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Summary. The paper develops mixture models for spatially indexed data. We confine atten-
tion to the case of finite, typically irregular, patterns of points or regions with prescribed spatial
relationships, and to problems where it is only the weights in the mixture that vary from one
location to another. Our specific focus is on Poisson-distributed data, and applications in dis-
ease mapping. We work in a Bayesian framework, with the Poisson parameters drawn from
gamma priors, and an unknown number of components. We propose two alternative models for
spatially dependent weights, based on transformations of autoregressive Gaussian processes:
in one (the logistic normal model), the mixture component labels are exchangeable; in the other
(the grouped continuous model), they are ordered. Reversible jump Markov chain Monte Carlo
algorithms for posterior inference are developed. Finally, the performances of both of these
formulations are examined on synthetic data and real data on mortality from a rare disease.

Keywords: Disease mapping; Grouped continuous model; Logistic normal model; Poisson
mixtures; Reversible jump Markov chain Monte Carlo method

1. Introduction

There are two main motivations for this work. One is methodological—to extend the range
of contexts in which mixture-based models play a role to cases of spatially indexed data; the
other is applied—to develop and investigate new spatially correlated models for geographical
epidemiology with the aim of alleviating some possible difficulties with existing disease mapping
methods.

Mixture models have a long pedigree, with interest in them going back many decades. These
models have been used both in situations where the components of the mixture represent
subgroups in a heterogeneous population and in settings where the mixture formulation is mere-
ly a convenient parsimonious form for flexible density estimation. Titterington et al. (1985) and
Lindsay (1995) provide general background. In recent years, research interest has been regen-
erated, first by the introduction of the Bayesian approach, with computational implementa-
tion by Markov chain Monte Carlo (MCMC) methods (see, for example, Robert (1996) for a
review) and, secondly, by allowing the number of components to vary in this Bayesian context
(as in Nobile (1994) and Richardson and Green (1997)). These developments have increased
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806 C. Fernández and P. J. Green

the power and flexibility of mixture-based models, by enabling full simultaneous posterior
inference about all parameters, by exposing the possibility for ‘multiple explanations’ in some
data sets, by avoiding the difficulties of (non-regular) inference about the number of compo-
nents in a frequentist setting and by offering the possibility of fitting data better through model
averaging.

Beyond the independent random sample setting in which basic mixture models are always
formulated, this recent activity has stimulated novel statistical models for several situations in
which the data are more structured. These include regression and autoregression (West et al.,
1994), measurement error (Müller and Roeder, 1997; Leblond et al., 2000), modelling random
effects in mixed models (Watier et al., 1999), analysis of factorial experiments (Nobile and
Green, 2000) and, more generally, hidden switching models (Robert et al., 2000; Frühwirth-
Schnatter, 2001). In all these diverse contexts, the mixture formulation makes a powerful
contribution to fitting or adjusting for the effects of heterogeneity in populations, and
it is reasonable to believe that the opportunities for such contributions have not yet been
exhausted.

One setting in which mixtures have not been previously exploited is that of spatially indexed
data. In fact, there are many problems in this category. Data may be indexed by points, by
regions or by cells of a lattice. Mixtures may be introduced at various levels in such problems.
In this paper, we confine attention to the case of finite, typically irregular, patterns of points
or regions with prescribed spatial relationships, and to problems where it is only the weights
in a mixture model that vary from one location to another. This is still a very wide class of
problems. Our spatial mixture formulations apply in broad detail to many of these; one possi-
ble application that will not be pursued here is to agricultural field trials (see Fernández and
Green (1999)). Our specific focus in this paper is on Poisson-distributed data, and applications
in disease mapping.

There is an extensive epidemiological statistics literature that deals with issues of extra-
Poisson variation and unmeasured covariates in spatially distributed disease data. Typically,
the aim is to produce reliable maps of disease (see Mollié (1996) for an accessible account from
a Bayesian viewpoint). The model introduced by Besag et al. (1991) has been extensively
used in this context. This model contains two random terms: one to represent unstructured
heterogeneity and the other to capture spatial correlation. There are, however, some issues of
identifiability and interpretability of the spatial and unstructured heterogeneity parts, and the
model does not allow naturally for discontinuities in the risk surface. As Mollié (1996) put it

‘It would be useful to develop other forms of prior, to take into account the presence of discontinuities
in the spatial structure of the relative risks’.

We shall explore the extent to which our mixture approach can handle this and use a version
of the model of Besag et al. (1991) as a bench-mark against which we compare our results. A
related approach designed to deal with clusters of constant risk and discontinuities was proposed
by Knorr-Held and Rasser (2000).

Our presentation reflects both the general and the specific motivations for the work. In Sec-
tion 2, we review aspects of the basic mixture model that remain relevant in the spatial context,
and in Section 3 we introduce two new formulations for spatially dependent weights. The dis-
ease mapping problem is introduced in Section 4, where the remainder of our model set-up is
developed. In Section 5, we briefly discuss the computational implementation of our models
via MCMC sampling (further details on this are provided in Appendix A). Section 6 presents
results on the performance of the models on both synthetic and real data sets, and we conclude
in Section 7 with general discussion and some possibilities for future work.
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2. The mixture sampling model

We consider conditionally independent but not identically distributed observations yi (i =
1; : : :; n) from a mixture model

p.yi|k;w;λ/ =
k∑

j=1
wij f.yi|λj/; .2:1/

where k is the number of components. The distribution under the jth component .j = 1; : : :; k/
is denoted by f.·|λj/ where f is a density or probability mass function of specified form, the
vector λ = .λ1; : : :;λk/ groups the component-specific parameters and the weights w = .wij/i;j
satisfy wij > 0 with Σk

j=1wij = 1 for all i. In contrast with the standard set-up, here the weights
vary with i. In this paper, we shall assume that k, w and λ are unknown and subject to inference.

The well-known representation of mixture models by means of a hidden allocation process
will prove useful both for the purpose of interpretation and for the numerical computations. For
n independent observations from a mixture of k components, the representation is as follows.

(a) Introduce n independent discrete variables z1; : : :; zn, with the multinomial distribution
p.zi = j|k;w;λ/ = wij, for j = 1; : : :; k.

(b) Assume that y1; : : :; yn are independent given z = .z1; : : :; zn/ with p.yi|z; k;w;λ/ =
f.yi|λzi /:

If we now integrate out zi by using its multinomial distribution, we obtain the mixture model
(2.1). Thus, zi can be interpreted as an allocation variable, in the sense that it assigns observation
yi to one of the mixture components. This suggests that mixtures will be appropriate to model
a heterogeneous population, where the assignment of observations to groups is unknown. In
addition, they are often used as a flexible but reasonably parsimonious way to represent non-
standard distributions, e.g. as an alternative to the use of nonparametric methods.

3. Modelling spatial dependence through priors on weights

A crucial difference between the mixture model (2.1) and the case of independent and identi-
cally distributed (IID) sampling previously examined in the literature (e.g. Diebolt and Robert
(1994) and Richardson and Green (1997)) is that the weights in model (2.1) are indexed by i,
so they are allowed to vary from observation to observation. In our context, i will be a spatial
index which represents a location in the space where the observations take place, and we shall
introduce spatial dependence through the prior distribution of the weights. In simple terms, the
basic behaviour that we try to capture is that observations that correspond to nearby locations
are more likely to have similar values of the weights (i.e. similar allocation probabilities) than
observations from locations that are far apart. Our analysis will be conditional on a given graph
with the locations as vertices, and certain designated pairs of nearby locations as edges; this
graph will be the conditional independence graph of a component of our models, and thus we
are working with Markov random fields indexed by i. Pairs of locations connected by an edge
will be called neighbours.

We shall propose two different models to allow for spatially correlated weights. In both
models, spatial dependence will be introduced by means of a Markov random field with prob-
ability density function (PDF)

p.x|h/ = c.h/ exp
[
−1

2

{
h

∑
i∼i′

.xi − xi′/
2 +

n∑
i=1

x2
i

}]
; .3:1/
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where x = .x1; : : :; xn/ and Σi∼i′ denotes the sum over all pairs of neighbours with each pair
counted only once. The parameter h is non-negative and c.h/ is the appropriate integrating
constant:

c.h/ = .2π/−n=2
n∏
i=1
.1 + hgi/

1=2; .3:2/

where g1; : : :; gn denote the eigenvalues of a matrix A = .aii′/ coding the adjacencies, with
aii = νi (the number of neighbours of location i), and off-diagonal elements aii′ = −1 if loca-
tions i and i′ are neighbours and aii′ = 0 otherwise. For a given graph, g1; : : :; gn only need to
be computed once and can then be stored for any further analyses using the same graph. From
equation (3.1) it is clear that neighbouring locations are induced to have similar values of the
corresponding elements in x, and this effect is more pronounced as the value of h increases.
The limiting case h = 0 corresponds to independence across locations, whereas as h → ∞ the
distribution in equation (3.1) tends to a degenerate one where neighbouring locations are forced
to have exactly the same value of the corresponding elements in x.

Model (3.1) is very closely related to the Gaussian conditional autoregressive model, exten-
sively used in the disease mapping literature to obtain spatially smoothed estimates of relative
risks; see, for example, Clayton and Kaldor (1987), Besag et al. (1991), Clayton and Bernar-
dinelli (1992) and Waller et al. (1997). The term Σn

i=1x
2
i in the exponent in expression (3.1)

does not appear in the conditional autoregressive model, as in, for example, Besag et al. (1991),
although it does in the formulation proposed recently by Leroux et al. (2000). The inclusion of
this term makes model (3.1) a proper distribution and is necessary to obtain a proper posterior
distribution in our mixtures setting. Despite the similarity of model (3.1) to models that have
previously been considered, our modelling strategy is quite novel in that expression (3.1) will be
used to obtain a spatially correlated prior for the weights in the mixture model. In the next two
subsections we explain how we achieve this.

3.1. The logistic normal model
For a mixture with k components, our first model requires the introduction of k independent
n-dimensional vectors, xj ≡ .x1j; : : :; xnj/, j = 1; : : :; k, each distributed according to model
(3.1). Although the vectors are independent of each other, each of them incorporates spatial
dependence among its n elements. Next, we define the weights by using the logistic transform
(see, for example, McCullagh and Nelder (1989) chapter 5), by which the weights for location i
take the form

wij = exp.xij=φ/
k∑
l=1

exp.xil=φ/

; j = 1; : : :; k; .3:3/

with φ > 0. Thus, the weights for location i depend on the ith element of each of x1; : : :; xk. The
dependence structure of distribution (3.1) induces spatial dependence among the weights.

As the value of h in model (3.1) increases, realizations of the xj-processes become smooth-
er, and there is also stronger shrinkage towards zero (the mean of the processes), but the scale
parameterφ introduced in equation (3.3) can compensate for this. Note thatwij=wil = exp{.xij−
xil/=φ} is a monotonic function of φ converging to 1 as φ → ∞ and to either 0 or ∞ when
φ → 0. A smaller value of φ can thus alleviate the effects of increasing shrinkage in the x-values.
The limiting case φ = 0 corresponds to wij = 1 if xij = max{xil : l = 1; : : :; k} and to wij = 0
otherwise, which implies that the allocation variables z1; : : :; zn are deterministic functions of x.
The other limiting case .φ → ∞/ leads to wij = 1=k for all i and j, thus precluding any spatial
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Modelling Spatially Correlated Data 809

patterns or randomness in the weights. We shall restrict φ to be sufficiently small to avoid this
undesirable feature.

3.2. The grouped continuous model
In the grouped continuous (GC) model, we use a single n-dimensional vector x ≡ .x1; : : :; xn/,
distributed according to model (3.1). Motivated by previous work on ordinal data based on
grouped continuous models (McCullagh and Nelder (1989), chapter 5) we define the weights
for location i as

wij =



Ψ{τ−1.δ1 − xi/} if j = 1,
Ψ{τ−1.δj − xi/} − Ψ{τ−1.δj−1 − xi/} if j = 2; : : :; k − 1,
1 − Ψ{τ−1.δk−1 − xi/} if j = k,

.3:4/

where Ψ.·/ is a specified continuous distribution function and τ is a scale parameter. We shall
consider a logistic specification, where Ψ.r/ = {1 + exp.−r/}−1, although other choices of
Ψ.·/ could be accommodated with simple modifications to our computational implementa-
tion. The parameters δ1 < : : : < δk−1 constitute a set of ordered unknown cut points, over
which we also specify a prior distribution. In our experience, care is required in the choice of
this distribution, because the model can easily lead to many empty components in the sense
that there is a high prior probability that the values of the allocation variables .z1; : : :; zn/ do
not span the entire set {1; : : :; k}. We consider a prior distribution for the δjs with support on
.xmin; xmax/, where xmin and xmax are the minimum and maximum values of {xi : i = 1; : : :; n}.
In this way, we minimize the chance of empty components due to several of the δjs lying well
out of the range of the xis. To induce further separation between the values of the δjs, we
take δ1; : : :; δk−1 to be the sth;2sth; : : :; .k − 1/sth order statistics obtained from ks − 1 IID
replications, for some s � 1 (a similar idea appeared in the changepoint example of Green
(1995)). If we base our model on the uniform distribution, this leads to the following PDF for
δ = .δ1; : : :; δk−1/:

p.δ|k; x/ = .ks− 1/!
{.s− 1/!}k.xmax − xmin/

ks−1

k∏
j=1

.δj − δj−1/
s−1I.xmin < δ1 < : : : < δk−1 < xmax/;

.3:5/

where we have defined δ0 = xmin and δk = xmax. Throughout the paper, I.l/ will denote a
function that takes the value 1 if the logical statement l is fulfilled and 0 otherwise. As with
Ψ.·/, alternative choices to distribution (3.5) only imply minor modifications to our frame-
work.

The spatial dependence incorporated in x implies that neighbouring locations are more likely
to have similar values of the weights in definition (3.4) than locations that are far apart. Similarly
to the role of φ in the logistic normal (LN) model, the scale parameter τ in expression (3.4) also
influences the value of the weights and, by making it small, we can in part compensate for the
shrinkage towards the mean of x that occurs when the parameter h in model (3.1) increases. In
the limiting situation where τ = 0, the allocation zi is a deterministic function of xi and the
δjs, with wij = 1 if δj−1 < xi < δj and wij = 0 otherwise. As τ → ∞, we obtain the limit
wi1 = wik = 0:5 and wij = 0 for the intermediate components, precluding spatial dependence
or randomness in the weights while assigning all the probability to the two extreme components.
We shall restrict τ to be sufficiently small to obtain non-negligible prior probabilities for all the
components.
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810 C. Fernández and P. J. Green

3.3. Priors on spatial interaction parameters
As we have already discussed, the parameter h controls the dependence in the Markov random
field (3.1). In particular, the limiting case h = 0 leads to independent weights across loca-
tions. The scale parameters φ and τ in equations (3.3) and (3.4) affect the size and general
behaviour of the weights and, as a consequence, also influence the correlation between the
allocation variables z1; : : :; zn. Although we have provided some intuition about the role of these
parameters, it is not easy fully to understand and separate the roles of h and φ in the LN model
and, similarly, of h and τ in the GC model. In general terms, we shall view them as ‘smoothing’
parameters and, to allow extra flexibility and to cope with uncertainty about them, we assign
prior distributions to them. In our examples, we shall consider h and φ (or τ ) independent with

h ∼ uniform on .0; hmax/;

φ ∼ uniform on .0;φmax/;

τ ∼ uniform on .0; τmax/;


 .3:6/

for some positive numbers hmax, φmax and τmax. The support intervals will be chosen to be suf-
ficiently large to allow for interior modes in the posterior distributions, but not so large that the
unreasonable features displayed by the weights as φ or τ increase could emerge. We have chosen
independent uniform priors so that we can easily assess the effect of the data when looking at
the corresponding posterior distributions but, once again, other prior distributions could easily
be accommodated in our framework.

4. An application in disease mapping

The objective of disease mapping is to analyse the geographical variation in rates of the inci-
dence of disease or mortality within a specific area. In recent years there has been considerable
scientific and public interest in uncovering spatial patterns in disease, as this can help to for-
mulate aetiological hypotheses pointing towards certain causes or deterrents of disease or, for
example, suggesting a potential disadvantage of certain groups within the population. The data
are usually given in the form of counts (the numbers of observed cases of disease) yi, for regions
that constitute a geographical partition of the area of interest. A preliminary analysis of these
and other data, usually incorporating a stratification on age and sex, yields an expected count
ei for each region i.

The standardized mortality ratios (SMRs) are defined as yi=ei, for i = 1; : : :; n, and corre-
spond to maximum likelihood estimates of relative risk under independent sampling from

p.yi|ri/ = Pois.yi|eiri/; .4:1/

a Poisson distribution with mean eiri, where ri denotes the relative risk in region i. Traditionally,
maps of disease display the SMRs by using a grey or coloured scale. For rare diseases, where
the expected number of cases can be quite small for some of the regions, these maps can be
misleading because the most extreme values (which visually dominate the map) can correspond
to low population areas where the variance of the estimator is largest. In addition, this approach
fails to account for two features that are often found in this context: extra-Poisson variation
(i.e. there is more heterogeneity in the population than would be implied by a Poisson model)
and spatial correlation in the relative risks (due, for example, to unmeasured covariates that are
spatially correlated).

We now consider using the two spatial mixture formulations of Section 3 in this context of
disease mapping. The locations are now the regions in which our data are collected. We take
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Modelling Spatially Correlated Data 811

the simplest possible graph structure connecting the locations: regions i and i′ are neighbours if
and only if they are spatially contiguous. The mixture assumption is to model the relative risk
ri for region i with allocation zi (see Section 2) as ri = λzi , giving the mixture representation

p.yi|k;w;λ/ =
k∑

j=1
wijPois.yi|eiλj/; .4:2/

for conditionally independent disease counts {yi}. Thus, the relative risk surface is represented
as a mixture (due to the random nature of the allocations zi) of discrete surfaces with lev-
els λ1; : : :;λk. This should allow for an adaptive type of smoothing, showing discontinuities
between regions that require it while applying stronger smoothing in other geographical areas.
Modelling of the weights wij by either the LN or GC formulations has been discussed, so it
only remains to place priors on λ = .λ1; : : :;λk/, the component-specific parameters, and k, the
number of components in the mixture. A natural choice for the prior distribution of the λjs is
a gamma specification, and we shall assume that they are in increasing order. This leads to

p.λ|k/ = k!
k∏

j=1
fG.λj|α;β/ I.λ1 < : : : < λk/ ; .4:3/

where fG.·|α;β/ denotes the PDF of a gamma distribution with shape parameter α and mean
equal to α=β. Whereas ordering the λjs merely induces component identifiability in the LN
model, it is a structural feature of the GC model, as it implies that neighbouring regions are,
apriori, more likely to be allocated to components with consecutive values of theλjs than to more
‘distant’ components. For the number of mixture components we take the prior distribution

k ∼ uniform on {1; : : :; kmax}; .4:4/

for a suitably large integer kmax. Converting results to those corresponding to another prior, say
pÅ.k/, with the same support is straightforward since pÅ.k|y/ ∝ p.k|y/ pÅ.k/, where p.k|y/
and pÅ.k|y/ respectively denote the posterior for k under the uniform prior in distribution
(4.4) and under the new prior pÅ.k/. Similar transformations apply to other posterior distri-
butions.

Fig. 1 displays directed acyclic graphs for the complete hierarchical Bayesian model under
both the LN and the GC specifications. Square boxes represent fixed or observed quantities
and circles the unknowns. Broken lines denote deterministic (as opposed to stochastic) relation-
ships.

(a) (b)

Fig. 1. Directed acyclic graphs corresponding to (a) LN and (b) GC spatial mixture models

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssb/article/64/4/805/7098616 by U

niversity of Bristol Library user on 28 January 2026
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5. Computational implementation

The Bayesian models that are proposed in this paper are too complex to be amenable to ana-
lytical calculations. Hence, we shall use MCMC methods (e.g. Tierney (1994) and Besag et al.
(1995)), and in particular reversible jump MCMC methods (Green, 1995), which can cope with
the varying dimensionality of the parameter space induced by the unknown number of mixture
components. The parameter space is given by

Θ =
kmax⋃
k=1

Θk;

where Θk is the parameter space for a k-component mixture. Richardson and Green (1997)
introduced the use of reversible jump MCMC methods for mixtures with an unknown number
of components in an IID setting. Here, we consider the more complex scenario where spatial
interaction is present.

5.1. Construction of sampler
To facilitate sampling, we shall augment with the hidden allocation variables .z1; : : :; zn/ and
with the auxiliary variables x distributed as in model (3.1). Thus, our aim is to compute the joint
posterior distribution of all the variables in each of the graphs in Fig. 1. It is worth mentioning a
couple of unusual features of our sampler (focusing the discussion on the LN model, although
similar comments apply to the GC model). Firstly, since the weights w are a deterministic func-
tion of .x;φ/ (see equation (3.3)), they cannot be included as an additional random variable
in the sampler. Secondly, in most steps of the sampler the allocation variables .z1; : : :; zn/ will
be integrated out to avoid slow mixing for values of φ which are small in relation to the values
of xij (in such cases, the allocations would be virtually deterministic functions of .x;φ/ since
k − 1 out of the k weights in equation (3.3) would be negligible). The resulting Markov chain
is irreducible and has the required posterior distribution as invariant distribution, so ergodic
averages converge to the corresponding posterior expectations. Further details on the sampler
can be found in Appendix A. Of course, other samplers would be possible, but this is one that
we have found to work well in practice.

5.2. Performance issues
The main difficulty was in finding a proposal generator that led to reasonable acceptance rates
in the reversible jump step. This was particularly difficult for the LN model, where increasing
the number of components by 1 implies having to propose an n-dimensional auxiliary vector x.
After some trial and error, we found that generating the proposed n-dimensional vector from
the Markov random field prior (3.1) led to reasonable acceptance rates (for example for the data
sets considered in Sections 6.2 and 6.3 the acceptance rates of the reversible jump move were
22.1% for the ‘blocks’ data set, 4.1% for the ‘gradns’ data set and 7.2% for the larynx cancer
data). To achieve this efficiently, we used Rue’s (2001) algorithm for fast simulation of Gaussian
Markov random fields. The acceptance rates for the reversible jump move in the GC model
were also reasonable (5.8% for the blocks data set, 8.0% for the gradns data set and 7.1% for
the larynx cancer data). Other parameters drawn through Metropolis–Hastings steps also had
reasonable acceptance rates. In all the data sets analysed in the next section, the sampler was
run for an initial 500000 draws which were discarded, followed by 1 million draws which were
used to present results. This was found to be more than enough for convergence.

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssb/article/64/4/805/7098616 by U

niversity of Bristol Library user on 28 January 2026



Modelling Spatially Correlated Data 813

We have also carefully monitored serial autocorrelations along the MCMC path, yielding
results that are consistent with these observations. For example, for the GC model applied
to the larynx cancer data described in Section 6.3, autocorrelations in the h- and τ -series
declined to insignificant levels after about 200 and 80 sweeps respectively, whereas the series
for individual λzi did so after lags varying from 8 to 40. The dependence is greater in posterior
samples from the LN model, where the corresponding figures for h, φ and λzi are 600, 600 and
10–50. In both cases, as we make clear, we generate very long runs of 1 million sweeps, after
burn-in, so that substantial thinning is possible (in the interests of saving storage space) while
still leaving large subsamples for computing summary statistics. The programs were coded in
GNU Fortran 77 and executed on a 750-MHz Pentium personal computer; the running time was
approximately 1 h.

6. Results

We shall illustrate the performance of the two spatial mixture models developed earlier in the
paper on both real and synthetic data sets, making also some limited comparisons with a stan-
dard model.

We shall present results for the LN and GC models, described in Section 3. The runs presented
here correspond to hyperparameter values hmax = φmax = 10 and τmax = 0:5 for the prior
distributions (3.6). These values were chosen to allow reasonable flexibility in the degree of
prior spatial correlation. For the GC model, the choice τmax = 0:5 ensures that marginal prior
distributions of the allocation variables are approximately uniform, which always holds under
the LN model and seems sensible in the absence of strong prior information. Larger values of
τmax would favour prior allocations towards the two extreme components, as explained at the
end of Section 3.2. In addition, we took α = 1 and β = 0:69 in equation (4.3). When k = 1,
this corresponds to an exponential prior distribution for the relative risk with median equal to
1, which seems reasonable. Finally, s was taken equal to 5 in the GC model (see equation (3.5))
and kmax was assigned the value 10.

Certain quantities in the mixture model, in particular the component-specific parameters
.λ1; : : :;λk/ and the allocations .z1; : : :; zn/, can only be interpreted in the context of a fixed
number of components. Thus, when posterior inference on these quantities is reported, it is
conditional on k. However, region-specific relative risks, defined as ri = λzi , have an unequiv-
ocal interpretation regardless of the value of k, so we present results for them mixing over k.
Much of the subsequent discussion will focus on the relative risks .r1; : : :; rn/, which are often
the quantities of ultimate interest and the only ones that allow for direct comparisons with other
models.

6.1. A standard model for comparison
The model of Besag et al. (1991) can be written as

log.ri/ = κ1=2ui + η1=2vi; .6:1/

where

p.u1; : : :; un/ ∝ exp

{
− ∑

i∼i′
.ui − ui′/

2

2

}
;

p.v1; : : :; vn/ =
n∏
i=1

fN.vi|0; 1/;
.6:2/

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssb/article/64/4/805/7098616 by U

niversity of Bristol Library user on 28 January 2026
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i.e. .u1; : : :; un/ jointly follow a Gaussian conditional autoregressive model whereas v1; : : :; vn
are independent standard normals. We consider the hyperpriors

κ−1 ∼ gamma.κ1;κ2/;

η−1 ∼ gamma.η1; η2/;
.6:3/

where we make the weakly informative choices κ1 = κ2 = 0:1 and η1 = η2 = 0:001, as rec-
ommended by Best et al. (1999). Whenever we refer to the model of Besag et al. (1991), we
mean the model corresponding to sampling from distribution (4.1) with the prior given through
expressions (6.1)–(6.3).

6.2. Synthetic data sets
Here we analyse two synthetic data sets that were designed to test the performance of our models
in different situations. Both simulated data sets, as well as the larynx cancer real data analysed
in the next subsection, correspond to counts in the 94 mainland French départements. The ex-
pected numbers of cases ei have always been taken equal to those in the larynx cancer data set,
which vary from 2.08 for Lozère to 57.77 for Paris, with Σei = 1339. The large variation in the
expected number of cases for the various regions will make maps based on SMRs unreliable
and some form of spatial smoothing necessary.

In constructing the first data set, denoted ‘blocks’, we set most regions to have true relative
risk equal to 0.75, but four clusters of regions have relative risk 2. Counts are generated indepen-
dently from model (4.1), using the expected number of cases and relative risks just described.
This results in counts yi that vary from 0 (Lozère) to 91 (Nord) with Σyi = 1397. The SMRs
vary from 0 (Lozère) to 2:93 (Maine-et-Loire). Fig. 2 displays the true relative risks and SMRs
as well as the medians of the marginal posterior distributions of the relative risks, according
to the model of Besag et al. (1991) and the GC model. In Table 1, we display for each of the
methods the root averaged mean-square error of the log-relative-risk, defined as(∑

i

E[
{

log.λzi /− log.rt
i /

}2 |y]=n
)1=2

;

where y = .y1; : : :; yn/ and rt
i is the true relative risk in region i.

On the basis of the mean-square error, both mixture models give more accurate marginal
inference on the true relative risks than does the approach of Besag et al. (1991). The posterior
median reconstruction based on the GC model (Fig. 2) is more adequate than that obtained
from the model of Besag et al. (1991), which is less successful at detecting boundaries while
undersmoothing within clusters of regions with common risk. This is probably because, to
accommodate changes across boundaries, which are not naturally built into the model of Besag
et al. (1991), their model needs to undersmooth the entire map. The map obtained by using the
LN model is quite similar to that from the GC model, albeit slightly less smooth within the low
rate area.

Fig. 3 presents scatterplots corresponding to the joint posterior distribution of the relative
risks for selected pairs of neighbouring regions with all three models. Figs 3(a)–3(c) correspond
to Rhône (which has true relative risk 2) and Isère (with relative risk 0.75). Clearly, the mixture
models are better at detecting this boundary; in particular, they lead to a smaller spread in the
posterior distribution. Figs 3(d)–3(f) correspond to Indre-et-Loire and Vienne, both with true
relative risk 2. The mixture models again perform better in this case. In particular, the model
of Besag et al. (1991) overestimates the relative risk for Indre-et-Loire, which has a fairly large
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 0

3.03

(a) (b)

(c) (d)

Fig. 2. Blocks synthetic data set (10 classes with cut points starting at 0.28 and increasing multiplicatively
by a constant factor 1.29): (a) true relative risks; (b) SMRs; (c) posterior medians of relative risks according
to the model of Besag et al. (1991); (d) posterior medians of relative risks according to the GC model

Table 1. Simulation results comparing the spa-
tial mixture models and the model of Besag
et al . (1991): root averaged mean-square errors
for the log-relative-risk

Data set Root averaged mean-square
errors for the following models:

LN GC Besag et al. (1991)

Blocks 0.265 0.229 0.332
Gradns 0.293 0.266 0.218
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816 C. Fernández and P. J. Green

Fig. 3. Scatterplots of samples from the joint posterior of relative risks for selected pairs of neighbouring
regions for the blocks data set (some distortion has been introduced in the diagonal to aid visualization):
(a) Rhône and Isère, model of Besag et al. (1991); (b) Rhône and Isère, LN model; (c) Rhône and Isère, GC
model; (d) Indre-et-Loire and Vienne, model of Besag et al. (1991); (e) Indre-et-Loire and Vienne, LN model;
(f) Indre-et-Loire and Vienne, GC model

SMR (2.79). The LN model does best; the posterior probability on the diagonal is 97%, and
clearly located around the true value 2. The GC model puts 73% of the mass on the diagonal.

The second data set, ‘gradns’, is aimed at testing the performance of our models in a situation
where there are no underlying clusters or sharp boundaries between regions but, instead, the
true relative risks decrease smoothly from the north to the south of the country. The smallest
true relative risk is 0.32 (Pyrénées-Orientales) and the largest is 1.64 (Nord). Counts have been
generated according to model (4.1) using these relative risks. The counts vary from 0 (Lozére) to
92 (Paris), with Σ yi = 1378. The corresponding SMRs vary from 0 (Lozére) to 2.28 (Meuse).
The true relative risks and SMRs are displayed in Fig. 4. The other three maps in Fig. 4 cor-
respond to the posterior medians of the relative risks, using the model of Besag et al. (1991)
and the LN and GC models. Here, they all perform quite similarly qualitatively; in terms of the
posterior mean-square error (Table 1) the model of Besag et al. (1991) is superior, followed by
the GC and LN models.

6.3. Larynx cancer data set
The cancer of the larynx data consist of counts of deaths among females across the mainland
French départements, for the period 1986–1993 (Rezvani et al., 1997). The expected numbers of
cases are as explained at the beginning of Section 6.2, whereas the actual counts range from 0
(Lozère) to 75 (Paris). For these data we have that Σyi = Σei = 1339, and the SMRs vary from
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 0

2.38

(a)

(b) (c)

(d) (e)

Fig. 4. Gradns synthetic data set (10 classes with cut points starting at 0.32 and increasing multiplicatively
by a constant factor 1.25): (a) true relative risks; (b) SMRs; (c) posterior medians of relative risks from the
model of Besag et al. (1991); (d) posterior medians of relative risks from the LN model; (e) posterior medians
of relative risks from the GC model
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 0

2.12

(a) (b)

(c) (d)

Fig. 5. (a) SMRs and posterior medians of relative risks for the larynx cancer data set according to (b) the
model of Besag et al. (1991), (c) the LN model and (d) the GC model (10 classes with cut points starting at
0.50 and increasing multiplicatively by a constant factor 1.13)

0 (Lozère) to 2.12 (Hautes-Alpes). Fig. 5(a) displays the SMRs. First we concentrate on some
results that are specific to the mixture models, and then we present comparisons with the model
of Besag et al. (1991). For brevity, we shall only present graphical displays for certain quantities
and make comments on others in the text.

Fig. 6 plots the posterior distribution of k, the number of components, under the LN model
(full curve) and GC model (dotted curve). The LN model clearly favours an explanation using
just two components, whereas the posterior under the GC model is much more diffuse with-
out strongly favouring any value of k (the modal value in this case is k = 4, but the posterior
probability attached to it is smaller than 0.2). We have also examined the posterior distribution
for .h;φ/, the spatial interaction parameters in the LN model. This distribution is concentrat-
ed on large values of h and small values of φ, thus favouring the hypothesis of strong spatial
dependence. A similar message is obtained through the posterior distribution of .h; τ / in the
GC model.
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Fig. 6. Posterior distributions for the number of components k in spatial mixture models fitted to the larynx
cancer data set: , LN model; � � � � � � , GC model
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Fig. 7. Posterior density estimates of component parameters λj for spatial mixture models fitted to the
larynx cancer data set ( , k D 2; – – –, k D 3): (a) LN model; (b) GC model

For the LN model, Fig. 7(a) gives the marginal posterior densities of λ1 and λ2 given k = 2
(full curves), and of λ1, λ2 and λ3 given k = 3 (broken curves). For these parameters, we present
results for k = 2 and k = 3 because they are the most favoured values under the LN model (see
Fig. 6). The main effect of going from k = 2 to k = 3 components is that the first component is
split into two. A similar pattern emerges with the GC model (Fig. 7(b)). We have also examined
the marginal posterior distributions of the allocation variables for each of the regions, again
conditioning on k = 2 and k = 3. For k = 2, these distributions are virtually identical under
the LN and GC models, which makes sense as the same holds for the posterior distribution of
the relative risks associated with each of the components (see Fig. 7). When k = 3, the marginal
posterior distributions of the allocations are slightly different under the two models. In general
terms, we see that regions that under k = 2 were allocated with high posterior probability to
the component associated with a larger relative risk tend to remain allocated to the component
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associated with the largest relative risk under k = 3. In contrast, regions that had a high prob-
ability of being allocated to the component leading to smaller relative risk under k = 2 now
essentially have that probability split between the components corresponding to the smallest
and intermediate relative risks. For these regions, the GC model tends to favour the intermediate
component over the smallest more often than does the LN model, which is consistent with the
message from Fig. 7 that the smallest relative risk is more extreme under the GC than under the
LN model.

The rest of the results presented here relate to the posterior distribution of the relative risks
.r1; : : :; rn/. As already explained, this distribution is computed by also mixing over k and, of
course, these quantities are directly comparable with those in the model of Besag et al. (1991).
Histograms of the marginal posterior distributions of the relative risks for each of the regions
(not displayed) show that the mixture models generally lead to less dispersed posterior distribu-
tions than does the model of Besag et al. (1991). As an average measure of spread we consider
[ΣiV{log.ri/|y}=n]1=2, which is 0.008 for the LN model, 0.010 for the GC model and 0.014
for the model of Besag et al. (1991). The mixture models lead to bimodal histograms in some
regions. This is more apparent with the LN model, probably because it fits fewer (usually two)
components, leading to a less smooth posterior distribution for the relative risks. Fig. 5 presents
the posterior median of the relative risks. The GC model seems to offer an intermediate type of
smoothing between those resulting from the model of Besag et al. 1991 and the LN model. This
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Fig. 8. Aspects of the joint posterior distributions of relative risks for pairs of neighbouring regions, for the
larynx cancer data: (a) scatterplots of samples from the joint posterior for Aisne and Marne, model of Besag et
al. (1991); (b) scatterplots of samples from the joint posterior for Aisne and Marne, LN model; (c) scatterplots
of samples from the joint posterior for Aisne and Marne, GC model; (d) density estimates of the posterior
for differences between relative risks for Puy-de-Dôme and Allier; (e) density estimates of the posterior for
differences between relative risks for Moselle and Meurthe-et-Moselle ( , model of Besag et al. (1991);
. . . . . . . , LN model; – – –, GC model)
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is consistent with the fact that the GC model tends to allocate (at least a priori) neighbouring
regions to components that are adjacent in terms of their associated relative risks.

In addition to looking at marginal posterior distributions of the relative risks, we have
explored joint distributions for some pairs of neighbouring regions. As an illustration, Figs 8(a)–
8(c) present scatterplots of the joint posteriors of the relative risks for Aisne (corresponding to
i = 2) and Marne (i = 50) under all three models. The SMR for Aisne (1.32) is much higher than
that for Marne (0.34). In accordance with this, the joint posterior distributions of the relative
risks have most of the probability in the region where r2 > r50 and this effect is more pronounced
in the LN model. The probability on the diagonal is 8% for the LN model and 12% for the GC
model. Note that the scatterplot for the GC model leads to a situation in between that for the
model of Besag et al. (1991) and the LN model, with the mass a little more spread out and
slightly closer to the diagonal than in the LN model. A similar pattern was observed when we
looked at other pairs of neighbouring regions. For conciseness, Figs 8(d) and 8(e) simply present
the posterior distribution of the differences in relative risks between the regions Puy-de-Dôme
and Allier (Fig. 8(d)) and the regions Moselle and Meurthe-et-Moselle (Fig. 8(e)). In both cases,
the full curve corresponds to the model of Besag et al. (1991), whereas the dotted and broken
curves respectively represent the LN and GC models. For the mixture models, the spike at zero
represents the posterior probability that the relative risks for both regions are identical: this
probability is 0.40 for the LN model and 0.45 for the GC model in Fig. 8(d) and 0.22 for
both models in Fig. 8(e).

6.4. Sensitivity to prior assumptions
Here we shall briefly comment on the sensitivity of the results with respect to the prior assump-
tions. We shall focus the discussion on the larynx data set, although we have also examined
robustness for the synthetic data sets and found qualitatively similar results.

First, we should acknowledge that in complex models, such as those developed in this paper,
it is virtually impossible fully to understand and separate the role of all the parameters that
intervene in the model. Furthermore, posterior distributions of some of the parameters will
be heavily influenced by the choice of the prior. In our view, one should mostly focus on the
quantities of real interest, the relative risks in this case, and examine whether or not inference on
such quantities is heavily dependent on the choice of the prior. We have run our programs many
times using different prior hyperparameters, and even different prior distributions, and found
that posterior inference on relative risks is fairly robust to moderate perturbations in the prior.

For the LN model, our basic setting takes hmax = φmax = 10 in distributions (3.6), and α = 1
and β = 0:69 in equation (4.3). With this choice of prior, the posterior distribution of h (not
displayed) has mass fairly evenly spread across the entire interval .0; 10/, whereas the poste-
rior distribution of φ is mostly concentrated close to 0. As a consequence, we have examined
results under a range of higher values of hmax. In particular, we have considered hmax = 100
(a rather extreme choice) and p.h/ = .1 + h/−2 or, equivalently, a uniform prior distribution
on .0;1/ for the parameter h=.1 + h/. The latter prior does not restrict h to a bounded inter-
val and is motivated by the fact that h=.1 + h/ represents the relative weight of each pair of
neighbouring locations in model (3.1). We have also examined sensitivity to departures from
the values α = 1 and β = 0:69 in model (4.3). We present results for three such departures:
taking β random with a gamma hyperprior with mean 1 and variance 10, taking β = 1 and
taking α = β = 2. We quantify the changes in the posterior distribution of the relative risks
via the metric Σi supu |p0.ri � u|y/ − p1.ri � u|y/|=n, where ri denotes the relative risk of re-
gion i, p0.·|y/ corresponds to the posterior distribution under our basic setting described at the
beginning of this paragraph and p1.·|y/ is the posterior distribution under one of the alternative

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssb/article/64/4/805/7098616 by U

niversity of Bristol Library user on 28 January 2026



822 C. Fernández and P. J. Green

Table 2. Sensitivity of the posterior distribution of relative risks for the larynx cancer
data set†

Model Results for the following settings:

hmax = 100 p(h) = (1+ h)−2 β ∼ gamma(0.1,0.1) β = 1 α = β = 2

LN 0.053 0.044 0.007 0.015 0.064
GC 0.016 0.010 0.006 0.010 0.041

†The heading indicates the departures from the basic setting, which is hmax = 10, α = 1
and β = 0:69. Entries are Σi supu |p0.ri � u|y/− p1.ri � u|y/|=n, where p0.·|y/ and p1.·|y/
respectively denote the posterior distributions under the basic and alternative settings.
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Fig. 9. Sensitivity of the posterior distribution of the number of components k for the larynx cancer data set:
(a) LN model, α D 1 and β D 0:69 throughout, hmax D 10 ( ), hmax D 100 (. . . . . . .), p.h/ D .1 C h/�2

(- - - - - - - ); (b) LN model, hmax D 10 throughout, α D 1 and β � gamma(0.1,0.1) ( ), α D β D 1 (. . . . . . .),
α D β D 2 (-- - - - - - ); (c) GC model, α D 1 and β D 0:69 throughout, hmax D 10 ( ), hmax D 100 (. . . . . . .),
p.h/ D .1 C h/�2 (- - - - - - - ); (d) GC model, hmax D 10 throughout, α D 1 and β � gamma(0.1,0.1) ( ),
α D β D 1(. . . . . . .), α D β D 2 (-- - - - - - )

priors indicated in this paragraph. The top row of Table 2 presents the results for the LN model.
The bottom row corresponds to the same departures in terms of h, α and β from the basic
setting hmax = 10, τmax = 0:5, α = 1 and β = 0:69 in the GC model. All entries in Table 2
are smaller than 0.1, so we conclude that robustness holds for the posterior distribution of the
relative risks.

Some sensitivity of the posterior distribution of k, the number of mixture components, to the
choice of α and β is to be expected (it is not surprising that assumptions about location and
spread of the components affect the number of components fitted by the model). This appears
to be more the case in the GC than in the LN model, as Figs 9(b) and 9(d) illustrate. Figs 9(a)
and 9(c) point towards robustness with respect to the prior distribution of the spatial param-
eter h.
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7. Conclusion and possible extensions

We believe that the spatial mixture models that have been introduced and discussed in this paper
provide interesting new tools for those modelling heterogeneity in spatial data. As might have
been expected, they seem to offer an improved performance in the task of estimating the true
risk pattern compared with a model based on a continuously distributed Markov random field,
when that true pattern has step-like discontinuities. What is more intriguing is that not much
performance is lost in the opposite case of a smooth trend. It is also remarkable that the LN
version of the model uncovers such a simple ‘explanation’ for the larynx data set, as a mixture
of just two components.

Further work is needed to draw wider comparisons, which should include other mixture- and
partition-based models such as those of Knorr-Held and Rasser (2000) and Green and Rich-
ardson (2002), and also variants of the random field models in which the Gaussian assumption
is replaced by the use of a non-quadratic pairwise potential function in expression (6.2), such
as the absolute value or log-cosh function. Finally, it would be interesting to explore the for-
mulation and performance of related correlated mixture models in other spatial contexts, and
also in temporal problems such as signal analysis.
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Appendix A: Details of the sampler

A.1. Implementation for the logistic normal model
Denoting by .k;λ; x; h;φ; z1; : : :; zn/ the current state of the chain, we follow steps (a)–(f). Note that the
allocation variables have been integrated out in steps (a)–(d), whereas they are included in steps (e)–(f).
One time step for the chain comprises a complete sweep through the six steps, at the end of which the state
is recorded.

(a) Update k, λ and x: updating k implies a change in dimensionality for λ = .λ1; : : :;λk/ and x =
.x1; : : :; xk/, so new values also need to be proposed for them. We use a reversible jump to update
.k;λ; x/ according to p.k;λ; x|y; h;φ/. We propose to update k to k′, where k′ = k + 1 (add one
component) with probability bk ∈ [0; 1] and k′ = k−1 (remove one component) with the remaining
probability. If k′ = k+ 1, we propose to update λ and x in the following way. Draw a value λÅ from
the prior gamma.α;β/ distribution and an n-dimensional vector xÅ from the prior distribution
(3.1). Form λ′ = .λ′

1; : : :;λ
′
k+1/ by inserting λÅ in the appropriate position within the ordered vector

λ, and x′ by inserting xÅ in the same place in x. Compute weights w′
ij , as in equation (3.3), using

x′ in place of x (note that all the weights change). If k′ = k − 1, we randomly choose a component
‘Å’ by using a uniform distribution on the set {1; : : :; k}. Form λ′ and x′ by removing the value λÅ
from λ and the n-dimensional vector xÅ from x. Recompute weights w′

ij using equation (3.3) and x′

(again all weights change). According to the reversible jump framework, the acceptance probability
for the move that adds one component is

min




1;
1 − bk+1

bk

n∏
i=1

k+1∑
j=1

w′
ij Pois.yi|eiλ′

j/

k∑
j=1
wij Pois.yi|eiλj/



; .A:1/
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whereas the acceptance probability for the move that removes one component only requires obvious
changes. If the proposal is not accepted the chain keeps the current state. This step can potentially
be slow owing to the generation of the n-dimensional vector xÅ when k′ = k + 1. This problem is
more acute when h is unknown, because then the precision matrix in model (3.1) changes at every
sweep of the chain and computing a new Choleski decomposition is then required. Thus, instead of
a standard algorithm for multivariate normal random generation, we used the algorithm developed
by Rue (2001) for fast sampling of Gaussian Markov random fields.

(b) Update x: we update the n regions sequentially. For region i, the posterior full conditional distribu-
tion of .xi1; : : :; xik/ (with allocations integrated out) has PDF proportional to

{
k∑

j=1
wij Pois.yi|eiλj/

}
k∏

j=1
fN


xij

∣∣∣∣∣∣
h
∑
i′∈@i

xi′j

1 + hνi
;

1
1 + hνi


; .A:2/

where fN.·|m; v/ denotes the PDF of a univariate normal distribution with mean m and variance v,
and νi is the number of neighbours of region i. The set of neighbours of region i is denoted by @i.
We use a standard Metropolis–Hastings updating scheme, drawing a candidate value .x′

i1; : : :; x
′
ik/

from the k independent normal distributions in expression (A.2).
(c) Update h: the posterior full conditional distribution for h has PDF proportional to

c.h/k exp

{
−h

2

k∑
j=1

∑
i∼i′

.xij − xi′j/
2

}
I.0 < h < hmax/; .A:3/

and we use the Metropolis–Hastings updating scheme with a candidate generated from the prior.
Clearly, the ability to evaluate c.h/ easily is important in this step.

(d) Update φ: the conditional posterior distribution of φ (with allocations integrated out) has PDF
proportional to

n∏
i=1

{
k∑

j=1
wij Pois.yi|eiλj/

}
I.0 < φ < φmax/: .A:4/

We update φ by using the Metropolis–Hastings updating scheme with a candidate generated from
the prior.

(e) Update allocations: in the posterior full conditional, the n allocation variables are mutually inde-
pendent with

p.zi = j|y; k;λ; x; h;φ/ ∝ wij Pois.yi|eiλj/ I.j ∈ {1; : : :; k}/; .A:5/

from which we can draw directly. Thus, this is just a Gibbs step.
(f) Update λ: the PDF of the posterior full conditional distribution of λ is proportional to

k∏
j=1

fG

(
λj|α + ∑

i:zi=j
yi;β + ∑

i:zi=j
ei

)
I .λ1 < : : : < λk/ ; .A:6/

from which we draw directly (by Gibbs sampling).

A.2. Implementation for the grouped continuous model
Updating in the GC model will follow seven steps, with the allocation variables integrated out in the first
five. These steps can be summarized as updating

(a) .k;λ; δ/,
(b) x,
(c) h,
(d) δ,
(e) τ ,
(f) z and
(g) λ.
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Most of the steps are quite simple and can be dealt with quite similarly to those in the LN model. Thus,
we shall only briefly describe the move that we used in step (a).

First, we propose k′ = k + 1 with probability bk and k′ = k − 1 with the remaining probability.
If k′ = k + 1, we draw δ* from a uniform distribution on .xmin; xmax/ and form δ′ by inserting δ* in the

corresponding position in the ordered vector δ. Say that δ* occupies position j* in δ′. Next, we form λ′ by
substituting λj*

in λ by the pair λ′
j*
< λ′

j*+1, which are generated according to the PDF

2
1∏
l=0
fN.λ

′
j*+l|λj* ; vs/ I.λ

′
j*
< λ′

j*+1/

for some positive variance vs. Compute new weights using expression (3.4) with δ′ in place of δ.
If k′ = k − 1, we propose to remove one of the elements δj*

of δ, randomly and uniformly. Next,
we substitute the pair λj*

< λj*+1 by λ′
j*

, which is generated from a normal distribution with mean
.λj*

+ λj*+1/=2 and variance denoted by vm. In this way, we form δ′ and λ′. Further, we compute the new
weights by using expression (3.4).

According to the reversible jump framework, the acceptance probability of the move that adds one
component is 0 if the proposed values λ′

j*
and λ′

j*+1 do not fall in the appropriate range, i.e. do not lead
to a vector λ′ with ordered elements; otherwise, it is min.1;Q/, where

Q = 1 − bk+1

bk




n∏
i=1

k+1∑
j=1

w′
ij Pois.yi|eiλ′

j/

k∑
j=1
wij Pois.yi|eiλj/




.ks+ s− 1/!
.ks− 1/!.s− 1/!

k + 1
k

{
.δ′

jt − δjt−1/.δjt − δ′
jt/

.δjt − δjt−1/.xmax − xmin/

}s−1

×
{

1∏
l=0
fG.λ

′
jÅ+l|α;β/

}
fG.λj*

|α;β/−1fN

(
λj*

∣∣∣λ
′
j*

+ λ′
j*+1

2
; vm

){
2

1∏
l=0
fN .λ′

j*+l|λj* ; vs/
}−1

:

The acceptance probability for the reverse move is obtained similarly.
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