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Fitting Smoothed Centile Curves to Reference Data

By T. J. COLE}

Medical Research Council, Cambridge, UK

[ Read before the Royal Statistical Society on Wednesday April 20th, 1988,
the President Sir John Kingman in the Chair]
SUMMARY

A general method is described for fitting smooth centile curves to reference data, based on the
power transformation family of Box and Cox. The data are defined by values or ranges of
values of the independent variable ¢, and best fitting powers 4; assuming normality are
estimated for each group i. Corresponding estimates for the generalized mean and coefficient
of variation fi; and &; are also obtained. The 4, ; and 6; plotted against t; are fitted by
smooth curves L(t), M(t) and S() respectively, which together define a smooth curve for the
100ath centile given by

Cio04t) = M(t)[1 + L(t) S(t) z,]*®,

where z, is the normal equivalent deviate for tail area o. The method is validated by
comparison with published growth standards and illustrated on weight and height data in
children. A section describing the practical details of the method is also included.

Keywords: ANTHROPOMETRY; BOX-COX TRANSFORMATION; HEIGHT; NORMAL DISTRIBUTION;
QUANTILES; SKEWNESS; SMOOTHING; WEIGHT

1. INTRODUCTION

Centile reference charts are used in medicine to observe clinical measurements on
individual patients in the context of population values. If the population centile
corresponding to the subject’s value is atypical this may indicate an underlying
pathological condition. The chart can also provide a background to compare the
measurement with as it changes with time. Such charts are used widely in paediatrics,
for measurements related to growth and development such as anthropometry. They
can also be useful to watch changes in say blood biochemistry following a clinical event,
e.g. surgery or the onset of acute illness. In this context, the importance of the reference
chart lies in seeing whether the subject’s measurements cross centile lines with passing
time, implying a change in clinical status.

It is important to stress that the reference population used to construct the chart
is not viewed here as a ‘normal’ population—there is no implication that the 50th
centile is a ‘norm’ to which individuals should aspire. This is particularly true of
growth charts, say of height or weight, where for example the reference population
may be made up of affluent western children whereas the chart will be used on children
from relatively poor areas of the world. It would be wrong to argue that the western
pattern of growth is optimal—the high levels of obesity for example in much of the
western world make this unlikely—the population should act merely as a disinterested
reference against which other individuals or populations can be compared.

The general form of a centile chart is a series of smoothed centile curves, showing
how selected centiles for the measurement change when plotted against some
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independent variable. The independent variable is commonly age or time, and to
simplify somewhat it is referred to here as time. The same arguments apply equally
to other independent variables. Centiles are usually chosen from a symmetric subset
of the 3rd, 5th, 10th, 25th, 50th, 75th, 90th, 95th and 97th. The centile curves are
drawn to follow the centiles of the underlying distribution as closely as possible subject
to some roughness penalty, thus providing a trade-off between smoothness and
goodness of fit.

The observed distribution centiles used in the fitting process are obtained by splitting
the population into separate age or time groups. If empirical centiles are used the
more extreme are estimated relatively inaccurately, as the centile standard errors
increase steeply towards the tails of the distribution. One way round this problem is
to fit a theoretical distribution to the data and then to obtain the expected centiles
from the known cumulative density function (Healy, 1974). This approach is commonly
used for constructing charts of height by age in children, where the distribution of
height is close to normal. Thus if for a particular age group the mean and standard
deviation of height are v and ¢, the 100ath centile is given by

C100a= V+82a (1)

where z, is the normal equivalent deviate corresponding to tail area a.

However, for other commonly used measures of child growth, for example weight,
skinfold thickness or limb circumferences, the data are usually more skew than a
normal distribution. In this case it is common practice to assume a log-normal
distribution, so that, if v and ¢ are the mean and standard deviation on the natural
logarithmic scale, the 100ath centile is given by

ClOOa =Hu exp(eza) (2)

where yu=exp v is the geometric mean of the original measurement.

These two alternatives can be viewed as power transformations of the data, and
there is a whole family of such powers. However, it is uncommon to work with powers
other than zero or unity, so that for measurements where the skewness is too much
for log-normality, e.g. hormones or immunoglobulins in clinical biochemistry, or
where the degree of skewness changes with time, it is customary to work with the
empirical centiles.

There is no reason in principle why a general power transformation should not
be applied to the data, as described by Box and Cox (1964). The maximum likelihood
estimate (MLE) for the power, which both minimizes the skewness and optimizes the
fit to normality, is ideally suited to the problem of skew data. However, it only operates
on individual groups and does not allow directly for time changes in the skewness.

Van’t Hof et al. (1985), fitting centiles of skinfold thickness by age, extended the
Box—Cox method to estimate a different power for each age group. They then drew
a smooth curve through the age-specific powers. This curve, in conjunction with
corresponding smooth curves for the mean and standard deviation, was used to
generate the required set of centiles.

The purpose of this paper is to show that this technique, of using a smoothly
varying Box—Cox transformation, is of much wider application than Van’t Hof et al.
(1985) suggest. Not only does it provide a coherent set of smoothed centiles with
relatively little computation, but the shape of the power curve (not to be confused
with the type II error curve) provides information about the changing skewness of
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the distribution which is not provided by other methods of centile fitting. In addition
the mean and standard deviation curves that the method generates are of direct
interest in their own right.

2. METHODS
2.1. Box-Cox Power Family

Box and Cox (1964) proposed two alternative families of transformations,

_ =1/ (A#0)
ym_{log y (1=0) 3

and

@ _ {[(y +0)* —1]/4 (2#0) @
log(y +9) (4=0)

involving the unknown parameters A and . Models (3) and (4) require that y > 0 and
y > —0 respectively. The parameters are chosen to maximize the likelihood of the
observed sample y = {y, ...y,}, assuming it to be normally distributed. By introducing
the Jacobian of the transformation, Box and Cox (1964) showed that the MLE of 4
is that which minimizes the variance of the scaled variable

1=y
or

fO =y gm(y +0)*~!

where jy and gm(-) indicate the geometric mean. It is clear that ™ is in the same
dimensions as y whatever the value of 4, so that as A varies var(f'¥) remains in the
same units as var(y). In addition, since var(f'¥) is the quantity to be minimized, by
definition it changes relatively slowly in the region of the minimum, so that slight
differences in 4 have little effect on the variance.

The log-likelihood is proportional to —log[var(f‘)], and this is approximately
quadratic in the region of the maximum. Hence it can be computed for a series of
values of 4 and the MLE A obtained from a fitted quadratic curve.

2.2. Alternative Scaling

An alternative scaling transform for use with model (3) (but not model (4)) is given by

gM = f(;')/j’ (5)
= ¥t

In this case g* is dimensionless and its standard deviation is analogous to the
coefficient of variation of y. The standard deviation of g'V differs from the coefficient
of variation only in the use of the geometric rather than the arithmetic mean in the
denominator. Also var(g‘?) is equivalent to var(log y). This emphasizes the close link
between coefficient of variation and log(standard deviation), terms which are both

used here to describe the standard deviation of g®.
The variables f® and g'¥ can be used interchangeably in model (3) but not in
model (4), since in the latter case the ratio f¥/g¥ is a function of the unknown 4.
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However, in practice model (3) is considerably more useful than model (4), so that
the argument presented here concentrates on model (3) scaled as the variable g.
The advantage of g over f* is that for many variables where this technique is of
value the standard deviation increases fairly steadily with the mean while the coefficient
of variation does not. Hence the coefficient of variation is relatively independent of
the mean.

2.3. L, M and S Curves

The method requires that y be split into p groups, corresponding to values or
ranges of values of time t, mean t; (i=1... p). MLEs of 4; are obtained for each group,
and to this end it is easier to work with y* than with g/». Let v and ¢ be the observed
mean and standard deviation of y* assumed to be normally distributed. The median
of y* is efficiently estimated by v, so that an efficient estimate u of median y is given
by v/% Similarly the standard deviation o of g'¥ is given by ¢/Ay*. For the special
case A =0, u is given by exp v while ¢ and ¢ coincide.

The MLE of A is the value which minimizes o, so ¢ is obtained for several values
of 1 and a quadratic in 4 fitted to log[var(g"?)]. The minimum can then be found by
interpolation. If the fitted quadratic is given by

log[var(g?)] = o + BA + yA? (6)

then A= — /2y and the standard error of 1 is (ny)~ %3, where n is the sample size.

Fitting the quadratic requires the log-variance for at least three distinct values of
A. In practice the results lie very close to a quadratic curve, so that three values specify
it quite adequately. In addition the exact value of 1 is not critical since it is to be
smoothed. This means that choosing the values —1,0and + 1 for A covers a reasonable
range and avoids non-integral powers, saving processor time. In this case the values
of fand yare(V, — V_)/2and (V_ — 2V, + V. )/2 respectively, where V is the logarithm
of the variance and the suffices —, 0 and + refer to A values of —1, 0 and + 1. These
formulae are given in simplified form in Section 2.9.

Now the 1;, ji; and &; are plotted in turn against t;, and smooth curves L(t), M(t)
and S(¢) are drawn for each, referred to as the power, mean and standard deviation
curves. Strictly, the standard deviation curve ought to be fitted to the 4; plotted on
a logarithmic scale, since this corresponds more closely to the log-likelihood of the
sample. In practice it makes little difference.

The smoothing can be done using whatever method is convenient, e.g. cubic splines
(Silverman, 1985), kernel methods (Gasser et al., 1984), polynomials, other specifically
tailored mathematical functions (Jenss and Bayley, 1937; Preece and Baines, 1978) or
simply fitting by eye.

It is possible to do the curve fitting in two stages, first obtaining L(t) and then
using L(t;) for each group rather than 4;, to obtain #; and 6;. This way the estimates
of M(¢) and S(t) are slightly more consistent, but at the cost of extra computation.

The standard deviation obtained from the S(¢) curve can be restored to original y
units by multiplying by L()y“®. However, this requires the values of y; to be smoothed
in addition to the fi;, to obtain values for t #¢t;. As the two means are in practice
very similar, particularly if L(¢;) is close to zero, the method is somewhat simplified
if M(t;) rather than y, is used.

With this simplification, the L, M and S curves can be used to generate any smooth
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centile curve over the whole age range. If the required centile is 100a, then the equation
of the centile curve Cygg.(?) is given by

Cro0dt) = M(O[1 + L(2) S(t) 2, (7
The equivalent form if L(t) is zero is given by

C1o04(t) = M(?) exp[S(1)z,]
although it is unlikely for L(t) to be exactly zero given that it varies continuously.

2.4. Testing for Normality

The method assumes that after power transformation the data are normally
distributed. This is tested formally using the Shapiro—Wilk W statistic (Royston, 1982),
which is based on the squared correlation coefficient of the ordered sample values
plotted against their expected normal order statistics. This is known to be a good
omnibus test in the absence of skewness.

2.5. Multiple Categories and Covariance Adjustment

Box and Cox (1964) defined var(y) as the residual variance after fitting a quite
general design matrix. There are two particular forms of design matrix which are
likely to be useful in this context—one allowing for different categories of individual
within each age group, the two sexes for example, and the other allowing for covariates,
e.g. age within each age group. For data in different categories, the method provides
distinct M(t) curves while pooling the data to estimate L(t) and S(¢t). This is worthwhile
for improving the estimates ; and &, but is only sensible if the L and S curves are
likely to be similar in the different categories. The alternative would be to keep the
categories separate and to estimate all three curves for each.

Incorporating age as a covariate allows for a linear trend in the mean and so gives
a direct estimate of the instantaneous variance (Healy, 1962). The variance to be
minimized here is the residual variance after fitting the covariate, and the obtained
mean can be adjusted to some central covariate value.

2.6. Assessment of Individuals

In the area of nutritional status assessment, it is common practice to express
measurements for individual subjects in one of three ways: either as a centile, a
standard deviation score or a fraction of the median. The form of equation (7) allows
the three ways to be unified, in the following manner. Consider a subject whose
observed measurement is Y and whose age (assuming this to be the independent
variable) is T. By rearranging equation (7), the corresponding standard deviation
score for the subject is given by

[Y/M(T)]AD — 1 ®
L(T)S(T)
The term Y/M(T) is Y expressed as a fraction of the median, Z is the standard

deviation score and the centile corresponding to Z is given by ®(Z), the normal
probability integral for Z. Thus if, in future, centile chart tabulations include the S

Z =
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and L curves in addition to the M curve, it will be possible to obtain Z to full accuracy.
Conversely if information on L is missing it can be assumed to be either unity or
zero, in which case equation (8) simplifies to respectively

. Y/M(T)—1
Z= —_—S(T) 9)
or
_ log[Y/M(T)]
Tosm 19

Bearing in mind that S(T) is the coefficient of variation or log(standard deviation),
and Y/M(T) has mean 1, equations (9) and (10) are équivalent to the standard deviation
score (Y —mean Y)/sd(Y). If in addition S(T') is unknown, it is clear that Y/M(T) is
the approximate index.

2.7. Robustness of Power Estimate

One uncertainty with the method is to what extent outliers influence the estimation
of 2. The theoretical advantage of centiles is that they are robust to the presence of
outliers, so it is 1mportant to know how sensitive 4 is to their presence. Its value is
chosen to minimize skewness and to optimize kurtosis, of which only the former is
affected to any extent by outliers. Thus it is permissible to trim the data (by deleting
the smallest and largest values) and to re-estimate 2. If either of the two deleted values
is influential 4 will change appreciably. This trimming may be continued in principle
until the proportion of data deleted in each tail approaches the tail area corresponding
to the most extreme published centiles (i.e. the 3rd and 97th), and the change in 4
during the process measures the robustness of the procedure. However, the estimates
of the variance after trimming will be biased downwards progressively, although this
can be adjusted for by fitting a doubly truncated normal distribution (Healy, 1978).

2.8. Validation

To test whether existing tabulated centile charts can be expressed in the LMS form,
i.e. that they are normally distributed on an appropriate power scale, it is necessary
to estimate the three curves from tabulated centiles. Consider the set of centiles Cy,
for one particular age, and assume that when raised to some power A they approach
normality. They are then of the form (1), where v the mean and ¢ the standard deviation
are unknown constants and the z, are known. For given 4, the linear form of equation
(1) allows v and ¢ to be estimated from the regression of C,,, on z,, and so long as
the z, are symmetric, ¥ is the intercept of the regression equation and £ the regression
coefficient.

The method then continues as described in Section 2.3, obtaining x and ¢ from v
and ¢. L is obtained by interpolation as the value of A that minimizes 6. M and S are
given by u and o.

The values of L, M and S at each age make up the three required curves. They are
likely to be fairly smooth, particularly the M curve, as a result of the smoothing
applied to the chart originally. Substituted into equation (7) they can be used to
recreate the original centiles, with which they can be compared.
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2.9. Simplified Description of LMS Method

The purpose of this section is to provide practical directions for using the method.

For each distinct age or age group, A is estimated as follows. The standard
deviation of the measurement (weight in the examples here) is calculated for three
known values of A. The simplest (and computationally most economical) choices of
A and 1, 0 and —1, corresponding to the transformations weight itself, (natural)
log-weight and inverse weight. The geometric mean of weight is also required, which
is the antilogarithm (or exponential) of mean log-weight.

The weight standard deviation is divided by the geometric mean weight to give a
form of coefficient of variation, while the inverse weight standard deviation is multiplied
by the geometric mean; the log-weight standard deviation is left unchanged. The three
standard deviations, or more accurately coefficients of variation, are now found to
be very similar. The aim is to interpolate between them to find the minimum value
for the coefficient of variation, and this then corresponds to the best value of 4.

Call the coefficients of variation as obtained from weight, log-weight and inverse
weight s, s, and s_ respectively. The estimate of 4 is given by

log(s_/s )

2 Togls_5,/52) an

and its standard error is

[n log(s-s./s5)]~*°

where n is the sample size.

This process is repeated for each group, and the resulting A values are plotted
against age. A smooth curve L is then drawn through the points, either by computer
or by eye, so that A can be read off the curve at any age.

To find the mean and coefficient of variation for each age group, weight
is raised to the power A as obtained either from the original calculation or
as read off the L(t) curve—the choice is unimportant. The mean and standard
deviation of the A-transformed weight is calculated, and this standard deviation is
divided both by A and by the geometric mean of weight raised to the power A. If the
result is negative, make it positive. This is the minimum coefficient of variation, and
so should be slightly smaller than s_, s, and s, . The mean of the transformed weight
is back transformed to mean weight by raising it to the power 1/4.

Just as with the power, the means and coefficients of variation for each age
group are plotted against age, and the smooth curves M for the mean and
S for the coefficient of variation are obtained. The L, M and S curves can
be fitted either by computer or by eye, but the advantage of fitting them by computer
is that they can be expressed numerically, which simplifies reading values off the
curves subsequently.

Once L, M and S have been obtained they can be substituted into equation
(7) for given values of age t and normal equivalent deviate z,, to obtain a
complete set of centile curves. For reference, the values of z, (the SD score)
corresponding to particular centiles (C, 0,) are given in Table 7, later. If L is negative,
this must be taken into account in equation (7).

For the more involved cases described in Section 2.5, the residual standard
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deviatjons for weight, log-weight and inverse weight can be obtained from analysis
of variance or regression analysis. Otherwise the method is as already described.

3. DATA

3.1. Validation

The recently published set of 1980 Dutch growth standards (Roede and Van
Wieringen, 1985) is used to validate the method. The set of standards is based on a
national survey of 41 870 children aged between 3 weeks and 19 years, of whom 8301
were under 1 year old. The weight centiles were obtained empirically and subsequently
smoothed by eye, and these are used for validation. The 3rd, 10th, 25th, 50th, 75th, 90th
and 97th centiles are tabulated by sex for 26 ages between 3 weeks and 64 weeks,
and by half-years from 1 year to 19.5 years. Between 100 and 300 children were seen
at each age. The centiles for the first year are used here, with 1, f1 and ¢ being computed
for each tabulated week in the two sexes.

3.2. Two Examples

Two datasets are used to illustrate the method on raw data. The first is the
Cambridge infant growth study (Whitehead et al., 1988), a longitudinal study of 132
children born in the city of Cambridge in 1983-84 and seen every 4 weeks (plus or
minus 2 days) between 4 weeks and 52 weeks of age, and also at 78 weeks. Half the
cohort was also seen when 2 weeks old. Six measures of anthropometry were recorded
at each visit, of which just weight is used here. The values of 2, i=1 ... 15) were
obtained by pooling the two sexes, and L(t) the power curve was fitted as a cubic in
weeks of age. The smoothed A values from L(z) were then used to obtain j; (by sex)
and 6; (pooled). The median curves M(z) for each sex were fitted by the Jenss curve
(Jenss and Bayley, 1937)

y=a,+ a,Age —exp(c, + c,Age)
or equivalently
y=a,+ a,Age + a,rre (12)

which has been shown (Berkey, 1982) to provide a good fit to weight data during
infancy. The curves were fitted using the OPTIMISE directive of GENSTAT, which
exploits the linear form of the latter equation (for given r) in the fitting process. The
standard deviation curve S(t) was also summarized as a cubic in age. In fitting the
two cubic equations, each polynomial term was included only if it reached significance
at P < 0.05. (This significance test is slightly dubious owing to the longitudinal nature
of the data, but the main concern here is estimation rather than significance). The
sexes were pooled for estimating L(t) and S(t) since separate estimations had shown
that they were not materially different. Thus the complete weight centile chart for
the two sexes was summarized by four four-parameter functions.

The second example comes from the second and third health examination surveys
of the USA (National Center for Health Statistics, 1970, 1973). Taken together these
provide data on the anthropometry of children between the ages of 6 years and under
18 years, with from 400 to 600 children of each sex seen in each year of age. Here
the weights and heights of boys were analysed, by single years of age, and within
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each group age was used as covariate to obtain the residual variance; the group
means were adjusted to age mid-year. The height powers showed a clear linear trend,
and the smoothed values were used to estimate M(t) and S(t). Apart from this
smooth curves were not fitted to the data.

4. RESULTS
4.1. 1980 National Survey of Dutch Infants

Figs 1 and 2 give the Box—Cox power estimates A and the corresponding coefficients
of variation ¢ by sex and week of age for the Dutch infant weight centiles. The power
changes relatively little during the year, and the values for the sexes agree to within
0.2. The trends in the coefficient of variation are also similar between the sexes, and
fall monotonically with age except for the boys between 24 weeks and 36 weeks. The
values of i obtained for the boys of each age are shown as the median curve in Fig.
3 along with the constructed curves for the other six centiles. Fig. 3 also shows the
boys’ centiles as published, and the two sets of curves are clearly in close agreement.
Table 1 summarizes the magnitude of the discrepancies for each centile. The largest
bias, 0.28%, occurs on the 90th centile, while the standard deviations of the
discrepancies vary between 0.15% and 0.47 %. The absolute departures range between
—0.9% and +1.0%, and 87 % of the 26 x 7 x 2 = 364 points are within +0.5%.

0.4 1 F
4 L
0.3 A I
] I
< I
B E -
[¢] 0.2 - 3
X E L
C M
o I
X 0.1 A F
P E :
[¢] L
w E L
E -0.0 A +
R b L
: L
-0.1 L
-0.2 L

[} 10 20 30 40 50 60 70

WEEKS

Fig. 1. 1980 Dutch national survey infants’ weight: power curves L(t) for boys (full curve) and girls (broken curve)
showing the change in Box—Cox power during the first year
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Fig. 2. 1980 Dutch national survey infants’ weight: coefficient of variation curves S(t) for boys (full curve) and girls
(broken curve) showing the change in coefficient of variation during the first year

4.2 Cambridge Infant Growth Study

Table 2 gives the results by week of age for weight in the Cambridge infant growth
study. Shown are the best fitting power 1 and the coefficient of variation & for the
sexes combined, and the mean weights for the two sexes. In addition the correspondlng
smoothed estimates are shown. The standard errors of 1 are about 0.6. Table 3 gives
the coefficients of the Jenss curves M(t) (12) by sex, and the cubic curves L(t) and S(¢)
for power and coefficient of variation. Figs 4 and 5 respectively show 7 and & with
the fitted cubic curves, where the fitted curves follow the data quite reasonably. The
power curve covers a much wider range of values than the Dutch survey (Fig. 1), but
the coefficients of variation in the two studies are very similar. Fig. 6 shows the
constructed weight centile chart for boys, where the change in skewness from 2
weeks to 78 weeks is clearly seen.

Table 4 shows the effect on 1 of trlmmmg the data, one pair at a time. After 16
weeks of age, deleting the first pair increases A by about 0.3, which shows that the
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Fig. 3. 1980 Dutch national survey infants’ weight: 3rd, 10th, 25th, 50th, 75th, 90th and 97th centiles for boys as
published (Roede and Van Wieringen, 1985) (full curves) and as calculated from the curves L(t), M(t) and S(t) using
equation (7) (broken curves): the calculated 50th centile is also the M(t) curve

heaviest subject skews the distribution to the right. Deleting the second pair has little
further effect on 4.

4.3. US Health Examination Surveys

Table 5 gives the results by year of age for boys’ weight in health examination surveys
2 and 3. A is close to —1 until age 11, from 12 to 16 it increases to about —0.5, and
then at 17 it drops back towards —1. The standard errors are generally less than 0.2,

TABLE 1
1980 Dutch national survey infants’ weight: percentage differences between standard weights as
tabulated by Roede and Van Wieringen (1985) and as predicted by equation (7), averaged over
age and sext

Centile
3 10 25 50 75 90 97
Mean (%) -0.14 0.04 0.12 0.10 0.07 -0.28 0.08
Standard deviation (%) 0.38 0.47 0.34 0.25 0.25 0.19 0.15

tThe curves L(1), S(t) and M(t) in equation (7) are shown 1n Figs 1-3.
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TABLE 2
Cambridge infant growth study weight: results by weeks of age for the power and coefficient of
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Weeks Boys Girls

n bl L) & NG i M(t) i M)

2 62 0.79 1.08 0.130 0.130 3.65 3.68 3.60 3.64
4 130 1.02 0.75 0.131 0.126 422 4.21 4.10 4.07
8 131 0.26 0.18 0.117 0.121 5.20 5.15 4.89 485
12 132 —0.16 —0.29 0.114 0.116 5.92 5.93 5.48 5.51
16 131 —0.76 —0.66 0.109 0.113 6.56 6.58 6.06 6.08
20 129 —1.15 —0.95 0.112 0.110 7.11 713 6.57 6.58
24 129 —113 —115 0.109 0.108 7.59 7.60 7.03 7.02
28 125 —1.20 -1.29 0.109 0.107 8.02 8.02 7.39 741
32 129 —1.29 -1.37 0.107 0.106 8.39 8.38 1.76 1.5
36 129 —1.48 —1.39 0.106 0.105 8.71 8.71 8.07 8.06
40 128 —1.57 —1.37 0.102 0.105 9.06 9.01 8.38 8.35
44 127 —112 —132 0.105 0.104 9.26 9.28 8.60 8.60
48 124 —-1.22 —1.24 0.106 0.104 9.51 9.53 8.83 8.84
52 126 -1.17 —1.15 0.101 0.104 9.78 9.77 9.05 9.07
78 104 —0.77 —0.76 0.096 0.096 11.13 11.13 10.28 10.28

1In each case the observed and fitted values are shown; the fit is by cubic curve for the power and coefficient of variation, and by
Jenss curve for the means.

TABLE 3
Cambridge infant growth study weight: coefficients
of the fitted Jenss curves for the mean, sexes separate,
and the fitted cubic curves for the power and coeffici-
ent of variation, sexes combinedt

M()

Boys
Girls

log S(t)*
L)

do

7.59
7.50

do

—4.03
1.44

ag + a;Age + a,re
a, a;

0.046 —4.5

0.037 —4.3

ag + a;Age +a, Age? + a; Age®

a,

—0.030
—0.187

a;

0.00063
0.00383

0.943
0.953

as

—0.0000045
—0.000023

TAge is in units of weeks.

so that in every age group 1 is highly significantly less than zero. The period 12-16
covers the boys’ adolescent growth spurt, which influences the value of the coefficient
of variation & as well as 2. & rises steadily from a value of 0.14 at age 6 to 0.22 at
age 13, dropping back to 0.16 at age 17. None of the 12 age groups is significantly
non-normal by the Shapiro-Wilk test after transformation (P > 0.1), while all are when
untransformed (P <0.001), and all but three are with a logarithmic transform
(P <0.05). Fig. 7 illustrates the SD scores on the transformed scale corresponding to
the standard centile points at each age. The agreement is good on the whole, and
better in the middle than in the tails.



1988] Fitting Centile Curves to Data 397

a s " L n " L L L

1.2 A
i L
2.6 F
B 1 L
o 1 L
X B L
[ 0.0 - L
o . L
X 4 L
P B L
o -0.6 -
W 1 F
3 . L
R 1 L
1 L
-1.2 L

-

-1.8 A
[] ‘10 20 30 40 50 60 70 8e

WEEKS

Fig. 4. Cambridge infant growth study weight: estimates of the Box—Cox power at each age with the fitted cubic
curve, sexes pooled

The corresponding results for height are in Table 6 and Fig. 8. Here 1 is more
variable from age to age, with standard errors four times greater than for weight. The
mean value of Zis 1.1, but thereis a highly significant posmve trend with age (regressmn
coefficient 0.28 SE 00':~'6y“1 P <0.001). Even so, only in the oldest age group is
7 significantly different from unlty (P < 0.05). The value of 6 is about one-quarter that
for weight, but as with weight it increases with age from 6 to 13 and then decreases
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Fig. 5. Cambridge infant growth study weight: estimates of the coefficient of variation at each age with the fitted
cubic curve, sexes pooled
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Fig. 6. Cambric.:lge infant growth study weight: fitted centile curves for boys as derived from equation (7): L(t) and
S(t) are shown in Figs 4 and 5, while M(t) is shown here as the 50th centile

TABLE 4
Cambridge infant growth
study weight: change in the
estimated power relative to
the original value after delet-
ing the largest and smallest

valuet
Weeks Pair
1 2
2 0.00 —0.19
4 —004 —0.15
8 —059 —081
12 —006 032
16 —0.11 —003
20 +027 +032
24 +0.28 +0.28
28 +045 +0.46
kY +0.26 +0.52
36 +0.17 +0.38
40 +033 +0.49
44 +035 +029
48 +0.22 +029
52 +031 +0.46
78 +048 +0.59

tResults are shown after deleting one and
two such pairs.
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TABLE 5
Health examination surveys 2 and 3, boys’ weight. results by year of
age for the number, power, mean, coefficient of variation and
Shapiro—Wilk W statistic
Age n A SE u a w
6- 580 —1.14 0.18 21.6 0.140 09858
7- 631 —122 0.17 24.1 0.142 09898
8- 622 —085 0.17 27.1 0.159 0.9930
9- 599 —1.17 0.14 299 0.183 09824
10- 575 —1.06 0.17 3238 0.172 09913
11- 620 —1.00 0.15 37.1 0.189 09902
12- 641 —-0.70 0.16 412 0204 0.9852
13- 626 —0.51 0.14 482 0218 0.9835
14- 617 —0.51 0.15 549 0205 0.9861
15- 614 —0.60 0.17 60.1 0177 0.9903
16- 555 —0.56 0.17 63.5 0.169 0.9885
17- 433 —-0.79 023 66.7 0.160 09876
3 |3
2 .
l -
s T D . — = L
D -
s o q— —_—— = -t
c -
o -
L S T —— w/m—_’:’:?_ r
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Fig. 7. Health examination surveys 2 and 3, boys’ weight: SD scores corresponding to specified centiles transformed
according to equation (8) (full curves) plotted against age, with the normal SD scores for the same centiles shown

as broken curves
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TABLE 6
Health examination surveys 2 and 3, boys’ height: results by year of
age for the power, linearly smoothed power, mean, coefficient of
variation and Shapiro-Wilk W statistic

Age A SE L u 4 ) w
6 —1.1 038 —0.47 1.19 0.0414 0.9839
7- —0.1 0.7 —0.18 1.24 0.0415 0.9832
8- 1.2 0.7 0.10 1.30 0.0428 0.9908
9- 0.2 0.7 0.39 1.36 0.0462 0.9890
10~ 0.8 0.7 0.67 1.40 0.0452 0.9814
11- 1.4 0.7 0.95 1.46 0.0455 0.9887
12— 0.0 0.6 1.24 1.52 0.0522 0.9882
13- 1.1 06 1.52 1.60 0.0549 0.9836
14— 2.7 0.7 1.81 1.67 0.0502 0.9835
15— 1.9 0.7 2.09 1.72 0.0432 0.9845
16— 2.0 0.8 2.37 1.74 0.0402 0.9904
17— 3.1 1.0 2.66 1.76 0.0402 0.9812
3 A L
1 i
21- [

s _‘_._\*‘ — e T — e e o — —

) : I
S 0 41— = ———W—:
C E L
o b L
R 4_ _ _ — _ L
£ | ‘—\—:;_/—’—ﬁ-_-

6 8 10 12 14 16 18
YEARS
Fig. 8. Health examination surveys 2 and 3, boys’ height: SD scores corresponding to specified centiles transformed
according to equation (8) (full curves) plotted against age, with the normal SD scores for the same centiles shown
as broken curves
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again. Also as with weight none of the age groups is significantly non-normal after
transformation (P > 0.1), while the oldest group is significant when untransformed
(P <0.05). Fig. 8 gives the transformed SD scores at each age, using the linear fitted
powers.

Table 7 summarizes the results over age for the SD scores in Figs 7 and 8. The means
and standard deviations of the discrepancies in SD score relative to the expected
values are shown for each centile, with the expected SD score shown for reference.
The largest bias occurs for 97th centile weight where the mean observed SD score is
1.937, which corresponds to an expected centile of 97.3. The other SD score means
are only trivially different from their expected values. The variation in SD score is

TABLE 7
Health examination surveys 2 and 3, boys’ weight and height:
differences in SD score (observed less expected) for the seven
centiles shown in Figs 7 and 8, averaged over age

Centile

3 10 25 50 75 90 97

Expected —1.881 —1.282 —0.674 0.000 0.674 1.282 1.881
SD score

Weight

Mean 0.003 0.008 0036 —0008 —0038 —0.008 0.056
Standard 0.082 0.057 0.041 0.023 0.037 0.046 0.049

deviation
Height
Mean 0.008 —0.010 —0.006 0013 —0011 —0.030 0.023
Standard 0.077 0.030 0.043 0.029 0.036 0.047 0.087
deviation
TABLE 8

Health examination surveys 2 and 3, boys’ weight and height: change in
the estimated power relative to the original value for weight and height
after deleting the largest and smallest valuet

Age Pair Pair
1 2 4 8 1 2 4 8
Weight Height

6- +0.05 +0.08 +0.16 +0.32 +0.15 +0.18 +029 +048

7- —0.06 —0.03 +0.04 +0.15 +0.03 +0.09 —0.18 —-0.54

8- —0.04 —0.09 —0.15 —0.14 0.00 —0.07 +002 037

9- —0.03 —0.04 —0.14 —0.12 —0.15 —0.05 +0.16  +047
10— -0.05 —0.04 —0.04 —0.01 —-0.01 +0.10 +025 4033
11- —0.09 —0.11 —0.16 —0.17 -0.17 —0.12 —-026 —0.50
12— 0.00 0.00 —0.01 —0.04 +0.01 +0.02 +006 —0.09
13- -0.02 +0.01 +0.07 +0.06 0.00 —0.03 —-006 —0.27
14- +0.05 +0.10 +0.18 +0.26 +0.02 —0.06 —-0.08 —001
15— —0.02 0.00 +0.01 +0.03 —0.18 —-0.22 —-005 +0.31
16— —0.04 —0.05 0.00 +0.08 +0.06 +0.20 +0.04 —042
17- —0.04 +0.01 +0.06 +0.06 +0.02 —0.06 -0.17 -023

tResults are shown after deleting one, two, four and eight such pairs, by age group.
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least on the median and increases towards the tails of the distribution—height and
weight are similar in this respect.

Table 8 shows how insensitive the estimates of A are to the extreme values in each
tail of the weight and height distributions, by age group. In most cases the effect of
excluding the largest and smallest value is trivial, with 1 changing by less than 0.1.
Excluding further pairs has progressively more effect, but only rarely does this exceed
the standard error of the original estimate. Also of interest, but not shown, is the way
that the standard errors of 4 increase steeply as the data are trimmed. Thus the choice
of 4 is determined largely in the extreme tails of the distribution. This is more labile
for height than for weight, as might be expected given the larger standard errors for
height.

5. DISCUSSION

Producing centile charts has always been something of a black art—the centile
lines need to be drawn such that they are both smooth and close to the empirical
centiles. It is not surprising that this trade-off problem is often solved by drawing the
lines by eye. Roede and Van Wieringen (1985) have described in detail their sequential
procedure for fitting curves to observed weight centiles. Essentially it involves first
obtaining a smoothed median curve and then expressing the other observed centiles
relative to the smoothed median. Smooth curves are then drawn for the other centiles,
and these are adjusted in the light of the original centiles.

For height they use a simpler method; normality is assumed initially, and smoothed
curves representing the mean and standard deviation are obtained. These are then
used to obtain the centile curves. Comparison of the curves with the observed centiles
shows close agreement except during puberty, where the smoothed curves are modified
to take account of the skewness.

Tanner et al. (1966) assumed a normal distribution for height throughout childhood,
although they acknowledged the existence of some skewness during puberty. For
weight they drew the centile curves directly from the observed centiles. In both cases
they ‘shrank’ the centiles towards the mean to compensate for increased variation due
to grouping the data (Healy, 1962).

Hamill et al. (1977) experimented with the Pearson family of curves to represent
the distribution at each age; in this family the shape of the distribution is defined by
the mean, standard deviation, skewness and kurtosis. They used polynomial stepwise
regression to smooth the age changes in these four quantities, a method analogous
to that described here. However, they found the polynomial curves too inflexible, and
so fitted cubic splines to the individual centile curves instead. This approach led to
difficulties with spacing the centile curves appropriately.

A completely different approach to the problem has been provided by Healy et al.
(1988), who propose an entirely nonparametric method of centile curve fitting. Firstly
the centiles are smoothed nonparametrically, and then a set of polynomials whose
coefficients are constrained to be linearly related across centiles are used to fit the
separate centiles. This powerful method has much in common with the LM.S method
in that it produces centiles which are

(a) smooth,
(b) close to the data and
(c) constrained to accord with neighbouring centiles.
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What it does not have is an underlying distributional form to convert centiles to SD
scores.

The present method is a logical extension of the height technique used by Roede
and Van Wieringen (1985), which in turn extends the methods of Tanner et al. (1966).
Smooth curves are obtained for the mean (M) and coefficient of variation (S), but
after applying a smoothed Box—Cox power transform (L). This approach provides
systematic adjustments to the centile curves to cope with changes in skewness, for
example during puberty. It is also a maximum likelihood procedure under normality
assumptions, in that the log-variance is minimized at each age subject to mild
smoothness constraints on the three curves. The total likelihood for the sample is
represented by minus the area under the logarithm of the S curve.

The validation study on the Dutch national survey (Figs 1-3) provides strong
support for the method. The close agreement between the published centiles and those
expected from a transformed normal distribution shows that Roede and Van
Wieringen (1985) could have used this method and still derived essentially the same
answer. As a bonus, the method shows the changing skewness and coefficient of
variation of the population during the first year of life (Figs 1 and 2).

Working with data rather than tabulated centiles gives a better idea of the inherent
variability of anthropometry. Weight is often thought to be poorly behaved
distributionally, and the present health examination survey results confirm that, either
untransformed or after logarithmic transformation, it is far from normally distributed.
However, using a more extreme power transform, with powers in the range from
—1.2 to —0.5, the distribution becomes insignificantly different from normal in every
age group. Also the values of 1 obtained are well behaved from year to year, showing
markedly less skewness during puberty than before or after. The fact that none of the
age groups produces a significant W statistic is somewhat surprising, but the choice
of 2 has ensured the effective absence of skewness, and this may account for the
goodness of fit.

For height the story is somewhat different, in that the distribution is fairly close
to normal even before transformation, and the appropriate power transform is poorly
specified. Both these factors are due to the relatively small size of the height coefficient
of variation. Even so the American health examination survey results demonstrate
a clear negative trend in skewness across the age range, with values of 2 or more for
7 in the four oldest age groups. Thus the method has detected a shift in the height
distribution which has not previously been seen.

Examination of the SD score plots (Figs 7 and 8) shows that for both weight and
height there is good agreement between the empirical centiles and those estimated
from A, p and o. As might be expected the fit is better for the median and quartiles
than for the more extreme centiles, but even in the tails the departures are not large.
In addition they tend not to show consistent trends. The standard deviation of the
SD scores for each centile (Table 7), multiplied by the corresponding coefficient of
variation, gives the percentage variation in weight or height between observed and
fitted centiles. The standard deviations in Table 7 range from about 0.03 to 0.08 on
the extreme centiles, while typical values for ¢ in Tables 5 and 6 are 0.18 and 0.045
for weight and height respectively. Thus there is about 1.5% uncertainty for weight
and 0.4% for height on the 3rd and 97th centiles, and about half this on the other
centiles.

There may, however, be situations where certain of the observed and fitted centiles
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show clear systematic departures. If so, the method can be extended to provide
adjustments to the fitted centiles, as in the final stage of Roede and Van Wieringen’s
method (1985)—the method of Healy et al. (1988) would be a good way to do this.
The only disadvantage of second-order smoothing is that the centiles cease to be
normally distributed. Seen in this light, the method provides a framework of centile
curves which are adequate as they stand for many purposes, but which can be adjusted
if necessary.

It is worth emphasizing here that the smooth L, M and S curves at the heart of
the method can themselves be drawn by eye, if other techniques are insufficiently
sensitive. Thus the method does not necessarily replace the skill that is required to
draw centile lines by eye: it simply provides a suitable launching point.

A requirement of the method is that the data be divided into separate groups. This
is necessary to obtain the distinct estimates of A, ¢ and o required to specify L(¢), M(t)
and S(t), but how to choose the number and size of the groups is not so clear.
Successive values of A, u and ¢ from one group to the next provide estimates of the
linear trends dA/dt, du/dt and do/dt, but they give no information on quadratic or
higher order trends. Thus the groups should be sufficiently narrow for trends across
them to be essentially linear. If age is used as a covariate this provides extra
within-group information on the velocity du/dt, which could in principle be combined
with the neighbouring group means to fit M(t). ‘

Goldstein (1978) has argued that the sampling fraction by age t should be
proportional to du/dt, allowing equal numbers per expected increment in the measure-
ment. This sampling scheme would fit in well with the present results, since at the
time when du/dt is largest, i.e. during puberty, 4 and ¢ are also changing relatively
rapidly.

The extended Box—Cox transformation (4) involving é has not been mentioned,
and it might be thought useful for improving the fit in marginal cases. In practice it
adds little to the simpler family (3), because although the offset J is significantly
different from zero in certain age groups it makes no difference to the goodness of
fit. The effect of J is to adjust the kurtosis of the distribution, whereas the lack of fit
is usually due more to (say) the 90th and 97th centiles being too close together. Even
if adding 6 to the method was thought to be desirable it would mean smoothing a
fourth curve, which would be a substantial cost for little benefit.

The results of the Cambridge infant growth study suggest that relatively small
longitudinal studies can provide well-defined estimates for the L, M and S curves.
The method largely side-steps the difficulties of estimating the centiles, so that the
question of whether or not the sample size is adequate hinges on the smoothness of
the computed values of 4, 1 and ¢ plotted against age. If there is too much noise, the
corresponding fitted curves will be poorly specified, and the resulting centile curves
as well.

This highlights the strength of a longitudinal study over a cross-sectional survey—
age changes are relatively smooth since the subjects themselves do not change. Thus
the estimates of A in the Cambridge study, based on 130 subjects, show as much
consistency from age to age as the health examination survey results where n = 600.
Admittedly the standard errors are larger and the age intervals between measurements
smaller in the Cambridge study, but then growth patterns also change faster in the
first year.

A problem with small samples is that 2 may be sensitive to extreme values. A
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distinction is drawn here between genuine outliers which clearly should be excluded
and values in the tails of the distribution which, although unusual, are genuine. The
problem is less severe in large studies, e.g. the health examination surveys, where 18
points (3% of the sample) lie beyond the 3rd or 97th centile. In the Cambridge study
there are only three or four such points and their presence or absence makes more
difference. There was one very fat boy in the Cambridge sample and excluding his
data increased 1 by 0.3 (Table 4). In contrast, the value of A in the health examination
surveys was quite insensitive to extreme values (Table 8). If in a large sample there
was evidence of an outlier, it would be reasonable to exclude it on the grounds that
centiles obtained by the conventional way ignore the extreme 3 % of the distribution
anyway.

The main uncertainty of centile charts based on small longitudinal studies is to do
with their representativeness—how relevant are they to larger populations? This can
be judged to some extent by comparing the L, M and S curves with those of other
surveys. In particular, the Cambridge study can be compared with the Dutch growth
standard. Judging from Figs 1-6, their mean and coefficient of variation curves are
very similar while the power curves are rather different.

This discrepancy does not mean that the Cambridge power curve is in any sense
wrong: it simply records that the two samples are structured differently, with the very
heavy babies more dispersed in Cambridge. Even excluding Cambridge’s outlying fat
baby does not alter this—between 16 weeks and 52 weeks the power remains near
—1 while in the Dutch survey it is consistently above zero. This emphasizes that,
unlike the M and S curves, the L curve is specific to its own sample, acting almost
as a sample fingerprint.

Thus the precise value of the L curve, and with it the relative positions of the
extreme centiles, might be considered unrepresentative in small samples. The M and
S curves though ought to be adequately robust. With this proviso, the Cambridge
study centile curves provide a convincing solution to the problem of obtaining growth
charts from limited data.

The presentation of centile charts generally is simplified because the tabulated L,
M and S curves (or preferably their mathematical functions) enable any centile to be
calculated at any age. Equally the centile can be expressed with full accuracy as a
standard deviation score. This is of particular use in the tails of the distribution,
where individuals falling below say the 3rd centile are specified only imprecisely in
centile terms, whereas their standard deviation score is fully informative. To highlight
the benefit this brings, the American National Center for Health Statistics’ growth
standard (Hamill et al., 1977) had to be published in two forms: centiles for use in
America and the western world, and SD scores for the third world. In addition, to
calculate individual SD scores they had to use two estimates of the standard deviation,
one based on the upper centiles and one on the lower. The present method makes
both these measures unnecessary.

The idea of using a smoothly changing Box—Cox transformation was originally
described by Van’t Hof et al. (1985), who demonstrated it on tricep skinfold data
from the Nijmegen growth study. They concentrated on minimizing the skewness,
and rather dismissed the importance of the smoothed mean and standard deviation
curves that are an integral part of the method. This paper differs from theirs both in
emphasizing the maximum likelihood nature of the fit and in working with the
coefficient of variation rather than the standard deviation. This latter approach is
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firmly supported by all three examples, in that the age trends in the mean and the
coefficient of variation are seen to be clearly different, which would not be the case
for the mean and standard deviation. In addition the coefficient of variation is relatively
constant, varying for example between 0.14 and 0.22 in Table 5 when the mean
changes by a factor of 3. Thus the mean and coefficient of variation curves are to a
large extent independent of each other. Van’t Hof et al. (1985) felt that the technique
was valid only on relatively noisy anthropometry data and played down its use in
other contexts. The results of this paper suggest that their initial impression was
wrong, and that the method is useful for dealing with anthropometry in all its forms.
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DISCUSSION OF THE PAPER BY COLE

Miss Susan Chinn (United Medical and Dental Schools of Guy’s and St Thomas’ London): Dr
Cole’s paper is most welcome in bringing the problems of centile estimation before a wider audience
than in the past. I strongly endorse his aim to produce smooth centile curves that are based on an
underlying distribution as it is unsatisfactory to carry out separately the related procedures of centile
assessment and standard deviation score calculation for an individual child.

Would Dr Cole explain how he reconciles the sentences ‘Table 8 shows how insensitive the estimates
of A are to the extreme values in each tail’ and ‘Thus the choice of 1 is determined largely in the extreme
tails of the distribution’?

Data from the national study of health and growth for 6000 English boys and girls, aged 4.5-12 years,
confirm Dr Cole’s findings of poorly determined A for height, and a trend in A with age in boys, but
not in girls. The usual assumption of a normal distribution is quite justified for girls of this age, and I
doubt that there is any advantage in employing a transformation for boys.

For weight I also find 2 significantly less than zero for year age groups from 5 to 11 years. Given the
large numbers that are usually, and should be, involved in centile estimation it follows neither that the
extra effort in fitting a third parameter is necessary, nor that A is the parameter of choice. Preliminary
results suggest that for weight the effort is worthwhile. Given the need for a three-parameter distribution
the general power transformation is a sensible place to start, but the LMS method may not suffice for
all biological variables, and a four-parameter distribution may sometimes be necessary.

I disagree with Dr Cole over his apparently equal treatment of age and time. Longitudinal data on a
relatively small number of children are not a substitute for the same number of measurements obtained
on independent samples for each age group. Longitudinal data will provide a smooth standard deviation
curve because essentially the same information is being repeated at each age. Of more importance
reference curves obtained in the way described, known as ‘distance’ standards (Tanner, 1986), should
not be used to follow the growth of a child; they should only be used for the initial assessment to take
the decision to follow-up the child or not. When two measurements are available some measure of rate
of growth is required and is used if a child is being assessed for treatment with growth hormone. Most
commonly used are ‘velocity’ standards, e.g. height gain by age. These have been produced by Tanner
et al. (1966), but smoothed by eye. Herein, surely, lies the important question, whether adequate
distributions can be found, or whether distribution-free estimation should be used (Healy et al., 1988).
Even better are conditional standards for the second measurement given the first, as proposed by
Cameron (1980). For height the two standards are not identical because height gain is positively related
to attained height. Longitudinal standards (Tanner et al., 1966) seek to provide an assessment of a child’s
growth curve against reference growth curves. Unfortunately sufficient data to provide estimation of
such curves are rarely available, but the Cambridge infant growth study could provide such information
for the first year of life.

None of these considerations is the most crucial for the assessment of a child, which is against what
reference should the child be assessed? Dr Cole mentioned the problem of intercountry comparison, but
it exists within country too. It is easy to show that attained height is significantly and independently
associated with many factors. It does not follow that we should adjust for each of them in a child’s
assessment. Stunted growth may be more common under a combination of adverse social circumstances
but has the same consequences as for a child not socially disadvantaged. However, if we assess a child
of West Indian origin against Caucasian reference data we may seriously delay detection of growth
hormone deficiency. A West Indian child can be above the nominal 3rd centile, but below the 1st centile
if compared with other children of like ethnic origin. Inclusion or exclusion of adjusting factors is not
clear cut. Reference curves conditional on mid-parental height have been produced (Tanner et al., 1970)
but the association between a child’s height and that of his parents will not be entirely genetic. We need
an appropriate health outcome to determine which factors should be included, and the optimal adjustment
for each, analogous to moving on from reference ranges for serum constituents to the use of the same
data for prognostic prediction or differential diagnosis.

It gives me very great pleasure to propose the vote of thanks.

Mr Jon Rasbash (Institute of Education, London): I would like to talk briefly about an alternative
method for centile estimation, referred to by Dr Cole (and described in detail in Healy et al. (1988)).
The method involves two stages.
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1. Obtaining the ‘raw’ centiles

The data are sorted into ascending age order. A regression is fitted to the first k points in the
data set. The required centiles are obtained from the ranked residuals, using interpolation where necessary.
The centile points are plotted against the median age value of the k points. This procedure has used
points 1-k of the data; the procedure is repeated using points 2—(k + 1), 3~(k + 2) . .. until the entire age
span has been covered.

2. Smoothing

The centiles arising from stage 1 will be very irregular and will require smoothing. Each centile should
follow a smooth curve. However, for a fixed age the gaps between the centiles should also vary smoothly.
A smooth curve for the ith centile can be estimated by the polynomial

Vi=ao;i+ayt+ayt* +... +ayt’. 1)

We then make the set of a; coefficients linear functions of z; , where z; is the normal equivalent deviate of
the ith centile, i.e.

aj=bjo+bjiz;+bjyz7 + ...+ by 28 V)]

Jqc =t

g;, the order of polynomial fitted to the set of a; coefficients, may vary from one value of j to another.
Combining equations (1) and (2) gives a linear model which simultaneously fits all the centiles estimated
by stage 1. This model can be fitted by least squares.

Dr Cole criticizes this method because ‘it does not have an underlying distributional form to convert
centiles to SD scores’. It is true that the method is nonparametric; however, it is still possible to evaluate
SD scores for data points. Stage 2 gives us a polynomial function which predicts the value of a
measurement, y, for a given z and ¢. Therefore, a single measurement, for which ¢ will be known, can be
converted to its equivalent SD score by solving a polynomial equation.

If T understand Dr Cole’s paper correctly, the example analyses were carried out on relatively large
data sets between 50 and 150 points per age interval. With smaller data sets it may be necessary to use
broad time intervals to ensure that each interval contains sufficient points to estimate 1;, 6; and fi; to a
satisfactory precision. This may lead to estimating the L(T), S(T) and M(T) curves from rather few points
and as a result the centiles produced from these curves may be oversmoothed.

A solution to this problem might be to employ a method similar to stage 1 of the Healy et al. procedure.
This would involve moving a ‘box’ of appropriate size through the data set and estimating the parameters
2, 6; and ; for each box position. This approach would produce far more points from which the smooth
L(T), S(T) and M(T) curves could be calculated, thereby reducing the possibility of oversmoothing.

Finally, it would be interesting to see how Dr Cole’s method fares with data which depart more
radically from normality than weight such as skinfold thickness.

I would like to congratulate Dr Cole on a most stimulating paper. It gives me great pleasure to second
the vote of thanks.

The vote of thanks was passed by acclamation.

Dr S. Rosenbaum (Radlett): It is likely that linear measurements of the body are related and tend to
be normally distributed, while girths and associated measurements, such as skinfold thickness and weight,
are also related and their distributions tend to be skew. While, however, as the paper points out, a
log-normal transformation is commonly employed on such data, it should be modified by the subtraction
of a constant ¢ before logarithms are taken. For example, Edwards et al. (1955) recommended that 1.8
mm should be subtracted from the skinfold thickness in investigations of subcutaneous fat—a general
correction appropriate to all sites at which measurements are taken—while I once estimated a value
of 42 mm for the subscapular site in a sample of young adult males. The method is described in
Rosenbaum (1988) in the context of weights and, although the estimates for the available data are very
variable, it is reasonable to extend Rona and Altman’s (1977) values in their study of children from 16
kg at age 11 to 18 kg at age 15 and 20 kg above age 16. It is interesting that Royston (1982), in the
paper referred to by Dr Cole for testing for normality using the Shapiro-Wilk statistic W, also gives an
example of its use for estimating ¢ in the log-normal transformation, taking as his example the Rona
and Altman data just mentioned. Given these values what is the result of a Shapiro-Wilk test on the
data of Table 5 of Dr Cole’s paper? It is presumably not as good as the LM.S method but better than
the implied value ¢ =0.
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Royston (1986) provides a modification of his algorithm AS 181 for the W test when there are ties
which are a feature of grouped data—this may also present a problem for the LMS method. Another
practical problem arises when data are truncated, for example, if there are minimum height and weight
standards for a profession as for policemen and policewomen; an assumption such as log-normality
then enables us to estimate the mean and standard deviation, and hence the centiles. Can the LMS
method be adapted to this? (Even without truncation, the mean and standard deviation only may be
available.)

Robert G. Newcombe (University of Wales College of Medicine, Cardiff): The model that has been
described is very elegant. There are potential applications other than construction of growth standards.
The LMS model is very flexible and richly parameterized and could prove useful generally to characterize
a bivariate distribution in which the roles of independent variables are clear cut—a general characteriza-
tion of the dependence of y on x in a non-linear regression context. For example, Quetelet’s index,
weight/height?, is often used as a measure of obesity; the LMS model could be used to investigate
deficiencies in the assumed constrained model with M(x)oc x2, to suggest improvements and to
characterize a particular population. Possible applications are not limited to anthropometry.

My main misgiving is that the application of growth curves, however well constructed, in assessing
the adequacy of growth of an individual may still fall short of the ideal. Often, particularly in the prenatal
period, longitudinal data on a subject are assessed, and an individual crossing centile curves away from
the median may warrant further investigation and intervention. A study of the longitudinal properties
would be rewarding. Any of the scores set out in Section 2.6 could be used and autocorrelative properties
evaluated. Appropriate surveillance of the individual could be set on a more rational basis by adapting
methods used in quality control.

Whether the sample size in the Cambridge study is adequate to produce normative curves remains
questionable. (To the medical statistician, the principle that sample size virtually always means the
number of individuals is cardinal.) If the objective is to assess whether future subjects are drifting out
of control by crossing centile curves outwards, it will not matter critically if the training data set contains
one persistently unusually heavy subject. However, if the intention is to measure each future individual
on a single occasion, the standards will in effect be distorted throughout by the anomalous subject who
has provided several deviant values; in this situation the apparent adequacy of the small longitudinal
data set is illusory.

Professor F. D. K. Liddell (McGill University, Montreal): I have considerable interest in anthropomet-
ric data, not so much with centiles as with ‘average’ changes over both age and period. While I have
found the contributions fascinating, I am left with the impression of ‘black art’ (Section 5), because
(Section 2.3) “The smoothing can be done using whatever method is convenient, e.g. thus or thus, or
thus or thus, or simply fitting by eye’, or by procedures recommended by Mr Rasbash.

Now to the data used for illustrative purposes, or as the author claims ‘validation’—but (in my view)
no more than justification: Table 2 (Cambridge data) shows that the number of infants varied (even for
weeks 4-52) from the full quota of 132 to only 124. Clearly for many, measurements were complete
(weeks 4-52); T suggest it would have been better to use only their material, and, particularly, to do so
in a truly longitudinal sense, for I agree with Miss Chinn on the virtues of assessing growth from one
age to another.

My earliest relevant interests were in lung function measurements in British coal-miners, first
cross-sectionally and then, five years later, longitudinally. (The relevance is not marginal, because reference
data on lung function are required by respiratory physiologists and chest physicians (admittedly not
based on one occupational group).) The clear downward gradient with age of, say, forced expiratory
volume (FEV) over 1 s obtained from the first cross-section would have been a poor predictor for a later
cross-section. At each age after about 20 years, the average FEV did decrease in the five years, but
considerably less than the cross-sectional gradient had implied, with improvements in some miners.
(Inevitably, ‘regression to the [current] mean’ would be superimposed on the trend.) The main (not the
only) reason that the average fall was less than ‘predicted’ was that older men were shorter than younger
men.

This brings us back to anthropometric measurements. Dr Sidney Rosenbaum has demonstrated marked
increases in heights, and even more so of weights, of males at ages 2024, over 100 years, maintained
through the last six decades. A cross-sectional survey today of those aged 20-80 would raise many
problems in disentangling changes as due to age or period.
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Dr Cole’s paper will surely make an important impact in its true field—or (in the light of other
comments here) fields.

Mr J. P. Royston (Medical College of St Bartholomew’s Hospital, London): My comments are limited
to the crucial issue of the Gaussian distribution. If the transformed data are for practical purposes
Gaussian, a great simplification in the calculation of centiles results; if they are not, Dr Cole’s method
of first resort breaks down and some further smoothing work has to be done on the centiles. But first,
a small addition to the material of Section 2.4: the Shapiro—-Wilk Wis a good omnibus test, but it is
weakest against symmetric alternatives with rather long tails. Therefore examining the kurtosis coefficients
(b,) of the transformed data might also be sensible.

It is indeed convenient that the boys’ power-transformed weights in the health examination surveys
(Table 5) show no sign of departing from a Gaussian distribution, despite the enormous sample size
(433-641 per age group). Some statisticians have criticized the use of significance tests with such large
samples on the basis that the power to detect departures is so great that one would be very unlikely in
practice ever to find a sample that did not fail the test. This has not been my experience, and it is
pleasing that Dr Cole has come to the same conclusion in his paper. It would have been nice if Table
5 had given the P values for the W tests so that a composite P value could have been obtained, for
instance using Fisher’s method which says that —2 X In P is distributed as y? when the P, are uniformly
distributed on the interval (0, 1).

An alternative way of estimating A, which follows the example given in Royston (1982), is simply to
choose the value of A which maximizes W (or perhaps more conveniently the correlation between the
ordered data and the corresponding expected Gaussian order statistics) for the sample. If you wish to
guard against outliers you can omit the most extreme pairs of values as Dr Cole has done in Tables 4
and 8. This has the advantage that the transformed data are in a sense as Gaussian as you can make
them, but the disadvantage that the estimate of A is not maximum likelihood. In practice the results are
likely to be similar, but the W method is quite general and can be applied to any exotic transformation
of the raw data for which maximum likelihood estimates of the parameters may be difficult to obtain.

Dr P. J. Green (University of Durham): I particularly liked Dr Cole’s model, given by equation (7)
(or, equivalently, equation (8)): this amounts to a model for regression of Y on T that is nonparametric
(no parametric form for L, M or S is prescribed) but not distribution free (normality is retained).

However, the procedure for fitting the L, M and S curves described in Sections 2.3 and 2.9 seems
unnecessarily complicated: it involves giouping the data by values of T (which will sometimes be
necessarily arbitrary) and then a number of different stages (some with alternatives), in which fitting
and smoothing are separate steps, performed separately for each of the three curves. In the absence of
any characterization, properties of the estimated curves are unclear: they are defined purely operationally.

A more automatic, single-stage fitting procedure may therefore be attractive: one that might be
appropriate for sample data, on up to a few thousand individuals, can be based on penalized likelihood.
One way of doing this involves maximizing

n . 1 ) YL _1)2 1 |
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over choice of curves L, M and S. Each of the resulting estimates are natural cubic splines with knots
at the distinct values of {t;}. There are just three constants to choose, which control the smoothness of
the fitted curves.

This apparently horrible optimization problem can be handled very economically. Fisher scoring
yields an iterative algorithm with an updating reminiscent of ridge regression (see Green (1987)).
Derivatives of the log-likelihood with respect to values of L(t) do not have finite expectations, so I used
only the first few terms of a Taylor expansion of log[y;/M(t;)]. The updating is handled by an inner
iteration cycling over application of Reinsch’s algorithm (1967) for cubic spline smoothing to each of
the three curves in turn.

The inner iteration takes O(n) time per cycle, and in practice, applied to the weights from the Cambridge
infant growth study, convergence was obtained in about 15 cycles.

This use of spline smoothing is quite different from that mentioned in Section 2.3: here the spline
structure is not imposed.
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This approach leads to piecewise polynomial curves for L, M and S that may be easily plotted, as
can the resulting centile curves. It would be straightforward to adapt the method to handle covariates,
and matters such as pooling the sexes when estimating Land S but not M.

A final question: what is the null distribution of the Shapiro-Wilk W statistic, when a power
transformation has been estimated?

Professor Sir David Cox (Imperial College, London): We have heard a most interesting account of a
problem that is at first sight conceptually fairly simple but which is clearly far from straightforward and
which can be tackled in quite a number of different ways. One approach which has received some
attention in the econometric literature centres on a notion of quantile regression formulated as follows.
The median of a population and a sample minimize respectively

fly—ﬂl dF(y), Z|y;—90|,

in an obvious notation. The pth quantile can be shown to minimize

J[P(y —0)"+(1—p)O—y*]dFy),

Z[py;—0"+(1—-pO—y)*]

Here z* = max(z, 0). Suppose now that 8 is replaced by some suitable function of explanatory variables
with unknown parameters. Then the second minimization defines an estimated quantile regression
(Koenker and Bassett, 1978). Further, replacement in the sample minimization of z* by h(z*) defines a
family of estimates whose properties can be studied. This is explored in detail by Newey and Powell (1987).

This approach refers to a single value of p. To examine several values of p together some modification
might be needed.

While my initial preference would normally be for Dr Cole’s procedure, it would be interesting to
know more about the relative merits of these and other approaches.

Dr J. M. Bland (St George’s Hospital Medical School, London): I was drawn into this area when
I was approached by a paediatrician who had collected some data. He had obtained birth weights for
a series of births before the 30th week of gestation, giving 171 very little Neapolitans. He wanted to use
these data to construct a centile chart of birth weights in Naples at each week of gestation before 30
weeks. He thought that this was a good and worthwhile thing to do, and he convinced me of that.

I came to this problem with an uncluttered mind and produced what I considered to be an adequate
solution that did the job. As I was doing this, and afterwards, I discovered that many such charts had
been published, from charts which had used different models at different gestational ages connected by
smoothing, to charts which were presented without any hint of how they were derived.

Dr Cole’s method appears to be a considerable improvement on all those at which I looked as well
as on the method that I used.

However, my clinical colleague thought it was important that the method we used should be one that
he could understand. He also thought it would be even better if he could carry it out himself, and if
paediatricians scattered around the world could also carry it out themselves. Although I very much like
Section 2.9 of Dr Cole’s paper, I thought that it was unlikely that many of my clinical colleagues would
be able to apply Dr Cole’s method by following it.

I wonder how users of centile charts react to this fairly complex method of calculation, and whether
they find charts based on it convincing.

Perhaps I can encourage Dr Cole to prepare a version of his paper incorporating fully worked examples
which any paediatrician would be able to follow and carry out himself. Then, the next time that this
happens, I can show them a paper which shows them how to do it for themselves.

The following contributions were received in writing after the meeting.

Professor M. J. R. Healy (London School of Hygiene and Tropical Medicine): It should be pointed
out that the Healy-Rasbash—Yang (HRY) method (Healy et al., 1988) does make it possible to convert
centiles to SD scores. The method effectively fits a polynomial to the age-specific centiles on a normal
plot, so that SD scores can be obtained by solving a polynomial equation.
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A major difficulty with all methods for forming centile charts is that practical interest is concentrated
in the tails of the age-specific distributions. Direct information on these is scarce and hence the methods
effectively extrapolate from the inner centiles by making some kind of assumption about distributional
form. The LMS method makes the quite strong assumption that the symmetrized curve is normal (the
HRY method is at least theoretically more flexible). This assumption can be tested (Section 2.4), but
nothing is said about what to do if the test fails. The problem is manageable out to around the 3rd and
97th centiles, which are the outermost on the usual charts, but it is much more difficult when the method
is used, as would be quite common in practice, to derive SD scores outside the range (say) +24. It is
important to realize that the use of extreme SD scores is based, by definition, on minimal empirical
evidence.

Dr David C. Hoaglin (Harvard University) and Dr John H. Himes (University of Minnesota School of
Public Health): Even though Cole’s method produces centile curves in the scale of the data, its use of
potentially different transformations on consecutive segments of a single set of reference data over fairly
short periods seems needlessly cumbersome and difficult to interpret. Instead, we believe that it is usually
possible to follow the customary strategy (as in the examples of Box and Cox (1964)) of allowing the
data to guide a choice among plausible round values of 1 (e.g. 4 values of 1, 4, 0, —4 or —1). Within
Cole’s framework we can make a good start by plotting interval estimates of the ; rather than point
estimates and then asking what constant values of 1 are compatible with the data. Thus, for the weights
in the Cambridge infant growth study, 15 intervals, each at about 99.66 % confidence, would yield 95%
simultaneou§ confidence. If we take 0.6 as the standard error of each of these 1;, then the intervals
(centred at 1)) have an approximate half-width of 2.93 x standard error(1;) ~ 1.76, and all 15 intervals
would include —0.74 < A <0.19, i.e. the data seem compatible with transformation by either the logarithm
or the reciprocal square root (among the simple powers).

In addition, the potential sensitivity of each 1; to a few extreme values is cause for concern. We should
either trim them before proceeding or adopt a resistant method of obtaining L(t), M(z) and S(z).

Depending on the needs of the application, other approaches to producing smoothed centile curves
deserve consideration. If the centiles given in the reference data suffice, a version of resistant delineation
(Tukey, 1977; Himes and Hoaglin, 1989) should work well. In an application to triceps skinfold thickness
of males aged 1-20 years, we found that this approach retained features, visible in the raw centiles, that
the centile curves published by the National Center for Health Statistics had smoothed away. As an
alternative when other centiles are desired and each segment has sufficient observations, we can use
Tukey’s g-and-h distributions (Hoaglin, 1985) to describe the shape of the distribution at ¢; and to obtain
the further centiles directly. The g-and-h family includes the Gaussian and log-normal distributions as
particular cases and yields estimates of skewness and elongation parameters from symmetric centiles.
We can then smooth these estimates, as well as location and scale, and construct smooth centile curves.

Dr M. C. Jones (University of Bath): I would like to propose an alternative fully nonparametric
approach to fitting smooth centile curves to reference data. This contribution is more a discussion of
the discussion than of the paper directly, combining much of what Dr Green and Professor Cox have
said. Professor Cox has reminded us of an objective function which, when minimized, yields centiles;
now include in this objective function an unspecified function of ¢, add on a roughness penalty of the
type employed by Dr Green and minimize this to obtain a ‘spline smoothing regression quantile’.
Specifically, for a single centile, define C, oo, to be that f which minimizes

R,()= .Zl pay;— f(t)) + 4 J[f”(t)]z de
i=
over an appropriate smoothness class of fs, where

0 = ox ifx=0
PI= (1 —ax if x<O.

Here, {(t;, y), j=1, ..., n} is the reference data set and A is an unspecified smoothing parameter.
Now R,(f) is precisely of a form recently becoming popular in the smoothing spline literature in the
guise of ‘robust smoothing splines’; see section 6.2.5 of Eubank (1988) for references. We need to
investigate these methods for our particular choice of the function p,; a start is made in chapter 5 of
Bloomfield and Steiger (1983) under the names ‘generalized LAD splines’ and ‘quantile splines’ (I am
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grateful to John Rice for this reference). To obtain the entire family of centile curves required, indexed
by a;, say, we choose C,o,, to minimize each R, (f) separately. Note that it seems appropriate to use
the same value of A for each «;. This single 4, reflecting how smoothly the entire response distribution
varies with ¢, is a major conceptual, and consequently practical, advantage of the method proposed over
that of Dr Green. Getting away from the Box-Cox parameterization is also a personal preference,
although Dr Cole gives the impression that the need to do so for most reference data is not urgent.
Unlike Dr Green’s method, the current method would allow centile curves to touch and/or cross; if this
reflects a paucity of data in the region concerned, such an anomaly could turn out to be a most useful
warning. Like Dr Green’s method, there is no need to group the data at all. (An alternative ‘robust’
kernel approach involving p, is also possible; see section 4.11 of Eubank (1988)).

Reference data clearly provide an important area to which smoothing methods can usefully be applied
and Dr Cole is to be congratulated for bringing this topic to the attention of a wider group of statisticians.

Ms S. B. J. Macfarlane (Liverpool School of Tropical Medicine): Dr Cole’s paper is of particular
interest to me as I have been involved in creating reference standards for a variety of anthropometric
measures for Nigerian Yoruba children (Janes et al., 1981). The measurements were taken longitudinally
on elite children at exact ages. Sample sizes at any one age for each sex vary approximately between
50 and 150.

Our method for arriving at length and height centiles was to estimate means and standard deviations
at each age using the method of Patterson (1950) which takes advantage of the longitudinality of the
data and then to find centile points using the properties of the normal cumulative density function.
Smooth curves were fitted using the cubic spline technique. The assumption of normality seemed justified
at each age on the basis of the measures of skewness and kurtosis, the linearity of the probability plot
and the result of the Shapiro—Wilk test.

Values of 4 have been calculated for the lengths of female children aged between 1 month and 3 years
and for their heights between 3.5 and 10 years using the Box—Cox method of transformation (Fig. 9).
All the values of A are below unity and two are below —3.9. Approximate confidence limits for 4
are very wide with standard errors lying between 1.8 and 3.6. These results do not convince me of the
advantages of transforming length and height data, particularly as standard deviation scores would be
so much more difficult to calculate subsequently for individual children.

Van’t Hof et al. (1985) proposed calculating 4 for noisy data such as skinfold thickness. The pattern
of change in triceps fat with age for the Nigerian children is very different from that in British children
and we have not produced centile charts. The values at each age are far from normal with measures of
skewness and kurtosis for females as high as 2.3 and 10.4 respectively. The 4 values fitted for the triceps
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Fig.9. Nigerian growth study: estimates of the Box—Cox power for length (up to 3 years) and height (from 34 years)
at each age for elite females



414 Discussion of the Paper by Cole [Part 3,
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Fig. 10. Nigerian growth study: estimates of the Box—Cox power for triceps at each age for elite females

fat of female children aged between 1 month and 10 years are shown in Fig. 10. There is a clearer pattern
to these values than is apparent in Fig. 9 and the standard errors for A, ranging from 0.27 to 0.73, are
considerably lower than for length and height. The resulting measures of skewness and kurtosis are near
to zero and 3 respectively as would be expected for a normal distribution.

I am grateful to Dr Cole for providing a coherent approach to the fitting of centile curves and I look
forward to examining the Nigerian data further to consider his conclusion that relatively small
longitudinal studies can provide well-defined estimates for the L, M and S curves.

Professor A. F. Roche and Professor Shumei Guo (Wright State University, Dayton): The clinical
application of reference data is stressed, but their use in epidemiological studies, clinical trials and public
health surveillance is omitted. It is stated that reference charts can be used to evaluate the change
in a measurement for an individual, but the distribution of changes in centile levels for a population
is generally unknown.

Cole used the Box—Cox method to normalize distributions and applied a smoothly varying
transformation which requires plotting L, M and S curves that relate to the power transformations,
means and standard deviations respectively. He claims that raw or smoothed values for the power 4
can be used. We consider smoothed values more appropriate. He offhandedly states that ‘the smoothing
can be done by whatever method is convenient’. Smoothing methods should be judged by the goodness
of fit which cannot be determined when smoothing is done by ‘simply fitting by eye’.

Cole considers the sensitivity of A and adjustments for the reduction in variance due to trimming,
but the justification for removing outliers and then adjusting the variance of the estimates is unclear.
His data show that the effects of removing outliers on f increase with age; these effects may be large at
older ages. Some of his statements require justification. For example, he states ‘if the result [value of
1] is negative, make it positive’. It is doubtful whether the distribution will be normalized if this is done.

Cole analysed raw data that provide rather regular empirical centiles that need little smoothing. In
these circumstances, his approach produces only small changes. It would have been better to fit a
mathematical function to the serial data for each infant and to derive centiles from the fitted curves.

Cole claims that the spline approach of Hamill ‘leads to difficulties with spacing the centile curves
appropriately’ but does not present supporting evidence. He states that Hamill published SD scores
obtained by using estimates of the SD for the upper and for the lower parts of the distributions. This
was done by the World Health Organization (1983), not by Hamill.

Dr Cole addressed this important topic logically, but the Box—Cox technique is unnecessary when
empirical centiles are fairly smooth.
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The author replied later, in writing, as follows.

The points raised, which cover a wide range of issues, fall into three broad areas: general thoughts
on the construction and use of growth standards, specific comments on the performance of the LMS
method and suggestions for new and/or improved approaches to the problem.

General thoughts on growth standards

Several discussants (Miss Chinn, Dr Newcombe, Professor Liddell, Ms Macfarlane and Professor
Roche and Professor Guo) refer to the need for longitudinal data to be analysed appropriately, and for
the resulting standard to be used appropriately. It is certainly true that, when at least two measurements
are available on an individual, assessing recent change is of more value diagnostically than assessing
single measurements. As Miss Chinn points out, this can be achieved either with velocity standards or
conditional standards. The LMS method can be applied to both. However, any standard of this form
is based on a specified time interval between measurements (1 year in the cases that she cites), which
can be very restrictive when the time interval available is much shorter. It is particularly so during the
first year of life, when concern about possible growth failure may develop over a period of weeks rather
than months. There is surely an opportunity here for longitudinal standards based on the Cambridge
infant growth study (IGS), as Miss Chinn and Dr Newcombe imply.

I am grateful to Professor Roche and Professor Guo for listing some of the other areas where centile
charts for anthropometry are found to be useful. I also stand corrected on two points concerning the
National Center for Health Statistics (NCHS) standard. Although Hamill et al. (1977) talked of the
difficulties involved in the spline fitting, they were talking more of minimizing the maximum residuals
than spacing the centiles appropriately. Also I did not make clear that the calculation of SD scores with
an upper and lower estimate of the SD was done by the World Health Organization, not the NCHS
(Dibley et al., 1987).

As Miss Chinn points out, the appropriateness of the reference standard is crucial to the success or
failure of a screening programme to identify growth failure. It is clear that, once a child has been identified
as being at risk, subsequent growth velocity measurements are likely to confirm or deny the
diagnosis—the difficulty occurs at the screening stage. The effects of various social and biological factors
on child height have been studied in the national child development study (Goldstein, 1971) and the
national study of health and growth (NSHG) (Rona and Chinn, 1986); the results are useful to quantify
the risks of misclassification if the standard is inappropriate.

Professor Healy makes a fundamental point about the philosophy of growth standards, which is that
the area of interest in the standard (the tails) is where the data are not. There is no obvious way round
this dilemma, so that assumptions of regularity have to be made to justify extrapolating into the tails
of the distribution. Clearly, methods which define and thus test the nature of the regularity assumption
are the only ones that are able to extrapolate beyond the data with any degree of credibility. I return
to this point later, when comparing the various methods raised in the discussion.

Performance of the LMS method

I am grateful to Miss Chinn, Dr Green and Ms Macfarlane for applying the LMS method to their
own data (or, in Dr Green’s case, mine!). I agree that the results for height are generally unimpressive,
although there is now mounting evidence from large data sets that the L curve changes during puberty
(Table 6; Cole, 1988). It is useful to know that for weight in the NSHG, 1 is significantly less than zero
until the start of puberty, confirming the pattern seen in Table 5.

Mr Rasbash asks about the LM.S method applied to skinfold data. I cannot do better than refer him
to Ms Macfarlane’s Fig. 10, or alternatively Van’t Hof et al. (1985), which both suggest that the method
works well.

On the fitting of the method, Dr Bland’s comments about Section 2.9 of the paper are well taken —
I realize now that the section is pitched rather high for the non-statistician. A cook-book paper would
be very useful for clinical practitioners, and it needs to be written.

Several discussants take me to task, correctly, for not exploiting the longitudinal nature of the IGS
when estimating the age trend. The analyses suggested include Patterson’s (1950) approach (Ms
Macfarlane), fitting separate functions to each infant’s data (Professor Roche and Professor Guo) and
excluding incomplete date (Professor Liddell). This last is somewhat inefficient, and another possibility,
which overlaps with Patterson’s method to some extent, is to fit separate constants for each subject in
the regression analysis.
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Miss Chinn and Dr Newcombe are also unconvinced by my claim that the IGS is sufficiently large
to provide reference curves. I note though that Ms Macfarlane’s Nigerian standards are based on only
slightly larger numbers, and that portions of several well-established standards (e.g. 0-5 years in Tanner
et al. (1966) and 1-5 years in Tanner and Whitehouse (1975)) rely on longitudinal data from no more
than 200 children.

As regards the mechanics of the LM S method, most comments refer either to the estimation of 4 and
the L curve or to the assumption of normality. Mr Royston suggests as an alternative to the maximum
likelihood estimate, the A value that maximizes the W statistic. This is an elegant method which can, as
he says, be applied to any distribution. The main disadvantage would presumably be in obtaining
expected order statistics for the more exotic distributions.

Dr Hoaglin and Dr Himes are not convinced that A needs to change with age, despite the evidence
in Tables 5 and 6 to the contrary. It is true, as they say, that for weight in the IGS A could be held
constant at 0 or —3%, but there is abundant evidence from other much larger studies that weight is
normally distributed at birth and becomes skew only later. It is surely sensible that this pattern, which
the IGS also shows, should be reflected in the standard.

Professor Roche and Professor Guo are confused by two aspects of the smoothing procedure. They
quote me as saying that unsmoothed A values can be used, but this only applies to the calculation of u
and . The A, u and o values are subsequently smoothed to obtain the L, M and S curves, before the
individual centiles are derived. Also, they dislike the idea that the smoothing can be done in more than
one way. They forget that any smoothing procedure, even one monitoring the goodness of fit, involves
an essentially subjective trade-off between goodness of fit and smoothness. Incidentally the other
statement they take exception to, making the value positive if it is negative, refers not to A but to 6. A
negative sign for o shows that the distribution has been inverted, with high original values mapping to
low transformed values and vice versa, as occurs with an inverse transformation (1= —1).

Dr Hoaglin and Dr Himes are concerned that 1 is not sufficiently robustly estimated. Although Table
8 refutes this suggestion for weight in the American surveys, it is nevertheless a valid concern. Trimming
the data slightly may be a sensible precaution, although, as Professor Healy says, the data in the tails
are of fundamental importance, so they should not be dismissed too lightly. On this point, Miss Chinn
notes that I am inconsistent in discussing the relevance of the tails. What I meant to say (last paragraph
of the results section) was: ‘Table 8 shows how close even the extreme tails of the distribution are to
their expected values, so that excluding them affects A very little’. Professor Roche and Professor Guo
claim that the trimming affects 4 more at greater ages—this only occurs in the IGS and is due, as I
discuss in the paper, to one extreme infant.

On the issue of assuming normality, I am grateful to Mr Royston for putting this into perspective.
The lack of significant departures from normality in sample sizes of greater than 400 is very reassuring,
even if, as Dr Green points out, the W statistic is not strictly designed for data transformed to normality.
Following Mr Royston’s suggestion, I have combined the significance levels for each age group to give
a statistic distributed as y?> on 12 degrees of freedom. The result for weight, 22.4 is just significant
(P < 0.03) while that for height at 14.8 is not (P > 0.2). Thus even the composite test finds only marginal
evidence of non-normality.

Dr Rosenbaum’s transformation log(weight — ¢) interestingly is slightly closer to normality than the
best power transform, giving a x2 of 4.5 on 6 degrees of freedom for the composite W statistic applied
to the age group 12-17 years. This is obtained by assuming that c¢ changes linearly with age:
¢=10.54 Age/2, an important requirement to avoid discontinuities at year boundaries. The kurtosis
of log(weight — c) is in the range 2-3, which is 0.1 — 0.2 higher than for weight?. This explains its slightly
better fit and also illustrates Mr Royston’s point that the W statistic is insensitive to departures from
normality in symmetric distributions.

Dr Rosenbaum’s other comment concerning ties in the W statistic is also relevant, although it does
not arise in the American surveys as the data are the residuals after adjusting for age.

Professor Healy asks what is to be done if the normality test fails. The short answer is that I do not
know, as it has not happened yet. However, if the non-normality were very marked (which I would not
expect with anthropometry) it would be a serious problem.

Other methods

Apart from the normality assumption, the main weakness of the LMS method is its need to work
with distinct age groups, as Dr Green points out. It is very gratifying to see four new or modified
methods raised in the discussion, all of which address one or other of these problems. The methods of
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Mr Rasbash and Professor Healy, Dr Green, and Professor Cox and Dr Jones operate on the complete
data set, avoiding the need to split the data by age, while Mr Rasbash and Professor Healy, Professor
Cox and Dr Jones, and Dr Hoaglin and Dr Himes suggest robust methods which do not assume normality.

I am glad that Mr Rasbash has taken the opportunity to explain the Healy-Rasbash-Yang (HRY)
method in detail, as it involves two novel ideas worthy of wider discussion. I particularly like the
polynomial sets of coefficients across centiles, which provide almost infinite flexibility to the centile
spacings. However, I am less convinced that polynomials in age are the best way to model the shapes
of individual centiles over a broad age range—a spline approach like Dr Green’s would probably be
more sensitive to the nuances of the underlying form. The suggestion of Mr Rasbash to calculate 4 in
overlapping groups is good and should be encouraged.

The order g of the polynomial across centiles in the HRY method is chosen to fit the plot of observed
versus fitted quantiles (the Q—Q plot). For a normal distribution this plot is close to a straight line, while
skewness makes it curve quadratically; kurtosis introduces a second, cubic, curve to the plot. Thus a
skew distribution without appreciable kurtosis can be fitted by a quadratic polynomial. The Box—Cox
transform used in the LM S method also gives a Q—Q plot of essentially quadratic shape (¢** in equation
(5) plotted against y), so that, if ¢ in the HRY method is less than 3, the two methods will give very
similar results. Incidentally, Mr Rasbash and Professor Healy are right to emphasize that the HRY
centiles can be converted to SD scores, and I am sorry to have given the opposite impression
in the paper.

Dr Green’s suggestion to fit the LM.S method by penalized likelihood is one that I find very appealing.
It has all the benefits of the LM'S method without the cost, and the only subjective element lies in the
choice of the smoothness constants o;, «, and ag. I look forward to discovering just how easy his
method is to implement, particularly if its computation time is only O(n) per cycle.

The contribution of Professor Cox, deriving from the econometric literature, is characteristically both
brief and thought provoking. I am glad that Dr Jones has risen to the implied challenge of adding flesh
to the bones of Professor Cox’s suggestion, with his elegant proposal to fit spline-smoothed regression
quantiles. This is similar to Dr Green’s version of the LM.S method in that both minimize (maximize)
a roughness-penalized function, but the two are fundamentally different in the sense that Dr Jones
calculates each centile independently of its neighbours, whereas the LM.S method obtains them as a set.
Also Dr Jones’s method has only one smoothing parameter where Dr Green’s has three, and this might
be a useful simplification. Quantile regression is also similar to step 1 of the HRY method, except that
it can smooth the centiles more flexibly. However, I am not sure that the possibility of the centiles
meeting or crossing is necessarily a benefit. It will be interesting to compare the results of the three
approaches when they are available.

Dr Hoaglin and Dr Himes bring to the discussion some interesting ideas based on exploratory data
analysis, providing robustness in the presence of outliers. The suggestion of using Tukey’s g-and-h family
of distributions at each t; and then smoothing them, along with location and scale parameters, has an
uncanny resemblance to the LMS method, complete with its disadvantage of having to group the ages.
Dr Hoaglin (1985) has pointed out that the g-and-h distribution is analogous to the Pearson family of
curves. This family was tried unsuccessfully by Hamill et al. (1977) when fitting the NCHS standard; to
be fair though, their failure was due to the inflexibility of the smoothing polynomials rather than any
deficiencies of the distribution itself. Nevertheless I remain unconvinced that the fourth kurtosis/
elongation curve has much to offer over the other three curves. Certainly the g curve ought to perform
just as satisfactorily as the Lcurve.

A useful idea from the EDA literature is that of Tukey’s letter values, which correspond to a subset
of the observed centiles. Starting with the two quartiles (fourths or F) and eighths (E), they continue
with the centiles corresponding to successive halvings of the tail area; so D are the sixteenths and C
the thirty-seconds. How far this continues (B, 4, Z, Y, X etc.) depends on the size of the data set. This
would be a rational set of centiles to calculate as step 1 of the HRY method, hence providing step 2
with extra information about the tails of the distribution.

In conclusion, three methods covered in the discussion (the LM S method as modified by Green, the
HRY method and the Cox—Jones spline-smoothed quantile regression) convert the raw data to smoothed
centiles in a single pass. Of the three the LMS method makes the biggest distributional assumptions,
although for modest departures from normality (i.e. some skewness) it behaves very similarly to the
HRY method. Both the HRY and the quantile regression approaches operate on a pre-specified set of
centiles, so that extrapolating to centiles beyond the data is only possible if they are linked to an
underlying distribution. The HRY method can do this extrapolation by solving the polynomial of order
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q linking centile and SD score. However, for polynomials of higher order than quadratic the results are
likely to be speculative at best.

As Professor Healy says, the main interest in the distribution is the region beyond the extreme observed
centiles. The two requirements to predict this region at all accurately are a well-behaved distribution
(such as is found with anthropometry) and an adequate summary of the distribution. The LMS and
HRY methods both satisfy these requirements; however, the LMS method as presented in Section 2.9
allows the distribution to be estimated without the need for complex programming, and this is an
advantage in practical applications.
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