
and v3 (Proposition 2). To simplify the statement, let Sk be the map from
X − x⋆ to V⋆

k (S0 = σU0, S1 = γU1, S2 = σ2U2, S3 = γ2U3) and µ⋆
k be the

marginal distribution on Vk. If there is no degeneracy of the support, the
marginal distribution is Gaussian on V0 and V1 and exponential on V2 and
V3 (Theorem 1).

Theorem 2. Suppose that conditions of Theorem 1 hold, and that the
loss function Q satisfies Assumption Q. Then, for x̂Q defined above,

(1) S(x̂Q − x⋆)
d→ v⋆Q as σ → 0, where

v⋆Q(ω) = arg inf
v∈V⋆

∫
V⋆

Q(v − v′)dµ⋆(v′, ω),

and µ⋆(·, ω) is the limit of the rescaled posterior distribution defined
in Theorem 1;

(2) if Q(v) =
∑3

k=0Qk(vk) and V⋆ = ⊗3
k=0Vk where v = (v0, v1, v2, v3),

vk ∈ Vk, k = 0, 1, 2, 3, then

Sk(x̂Q − x⋆)
d→ v⋆Q,k(ω) = arg inf

vk∈Vk

∫
Vk

Qk(vk − v′k)dµ
⋆
k(v

′
k, ω)dv

′
k.

Here
d→ denotes convergence in distribution.

This theorem establishes consistency, rates of convergence, and limit dis-
tributions of Bayes estimates.

For example, for the quadratic loss function Q(z) = ||z||22, v⋆Q,k is the mean
of the corresponding limiting distribution, i.e. v⋆Q,0(ω) = a0(ω), v

⋆
Q,1 = 0,

v⋆Q,2 is the vector (1/a1, . . . , 1/ap2) and v⋆Q,3 is the vector (1/b1, . . . , 1/bp3).
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To obtain the MAP estimate, we take Q(v) =
∑p

i=1 I(|vi| ≤ ϵ)/ϵ – an ap-
proximation of the Dirac delta function that satisfies the above assumption,
obtain the corresponding Bayes estimate and take the limit ϵ → 0, indepen-
dently of σ. Thus, it can be shown that the rescaled and recentred MAP
estimate S(x̂δ0 − x⋆) converges in distribution to the mode of the density of
µ⋆(ω).

6. The Bernstein–von Mises theorem for SPECT.

6.1. Approximation of the posterior distribution. Consider the SPECT
model defined in Section 2, and allow some coordinates of yexact to be zero.
This model is nonregular, since Pyexactj (Yj = 0) = 1 for j ∈ Z; hence, with

probability 1, ∇j f̃Y (Ax
⋆) = 1 = ∇j f̃yexact(Ax⋆), and, since we assume that

matrix A has no zero rows or columns,

∇fyexact(x
⋆) = −

∑
j: yexactj ̸=0

yexactjAj/(Ajx
⋆) +

n∑
j=1

Aj =
∑
j∈Z

Aj ̸= 0.

The nonregularity arises from the elements where there is no data (yexactj =
0) but, since Aj ̸= 0, it gives us information about those xi where Aji ̸= 0.

The assumptions of Theorem 1 are satisfied since the derivatives of the
log posterior are bounded up to order 3 (Assumption S), Assumption C
holds due to convergence in probability ∇j f̃Y (Ax⋆) = 1− Yj/yexactj → 0 =

∇j f̃yexact(Ax⋆) as σ → 0 for j /∈ Z, and the convergence assumption is true
for the second order derivatives and the functions as well. Assumption L
is satisfied since both Poisson likelihood and the log cosh prior have expo-
nential tails for large values of their arguments, the appropriate rescaling is
either of the same order as D−1

σ,γ (leading to the integral over the complement
of a ball with radius tending to infinity) or smaller (leading to an integral
with a factor tending to zero), hence the integral outside of the ball vanishes.

The matrices U and V determining the change of variables can be taken
as given by (19) and in Proposition 2 respectively. Then, if p3 > 0, b = 1
and the parameter of the other exponential distribution is given by a =
V T
2 AT

Z,1Z = ay.
For the log cosh prior with density defined by (4), the prior precision

matrix B(x) has the following non-zero entries:

Bss(x) =
2(1 + δ)

δ

∑
s′∼s

[
1 + e2(xs−xs′ )/δ

]−2
,

Bss′(x) = −2(1 + δ)

δ

[
1 + e2(xs−xs′ )/δ

]−2
, if s′ ∼ s.
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Note that B is singular, as the prior is improper (x is a priori identified
only up an additive constant). The matrix [ATA : B] is of full rank since
the null space of B, {v = α(1, . . . , 1)T , α ∈ R}, is one-dimensional and
A(1, . . . , 1)T ̸= 0 since A does not have zero rows, and all of its elements are
nonnegative. The precision matrices are given by

B11 = V T
1 B(x⋆)V1, Ω00 = V T

0 AT
Z,diag(1/[yexact]Z)AZ,V0.

a0 = Ω−1
00 V

T
0 AT

Zc,ξ + cΩ−1
00 V

T
0 ∇g(x⋆) ∼ N

(
cΩ−1

00 V
T
0 ∇g(x⋆),Ω−1

00

)
,

where ξj ∼ N (0, 1) for j ∈ Zc is the limit of
√
yexact(Yj/yexactj−1)/σ as σ →

0, ξj are independent due to independence of Yj , and ξ = (ξ1, . . . , ξn)
T . The

random variable a0 is centred at zero (and hence the posterior distribution
of U0(x− x⋆)/σ is not affected by the prior) if c = limσ→0

σ
γ2 = 0.

6.2. Ill-posed-ness and unidentifiability. The results in Bochkina (2012)
prove that, under a subset of our stated conditions, the posterior degenerates
to the point x⋆ in the small-variance limit. The proof assumes that the data
model p(y|x) is correctly specified; in subsequent work we intend to relax
this. However, in respect of the other key model component – the prior for
x – no such assumption of correctness is made either in Bochkina (2012)
or the present paper. The prior is regarded as the invention of the analyst,
who, of course, has no knowledge of xtrue, the true value of x. Yet the point
x⋆ does depend on the prior, and so we need to understand the impact of
the prior on the difference between xtrue and x⋆.

The point x⋆ is defined (Section 4.3) as the point maximising the prior
density p(x) subject to the non-negativity constraints x ∈ [0,∞)p and the
constraint that the model fits the exact data: Ax⋆ = yexact = Axtrue. Thus x

⋆

agrees with xtrue perfectly in directions orthogonal to the model hyperplane
Ax = yexact, i.e. PAT (x⋆ − xtrue) = 0.

In contrast, parallel to this hyperplane, there is no information in the
data about xtrue, so x⋆ is determined solely by the prior; there is no rea-
son for (I − PAT )(x⋆ − xtrue) to be small. For example, for the Gaussian
prior p(x) ∝ exp(−1/(2γ2)||x − x0||2B), discussed in Section 4.1, if the un-
constrained maximum limν→0(A

TA+νB)−1(ATAxtrue+νBx0) satisfies the
non-negativity constraints, then x⋆ is given explicitly by this expression, and
so equals xtrue if and only if (I − PAT )x0 = (I − PAT )xtrue.

6.3. Practical implications of the approximate posterior. In this section,
we briefly discuss some practical implications of Theorem 1. On a realis-
tic scale where p is of the order 212–216 we cannot hope to construct and
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manipulate p × p matrices such as V ; this seems to rule out any practical
use. However, there are well-developed methods for SPECT reconstruction
using our model, using Markov chain Monte Carlo computation, deliver-
ing not only approximate, simulation-consistent, posterior means, but also
variances; see Weir (1997). In this context, the theorem provides valuable
knowledge which can enrich the interpretation of numerical results, enabling
approximate probabilistic inference.

Inferential questions of real interest, including (a) quantitative inference
about amounts of radio-labelled tracer within specified regions of interest,
or (b) tests for significance of apparent hot- or cold-spots, can be answered
using approximate posterior distributions for linear combinations λTx of
elements of x, and are particularly amenable to treatment in this way. More
specifically, if for any non-empty set of pixels R ⊆ {1, 2, . . . , p}, αR denotes
the vector with elements αR

j = 1/|R| for j ∈ R, 0 otherwise, then to deal with

case (a) we can take λ = αR to deliver λTx as the average concentration of
tracer in region R, and for case (b) take λ = αR1 −αR2 to give the difference
in average concentration in region R1 compared to R2. To avoid bias in such
inferences arising from the lack of identifiability caused by ill-posed-ness, it
is important to check that λ lies in the row space of A.

The approach we propose would exploit analyis of MCMC output of λTx,
together with a numerical MAP estimate x̂ = argmaxxp(x|y), calculated
using an EM-based algorithm (Green 1990). This can be used to identify x⋆

and hence S, thus partitioning elements of x into those that are asymptoti-
cally normally or exponentially distributed; we anticipate p0 ≫ p1, p2, p3 in
practical situations. It will commonly be the case that j ̸∈ S for all j such
that λj ̸= 0, in which case the theorem tells us that λTx is asymptotically
normally distributed, and its mean and variance, computed by MCMC, can
be directly used to specify the approximating normal distribution and an-
swer the inferential question posed. In the contrary case where λj ̸= 0 for
some j ∈ S, a little work is needed to separate the asymptotically normal
and exponential components of x contributing to λTx. The simplest example
of this would be a test for xj = 0 for a j such that x̂j = 0 and so j ∈ S.
For such j, xj is asymptotically exponentially distributed a posteriori, with
a parameter that can be readily estimated from the MCMC output.

6.4. Finite sample performance. Finally, we briefly discuss the extent to
which the approximation in Theorem 1 holds true for data on the scale of a
real SPECT study. A formal assessment of this would entail a major study
beyond the scope of this paper, so instead we present selected results from an
analysis of synthetic data based on a real SPECT scan of the pelvic region
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Fig 2. First row: a sample from the posterior, contour map of acceptance rates, marginal
posteriors for a section of 9 consecutive pixels through the image (row 12, columns 23
to 31), showing ground truth in blue. Second row: histogram of marginal posterior for a
high-spot pixel (row 12, column 28), with truth indicated by blue line, and the same shown
as a QQ plot against the normal and exponential distributions respectively. Third row, the
same but for a low-spot pixel (row 12, column 31).
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of a human subject.
The matrix A was constructed according to the model in Green (1990)

and Weir (1997), capturing geometry, attenuation and radioactive decay for
a setup consisting of 64 projections from a 2-dimensional slice through the
patient, each projection yielding an array of 52 photon counts, correspond-
ing to a spatial resolution of 0.57cm. Synthetic data was generated using this
A and a ‘ground truth’ obtained from an approximate MAP reconstruction
from real data. The total photon count was 62953; individual counts ranged
from 0 to 114, averaging 18.9. Reconstruction was performed on a 48 × 48
square grid, with pixel size 0.64cm, using the log cosh prior with hyperpa-
rameters fixed at γ = 25 and δ = 8, was obtained using a simple MCMC
sampler. We employed 20000 sweeps of a deterministic-raster-scan single-
pixel random walk Metropolis sampler on a square-root scale for x, chosen
to avoid extremes in acceptance rate at high- and low-spots in the image.

Figure 2 shows selected aspects of this analysis; see caption for details. Our
tentative conclusion from this is that the marginal posterior distributions
for individual pixels xj do appear to be approximately normal in high-spots
and approximately exponential in low-spots, consistent with the theoretical
limits presented in Theorem 1.

7. Discussion. When the posterior distribution concentrates on the
boundary, we have showed that the classic Bernstein–von Mises theorem,
stating the limit of the posterior distribution recentred and rescaled by

√
n

for n independent random variables, does not hold. Instead, the limit differs
in two respects, in directions towards the boundary: the limiting distribution
is an exponential, and the appropriate scale is n, i.e. the convergence is
faster. Parallel to the boundary, however, the classic version of Bernstein–
von Mises theorem is applicable. Our results also extend the Bernstein–von
Mises theorem to the case of non-iid observations and of a non-identifiable
likelihood, for models that belong to the GLIP class.

These are examples of nonregular problems, differing from those consid-
ered by Ghosal and Samanta (1995), Ghosh et al. (1994) and Chernozhukov
and Hong (2004). In their case, the density of the errors has a jump whose
location depends on the unknown parameter; this is similar to a change
point problem, whereas in our case there is a degeneration of the likelihood.
This difference is reflected in the limiting distribution, that in the former
case is shifted by a random variable that depends on data, whereas in our
case there is no shift and no dependence of the exponential distribution on
the data.

The nonasymptotic version of the main result shows that other parameters
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of the model can also affect convergence in practice, such as the smallest
eigenvalues of the precision matrices in the Gaussian part of the limit and
the smallest parameter of each of the exponential distributions.

There are interesting questions, beyond the scope of this paper, concern-
ing the appropriateness of different prior formulations (as assessed from a
frequentist perspective). Within a subjectivist Bayesian paradigm, real prior
information is necessary for an informed choice.

An interesting direction for future work is to study both the behaviour of
the posterior distribution, and the question of optimal prior specification,
in a framework where the spatial resolution is infinitely refined, placing
smoothness class constraints on xtrue.
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APPENDIX A: PROOFS

A.1. Proofs, Section 4.

Proof of Proposition 1. For arbitrary ν > 0, suppose x ∈ Rp is such
that (ATA + νB)x = 0p, the zero vector in Rp. We have to show that
x = 0p. But (ATA + νB)x = 0p implies xT (ATA + νB)x = 0, and so by
non-negative-definiteness of B and ATA, xTBx = 0 = xTATAx. But then
Bx = 0p = ATAx, and so xT [B : ATA] = 0T2p. By the assumed full rank of
this matrix, x must be 0p.

Now fix ν0 > 0. By Theorem 2 of Searle (1982), page 313, (with his
A replaced by ATA + ν0B), there exists a nonsingular real matrix P , not
necessarily orthogonal, such that P T (ATA + ν0B)P = I and P TBP is the
diagonal matrix Λ of the solutions for λ to |B − λ(ATA+ ν0B)| = 0 (which
all satisfy 0 ≤ λ ≤ ν−1

0 ). But then P TATAP = I − ν0Λ and for any ν > 0,
P T (ATA+νB)P = I+(ν−ν0)Λ, both of which are of course also diagonal.

The matrix P can depend on the choice of ν0, but evidently always diago-
nalises ATA, B and any linear combination. Also, Λ depends on ν0, but since
|B−λ(ATA+ν0B)| = (1−λν0)

p|B−αATA| where α = λ/(1−λν0), the (di-
agonal) elements in Λ are λi = αi/(1+αiν0) where {αi} are the solutions to
|B−αATA| = 0 (possibly some αi = +∞). So P TBP = diag(αi/(1+αiν0)),
P TATAP = diag(1/(1+αiν0)) and for any ν, P T (ATA+νB)P = diag((1+
αiν)/(1 + αiν0)). For the final assertions, note that ν(ATA + νB)−1 =
Pdiag(ν(1 + αiν0)/(1 + αiν))P

T , which converges to Pdiag(δi)P
T = C,

say, where δi = ν0 if αi = +∞, and 0 otherwise. Further, we can estimate
the difference: ν(ATA+νB)−1−C = Pdiag(ν(1+αiν0)/(1+αiν)−δi)P

T =
νPdiag(ϕi)P

T+O(ν2), where ϕi = 0 if αi = +∞ and otherwise ϕi = 1+αiν0.
Transformation by P scales and skews the result, but in a way independent

of ν, so the limiting behaviour of ν(ATA+νB)−1 follows from the facts that
the diagonal terms corresponding to αi = +∞ have finite positive limits and
the remaining ones scale as ν. We see from P TATAP = diag(1/(1 + αiν0))
that the number of αi not equal to +∞ is just the rank of ATA, i.e. rank(A).
Thus ν(ATA+ νB)−1 = C +Dν + o(ν) as ν → 0 as required.

Proof of Lemma 1. The matrix V is of full rank if

3∑
k=0

Vkwk = 0, w0 ∈ Rp0 , w1 ∈ Rp1 , w2 ∈ Rp2
+ , w3 ∈ Rp3

+

implies wk = 0 for all k.
Multiply the above expression by [∇Z f̃yexact(x

⋆)]TAZ, we have that

0 = [∇Z f̃yexact(x
⋆)]TAZ,V2w2
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Since vector V T
2 AT

Z∇Z f̃yexact(x
⋆) has positive coordinates and w2 has non-

negative coordinates, the condition holds only if w2 = 0.
Multiplying the above expression by V T

0 AT
Z,AZ, and use w2 = 0, we have

that
0 = V T

0 AT
Z,AZ,[V0w0 + V2w2] = V T

0 AT
Z,AZ,V0w0

Since matrix V T
0 AT

Z,AZ,V0 is of full rank, the above condition implies w0 = 0.

Now we multiply the condition by ∇g(x⋆)T and use w0 = 0 and w2 = 0:

0 =

3∑
k=0

∇g(x⋆)TVkwk = ∇g(x⋆)TV1w1+∇g(x⋆)TV3w3 = ζTV1w1+ζTV3w3 = ζTV3w3.

Vector V T
3 ζ has positive entries therefore this condition implies w3 = 0.

Now we multiply the condition by [V1]
T
Sc, J with J,Sc = I|Sc| and J,S = 0,

and use w0 = 0, w2 = 0 and w3 = 0:

0 =

3∑
k=0

[V1]
T
Sc, JVkwk = [V1]

T
Sc,[V1]Sc,w1.

Since matrix [V1]
T
Sc,[V1]Sc, is positive definite, this condition implies w1 = 0.

Thus, we showed that the p × p matrix V has p linearly independent
columns, thus it is of full rank.

Proof of Proposition 2. Conditions (15) state that p× p1 matrix V1

consists of p1 linearly independent columns that satisfy AV1 = 0 and ζTV1 =
0. If ζ = 0 (i.e. ∇g(x⋆) is in the image space of AT ) then V1 consists of the
p1 = p− rank(A) vectors that form a basis of the null space of A. If ζ ̸= 0,
then ζ is linearly independent of the columns of A and V1 consists of the
p1 = p − rank(AT : ζ) = p − rank(A) − 1 vectors that form a basis of the
null space of (AT : ζ)T .

Therefore, if ζ = 0, p3 = 0, otherwise p3 = 1 and V3 is a vector in the null
space of A that satisfies V T

3 ζ > 0.

1. Introduce the change of variables w = U(x − x⋆), where U = V −1 is
defined in the statement of the lemma. Condition UV = I is equivalent to
UkVk = Ipk and UkVj = 0 for k ̸= j, i.e.

AZ0,V0 = Ip0 , AZ2,V2 = Ip2 , U1V1 = Ip1 , ζTV3 = 1p3 ,

AV1 = 0, AV3 = 0, AZ0,V2 = 0, AZ2,V0 = 0,

ζTV2 = 0, ζTV0 = 0, ζTV1 = 0,

U1Vk = 0, k ̸= 1.(29)



BERNSTEIN–VON MISES THEOREM FOR NONREGULAR PROBLEMS 33

Thus, to show that all conditions (15) are satisfied, we need to show that

V T
0 AT

Zc,AZc,V0 is positive definite,

V T
2 AT

Z,∇Z f̃yexact(Ax
⋆) is a vector with positive coordinates.

Recall that ∇j f̃yexact(x
⋆) > 0 for all j ∈ Z.

If the matrix AZ, is of full rank, then Z2 = Z and V T
2 AT

Z, = Ip2 , hence
the latter condition is satisfied. Otherwise, by Caratheodory’s theorem (p.37
of Bertsekas (2006)), ∃Z2 ⊂ Z such that vectors {Aj,, j ∈ Z2} are linearly

independent and define the cone
{
w =

∑
j∈Z AT

j,µj ; µj ≥ 0
}
, i.e. for any

j ∈ Z, Aj, can be written a linear combination of vectors Aj,, j ∈ Z2 with
nonnegative coefficients, in particular, for Z22 = Z \Z2, AZ22, = βAZ2, with
βij ≥ 0, i = 1, . . . , |Z22|, j = 1, . . . , |Z2|. Then, vector V T

2 AT
Z∇Z f̃yexact(x

⋆)
has positive coordinates

V T
2 AT

Z∇Z f̃yexact(x
⋆) = ∇Z2 f̃yexact(x

⋆) + βT∇Z22 f̃yexact(x
⋆) > 0,

where the inequality is componentwise.
By definition of Z0, there exist matrices α0 and α2 such that AZc, =

α0AZ0,+α2AZ2,, in particular |Zc| × p0 matrix α0 is of full rank. Therefore,
AZc,V0 = α0 and the matrix V T

0 AT
Zc,AZc,V0 = αT

0 α0 is of full rank, hence
the first condition is also satisfied.

Columns of matrix (AT
Z0,

, AT
Z2,

, V1, ζ) are linearly independent and span

Rp, hence, matrix UT
1 can be written as a linear combination of the columns

of this matrix,

U1 = δk0AZ0, + δk2AZ2, + δk1V
T
1 + δk3ζ

T .

Conditions (30) imply that U1 = V T
1 .

2. Columns of matrix (AT
Z0,

: AT
Z2,

: V1 : ζ) are linearly independent and

span Rp, hence, any matrix V T
k can be written as a linear combination of

the columns of this matrix, i.e. for k = 0, 2, 3,

Vk = AT
Z0,δk0 +AT

Z2,δk2 + V1δk1 + ζδk3,

and the same holds for UT
1 . By the conditions (30), multiplying the expres-

sion for V3 by AZ0,, AZ2,, V
T
1 and ζT implies that δ31 = 0, δ33 = 1/||ζ||2,

δ3m = −(AZm,A
T
Zm,)

−1AZm,ζδ33 for m = 0, 2, implying V3 = ζ̃/||ζ̃||2, where

P0 = PAT
Z0,

, P̃2,0 = (I−P0)A
T
Z2,(AZ2,(I−P0)A

T
Z2,)

−1AZ2,(I−P0), ζ̃ = (I−P̃2,0)(I−P0)ζ.
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For (k,m) ∈ {(0, 2), (2, 0)}, multiplying the expression

Vk = AT
Zk,

δkk +AT
Zm,δkm + V1δk1 + ζδk3

by AZk,, AZm,, V
T
1 and ζT and using conditions (30), we obtain

Vk = (I − P̃m,ζ)A
T
Zk,

(AZk,(I − P̃m,ζ)A
T
Zk,

)−1,

where Pζ = ζζT /||ζ||2 and P̃k,ζ = (I−Pζ)A
T
Zk,

[AZk,(I−Pζ)AZk,]
−1AZk,(I−

Pζ).

3, 4. Now we study the image of map S.
Since [yexact]Z∗ = 0 and x⋆j ̸= 0 for all j ∈ S∗c, we must have AZ∗,S∗c = 0

since
0 = [yexact]Z∗ = AZ∗,S∗x⋆S∗ +AZ∗,S∗cx⋆S∗c = AZ∗,S∗cx⋆S∗c .

The values of U2(x − x⋆) = AZ2,(x − x⋆) = AZ2,S∗xS∗ are positive since
AZ2,S∗c = 0 and AZ2,S∗x⋆S∗ = 0 is the lower boundary point of AX . The
KKT conditions imply that for j ∈ Z∗, [Ax⋆]j is a boundary point of AX ,
and therefore Aj,(x−x⋆) = Aj,x− [Ax⋆]j ≥ 0, since we assumed that [Ax⋆]j
is a lower boundary point of AX .

If p3 ̸= 0, U3(x − x⋆) = ζT (x − x⋆) = ζTS∗xS∗ . If S ̸= S∗ and S is empty,
then ζTS∗ = 0 and hence the image of U3(x− x⋆) is zero, a single point. If S
is not empty, then the image of U3(x− x⋆) is [0,∞) since xj ≥ 0 and ζj > 0
for j ∈ S.

If we can choose Z0 such that Z0 ∩ (Z∗ \ Z) = ∅ and S∗c ̸= ∅, values of
U0(x−x⋆) = AZ0,(x−x⋆) can be both positive and negative for x ∈ X since
AZ0,j ̸= 0 for all j ∈ S∗c (otherwise matrix A would have a zero column).

If Z ̸= Z∗ and Z0 ∩ Z∗ ̸= ∅, then for j ∈ Z∗ ∩ Z0, Aj,S∗c = 0 and the
values of [U0]j,(x−x⋆) = Aj,S∗xS∗ can only be nonnegative for x ∈ X , since
we assumed that AX has only lower boundary points, that could only be
zeroes. Denote Z∗

0 = Z∗ ∩ Z0 and z = |Z∗
0 |.

Values of U1(x−x⋆) can be both positive and negative if [U1]i,S∗c , that is,
[V1]S∗c, i , is nonzero for all i ∈ 1, . . . , p1. This is equivalent to any solution
v to the equation (AT : ζ)T v = 0 satisfying vS∗c ̸= 0. The condition is
equivalent to

0 = [(A,S∗vS∗)T : vTS∗ζS∗ ]T + [(A,S∗cvS∗c)T : 0]T .

Since AZ∗,S∗c = 0, vS∗ is a solution of (AT
Z∗,S∗ : ζS∗)T vS∗ = 0. The num-

ber of linearly independent nonzero solutions vS∗ is |S∗| − rank((AT
Z∗,S∗ :

ζS∗)) = |S∗| − p2 − p3 − z ≥ 0. The remaining condition is A,S∗cvS∗c =
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−A,S∗vS∗ . Note that since AZ0, are linearly independent vectors that are
not in the range of AT

Z, and AZ∗,S∗c = 0, this condition is equivalent to
AZ0\Z∗

0 ,S
∗cvS∗c = 0 (using column elimination), and also rank(AZ0,S∗c) +

rank(AZ2,S∗) = rank(AZ0∩Z2,) = rank(A) and hence rank(AZ0,S∗c) = rank(AZ0\Z∗
0 ,S

∗c) =
p0. Hence, the number of linearly independent nonzero solutions vS∗c of the
above equation is |S∗c| − rank(AZ0\Z∗

0 ,S
∗c) = p− |S∗| − p0.

Thus, if the number of linearly independent nonzero solutions vS∗c p −
|S∗| − p0 is equal to p1, i.e. if |S∗| = p2 + p3, then the range of U1(x − x⋆)
includes both positive and negative values. If p− |S∗| − p0 < p1 (i.e. |S∗| >
p2 + p3 + z), then, s = |S∗| − p2 − p3 rows of [U1],S∗c are zero (say, the last
s rows) (thus, [U1]1:s,S∗c = 0 and [V1]S∗c,1:s = 0). Then, for ℓ ∈ 1 : s,

[w1]ℓ = [U1]ℓ,(x−x⋆) = [U1]ℓ,S∗xS∗+[U1]ℓ,S∗c(xS∗c−x⋆S∗c) = [U1]ℓ,S∗xS∗ = [V1]
T
S∗,ℓ xS∗ .

Then, if [V1]S∗,ℓ includes both positive and negative values, the range of
[w1]ℓ includes both positive and negative values. If [V1]S∗,ℓ has only positive
or only negative values, then the range is either nonnegative or nonpositive.

Now we also need to check whether there is a constraint on vk arising
from the constraints on x.

Constraints: xℓ−x⋆ℓ = xℓ = σ[V0]ℓ, v0+γ[V1]ℓ, v1+σ2[V2]ℓ, v2+γ2[V3]ℓ v3 ≥
0 for ℓ ∈ S∗. In the limit, the dominating order is γ, hence for ℓ ∈ S∗ such
that [V1]ℓ, ̸= 0, the constraints imply [V1]ℓ,v1 = [V1]ℓ,1:s[v1]1:s ≥ 0.

For ℓ ∈ S∗ such that [V1]ℓ, = 0, the dominating order is γ2, if c =
limσ/γ2 = 0, and γ2 and σ if c > 0. If c = 0, for ℓ ∈ S∗ such that [V3]ℓ ̸= 0,
the constraints become [V3]ℓv3 ≥ 0. Thus, if all nonzero values of [V3]ℓ for
ℓ ∈ S∗ are positive, the constraint is v3 ≥ 0. However, if [V3]S∗ has both
positive and negative values, the constraint implies w3 must be zero, thus
we have the degeneracy of the support of v3. If c > 0, the same holds for
ℓ ∈ S∗ such that [V3]ℓ ̸= 0 and [V0]ℓ, = 0.

If c > 0, for ℓ ∈ S∗ such that [V3]ℓ ̸= 0, the constraints become [V3]ℓv3 +
c[V0]ℓ,v0 ≥ 0.

Thus, if c = 0, then V⋆ is defined by

V⋆ = {(v0, v1, v2, v3) ∈ Rp0+p1−s × Rs+p2+p3
+ : [Vk]Sk,vk ≥ 0, k = 0, . . . , 3}

where the inequalities are component-wise. If c > 0, then V⋆ is defined by

V⋆ = {(v0, v1, v2, v3) ∈ Rp0+p1−s×Rs+p2+p3
+ : c[V0]S03,v0+[V3]S03,v3 ≥ 0& [Vk]Sk,vk ≥ 0, k = 1, 2}

where S03 = S0 ∪ S3 and the inequalities are component-wise.
In particular, the inequality on v1 is only on the last s components:

[V1]S1,(p1−s+1):p1 [v1](p1−s+1):p1 ≥ 0.
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A.2. Upper and lower bounds on the log posterior density. We
give two lemmas that provide random and nonrandom upper and lower
bounds on the log of the posterior density.

Lemma 2. Let Bδ = B2(0, δ0)×B2(0, δ1)×B∞(0, δ2)×B∞(0, δ3), Bδ(x
⋆) =

{x ∈ X : V −1(x−x⋆) ∈ Bδ, and denote δ+ = ||V ||∞[δ0
√
p0+δ1

√
p1+δ2+δ3].

Denote also

κA =
2p

3
(Cf3 + 2νCg3), κB =

4p

3
Cg3,

δa = δ0||B02||2,∞ + δ1||B12||2,∞ +
δ2
2
||B22||∞,∞ + δ2δ+

q22κA
2p

,

δb = δ0||B03||2,∞ + δ1||B13||2,∞ + δ2||B23||∞,∞ +
δ3
2
||B33||∞,∞ + δ+δ3

q23κB
2p

,

where Hij = ViHV T
j and Bij = ViBV T

j , i, j ∈ {0, 1, 2, 3}, qk = ||Vk||∞,∞ for
k = 2, 3.

1. Upper bound. Then, for x ∈ Bδ(x
⋆), we have the following upper

bound:

[hy(x)− hy(x
⋆)]/σ2 ≤ (ay + δa1)

T v2 + (b+ δb1)
T v3 + ||H̃1/2

00 (v0 − H̃−1
00 ∇hy(x

⋆)/σ)||2/2

+ ||B̃1/2
11 v1||22/2−

1

2σ2
||H̃−1/2

00 ∇hy(x
⋆)||2 + ||B10||δ0δ1/σ2,

where B̃11 = B11 + δ1κBIp1 , H̃00 = H00 + δ0κAIp0 .
2. Lower bound. For x ∈ Bδ(x

⋆) and small enough δk and ν, we have
the following lower bound:

[hy(x)− hy(x
⋆)]/σ2 ≥ (ay − δa1)

T v2 + (b− δb1)
T v3 + ||H̄1/2

00

(
v0 − H̄−1

00 ∇hy(x
⋆)/σ

)
||2/2

+ ||B̄1/2
11 v1||22/2−

1

2σ2
||H̄−1/2

00 ∇hy(x
⋆)||2 − ||B10||δ0δ1/σ2,

where B̄11 = B11 − δ1κBIp1 , H̄00 = H00 − δ0κAIp0 .

Proof. Approximate hy(x) by a quadratic function using Taylor decom-
position in a neighbourhood of x⋆:

hy(x) = hy(x
⋆) + [∇hy(x

⋆)]T (x− x⋆) +
1

2
(x− x⋆)TH(x− x⋆) + ∆00(x).

We start with looking at the gradient:

∇hy(x
⋆) = PAT (∇fy(x

⋆) + ν∇g(x⋆)) + ν(I − PAT )∇g(x⋆).
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Using the properties of the local geometry described in Section 4.3 and the
representation x = x⋆ +

∑3
k=0 Vkwk, we have

(x− x⋆)T∇fyexact(x
⋆) = [

3∑
k=0

Vkwk]
T∇fyexact(x

⋆) = wT
2 V

T
2 AZ,∇Z f̃yexact(Ax⋆) = aTw2,

(x− x⋆)T∇fy(x
⋆) = wT

2 V2AZ,∇Z f̃y(Ax⋆) + wT
0 V0∇fy(x

⋆),

due to V T
0 ∇fyexact(x

⋆) = 0, AV1 = 0 and AV3 = 0. Also,

(x− x⋆)T∇g(x⋆) =
3∑

k=0

wT
k V

T
k ∇g(x⋆) = wT

0 V
T
0 ∇g(x⋆) + wT

2 V
T
2 ∇g(x⋆) + wT

3 V
T
3 ∇g(x⋆),

due to V T
1 ∇g(x⋆) = 0. Combining these expressions together, we have

(x− x⋆)T∇hy(x
⋆) = wT

0 V
T
0 ∇hy(x

⋆) + wT
2 ay + νwT

3 b.

Now we bound ∆00 for w = V −1(x−x⋆) ∈ Bδ using Taylor decomposition
of hy(x): ∃xc ∈ ⟨x, x⋆⟩:

|∆00(δ)| =
1

6

∣∣∣∣∣∣
∑
ijk

∇ijkhy(xc)(xi − x⋆i )(xj − x⋆j )(xk − x⋆k)

∣∣∣∣∣∣
=

1

6

∣∣∣∣∣∑
i

(xi − x⋆i )
∂

∂zi

[
(x− x⋆)T∇2hy(z)(x− x⋆)

]
z=xc

∣∣∣∣∣
Note that

(x− x⋆)T∇2hy(z)(x− x⋆) =

3∑
k,j=0

wT
k V

T
k ∇2hy(z)Vjwj

=
∑

k,j=0,2

wT
k V

T
k ∇2fy(z)Vjwj + ν

3∑
k,j=0

wT
k V

T
k ∇2g(z)Vjwj .

Differentiating with respect to z and bounding the third derivatives of fy
and g using Assumption S, we have that for every i, with high probability,

|wT
k V

T
k ∇i∇2fy(z)Vjwj | ≤ Cf3 ||Vjwj ||1 ||Vkwk||1.

Then, we can use inequalities ||Vkwk||1 ≤ √
p||Vkwk||2 ≤ √

p||wk||2 for k =
0, 1, and ||Vkwk||1 ≤ ||wk||1||Vk||∞,∞ for k = 2, 3. Denote qk = ||Vk||∞,∞ for
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k = 2, 3. Then,

|(x− x⋆)T∇i∇2hy(z)(x− x⋆)| ≤ Cf3

∑
k,j=0,2

||Vkwk||1 ||Vjwj ||1 + νCg3

3∑
k,j=0

||Vkwk||1 ||Vjwj ||1

≤ 2Cf3

[
||V0w0||21 + ||V2w2||21

]
+ 4νCg3

3∑
k=0

||Vkwk||21

≤ 2p(Cf3 + 2νCg3)||w0||22 + 2q22(Cf3 + 2νCg3)||w2||21
+ 4νpCg3||w1||22 + 4νCg3q

2
3||w3||21.

Therefore, using the constants κA and κB defined in the lemma, we have

|∆00(δ)| ≤ 1

6
||x− x⋆||1max

i
|(x− x⋆)T∇i∇2hy(z)(x− x⋆)|

≤ 1

6
δ+
[
(p||w0||22 + δ2q

2
2||w2||1)(2Cf3 + 4νCg3) + 4νCg3[p||w1||22 + δ3q

2
3||w3||1]

]
,

≤ δ+
2

[
κA||w0||22 + κBν||w1||22 + κAq

2
2δ2||w2||1/p+ νκBq

2
3δ3||w3||1/p

]
,

since ||x−x⋆||1 = ||V w||1 ≤ ||V ||∞||w||1 ≤ ||V ||∞[
√
p0δ0+

√
p1δ1+δ2+δ3] =

δ+.

1. The upper bound. Making the change of variables v = S(x − x⋆), we
have

[hy(x)− hy(x
⋆)]/σ2 ≤ aTy v2 + bT v3 +

1

2
vT0 H00v0 − vT0 ∇hy(x

⋆)/σ +
1

2
vT1 B11v1

+
√
νvT0 B01v1 + δ+[κA||v0||2 + κB||v1||2]/2

+ [σvT0 V0 + γvT1 V1]BV T
3 v3 +

γ2

2
vT3 B33v3

+ [σvT0 V0 + γvT1 V1 + γ2vT2 V2]BV T
3 v3 +

σ2

2
vT2 B22v2

+
δ+
2

[
κBq

2
3δ3||v3||1/p+ κAq

2
2δ2||v2||1/p

]
≤ (b+ δb1)

T v3 + (ay + δa1)
T v2

+
1

2
(v1 +

√
νB̃−1

11 B10v0)
T B̃11(v1 +

√
νB̃−1

11 B10v0)

+
1

2
(v0 − H̃−1

00 ∇hy(x
⋆)/σ)T H̃00(v0 − H̃−1

00 ∇hy(x
⋆)/σ)

− 1

2σ2
||H̃−1/2

00 ∇hy(x
⋆)||2,

since Hjk = νBjk if at least one of j, k is 1 or 3.
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Therefore, an upper bound is given by

[hy(x)− hy(x
⋆)]/σ2 ≤ (b+ 1δb)

T v3 + (ay + 1δa)
T
y v2 + ||H̃1/2

00 (v0 − H̃−1
00 ∇hy(x

⋆)/σ)||2/2

+ ||B̃1/2
11 (v1 +

√
νB̃−1

11 B10v0)||22/2−
1

2σ2
||H̃−1/2

00 ∇hy(x
⋆)||2.

2. The lower bound. A similar argument leads to the following lower
bound:

[hy(x)− hy(x
⋆)]/σ2 ≥ (b− δb1)

T v3 + (ay − δa1)
T v2 + ||H̄1/2

00

(
v0 − H̄−1

00 ∇hy(x
⋆)/σ

)
||2/2

+ ||B̄1/2
11 (v1 +

√
νB̄−1

11 B10v0)||22/2−
1

2σ2
||H̄−1/2

00 ∇hy(x
⋆)||2.

Lemma 3. In the notation of Lemma 4, introduce the following events

A1 = {ω : ||V T
2 [∇fY (ω)(x

⋆)−∇fyexact(x
⋆)]||∞ ≤ 2δa},(30)

A2 = {ω : ||V T
0 [∇2fY (ω)(x

⋆)−∇2fyexact(x
⋆)]V0|| ≤ 2κAδ0}.(31)

Then, on A1 ∩ A2, for x ∈ Bδ(x
⋆),

[hy(x)− hy(x
⋆)]/σ2 ≤ (a+ δA1)

T v2 + (b+ δb1)
T v3 + vT0 Ω̃00v0/2− vT0 ∇hy(x

⋆)/σ

+ ||B̃1/2
11 v1||22/2 + ||B10||δ0δ1/σ2,

[hy(x)− hy(x
⋆)]/σ2 ≥ (a− δA1)

T v2 + (b− δb1)
T v3 + vT0 Ω̄00v0/2− vT0 ∇hy(x

⋆)/σ

− ||B̄1/2
11 v1||22/2− ||B10||δ0δ1/σ2,

where

δA = 3δa + ν||V T
2 ∇g(x⋆)||,

Ω̃00 = Ω00 + (3κAδ0 + νλmax(B00))I,

Ω̄00 = Ω00 − (3κAδ0 − νλmin(B00))I.

Proof. There are two random leading terms in the expressions of the
upper and the lower bounds, ay and H00. The lower bound has positive (or
positive definite) coefficients if

δ0 > 0.5κ−1
A ||V T

0 [∇2fy(x
⋆)−∇2fyexact(x

⋆)]V0||, δ0 > 0.5νκ−1
A ||B00||

δa > 0.5||V T
2 [∇fy(x

⋆)−∇fyexact(x
⋆)]||, δa > 0.5ν||V T

2 ∇g(x⋆)||.
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The random part of these conditions is satisfied on A1 ∩ A2.
On A1,

ay−a = V T
2 [∇fy(x

⋆)+ν∇g(x⋆)]−V T
2 ∇fyexact(x

⋆) ≤ (2δa+ν||V T
2 ∇g(x⋆)||)1

where the inequality is componentwise, and similarly ay − a ≥ −(2δa +
ν||V T

2 ∇g(x⋆)||)1.
On event A2, Weyl’s inequality implies

λk(H00) ≥ λk(V
T
0 AT∇2f̃y(x

⋆)AV0) + νλmin(B00) ≥ λk(Ω00)− 2κAδ0 + νλmin(B00),

λk(H00) ≤ λk(Ω00) + 2κAδ0 + νλmax(B00),

where λk(M) is the kth largest eigenvalue of matrix M . Applying these
inequalities to the bounds in Lemma 4, we obtain the statement of the
lemma.

A.3. Proofs, Section 5.3.

Proof of Theorem 1. Consider a neighbourhood of x⋆,Bδ(x
⋆) = (x⋆+

V Bδ)∩X , where Bδ = B2(0, δ0)×B2(0, δ1)×B∞(0, δ2)×B∞(0, δ3). Denote
v = D−1

σ,γV
−1(x − x⋆), with the Jacobian of this change of variables being

J = σ−p0−2p2γ−p̃1−2p̃3/det(V ).
Denote ρk the smallest rate such that for some Mk > 0, as σ → 0,

P{|fY (ω)(x
⋆)− fyexact(x

⋆)]| > M0ρ0} → 0,

P{||V T
2 [∇fY (ω)(x

⋆)−∇fyexact(x
⋆)]||∞ > M1ρ1} → 0,

P{||V T
0 [∇2fY (ω)(x

⋆)−∇2fyexact(x
⋆)]|| > M2ρ2} → 0.

Due to Assumption C, ρk → 0 as σ → 0.
For the rescaled parameter, we use the corresponding neighbourhood BR

and its limit B⋆
R defined by

BR = [B2(0, R0)×B2(0, R1)× [0, R2]
p2 × [0, R3]

p3 ] ∩D−1V −1(X − x⋆),

B⋆
R = [B2(0, R0)×B2(0, R1)× [0, R2]

p2 × [0, R3]
p3 ] ∩ V⋆

where
R0 = δ0/σ, R1 = δ1/γ, R2 = δ2/σ

2, R3 = δ3/γ
2.

We assume that δk are such that δk → 0 and Rk → ∞. In addition, we will
need conditions

R0 = o(γ/σ), R2 = o(γ/σ2), R3 = o(1/γ), R2 = o(1/σ),
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and R2 = o(γ2/σ2) if c > 0. These conditions hold, for instance, with Rk =
Ck[− log σ]ak for some positive constants Ck and ak. Under these conditions,
C(δ) defined in Lemma 6 tends to 0 as σ → 0, that will be used below.

The triangle inequality for the total variation norm gives us

||PS(x−x⋆)|Y − µ⋆||TV ≤ ||PS(x−x⋆)|Y 1B⋆
R
− µ⋆1B⋆

R
||TV

+ ||µ⋆1B⋆
R
− µ⋆||TV + ||PS(x−x⋆)|Y 1B⋆

R
− PS(x−x⋆)|Y ||TV ,(32)

where the balls B⋆
R are defined above. Here µ1B⋆

R
is a probability measure

µ truncated to B⋆
R and normalised to be a probability measure.

If measures µ1, µ2 are absolutely continuous with respect to some measure
µ with densities f and g respectively, then the total variation norm can also
be written as

||µ1 − µ2||TV = 2

∫
X
(f − g)+dµ,

where (x)+ = max(x, 0) (van der Vaart 1998). In each of the summands
in the upper bound (33), the first measure is absolutely continuous with
respect to the second one, so we will use this expression to evaluate the
total variation norm.

We start with the distance between the truncations of the rescaled pos-
terior distribution and the limit on B⋆

R. Introduce additional notation:

ã = a+ δA1, b̃ = b+ δb1,

ā = a− δA1, b̄ = b− δb1,

and µ(·;x,Ω, B, a, b) is a measure on V = Rp0+p1 × Rp2+p3
+ , such that for

z = (z1, z2) ∈ V ,

µ(dz;α,Σ, β) = exp
{
−||Σ1/2z1||2/2 + zT1 α− βT z2

}
dz.

This measure is finite if matrix Σ is positive definite, α is finite and all
components of vector β are positive. If Bv = V = Rp0+p1 × Rp2+p3

+ or Bv =
B1 ×B∞(0, r2), we have

µ(V;α,Σ, β) =

p2+p3∏
i=1

β−1
i [det(Σ)]−1/2 (2π)(p0+p1)/2 exp{αTΣ−1α/2},

µ(B1 ×B∞(0, r2);α,Σ, β) = µ(V;α,Σ, β)Φ(B1; Σ
−1α,Σ−1)

p2+p3∏
i=1

[1− exp{−βir2}],

where Φ(B; a,Q) is the measure of B under the Gaussian distribution centred
at a with covariance matrix Q.
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If Bv degenerates to a manifold of a smaller dimension, then we slightly
abuse the notation and assume that µ has mass 1 on the degenerate part
of Bv, i.e. we replace the Lebesque measure in the definition of µ with the
counting measure on the degenerate part.

By Lemma 5, on A1 ∩A2 for any Bx ⊆ Bδ(x
⋆), with Bv = D−1V −1(Bx −

x⋆) ⊆ BR, we have∫
Bx

exp
{
−[hy(x)− hy(x

⋆)]/σ2
}
dx ≥ J

∫
Bv

exp
{
−b̃T v3 − ãT v2

}
× exp

{
−||Ω̃1/2

00 v0||2/2 + vT0 ∇hy(x
⋆)/σ − ||B̃1/2

11 v1||22/2−
√
νvT0 B01v1

}
dv

= J µ(Bv;αy, Σ̃, β̃),

where αy = ([∇hy(x
⋆)]T /σ, 0)T , β̃ = (ãT , b̃T )T , Σ̃ =

(
Ω̃00

√
νB01√

νB10 B̃11

)
.

Similarly, using Lemma 5, we obtain an upper bound:∫
Bx

exp
{
−[hy(x)− hy(x

⋆)]/σ2
}
dx ≤ J

∫
Bv

exp
{
−āT v2 − b̄T v3

}
× exp

{
−||Ω̄1/2

00 v0||2/2 + vT0 ∇hy(x
⋆)/σ − ||B̄1/2

11 v1||2/2−
√
νvT0 B01v1

}
dv

= Jµ(Bv;αy, Σ̄, β̄),

where β̄ = (āT , b̄T )T and Σ̄ =

(
Ω̄00

√
νB01√

νB10 B̄11

)
.

To simplify the notation, denote

µ̄(dv) = µ(dv;αy, Σ̄, β̄), µ̃(dv) = µ(dv;αy, Σ̃, β̃).

Define event A3:

A3 =
{
ω : ||Ω00a0(ω)− σ/γ2 V T

0 ∇g(x⋆)− σ−1V T
0 ∇fY (ω)(x

⋆)||∞ ≤ ρ
}

where ρ is the smallest value such that P(A3) → 0 as σ → 0. On A3,
||∇hY (ω)(x

⋆)/σ − Ω00a0(ω)||∞ ≤ ρ. Therefore, on A3, measure µ̃ is finite
since αy is finite, and all other parameters are positive or positive definite.
Measure µ̄ is finite on A3 if δb < bmin, δA < amin, δ1 < λmin(B11)/κB and
δ0 < λmin(Ω00)/(3κA).

Hence, the posterior density of S(x − x⋆) normalised by the posterior
measure of B⋆

R is bounded on A1 ∩ A2 by

µ̃(dv)

µ̄(B⋆
R)

≤ d p(S(x− x⋆) | Y )

p(B⋆
R | Y )

≤ µ̄(dv)

µ̃(B⋆
R)

.
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Therefore, the total variation distance between the rescaled posterior distri-
bution and its limit, both truncated to B⋆

R, is bounded on A1 ∩ A2 by

||PS(x−x⋆)|Y 1B⋆
R
− µ⋆1B⋆

R
||TV ≤ 2

∫
B⋆

R

[
P(dv | Y )µ⋆(B⋆

R)

P(B⋆
R | Y )µ⋆(dv)

− 1

]
+

µ⋆(dv)

µ⋆(B⋆
R)

≤ 2

∫
B⋆

R

[
µ̄(dv)

µ̃(B⋆
R)

µ⋆(B⋆
R)

µ⋆(dv)
− 1

]
+

µ⋆(dv)

µ⋆(B⋆
R)

Now, µ⋆(dv)
µ⋆(B⋆

R) = µ(dv; Σ⋆,α⋆,β⋆)
µ(B⋆

R; Σ⋆,α⋆,β⋆) where α⋆ = (aT0 Ω00, 0)
T , β⋆ = (aT , bT )T ,

Σ⋆ = diag(Ω00, B11). Denote µ0(dv) = µ(dv; Σ⋆, α⋆, β⋆). Then, with v01 =
(vT0 , v

T
1 )

T ,

µ̄(dv)

µ0(dv)
= exp{δA1T v2 + δb1

T v3 + vT01(Σ
⋆ − Σ̄)v01/2 + vT01(αy − α⋆)},

which implies

µ̄(dv)

µ0(dv)

µ0(B
⋆
R)

µ̃(B⋆
R)

= exp{(v01 + (Σ⋆ − Σ̄)−1(αy − α⋆))T (Σ⋆ − Σ̄)(v01 + (Σ⋆ − Σ̄)−1(αy − α⋆))/2}

× exp{δA1T v2 + δb1
T v3 − (αy − α⋆)T (Σ⋆ − Σ̄)−1(αy − α⋆)/2}

×

∫
B⋆

R
exp{−aT v2 − bT v3} exp{−||Σ⋆ 1/2v01||2/2 + vT01α

⋆}dv∫
B⋆

R
exp{−(a+ δA1)T v2 − (b+ δb1)T v3} exp{−||Σ̃1/2v01||2/2 + vT01αy}dv

.

To show that this expression is greater than 1, it is sufficient to show that
for any B ⊆ {v01 : (v01, v2, v3) ∈ B⋆

R}, the following expression is positive:

e−(αy−α⋆)T (Σ⋆−Σ̄)−1(αy−α⋆)/2

∫
B
e−||Σ⋆ 1/2z||2/2+zTα⋆}dz−

∫
B exp{−||Σ̃1/2z||2/2+zTαydz

=

∫
B
e−||Σ̃1/2z||2/2+zTαy

[
e(αy−α⋆)T [(Σ̄−Σ⋆)−1−(Σ̃−Σ⋆)−1](αy−α⋆)/2×

× ez
T (Σ̃−Σ⋆)z/2+zT (α⋆−αy)+(α⋆−αy)T (Σ̃−Σ⋆)−1(α⋆−αy)/2 − 1

]
dz > 0

which is indeed the case since

Σ̃− Σ⋆ = diag ([3κAδ0 + νλmax(B00)]Ip0 , δ1κBIp̃1) ,

(Σ̃− Σ⋆)− (Σ̄− Σ⋆) = Σ̃− Σ̄ = diag ([6κAδ0 + ν(λmax(B00)− λmin(B00))]Ip0 , 2δ1κBIp̃1)

are positive definite matrices.

Therefore, on A1 ∩ A2,
µ̄(dv)
µ0(dv)

µ0(B⋆
R)

µ̃(B⋆
R) ≥ 1 and hence

||PS(x−x⋆)|Y 1B⋆
R
− µ⋆1B⋆

R
||TV ≤ 2

∫
B⋆

R

[
µ̄(dv)

µ̃(B⋆
R)

µ⋆(B⋆
R)

µ⋆(dv)
− 1

]
µ⋆(dv)

µ⋆(B⋆
R)

= 2

[
µ̄(B⋆

R)

µ̃(B⋆
R)

− 1

]
.
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Since µ̄(dv)/dv ≥ µ̃(dv)/dv for all v ∈ BR, µ̄(B
⋆
R)−µ̃(B⋆

R) ≤ µ̄(BR)−µ̃(BR),
and thus

µ̄(B⋆
R)

µ̃(B⋆
R)

− 1 ≤ µ̄(BR)− µ̃(BR)

µ̃(B⋆
R)

=
µ̄(BR)− µ̃(BR)

µ̃(B⋆
R)

.

The difference of measures of BR is bounded by

µ̄(BR)− µ̃(BR) =

∫
BR

e−zT1 Σ̃z1/2+zT1 αy−β̃T z2
[
exp

{
zT1 (Σ̃− Σ̄)z1/2 + (β̃ − β̄)T z2

}
− 1
]
dz

≤
∫
BR

[
zT1 (Σ̃− Σ̄)z1/2 + (β̃ − β̄)T z2

]
e−zT1 Σ̄z1/2+zT1 αy−β̄T z2dz

≤ (2π)(p0+p̃1)/2[det(Σ̄)]−1/2eα
T
y Σ̄−1αy/2

∏
β̄−1
i

×
[
||(Σ̃− Σ̄)1/2Σ̄−1αy||2 + trace(Σ̄−1(Σ̃− Σ̄)) +

2δAp2
mini āi

+
2δbp̃3
mini b̄i

]
≤ (2π)(p0+p̃1)/2[det(Σ̄)]−1/2eα

T
y Σ̄−1αy/2

∏
β̄−1
i

×
[
δ01[||Σ̄−1αy||2 + trace(Σ̄−1)] +

2δAp2
mini āi

+
2δbp̃3
mini b̄i

]
due to inequality ex − 1 ≤ xex for x > 0, where

δ01 = max([6κAδ0 + ν(λmax(B00)− λmin(B00))], 2δ1κB).

Therefore,

||PS(x−x⋆)|Y 1B⋆
R
− µ⋆1B⋆

R
||TV ≤ 2[µ̃(B⋆

R)]
−1(2π)(p0+p̃1)/2[det(Σ̄)]−1/2eα

T
y Σ̄−1αy/2

∏
β̄−1
i

×
[
δ01[||Σ̄−1αy||2 + trace(Σ̄−1)] +

2δAp2
amin − δA

+
2δbp̃3

bmin − δb

]
which goes to zero since δk → 0 as σ → 0.

The total variation distance between the posterior distribution truncated
to BR and to B⋆

R is bounded by

||PS(x−x⋆)|Y 1B⋆
R
− PS(x−x⋆)|Y 1BR

||TV ≤ 2[PS(x−x⋆)|Y 1BR
](BR \B⋆

R)

≤
2µL(BR \B⋆

R)maxv∈BR
[µ̄(dv)/dv]

µ̃(BR)
,

where µL(B) is the Lebesgue measure of B. By Lemma 6, µL(BR \B⋆
R) → 0

as σ → 0.
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For the measure µ(dz;α,Σ, β), maxz∈V [µ(dz;α,Σ, β)/dz] = exp{αTΣ−1α/2}.
Therefore,

maxv∈BR
[µ̄(dv)/dv]

µ̃(BR)
≤ eα

T
y Σ̃−1(Σ̃−Σ̄)Σ̄−1αy/2

p2+p̃3∏
i=1

β̃i

[
det(Σ̃)

]1/2
(2π)−(p0+p̃1)/2

[
µ̃(BR)

µ̃(V)

]−1

.

The difference Σ̃ − Σ̄ = O(max(δ0, δ1)) → 0, on A3, Σ̄
−1αy and Σ̃−1αy are

bounded as well as β̃. Now we need to show that the last factor is bounded.
Choose σ small enough so that BR = B(0, R0) × B(0, R1) × [0, R2]

p2 ×
[0, R3]

p3 . This condition is satisfied if ||Ukx
⋆|| ≥ δk for k = 0, 1 and ||Ukx

⋆||∞ ≥
δk for k = 2, 3. If the degeneration of the support takes place, the degenerate
dimensions are excluded. Due to B(0,

√
R2

0 +R2
1) ⊂ B(0, R0)×B(0, R1) and

to inequality 1− Φ(B(0, R);α,Σ−1) ≤ 1− Γ
(

(R−||α||)2
2 ||Σ|| | m

2

)
, we have

µ̃(BR)

µ̃(V)
≥ Γ

(
λmin(Σ̃)(

√
R2

0 +R2
1 − ||Σ̃−1αy||)2

2
| p0 + p̃1

2

)

×
p2∏
i=1

[1− exp{−ãiR2}]
p̃3∏
i=1

[1− exp{−b̃iR3}]

which is close to 1 for large Rk, k = 0, 1, 2, 3. Therefore, ||PS(x−x⋆)|Y 1B⋆
R
−

PS(x−x⋆)|Y 1BR
||TV → 0 as σ → 0.

The total variation distance between the limit measure and its truncation
to B⋆

R is bounded by

||µ⋆ − µ⋆1B⋆
R
||TV ≤ 2µ⋆(B̄⋆

R) = 2µ⋆(B̄R) + 2µ⋆(BR \B⋆
R)

≤ 2µL(BR \B⋆
R) [det(Σ

⋆)]1/2 (2π)−(p0+p̃1)/2
p2+p̃3∏
i=1

β⋆
i

+ 2− 2Γ

(
λmin(Ω00)(R0 − ||a0||)2

2
| p0
2

)
× Γ

(
λmin(B11)R

2
1

2
| p̃1
2

)
×

×
p2∏
i=1

[1− exp{−aiR2}]
p̃3∏
i=1

[1− exp{−biR3}] → 0

as σ → 0, since Rk → ∞ and µL(BR \B⋆
R) → 0 as σ → 0 by Lemma 6 where

B̄⋆
R is the complement of B⋆

R.
The total variation distance between the posterior distribution and its
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truncation to BR is bounded by

||P(S(x−x⋆)|Y )1BR
− P(S(x−x⋆)|Y )||TV ≤ 2P(S(x−x⋆)|Y )(B̄R)

= 2

∫
X\Bδ(x⋆) exp{−(hy(x)− hy(x

⋆))/σ2} d x∫
X exp{−(hy(x)− hy(x⋆))/σ2} d x

≤ 2 det(V )[µ̃(BR)]
−1∆0(δ)

1 + det(V )[µ̃(BR)]−1∆0(δ)
,

where

∆0(δ) = σp0+2p2γp̃1+2p̃3

∫
X\Bδ(x⋆)

exp{−[hy(x)− hy(x
⋆)]/σ2} d x.

By Assumption L, with probability → 0, ∆0(δ) → 0 as σ → 0, and µ̃(BR) →
µ0(BR) > 0.

Combining these bounds, we have that

||PS(x−x⋆)|Y − µ⋆||TV ≤ 2µ⋆(B̄R) + 2 det(V )∆0(δ)/µ̃(BR)

+ 2[µ̃(BR)]
−1(2π)(p0+p̃1)/2[det(Σ̄)]−1/2eα

T
y Σ̄−1αy/2

∏
β̄−1
i

×
[
δ01[||Σ̄−1αy||2 + trace(Σ̄−1)] +

2δAp2
amin − δA

+
2δbp̃3

bmin − δb

]
+ 2µL(BR \B⋆

R)

[
max
v∈BR

[µ⋆(dv)/dv] +
maxv∈BR

[µ̄(dv)/dv]

µ̃(BR)

]
Pxtrue→ 0

as σ → 0, which gives the statement of the theorem.

Lemma 4. Under conditions of Theorem 1, µL(D
−1V −1(Bδ(x

⋆)− x⋆) \
V⋆) ≤ C(δ) det(V −1) where

C(δ) = [||V0||∞,2δ0/γ + ||V2||∞,∞δ2/γ + ||V3||∞δ3/γ]
|S1|+

{
[||V2||∞,∞ δ2/σ]

|S0|, c = 0,

[||V2||∞,∞ δ2/γ
2]|S0|+|S3|, c > 0,

sets Sk are defined in Proposition 2 and µL is the Lebesgue measure.

Proof. We study the constraints on vk under D−1V −1(Bδ(x
⋆)−x⋆)\V⋆

using notation from the proof of Theorem 1.
We find the Lebesgue measure of V BR\(V V⋆), then the Lebesgue measure

of BR \ V⋆ is det(V −1)µL(V BR \ (V V⋆)). For ℓ ∈ S1,

[V1]ℓ, v1 ≥ −σ/γ[V0]ℓ, v0 − σ2/γ[V2]ℓ, v2 − γ[V3]ℓ v3 and [V1]ℓ, v1 < 0.
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which is a subset of−R0σ/γ||[V0]ℓ,||2−σ2R2/γ||[V2]ℓ,||∞−γR3[V3]ℓ ≤ [V1]ℓ, v1 <
0. This set could be empty, or its Lebesgue measure could be up to [R0σ/γ||V0||∞,2+
σ2R2/γ||V2||∞,∞+γR3[V3]∞]|S1|. If R0 is chosen in such a way that R0σ/γ →
0, σ2R2/γ → 0 and γR3 → 0 (which is possible), the measure of this set
tends to 0.

For ℓ ∈ S3 and c = limσ/γ2 = 0, 0 > [V3]ℓ v3 ≥ −[V0]ℓ, v0σ/γ
2. This set

is empty, since either p3 = 0, or p3 = 1 and v3 ≥ 0 and [V3]ℓ > 0.
For ℓ ∈ S03 and c > 0, 0 > [V3]ℓ v3 + [V0]ℓ, v0 ≥ −[V2]ℓ, v2σ

2/γ2 ≥
−||V2||∞,∞R2σ

2/γ2. This set is either empty, or its Lebesgue measure is
at most [||V2||∞,∞R2σ

2/γ2]|S0|+|S3| provided R2σ
2/γ2 → 0.

For ℓ ∈ S0 and c = limσ/γ2 = 0, 0 > [V0]ℓ, v0 ≥ −[V2]ℓ, v2σ ≥ −||V2||∞,∞R2σ.
This set is either empty, or its Lebesgue measure is at most [||V2||∞,∞R2σ]

|S0|

provided R2σ → 0.
For ℓ ∈ S∗c such that [V1]ℓ, ̸= 0, the constraints are

[V1]ℓ,v1 ≥ −x⋆ℓ/γ + σ/γ[V0]ℓ,v0 ≥ −x⋆ℓ/γ + σ/γ[V0]ℓ,v0,

and [V0]ℓ,v0 ≥ −x⋆ℓ/σ if [V1]ℓ, = 0. Since there is no constraints on [V1]ℓ,v1
and V0]ℓ,v0 for ℓ ∈ S∗c, the difference VS∗c,BR \ (V V⋆) is empty.

Therefore, the Lebesgue measure of V BR \ (V V⋆) is at most

[R0σ/γ||V0||∞,2+σ2R2/γ||V2||∞,∞+γR3||V3||∞]|S1|+[||V2||∞,∞R2σ
2/γ2]|S0|+|S3|

if c > 0, and is at most

[R0σ/γ||V0||∞,2 + σ2R2/γ||V2||∞,∞ + γR3||V3||∞]|S1| + [||V2||∞,∞R2σ]
|S0|

if c = 0.

Proof of Proposition 3. Collecting the non-asymptotic conditions on
δk in the proofs of Theorem 1 and Proposition 2, we have

0.5ν||B00||/κA < δ0 < 0.2λmin(Ω00)/κA,

δk ≤ ||Ukx
⋆||, k = 0, 1; δk ≤ ||Ukx

⋆||∞, k = 2, 3,

0.5ν||V T
2 ∇g(x⋆)|| < δa < 0.2amin,

δ1 < λmin(B11)/κB, δb < bmin,

and inequality δ0 > σ||a0(ω)|| should hold with high probability.
These assumptions imply that δA ≤ 5δa and

||Ω̃00 − Ω̄00|| = 6κAδ0 + ν(λmax(B00)− λmin(B00)) ≤ 10κAδ0.
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Collecting the upper bounds on the total variation distance from the proof
of Theorem 1 and using the upper bound on µL(BR\B⋆

R) given in Lemma 6,
on A1 ∩ A2 ∩ A3, we have

||PS(x−x⋆)|Y − µ⋆||TV ≤ 2∆0(δ) det(V )
[
det(Σ̃)

]1/2
(2π)−(p0+p1)/2eα

T
y Σ̃−1αy/2

p2+p3∏
i=1

β̃i

+ 2C(δ) det(V −1) (2π)−(p0+p1)/2
p2+p3∏
i=1

β⋆
i [det(Σ

⋆)]1/2 ×

×

1 + eα
T
y Σ̃−1(Σ̃−Σ̄)Σ̄−1αy/2

∏p2+p3
i=1 (β̃i/β

⋆
i )
[
det(Σ̃)/det(Σ⋆)

]1/2
Γ

(
λmin(Σ̃)(

√
R2

0+R2
1−||Σ̃−1αy ||)2

2 | p0+p1
2

)
×
∏p2

i=1[1− e−ãiR2 ]
∏p3

i=1[1− e−b̃iR3 ]


+ 2− 2Γ

(
λmin(Ω00)(R0 − ||a0||)2

2
| p0
2

)
Γ

(
λmin(B11)R

2
1

2
| p1
2

) p2∏
i=1

[1− e−aiR2 ]

p3∏
i=1

[1− e−biR3 ]

+ 2[µ̃(BR)]
−1(2π)(p0+p̃1)/2[det(Σ̄)]−1/2eα

T
y Σ̄−1αy/2

∏
β̄−1
i

×
[
δ01[||Σ̄−1αy||2 + trace(Σ̄−1)] +

2δAp2
amin − δA

+
2δbp̃3

bmin − δb

]
,

and on A3,

||Σ̃−1αy|| ≤ ||Σ̃−1Σ⋆|| ||Σ⋆−1αy|| ≤ ||a0(ω)||+ ||Ω−1
00 ||ρ,

αT
y Σ̃

−1(Σ̃− Σ̄)Σ̄−1αy ≤ δ01||Σ̄−1Σ⋆|| (||a0(ω)||+ ||Ω−1
00 ||ρ)

2,

αT
y Σ̃

−1αy ≥ λmin(Σ
⋆Σ̃−1Σ⋆)(||a0(ω)|| − ||Ω−1

00 ||ρ)
2,

where δ01 = max(10κAδ0, 2δ1κB).
Using inequalities 1− (1−x)(1− z) ≤ x+ z, ex− 1 ≤ xex, (1+x)m− 1 ≤

mxemx for x, z > 0, we have on A1 ∩ A2 ∩ A3, we have

||PS(x−x⋆)|Y − µ⋆||TV ≤ C∆∆0(δ) + CBC(δ) + 2p2e
−aminR2 + 2p3e

−bminR3

+ 2

(
1− Γ

(
λmin(Ω00)(R0 − ||a0||)2

2
| p0
2

))
+ 2

(
1− Γ

(
λmin(B11)R

2
1

2
| p1
2

))
+ 2CA

[
δ01[||Σ̄−1αy||2 + trace(Σ̄−1)] +

10δap2
amin − 5δa

+
2δbp̃3

bmin − δb

]
,



BERNSTEIN–VON MISES THEOREM FOR NONREGULAR PROBLEMS 49

where

C∆ = 2det(V )
[
det(Σ̃)

]1/2
(2π)−(p0+p1)/2e||Σ

⋆Σ̃−1Σ⋆||(||a0(ω)||−||Ω−1
00 ||ρ)2/2

p2+p3∏
i=1

β̃i,

CB = 2det(V −1) (2π)−(p0+p1)/2
p2+p3∏
i=1

β⋆
i [det(Σ

⋆)]1/2 ×

×

1 + eδ01||Σ̄
−1Σ⋆|| (||a0(ω)||+||Ω−1

00 ||ρ)2/2∏p2+p3
i=1 (β̃i/β

⋆
i )
[
det(Σ̃)/det(Σ⋆)

]1/2
Γ

(
λmin(Σ̃)(

√
R2

0+R2
1−||a0(ω)||−||Ω−1

00 ||ρ)2
2 | p0+p1

2

)
×
∏p2

i=1[1− e−ãiR2 ]
∏p3

i=1[1− e−b̃iR3 ]

 ,

CA = [µ̃(BR)]
−1(2π)(p0+p̃1)/2[det(Σ̄)]−1/2

∏
β̄−1
i exp{||Σ⋆Σ̄−1Σ⋆|| (||a0(ω)||+ ||Ω−1

00 ||ρ)
2/2}.

Denoting

C0 = CA

[
5κA[||Σ̄−1Σ⋆||2(||a0(ω)||+ ||Ω−1

00 ||ρ)
2 + trace(Σ̄−1)] +

10p2||B02||2,∞
amin − 5δa

+
2p̃3||B03||2,∞
bmin − δb

]
,

C1 = CA

[
κB[||Σ̄−1Σ⋆||2(||a0(ω)||+ ||Ω−1

00 ||ρ)
2 + trace(Σ̄−1)] +

10p2||B12||2,∞
amin − 5δa

+
2p̃3||B13||2,∞
bmin − δb

]
,

C2 = CA

[
5[||B22||∞,∞ + δ+q

2
2κA/p]

amin − 5δa
+

p̃3||B23||∞,∞/p2
bmin − δb

]
,

C3 =
CA(||B33||∞,∞ + δ+q

2
3κB/p)

bmin − δb
,

C4 = max[||V0||∞,2, ||V2||∞,∞, ||V3||∞]|S1|,

m5 = |S0| + |S3| if c = 0 and m5 = |S0| if c > 0, C5 = ||V2||m5
∞,∞, and

grouping the terms for each δk, we have the statement of the proposition.
Assumptions 0.5ν||V T

2 ∇g(x⋆)|| < δa < 0.2amin, δb < bmin are satisfied if

0.5ν||V T
2 ∇g(x⋆)|| < max

k=0,1,2
[δkc2,k] < 0.2amin/3,

max
k=0,1,2,3

[δkc3,k] < bmin/4,

where c3,2 = ||B23||∞,∞ and

c2,k = ||Bk2||2,∞ for k = 0, 1, c2,2 = 0.5[||B22||∞,∞ + δ+q
2
2κA/p],

c3,k = ||Bk3||2,∞ for k = 0, 1, c33 = 0.5[||B33||∞,∞ + δ+q
2
3κB/p].
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A.4. Proof of Theorem on Bayes estimates.

Proof of Theorem 2. The limit Bayes estimate v⋆Q is measurable by
the Jennrich’s measurability theorem since it minimises the objective func-
tion that is continuous in data and parameters.

To prove the theorem, we follow Chernozhukov and Hong (2004) and
apply Theorem I.10.2 of Ibragimov and Has’minskij (1981) (p. 107), which
allows one to obtain the limit distribution of the Bayes estimates provided
the following conditions on the penalised likelihood ratio process ℓτ (v) =
exp{−(hy(x

⋆ + S−1v) − hy(x
⋆))/τ} are satisfied. The results of Theorem

I.10.2 of Ibragimov and Has’minskij (1981) and the auxiliary lemmas apply
since the factor exp{−(g(x⋆ + S−1v) − g(x⋆))/γ2} is non-random and is
bounded on a compact neighbourhood of 0.

1. Hölder continuity of ℓ
1/2
τ (v) in the mean square, and the exponential

bound on the expected tail of ℓτ (v). The first condition is that for any
compact K ⊂ X ∃C1, C2 that depend on K such that for any v, v′ ∈ K,
||v||∞, ||v′||∞ ≤ R,

E|ℓτ (v)1/2 − ℓτ (v
′)1/2|2 ≤ C1(1 +RC2)||v − v′||α∞

for some α ∈ (0, 1].
The second condition is that any compact K ⊂ X ∃qτ (z) : [0,∞) →

(0,∞) such that for any fixed τ , qτ (z) increases to infinity as z increases to
∞, and for any N ∈ N, limτ→0, z→∞ zNe−qτ (z) = 0, so that for all for all
v ∈ S−1(X − x⋆),

Eℓτ (v)1/2 ≤ e−qτ (||v||∞).

These conditions are checked below.
2. Finite-dimensional convergence of ℓτ (v) to the density of µ⋆ is satisfied

(Theorem 1).
3. The limit Bayes problem,

v⋆Q(ω) = arg inf
v∈Rp0+p1×Rp2+p3

+

∫
Rp0+p1×Rp2+p3

+

Q(v − v′)dµ⋆(v′, ω),

is uniquely solved by a random vector v⋆Q. This condition is satisfied since Q
is convex with a unique minimum, and µ⋆ is a proper probability measure.
In fact, this weaker condition on Q can replace the convexity condition.

4. Conditions on the loss functions Q are satisfied.
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Now we check the first condition, using notation defined in the proof of
Theorem 1. By Lemma 5, for v ∈ BR, on A = A1 ∩ A2 ∩ A3,

ℓτ (v)
1/2 = exp{−(hY (x

⋆ + S−1v)− hY (x
⋆))/(2τ)}

≤ exp{−(amin − δA)||v2||1/2− (bmin − δb)||v3||1/2
− λmin(Ω̄00)||v0||22/4− λmin(B̄11)||v1||22/4
+ ||v0||2 (||Ω00a0(ω)||+ ρ)/2 +

√
ν||B10||1,1 ||v1||∞ ||v0||∞/2}.

Then,

Eℓτ (v)1/2 ≤ exp{−qτ (||v||∞)}P(A) + 1− P(A) = exp{−qτ (||v||∞)}(1 + o(1)),

due to P(A) = P(A1 ∩ A2 ∩ A3) → 1 as τ → 0, where

qτ (z) = [amin − δA + bmin − δb −
√
p0(||Ω00a0(ω)||+ ρ)]z/2

+ [λmin(Ω̄00) + λmin(B̄11)− 2
√
ν||B10||1,1]z2/4

satisfies the required conditions for τ small enough.
The second part: by Lemma 5, using both upper and lower bounds on the

log posterior, for v, v′ ∈ K ⊂ BR for a compact K, on A = A1 ∩ A2 ∩ A3,
we have

log
(
ℓτ (v)/ℓτ (v

′)
)

≤ −(a− δA1)
T v2 + (a+ δA1)

T v′2 − (b− δb1)
T v3 + (b− δb1)

T v′3

− vT0 Ω̄00v0/2 + v′T0 Ω̃00v
′
0/2− vT1 B̄11v1/2 + v′T1 B̃11v

′
1/2

+ vT0 H̄00x0 − v′T0 H̃00x0 +
√
νvT1 B10v0 −

√
νv′T1 B10v

′
0

≤ ||a||1 ||v2 − v′2||∞ + δA||v2 + v′2||1 + ||b||1 ||v3 − v′3||∞ + δb||v3 + v′3||1
− (v0 + v′0)

T Ω̄00(v0 − v′0)/2 + v′T0 (Ω̃00 − Ω̄00)v
′
0/2

− (v1 + v′1)
T B̄11(v1 − v′1)/2 + v′T1 (B̃11 − B̄11)v

′
1/2

+ (v0 − v′0)
T∇hy(x

⋆) +
√
ν(v1 − v′1)

TB10v0 +
√
νv′T1 B10(v0 − v′0).

Thus, we can write

ℓτ (v)
1/2/ℓτ (v

′)1/2 ≤ exp

{
c0(1 +R0 +R1)||v − v′||∞ +

3∑
k=0

ckδkRk

}
.

Taking δk such that δk → 0 and δkRk → 0, the last four terms in the
exponent tend to 0 as σ → 0. Therefore, using inequality ex − 1 ≤ xex for
x ≥ 0, for k = 0, . . . , 3, on A,

|ℓτ (v)1/2 − ℓτ (v
′)1/2| ≤ ℓτ (v

′)1/2
(
c0(1 +R0 +R1)||v − v′||∞ + o(1)

)
≤

(
c0(1 +R0 +R1)||v − v′||∞ + o(1)

)
exp{−qτ (||v′||∞)}.
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This implies that E|ℓτ (v)1/2 − ℓτ (v
′)1/2| ≤ C||v − v′||∞ + o(1). Thus, condi-

tions 1-4 of Theorem I.10.2 of Ibragimov and Has’minskij (1981) are satisfied

and hence S(x̂Q − x⋆)
d→ v⋆Q.

A.5. Auxiliary results.

Lemma 5. Let S be a nonempty subset of {1 : p} and denote RS = {x ∈
Rp : xi ≥ 0∀ i ∈ S}.

Then, a linear map RS → RS defined by matrix V is a bijection if and
only if VS,π(S) = diag(a1, . . . , a|S|) for some ak > 0 and VS,Sc = 0 for some
permutation π of S.

Note that this statement also holds for V −1.

Proof of Lemma 7. We need to show that (V x)k ≥ 0 iff xk ≥ 0 for
each k ∈ S. Then, we need to show that

VS,SxS + VS,ScxSc ∈ [0,∞)|S| iff xS ∈ [0,∞)|S|

which holds iff VS,Sc = 0 and VS,S is an invertible matrix with nonnegative
entries. Denoting U = V −1, these conditions imply that US,S = [VS,S ]

−1 and
US,Sc = 0.

Now, matrix V −1 must satisfy the same conditions, i.e. US,Sc = 0 (which
is satisfied) and [V −1]S,S = [VS,S ]

−1 is an invertible matrix with nonnegative
entries.

Thus, we must have that both VS,S and [VS,S ]
−1 have nonnegative entries.

We can prove, for instance, by induction, that this implies that both VS,S

and [VS,S ]
−1 have to be diagonal matrices with positive eigenvalues, up to

a permutation of the coordinates in S. For |S| = 2 it is a necessary and
sufficient condition (base of the induction). Suppose the statement is true
for |S| = m; then, for |S| = m+ 1, nonnegativity of the matrices’ elements
implies that both matrices can be written in the block form of sizes m and
1. For each matrix, the block of size one must be a positive number, since
the matrices are invertible, and the block of size m must be a diagonal
matrix with positive eigenvalues, up to a permutation of the coordinates.
This implies the statement of the lemma.
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Rover, C., Guidi, R. M. G., Viceré, A., and Christensen, N. (2007). Coherent
Bayesian analysis of inspiral signals. Classical and Quantum Gravity, 24,
607–615.

Searle, S. R. (1982). Matrix algebra useful for statistics. Wiley, New York.

Tarantola, A. (2006). Popper, Bayes and the inverse problem. Nature
Physics, 2, 492–4.

van der Vaart, A. (1998). Asymptotic Statistics. Cambridge University Press.

Weir, I. S. (1997). Fully Bayesian reconstructions from single-photon emis-
sion computed tomography data. Journal of the American Statistical
Association, 92, (437), 49–60.

E-mail: N.Bochkina@ed.ac.uk E-mail: P.J.Green@bristol.ac.uk

School of Mathematics, University of Edinburgh, Edinburgh EH9 3JZ, UK. E-mail: N.Bochkina@ed.ac.uk

School of Mathematics, University of Bristol, Bristol BS8 1TW, UK, and
School of Mathematical Sciences, University of Technology, Sydney, Australia. E-mail: P.J.Green@bristol.ac.uk


