

Modelling spatially correlated data via mixtures: a Bayesian approach

Carmen Fernández

Lancaster University, UK

and Peter J. Green

University of Bristol, UK

[Received September 2000. Final revision April 2002]

Summary. The paper develops mixture models for spatially indexed data. We confine attention to the case of finite, typically irregular, patterns of points or regions with prescribed spatial relationships, and to problems where it is only the weights in the mixture that vary from one location to another. Our specific focus is on Poisson-distributed data, and applications in disease mapping. We work in a Bayesian framework, with the Poisson parameters drawn from gamma priors, and an unknown number of components. We propose two alternative models for spatially dependent weights, based on transformations of autoregressive Gaussian processes: in one (the logistic normal model), the mixture component labels are exchangeable; in the other (the grouped continuous model), they are ordered. Reversible jump Markov chain Monte Carlo algorithms for posterior inference are developed. Finally, the performances of both of these formulations are examined on synthetic data and real data on mortality from a rare disease.

Keywords: Disease mapping; Grouped continuous model; Logistic normal model; Poisson mixtures; Reversible jump Markov chain Monte Carlo method

1. Introduction

There are two main motivations for this work. One is methodological—to extend the range of contexts in which mixture-based models play a role to cases of spatially indexed data; the other is applied—to develop and investigate new spatially correlated models for geographical epidemiology with the aim of alleviating some possible difficulties with existing disease mapping methods.

Mixture models have a long pedigree, with interest in them going back many decades. These models have been used both in situations where the components of the mixture represent subgroups in a heterogeneous population and in settings where the mixture formulation is merely a convenient parsimonious form for flexible density estimation. Titterington *et al.* (1985) and Lindsay (1995) provide general background. In recent years, research interest has been regenerated, first by the introduction of the Bayesian approach, with computational implementation by Markov chain Monte Carlo (MCMC) methods (see, for example, Robert (1996) for a review) and, secondly, by allowing the number of components to vary in this Bayesian context (as in Nobile (1994) and Richardson and Green (1997)). These developments have increased

Address for correspondence: Carmen Fernández, Department of Mathematics and Statistics, Fylde College, Lancaster University, Lancaster, LA1 4YF, UK.
E-mail: c.fernandez@lancaster.ac.uk

the power and flexibility of mixture-based models, by enabling full simultaneous posterior inference about all parameters, by exposing the possibility for ‘multiple explanations’ in some data sets, by avoiding the difficulties of (non-regular) inference about the number of components in a frequentist setting and by offering the possibility of fitting data better through model averaging.

Beyond the independent random sample setting in which basic mixture models are always formulated, this recent activity has stimulated novel statistical models for several situations in which the data are more structured. These include regression and autoregression (West *et al.*, 1994), measurement error (Müller and Roeder, 1997; Leblond *et al.*, 2000), modelling random effects in mixed models (Watier *et al.*, 1999), analysis of factorial experiments (Nobile and Green, 2000) and, more generally, hidden switching models (Robert *et al.*, 2000; Frühwirth-Schnatter, 2001). In all these diverse contexts, the mixture formulation makes a powerful contribution to fitting or adjusting for the effects of heterogeneity in populations, and it is reasonable to believe that the opportunities for such contributions have not yet been exhausted.

One setting in which mixtures have not been previously exploited is that of spatially indexed data. In fact, there are many problems in this category. Data may be indexed by points, by regions or by cells of a lattice. Mixtures may be introduced at various levels in such problems. In this paper, we confine attention to the case of finite, typically irregular, patterns of points or regions with prescribed spatial relationships, and to problems where it is only the weights in a mixture model that vary from one location to another. This is still a very wide class of problems. Our spatial mixture formulations apply in broad detail to many of these; one possible application that will not be pursued here is to agricultural field trials (see Fernández and Green (1999)). Our specific focus in this paper is on Poisson-distributed data, and applications in disease mapping.

There is an extensive epidemiological statistics literature that deals with issues of extra-Poisson variation and unmeasured covariates in spatially distributed disease data. Typically, the aim is to produce reliable maps of disease (see Mollié (1996) for an accessible account from a Bayesian viewpoint). The model introduced by Besag *et al.* (1991) has been extensively used in this context. This model contains two random terms: one to represent unstructured heterogeneity and the other to capture spatial correlation. There are, however, some issues of identifiability and interpretability of the spatial and unstructured heterogeneity parts, and the model does not allow naturally for discontinuities in the risk surface. As Mollié (1996) put it

‘It would be useful to develop other forms of prior, to take into account the presence of discontinuities in the spatial structure of the relative risks’.

We shall explore the extent to which our mixture approach can handle this and use a version of the model of Besag *et al.* (1991) as a bench-mark against which we compare our results. A related approach designed to deal with clusters of constant risk and discontinuities was proposed by Knorr-Held and Rasser (2000).

Our presentation reflects both the general and the specific motivations for the work. In Section 2, we review aspects of the basic mixture model that remain relevant in the spatial context, and in Section 3 we introduce two new formulations for spatially dependent weights. The disease mapping problem is introduced in Section 4, where the remainder of our model set-up is developed. In Section 5, we briefly discuss the computational implementation of our models via MCMC sampling (further details on this are provided in Appendix A). Section 6 presents results on the performance of the models on both synthetic and real data sets, and we conclude in Section 7 with general discussion and some possibilities for future work.

2. The mixture sampling model

We consider conditionally independent but not identically distributed observations y_i ($i = 1, \dots, n$) from a mixture model

$$p(y_i|k, w, \lambda) = \sum_{j=1}^k w_{ij} f(y_i|\lambda_j), \quad (2.1)$$

where k is the number of components. The distribution under the j th component ($j = 1, \dots, k$) is denoted by $f(\cdot|\lambda_j)$ where f is a density or probability mass function of specified form, the vector $\lambda = (\lambda_1, \dots, \lambda_k)$ groups the component-specific parameters and the weights $w = (w_{ij})_{i,j}$ satisfy $w_{ij} > 0$ with $\sum_{j=1}^k w_{ij} = 1$ for all i . In contrast with the standard set-up, here the weights vary with i . In this paper, we shall assume that k , w and λ are unknown and subject to inference.

The well-known representation of mixture models by means of a hidden allocation process will prove useful both for the purpose of interpretation and for the numerical computations. For n independent observations from a mixture of k components, the representation is as follows.

- (a) Introduce n independent discrete variables z_1, \dots, z_n , with the multinomial distribution $p(z_i = j|k, w, \lambda) = w_{ij}$, for $j = 1, \dots, k$.
- (b) Assume that y_1, \dots, y_n are independent given $z = (z_1, \dots, z_n)$ with $p(y_i|z, k, w, \lambda) = f(y_i|\lambda_{z_i})$.

If we now integrate out z_i by using its multinomial distribution, we obtain the mixture model (2.1). Thus, z_i can be interpreted as an allocation variable, in the sense that it assigns observation y_i to one of the mixture components. This suggests that mixtures will be appropriate to model a heterogeneous population, where the assignment of observations to groups is unknown. In addition, they are often used as a flexible but reasonably parsimonious way to represent non-standard distributions, e.g. as an alternative to the use of nonparametric methods.

3. Modelling spatial dependence through priors on weights

A crucial difference between the mixture model (2.1) and the case of independent and identically distributed (IID) sampling previously examined in the literature (e.g. Diebolt and Robert (1994) and Richardson and Green (1997)) is that the weights in model (2.1) are indexed by i , so they are allowed to vary from observation to observation. In our context, i will be a spatial index which represents a location in the space where the observations take place, and we shall introduce spatial dependence through the prior distribution of the weights. In simple terms, the basic behaviour that we try to capture is that observations that correspond to nearby locations are more likely to have similar values of the weights (i.e. similar allocation probabilities) than observations from locations that are far apart. Our analysis will be conditional on a given graph with the locations as vertices, and certain designated pairs of nearby locations as edges; this graph will be the conditional independence graph of a component of our models, and thus we are working with Markov random fields indexed by i . Pairs of locations connected by an edge will be called neighbours.

We shall propose two different models to allow for spatially correlated weights. In both models, spatial dependence will be introduced by means of a Markov random field with probability density function (PDF)

$$p(x|h) = c(h) \exp \left[-\frac{1}{2} \left\{ h \sum_{i \sim i'} (x_i - x_{i'})^2 + \sum_{i=1}^n x_i^2 \right\} \right], \quad (3.1)$$

where $x = (x_1, \dots, x_n)$ and $\sum_{i \sim i'}$ denotes the sum over all pairs of neighbours with each pair counted only once. The parameter h is non-negative and $c(h)$ is the appropriate integrating constant:

$$c(h) = (2\pi)^{-n/2} \prod_{i=1}^n (1 + hg_i)^{1/2}, \quad (3.2)$$

where g_1, \dots, g_n denote the eigenvalues of a matrix $A = (a_{ii'})$ coding the adjacencies, with $a_{ii} = \nu_i$ (the number of neighbours of location i), and off-diagonal elements $a_{ii'} = -1$ if locations i and i' are neighbours and $a_{ii'} = 0$ otherwise. For a given graph, g_1, \dots, g_n only need to be computed once and can then be stored for any further analyses using the same graph. From equation (3.1) it is clear that neighbouring locations are induced to have similar values of the corresponding elements in x , and this effect is more pronounced as the value of h increases. The limiting case $h = 0$ corresponds to independence across locations, whereas as $h \rightarrow \infty$ the distribution in equation (3.1) tends to a degenerate one where neighbouring locations are forced to have exactly the same value of the corresponding elements in x .

Model (3.1) is very closely related to the Gaussian conditional autoregressive model, extensively used in the disease mapping literature to obtain spatially smoothed estimates of relative risks; see, for example, Clayton and Kaldor (1987), Besag *et al.* (1991), Clayton and Bernardinelli (1992) and Waller *et al.* (1997). The term $\sum_{i=1}^n x_i^2$ in the exponent in expression (3.1) does not appear in the conditional autoregressive model, as in, for example, Besag *et al.* (1991), although it does in the formulation proposed recently by Leroux *et al.* (2000). The inclusion of this term makes model (3.1) a proper distribution and is necessary to obtain a proper posterior distribution in our mixtures setting. Despite the similarity of model (3.1) to models that have previously been considered, our modelling strategy is quite novel in that expression (3.1) will be used to obtain a spatially correlated prior for the weights in the mixture model. In the next two subsections we explain how we achieve this.

3.1. The logistic normal model

For a mixture with k components, our first model requires the introduction of k independent n -dimensional vectors, $x_j \equiv (x_{1j}, \dots, x_{nj})$, $j = 1, \dots, k$, each distributed according to model (3.1). Although the vectors are independent of each other, each of them incorporates spatial dependence among its n elements. Next, we define the weights by using the logistic transform (see, for example, McCullagh and Nelder (1989) chapter 5), by which the weights for location i take the form

$$w_{ij} = \frac{\exp(x_{ij}/\phi)}{\sum_{l=1}^k \exp(x_{il}/\phi)}, \quad j = 1, \dots, k, \quad (3.3)$$

with $\phi > 0$. Thus, the weights for location i depend on the i th element of each of x_1, \dots, x_k . The dependence structure of distribution (3.1) induces spatial dependence among the weights.

As the value of h in model (3.1) increases, realizations of the x_j -processes become smoother, and there is also stronger shrinkage towards zero (the mean of the processes), but the scale parameter ϕ introduced in equation (3.3) can compensate for this. Note that $w_{ij}/w_{il} = \exp\{(x_{ij} - x_{il})/\phi\}$ is a monotonic function of ϕ converging to 1 as $\phi \rightarrow \infty$ and to either 0 or ∞ when $\phi \rightarrow 0$. A smaller value of ϕ can thus alleviate the effects of increasing shrinkage in the x -values. The limiting case $\phi = 0$ corresponds to $w_{ij} = 1$ if $x_{ij} = \max\{x_{il} : l = 1, \dots, k\}$ and to $w_{ij} = 0$ otherwise, which implies that the allocation variables z_1, \dots, z_n are deterministic functions of x . The other limiting case ($\phi \rightarrow \infty$) leads to $w_{ij} = 1/k$ for all i and j , thus precluding any spatial

patterns or randomness in the weights. We shall restrict ϕ to be sufficiently small to avoid this undesirable feature.

3.2. The grouped continuous model

In the grouped continuous (GC) model, we use a single n -dimensional vector $x \equiv (x_1, \dots, x_n)$, distributed according to model (3.1). Motivated by previous work on ordinal data based on grouped continuous models (McCullagh and Nelder (1989), chapter 5) we define the weights for location i as

$$w_{ij} = \begin{cases} \Psi\{\tau^{-1}(\delta_1 - x_i)\} & \text{if } j = 1, \\ \Psi\{\tau^{-1}(\delta_j - x_i)\} - \Psi\{\tau^{-1}(\delta_{j-1} - x_i)\} & \text{if } j = 2, \dots, k-1, \\ 1 - \Psi\{\tau^{-1}(\delta_{k-1} - x_i)\} & \text{if } j = k, \end{cases} \quad (3.4)$$

where $\Psi(\cdot)$ is a specified continuous distribution function and τ is a scale parameter. We shall consider a logistic specification, where $\Psi(r) = \{1 + \exp(-r)\}^{-1}$, although other choices of $\Psi(\cdot)$ could be accommodated with simple modifications to our computational implementation. The parameters $\delta_1 < \dots < \delta_{k-1}$ constitute a set of ordered unknown cut points, over which we also specify a prior distribution. In our experience, care is required in the choice of this distribution, because the model can easily lead to many empty components in the sense that there is a high prior probability that the values of the allocation variables (z_1, \dots, z_n) do not span the entire set $\{1, \dots, k\}$. We consider a prior distribution for the δ_j s with support on (x_{\min}, x_{\max}) , where x_{\min} and x_{\max} are the minimum and maximum values of $\{x_i : i = 1, \dots, n\}$. In this way, we minimize the chance of empty components due to several of the δ_j s lying well out of the range of the x_i s. To induce further separation between the values of the δ_j s, we take $\delta_1, \dots, \delta_{k-1}$ to be the s th, $2s$ th, \dots , $(k-1)s$ th order statistics obtained from $ks-1$ IID replications, for some $s \geq 1$ (a similar idea appeared in the changepoint example of Green (1995)). If we base our model on the uniform distribution, this leads to the following PDF for $\delta = (\delta_1, \dots, \delta_{k-1})$:

$$p(\delta|k, x) = \frac{(ks-1)!}{\{(s-1)!\}^k (x_{\max} - x_{\min})^{ks-1}} \prod_{j=1}^k (\delta_j - \delta_{j-1})^{s-1} I(x_{\min} < \delta_1 < \dots < \delta_{k-1} < x_{\max}), \quad (3.5)$$

where we have defined $\delta_0 = x_{\min}$ and $\delta_k = x_{\max}$. Throughout the paper, $I(l)$ will denote a function that takes the value 1 if the logical statement l is fulfilled and 0 otherwise. As with $\Psi(\cdot)$, alternative choices to distribution (3.5) only imply minor modifications to our framework.

The spatial dependence incorporated in x implies that neighbouring locations are more likely to have similar values of the weights in definition (3.4) than locations that are far apart. Similarly to the role of ϕ in the logistic normal (LN) model, the scale parameter τ in expression (3.4) also influences the value of the weights and, by making it small, we can in part compensate for the shrinkage towards the mean of x that occurs when the parameter h in model (3.1) increases. In the limiting situation where $\tau = 0$, the allocation z_i is a deterministic function of x_i and the δ_j s, with $w_{ij} = 1$ if $\delta_{j-1} < x_i < \delta_j$ and $w_{ij} = 0$ otherwise. As $\tau \rightarrow \infty$, we obtain the limit $w_{i1} = w_{ik} = 0.5$ and $w_{ij} = 0$ for the intermediate components, precluding spatial dependence or randomness in the weights while assigning all the probability to the two extreme components. We shall restrict τ to be sufficiently small to obtain non-negligible prior probabilities for all the components.

3.3. Priors on spatial interaction parameters

As we have already discussed, the parameter h controls the dependence in the Markov random field (3.1). In particular, the limiting case $h = 0$ leads to independent weights across locations. The scale parameters ϕ and τ in equations (3.3) and (3.4) affect the size and general behaviour of the weights and, as a consequence, also influence the correlation between the allocation variables z_1, \dots, z_n . Although we have provided some intuition about the role of these parameters, it is not easy fully to understand and separate the roles of h and ϕ in the LN model and, similarly, of h and τ in the GC model. In general terms, we shall view them as ‘smoothing’ parameters and, to allow extra flexibility and to cope with uncertainty about them, we assign prior distributions to them. In our examples, we shall consider h and ϕ (or τ) independent with

$$\left. \begin{array}{l} h \sim \text{uniform on } (0, h_{\max}), \\ \phi \sim \text{uniform on } (0, \phi_{\max}), \\ \tau \sim \text{uniform on } (0, \tau_{\max}), \end{array} \right\} \quad (3.6)$$

for some positive numbers h_{\max} , ϕ_{\max} and τ_{\max} . The support intervals will be chosen to be sufficiently large to allow for interior modes in the posterior distributions, but not so large that the unreasonable features displayed by the weights as ϕ or τ increase could emerge. We have chosen independent uniform priors so that we can easily assess the effect of the data when looking at the corresponding posterior distributions but, once again, other prior distributions could easily be accommodated in our framework.

4. An application in disease mapping

The objective of disease mapping is to analyse the geographical variation in rates of the incidence of disease or mortality within a specific area. In recent years there has been considerable scientific and public interest in uncovering spatial patterns in disease, as this can help to formulate aetiological hypotheses pointing towards certain causes or deterrents of disease or, for example, suggesting a potential disadvantage of certain groups within the population. The data are usually given in the form of counts (the numbers of observed cases of disease) y_i , for regions that constitute a geographical partition of the area of interest. A preliminary analysis of these and other data, usually incorporating a stratification on age and sex, yields an expected count e_i for each region i .

The standardized mortality ratios (SMRs) are defined as y_i/e_i , for $i = 1, \dots, n$, and correspond to maximum likelihood estimates of relative risk under independent sampling from

$$p(y_i|r_i) = \text{Pois}(y_i|e_i r_i), \quad (4.1)$$

a Poisson distribution with mean $e_i r_i$, where r_i denotes the relative risk in region i . Traditionally, maps of disease display the SMRs by using a grey or coloured scale. For rare diseases, where the expected number of cases can be quite small for some of the regions, these maps can be misleading because the most extreme values (which visually dominate the map) can correspond to low population areas where the variance of the estimator is largest. In addition, this approach fails to account for two features that are often found in this context: extra-Poisson variation (i.e. there is more heterogeneity in the population than would be implied by a Poisson model) and spatial correlation in the relative risks (due, for example, to unmeasured covariates that are spatially correlated).

We now consider using the two spatial mixture formulations of Section 3 in this context of disease mapping. The locations are now the regions in which our data are collected. We take

the simplest possible graph structure connecting the locations: regions i and i' are neighbours if and only if they are spatially contiguous. The mixture assumption is to model the relative risk r_i for region i with allocation z_i (see Section 2) as $r_i = \lambda_{z_i}$, giving the mixture representation

$$p(y_i|k, w, \lambda) = \sum_{j=1}^k w_{ij} \text{Pois}(y_i|e_i \lambda_j), \quad (4.2)$$

for conditionally independent disease counts $\{y_i\}$. Thus, the relative risk surface is represented as a mixture (due to the random nature of the allocations z_i) of discrete surfaces with levels $\lambda_1, \dots, \lambda_k$. This should allow for an adaptive type of smoothing, showing discontinuities between regions that require it while applying stronger smoothing in other geographical areas. Modelling of the weights w_{ij} by either the LN or GC formulations has been discussed, so it only remains to place priors on $\lambda = (\lambda_1, \dots, \lambda_k)$, the component-specific parameters, and k , the number of components in the mixture. A natural choice for the prior distribution of the λ_j s is a gamma specification, and we shall assume that they are in increasing order. This leads to

$$p(\lambda|k) = k! \prod_{j=1}^k f_G(\lambda_j|\alpha, \beta) I(\lambda_1 < \dots < \lambda_k), \quad (4.3)$$

where $f_G(\cdot|\alpha, \beta)$ denotes the PDF of a gamma distribution with shape parameter α and mean equal to α/β . Whereas ordering the λ_j s merely induces component identifiability in the LN model, it is a structural feature of the GC model, as it implies that neighbouring regions are, *a priori*, more likely to be allocated to components with consecutive values of the λ_j s than to more ‘distant’ components. For the number of mixture components we take the prior distribution

$$k \sim \text{uniform on } \{1, \dots, k_{\max}\}, \quad (4.4)$$

for a suitably large integer k_{\max} . Converting results to those corresponding to another prior, say $p^*(k)$, with the same support is straightforward since $p^*(k|y) \propto p(k|y) p^*(k)$, where $p(k|y)$ and $p^*(k|y)$ respectively denote the posterior for k under the uniform prior in distribution (4.4) and under the new prior $p^*(k)$. Similar transformations apply to other posterior distributions.

Fig. 1 displays directed acyclic graphs for the complete hierarchical Bayesian model under both the LN and the GC specifications. Square boxes represent fixed or observed quantities and circles the unknowns. Broken lines denote deterministic (as opposed to stochastic) relationships.

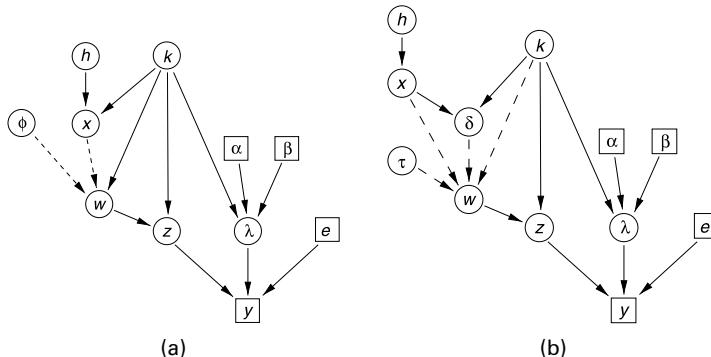


Fig. 1. Directed acyclic graphs corresponding to (a) LN and (b) GC spatial mixture models

5. Computational implementation

The Bayesian models that are proposed in this paper are too complex to be amenable to analytical calculations. Hence, we shall use MCMC methods (e.g. Tierney (1994) and Besag *et al.* (1995)), and in particular reversible jump MCMC methods (Green, 1995), which can cope with the varying dimensionality of the parameter space induced by the unknown number of mixture components. The parameter space is given by

$$\Theta = \bigcup_{k=1}^{k_{\max}} \Theta_k,$$

where Θ_k is the parameter space for a k -component mixture. Richardson and Green (1997) introduced the use of reversible jump MCMC methods for mixtures with an unknown number of components in an IID setting. Here, we consider the more complex scenario where spatial interaction is present.

5.1. Construction of sampler

To facilitate sampling, we shall augment with the hidden allocation variables (z_1, \dots, z_n) and with the auxiliary variables x distributed as in model (3.1). Thus, our aim is to compute the joint posterior distribution of all the variables in each of the graphs in Fig. 1. It is worth mentioning a couple of unusual features of our sampler (focusing the discussion on the LN model, although similar comments apply to the GC model). Firstly, since the weights w are a deterministic function of (x, ϕ) (see equation (3.3)), they cannot be included as an additional random variable in the sampler. Secondly, in most steps of the sampler the allocation variables (z_1, \dots, z_n) will be integrated out to avoid slow mixing for values of ϕ which are small in relation to the values of x_{ij} (in such cases, the allocations would be virtually deterministic functions of (x, ϕ) since $k - 1$ out of the k weights in equation (3.3) would be negligible). The resulting Markov chain is irreducible and has the required posterior distribution as invariant distribution, so ergodic averages converge to the corresponding posterior expectations. Further details on the sampler can be found in Appendix A. Of course, other samplers would be possible, but this is one that we have found to work well in practice.

5.2. Performance issues

The main difficulty was in finding a proposal generator that led to reasonable acceptance rates in the reversible jump step. This was particularly difficult for the LN model, where increasing the number of components by 1 implies having to propose an n -dimensional auxiliary vector x . After some trial and error, we found that generating the proposed n -dimensional vector from the Markov random field prior (3.1) led to reasonable acceptance rates (for example for the data sets considered in Sections 6.2 and 6.3 the acceptance rates of the reversible jump move were 22.1% for the ‘blocks’ data set, 4.1% for the ‘gradns’ data set and 7.2% for the larynx cancer data). To achieve this efficiently, we used Rue’s (2001) algorithm for fast simulation of Gaussian Markov random fields. The acceptance rates for the reversible jump move in the GC model were also reasonable (5.8% for the blocks data set, 8.0% for the gradns data set and 7.1% for the larynx cancer data). Other parameters drawn through Metropolis–Hastings steps also had reasonable acceptance rates. In all the data sets analysed in the next section, the sampler was run for an initial 500 000 draws which were discarded, followed by 1 million draws which were used to present results. This was found to be more than enough for convergence.

We have also carefully monitored serial autocorrelations along the MCMC path, yielding results that are consistent with these observations. For example, for the GC model applied to the larynx cancer data described in Section 6.3, autocorrelations in the h - and τ -series declined to insignificant levels after about 200 and 80 sweeps respectively, whereas the series for individual λ_{z_i} did so after lags varying from 8 to 40. The dependence is greater in posterior samples from the LN model, where the corresponding figures for h , ϕ and λ_{z_i} are 600, 600 and 10–50. In both cases, as we make clear, we generate very long runs of 1 million sweeps, after burn-in, so that substantial thinning is possible (in the interests of saving storage space) while still leaving large subsamples for computing summary statistics. The programs were coded in GNU Fortran 77 and executed on a 750-MHz Pentium personal computer; the running time was approximately 1 h.

6. Results

We shall illustrate the performance of the two spatial mixture models developed earlier in the paper on both real and synthetic data sets, making also some limited comparisons with a standard model.

We shall present results for the LN and GC models, described in Section 3. The runs presented here correspond to hyperparameter values $h_{\max} = \phi_{\max} = 10$ and $\tau_{\max} = 0.5$ for the prior distributions (3.6). These values were chosen to allow reasonable flexibility in the degree of prior spatial correlation. For the GC model, the choice $\tau_{\max} = 0.5$ ensures that marginal prior distributions of the allocation variables are approximately uniform, which always holds under the LN model and seems sensible in the absence of strong prior information. Larger values of τ_{\max} would favour prior allocations towards the two extreme components, as explained at the end of Section 3.2. In addition, we took $\alpha = 1$ and $\beta = 0.69$ in equation (4.3). When $k = 1$, this corresponds to an exponential prior distribution for the relative risk with median equal to 1, which seems reasonable. Finally, s was taken equal to 5 in the GC model (see equation (3.5)) and k_{\max} was assigned the value 10.

Certain quantities in the mixture model, in particular the component-specific parameters $(\lambda_1, \dots, \lambda_k)$ and the allocations (z_1, \dots, z_n) , can only be interpreted in the context of a fixed number of components. Thus, when posterior inference on these quantities is reported, it is conditional on k . However, region-specific relative risks, defined as $r_i = \lambda_{z_i}$, have an unequivocal interpretation regardless of the value of k , so we present results for them mixing over k . Much of the subsequent discussion will focus on the relative risks (r_1, \dots, r_n) , which are often the quantities of ultimate interest and the only ones that allow for direct comparisons with other models.

6.1. A standard model for comparison

The model of Besag *et al.* (1991) can be written as

$$\log(r_i) = \kappa^{1/2} u_i + \eta^{1/2} v_i, \quad (6.1)$$

where

$$\begin{aligned} p(u_1, \dots, u_n) &\propto \exp \left\{ - \sum_{i \sim i'} \frac{(u_i - u_{i'})^2}{2} \right\}, \\ p(v_1, \dots, v_n) &= \prod_{i=1}^n f_N(v_i | 0, 1), \end{aligned} \quad (6.2)$$

i.e. (u_1, \dots, u_n) jointly follow a Gaussian conditional autoregressive model whereas v_1, \dots, v_n are independent standard normals. We consider the hyperpriors

$$\begin{aligned}\kappa^{-1} &\sim \text{gamma}(\kappa_1, \kappa_2), \\ \eta^{-1} &\sim \text{gamma}(\eta_1, \eta_2),\end{aligned}\tag{6.3}$$

where we make the weakly informative choices $\kappa_1 = \kappa_2 = 0.1$ and $\eta_1 = \eta_2 = 0.001$, as recommended by Best *et al.* (1999). Whenever we refer to the model of Besag *et al.* (1991), we mean the model corresponding to sampling from distribution (4.1) with the prior given through expressions (6.1)–(6.3).

6.2. Synthetic data sets

Here we analyse two synthetic data sets that were designed to test the performance of our models in different situations. Both simulated data sets, as well as the larynx cancer real data analysed in the next subsection, correspond to counts in the 94 mainland French *départements*. The expected numbers of cases e_i have always been taken equal to those in the larynx cancer data set, which vary from 2.08 for Lozère to 57.77 for Paris, with $\sum e_i = 1339$. The large variation in the expected number of cases for the various regions will make maps based on SMRs unreliable and some form of spatial smoothing necessary.

In constructing the first data set, denoted ‘blocks’, we set most regions to have true relative risk equal to 0.75, but four clusters of regions have relative risk 2. Counts are generated independently from model (4.1), using the expected number of cases and relative risks just described. This results in counts y_i that vary from 0 (Lozère) to 91 (Nord) with $\sum y_i = 1397$. The SMRs vary from 0 (Lozère) to 2.93 (Maine-et-Loire). Fig. 2 displays the true relative risks and SMRs as well as the medians of the marginal posterior distributions of the relative risks, according to the model of Besag *et al.* (1991) and the GC model. In Table 1, we display for each of the methods the root averaged mean-square error of the log-relative-risk, defined as

$$\left(\sum_i E[\{\log(\lambda_{z_i}) - \log(r_i^t)\}^2 | y]/n \right)^{1/2},$$

where $y = (y_1, \dots, y_n)$ and r_i^t is the true relative risk in region i .

On the basis of the mean-square error, both mixture models give more accurate marginal inference on the true relative risks than does the approach of Besag *et al.* (1991). The posterior median reconstruction based on the GC model (Fig. 2) is more adequate than that obtained from the model of Besag *et al.* (1991), which is less successful at detecting boundaries while undersmoothing within clusters of regions with common risk. This is probably because, to accommodate changes across boundaries, which are not naturally built into the model of Besag *et al.* (1991), their model needs to undersmooth the entire map. The map obtained by using the LN model is quite similar to that from the GC model, albeit slightly less smooth within the low rate area.

Fig. 3 presents scatterplots corresponding to the joint posterior distribution of the relative risks for selected pairs of neighbouring regions with all three models. Figs 3(a)–3(c) correspond to Rhône (which has true relative risk 2) and Isère (with relative risk 0.75). Clearly, the mixture models are better at detecting this boundary; in particular, they lead to a smaller spread in the posterior distribution. Figs 3(d)–3(f) correspond to Indre-et-Loire and Vienne, both with true relative risk 2. The mixture models again perform better in this case. In particular, the model of Besag *et al.* (1991) overestimates the relative risk for Indre-et-Loire, which has a fairly large

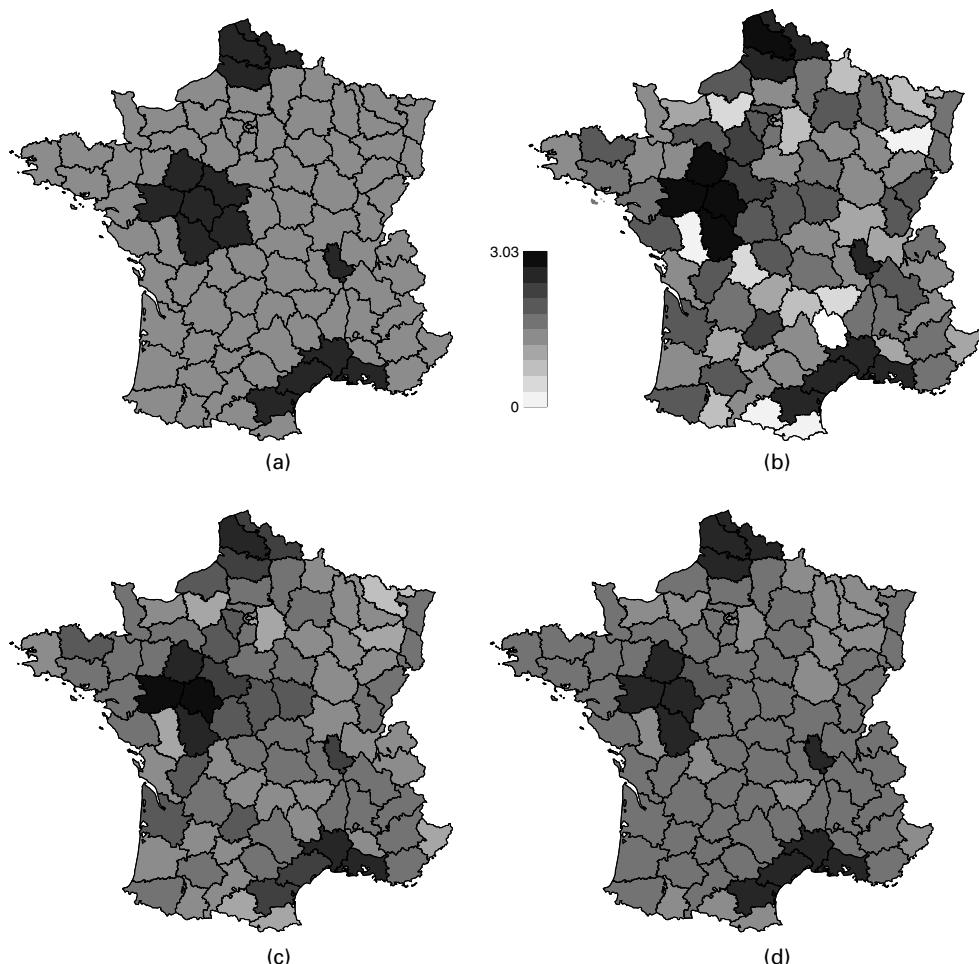


Fig. 2. Blocks synthetic data set (10 classes with cut points starting at 0.28 and increasing multiplicatively by a constant factor 1.29): (a) true relative risks; (b) SMRs; (c) posterior medians of relative risks according to the model of Besag *et al.* (1991); (d) posterior medians of relative risks according to the GC model

Table 1. Simulation results comparing the spatial mixture models and the model of Besag *et al.* (1991): root averaged mean-square errors for the log-relative-risk

Data set	Root averaged mean-square errors for the following models:		
	LN	GC	Besag <i>et al.</i> (1991)
Blocks	0.265	0.229	0.332
Gradns	0.293	0.266	0.218

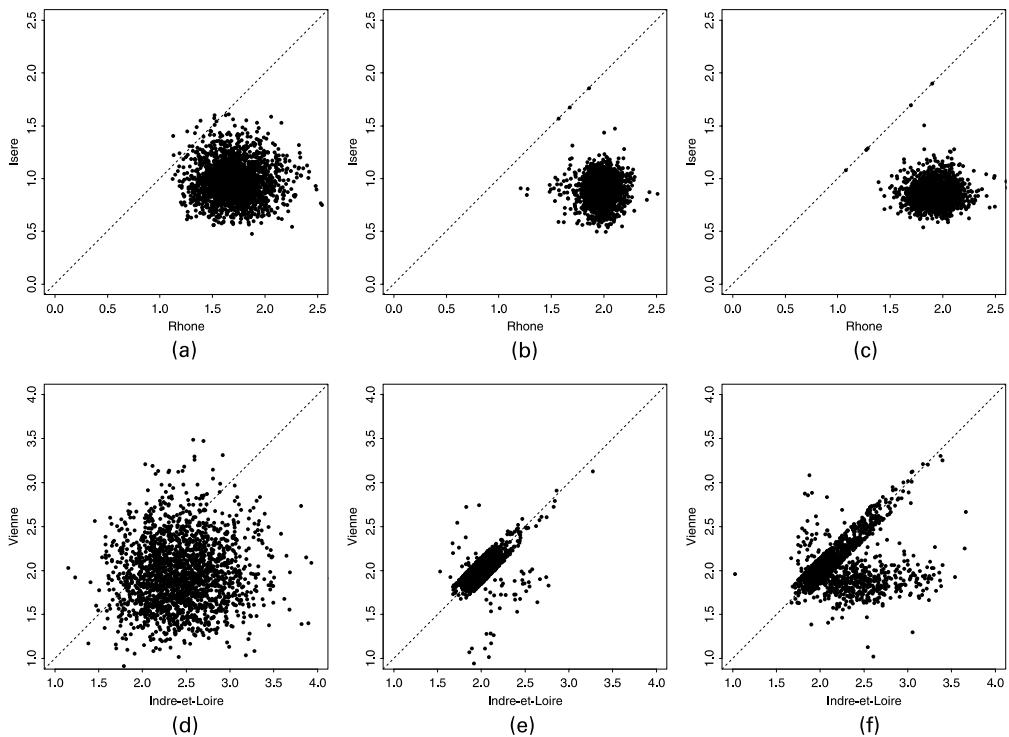


Fig. 3. Scatterplots of samples from the joint posterior of relative risks for selected pairs of neighbouring regions for the blocks data set (some distortion has been introduced in the diagonal to aid visualization): (a) Rhône and Isère, model of Besag *et al.* (1991); (b) Rhône and Isère, LN model; (c) Rhône and Isère, GC model; (d) Indre-et-Loire and Vienne, model of Besag *et al.* (1991); (e) Indre-et-Loire and Vienne, LN model; (f) Indre-et-Loire and Vienne, GC model

SMR (2.79). The LN model does best; the posterior probability on the diagonal is 97%, and clearly located around the true value 2. The GC model puts 73% of the mass on the diagonal.

The second data set, ‘gradns’, is aimed at testing the performance of our models in a situation where there are no underlying clusters or sharp boundaries between regions but, instead, the true relative risks decrease smoothly from the north to the south of the country. The smallest true relative risk is 0.32 (Pyrénées-Orientales) and the largest is 1.64 (Nord). Counts have been generated according to model (4.1) using these relative risks. The counts vary from 0 (Lozère) to 92 (Paris), with $\sum y_i = 1378$. The corresponding SMRs vary from 0 (Lozère) to 2.28 (Meuse). The true relative risks and SMRs are displayed in Fig. 4. The other three maps in Fig. 4 correspond to the posterior medians of the relative risks, using the model of Besag *et al.* (1991) and the LN and GC models. Here, they all perform quite similarly qualitatively; in terms of the posterior mean-square error (Table 1) the model of Besag *et al.* (1991) is superior, followed by the GC and LN models.

6.3. Larynx cancer data set

The cancer of the larynx data consist of counts of deaths among females across the mainland French *départements*, for the period 1986–1993 (Rezvani *et al.*, 1997). The expected numbers of cases are as explained at the beginning of Section 6.2, whereas the actual counts range from 0 (Lozère) to 75 (Paris). For these data we have that $\sum y_i = \sum e_i = 1339$, and the SMRs vary from

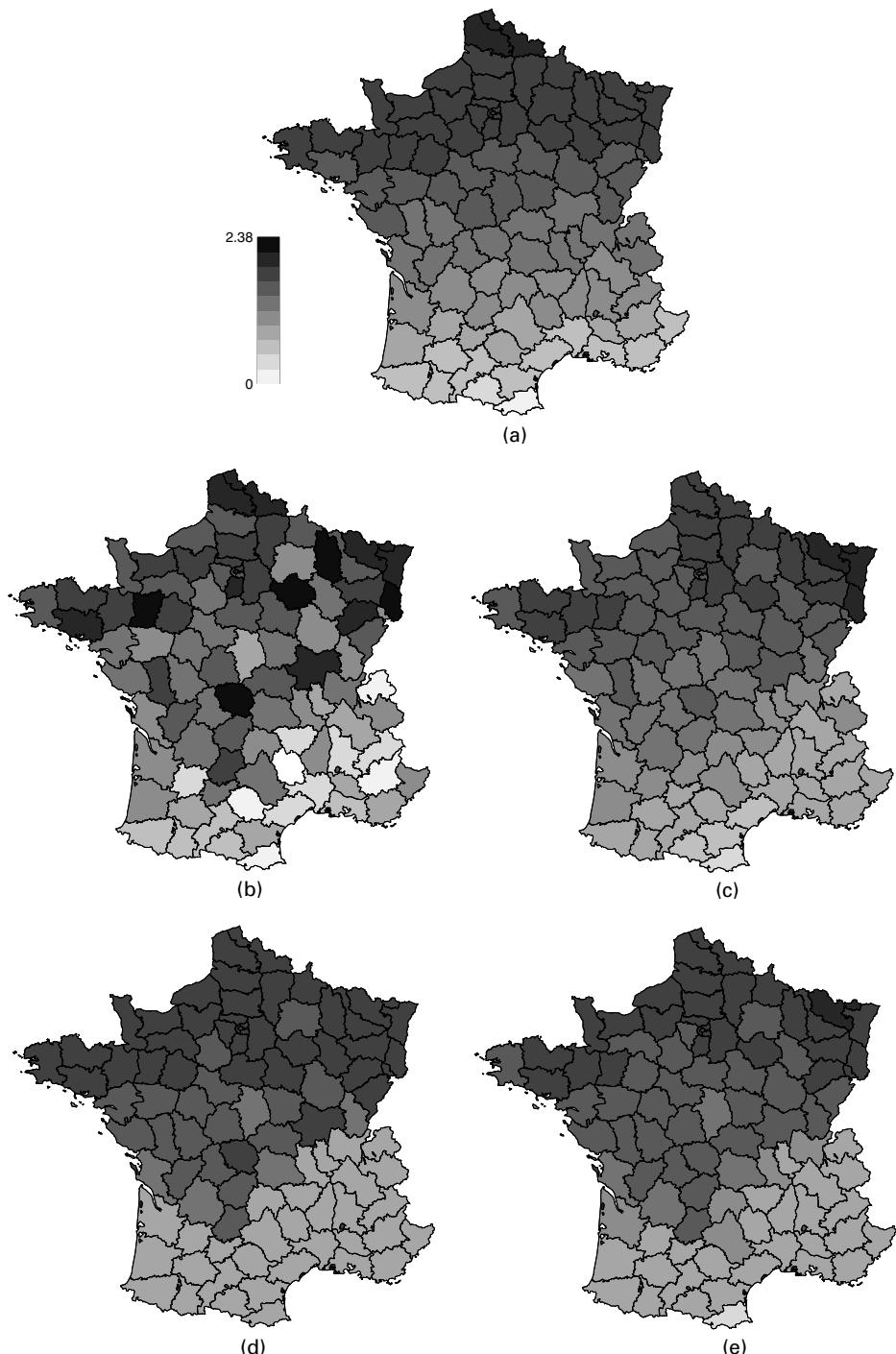


Fig. 4. Gradsn synthetic data set (10 classes with cut points starting at 0.32 and increasing multiplicatively by a constant factor 1.25): (a) true relative risks; (b) SMRs; (c) posterior medians of relative risks from the model of Besag *et al.* (1991); (d) posterior medians of relative risks from the LN model; (e) posterior medians of relative risks from the GC model

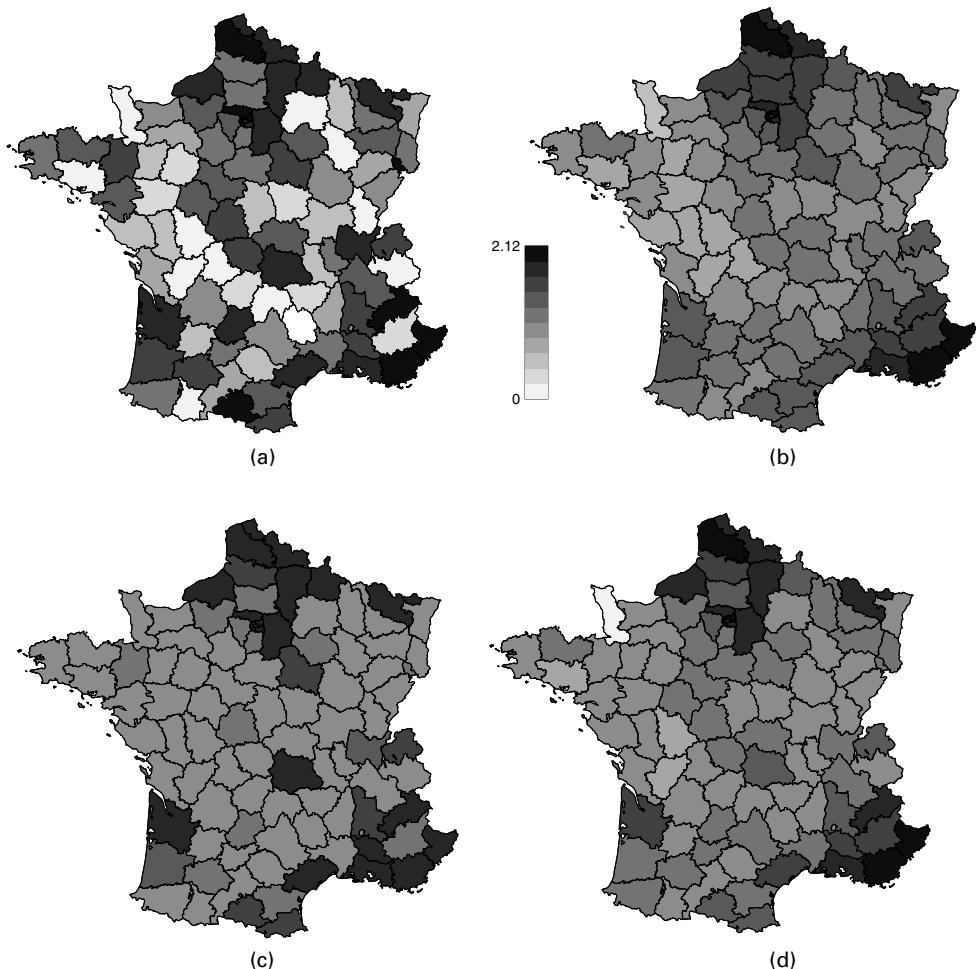


Fig. 5. (a) SMRs and posterior medians of relative risks for the larynx cancer data set according to (b) the model of Besag *et al.* (1991), (c) the LN model and (d) the GC model (10 classes with cut points starting at 0.50 and increasing multiplicatively by a constant factor 1.13)

0 (Lozère) to 2.12 (Hautes-Alpes). Fig. 5(a) displays the SMRs. First we concentrate on some results that are specific to the mixture models, and then we present comparisons with the model of Besag *et al.* (1991). For brevity, we shall only present graphical displays for certain quantities and make comments on others in the text.

Fig. 6 plots the posterior distribution of k , the number of components, under the LN model (full curve) and GC model (dotted curve). The LN model clearly favours an explanation using just two components, whereas the posterior under the GC model is much more diffuse without strongly favouring any value of k (the modal value in this case is $k = 4$, but the posterior probability attached to it is smaller than 0.2). We have also examined the posterior distribution for (h, ϕ) , the spatial interaction parameters in the LN model. This distribution is concentrated on large values of h and small values of ϕ , thus favouring the hypothesis of strong spatial dependence. A similar message is obtained through the posterior distribution of (h, τ) in the GC model.

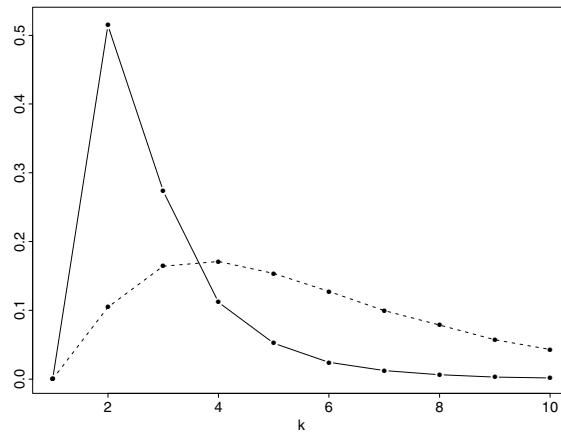


Fig. 6. Posterior distributions for the number of components k in spatial mixture models fitted to the larynx cancer data set: —, LN model; - - - , GC model

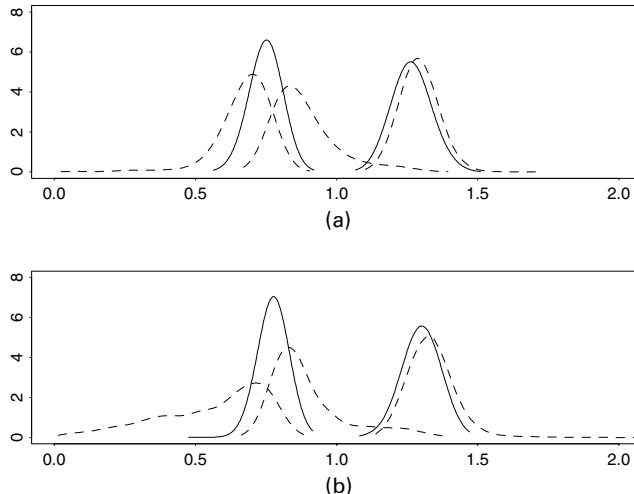


Fig. 7. Posterior density estimates of component parameters λ_i for spatial mixture models fitted to the larynx cancer data set (—, $k = 2$; - - -, $k = 3$): (a) LN model; (b) GC model

For the LN model, Fig. 7(a) gives the marginal posterior densities of λ_1 and λ_2 given $k = 2$ (full curves), and of λ_1 , λ_2 and λ_3 given $k = 3$ (broken curves). For these parameters, we present results for $k = 2$ and $k = 3$ because they are the most favoured values under the LN model (see Fig. 6). The main effect of going from $k = 2$ to $k = 3$ components is that the first component is split into two. A similar pattern emerges with the GC model (Fig. 7(b)). We have also examined the marginal posterior distributions of the allocation variables for each of the regions, again conditioning on $k = 2$ and $k = 3$. For $k = 2$, these distributions are virtually identical under the LN and GC models, which makes sense as the same holds for the posterior distribution of the relative risks associated with each of the components (see Fig. 7). When $k = 3$, the marginal posterior distributions of the allocations are slightly different under the two models. In general terms, we see that regions that under $k = 2$ were allocated with high posterior probability to the component associated with a larger relative risk tend to remain allocated to the component

associated with the largest relative risk under $k = 3$. In contrast, regions that had a high probability of being allocated to the component leading to smaller relative risk under $k = 2$ now essentially have that probability split between the components corresponding to the smallest and intermediate relative risks. For these regions, the GC model tends to favour the intermediate component over the smallest more often than does the LN model, which is consistent with the message from Fig. 7 that the smallest relative risk is more extreme under the GC than under the LN model.

The rest of the results presented here relate to the posterior distribution of the relative risks (r_1, \dots, r_n) . As already explained, this distribution is computed by also mixing over k and, of course, these quantities are directly comparable with those in the model of Besag *et al.* (1991). Histograms of the marginal posterior distributions of the relative risks for each of the regions (not displayed) show that the mixture models generally lead to less dispersed posterior distributions than does the model of Besag *et al.* (1991). As an average measure of spread we consider $[\sum_i V\{\log(r_i)|y\}/n]^{1/2}$, which is 0.008 for the LN model, 0.010 for the GC model and 0.014 for the model of Besag *et al.* (1991). The mixture models lead to bimodal histograms in some regions. This is more apparent with the LN model, probably because it fits fewer (usually two) components, leading to a less smooth posterior distribution for the relative risks. Fig. 5 presents the posterior median of the relative risks. The GC model seems to offer an intermediate type of smoothing between those resulting from the model of Besag *et al.* 1991 and the LN model. This

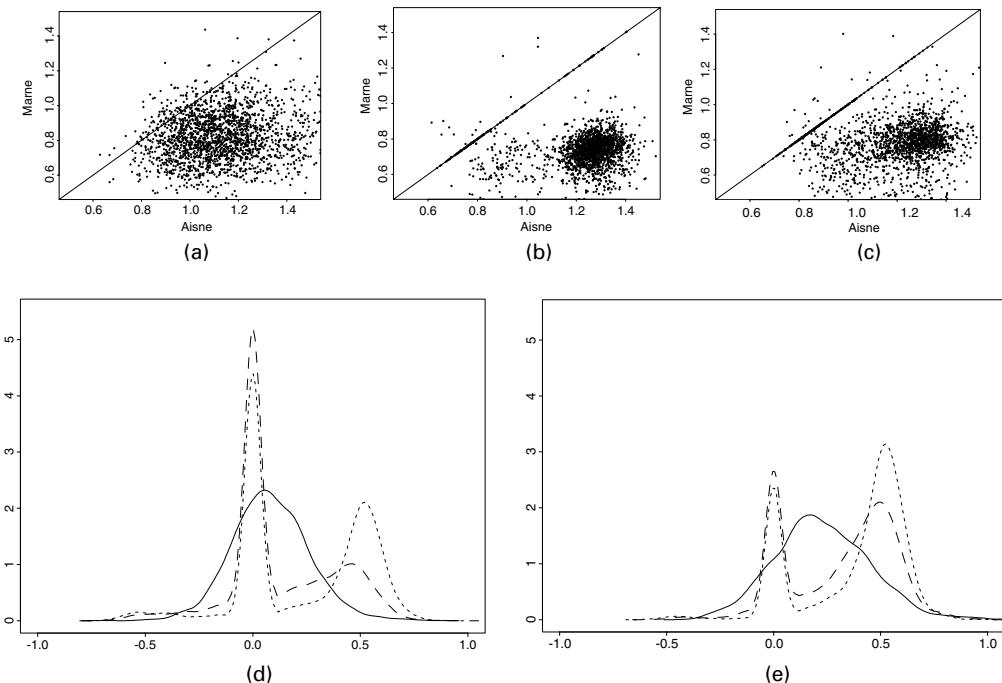


Fig. 8. Aspects of the joint posterior distributions of relative risks for pairs of neighbouring regions, for the larynx cancer data: (a) scatterplots of samples from the joint posterior for Aisne and Marne, model of Besag *et al.* (1991); (b) scatterplots of samples from the joint posterior for Aisne and Marne, LN model; (c) scatterplots of samples from the joint posterior for Aisne and Marne, GC model; (d) density estimates of the posterior for differences between relative risks for Puy-de-Dôme and Allier; (e) density estimates of the posterior for differences between relative risks for Moselle and Meurthe-et-Moselle (—, model of Besag *et al.* (1991); ·····, LN model; - - -, GC model)

is consistent with the fact that the GC model tends to allocate (at least *a priori*) neighbouring regions to components that are adjacent in terms of their associated relative risks.

In addition to looking at marginal posterior distributions of the relative risks, we have explored joint distributions for some pairs of neighbouring regions. As an illustration, Figs 8(a)–8(c) present scatterplots of the joint posteriors of the relative risks for Aisne (corresponding to $i = 2$) and Marne ($i = 50$) under all three models. The SMR for Aisne (1.32) is much higher than that for Marne (0.34). In accordance with this, the joint posterior distributions of the relative risks have most of the probability in the region where $r_2 > r_{50}$ and this effect is more pronounced in the LN model. The probability on the diagonal is 8% for the LN model and 12% for the GC model. Note that the scatterplot for the GC model leads to a situation in between that for the model of Besag *et al.* (1991) and the LN model, with the mass a little more spread out and slightly closer to the diagonal than in the LN model. A similar pattern was observed when we looked at other pairs of neighbouring regions. For conciseness, Figs 8(d) and 8(e) simply present the posterior distribution of the differences in relative risks between the regions Puy-de-Dôme and Allier (Fig. 8(d)) and the regions Moselle and Meurthe-et-Moselle (Fig. 8(e)). In both cases, the full curve corresponds to the model of Besag *et al.* (1991), whereas the dotted and broken curves respectively represent the LN and GC models. For the mixture models, the spike at zero represents the posterior probability that the relative risks for both regions are identical: this probability is 0.40 for the LN model and 0.45 for the GC model in Fig. 8(d) and 0.22 for both models in Fig. 8(e).

6.4. Sensitivity to prior assumptions

Here we shall briefly comment on the sensitivity of the results with respect to the prior assumptions. We shall focus the discussion on the larynx data set, although we have also examined robustness for the synthetic data sets and found qualitatively similar results.

First, we should acknowledge that in complex models, such as those developed in this paper, it is virtually impossible fully to understand and separate the role of all the parameters that intervene in the model. Furthermore, posterior distributions of some of the parameters will be heavily influenced by the choice of the prior. In our view, one should mostly focus on the quantities of real interest, the relative risks in this case, and examine whether or not inference on such quantities is heavily dependent on the choice of the prior. We have run our programs many times using different prior hyperparameters, and even different prior distributions, and found that posterior inference on relative risks is fairly robust to moderate perturbations in the prior.

For the LN model, our basic setting takes $h_{\max} = \phi_{\max} = 10$ in distributions (3.6), and $\alpha = 1$ and $\beta = 0.69$ in equation (4.3). With this choice of prior, the posterior distribution of h (not displayed) has mass fairly evenly spread across the entire interval $(0, 10)$, whereas the posterior distribution of ϕ is mostly concentrated close to 0. As a consequence, we have examined results under a range of higher values of h_{\max} . In particular, we have considered $h_{\max} = 100$ (a rather extreme choice) and $p(h) = (1 + h)^{-2}$ or, equivalently, a uniform prior distribution on $(0, 1)$ for the parameter $h/(1 + h)$. The latter prior does not restrict h to a bounded interval and is motivated by the fact that $h/(1 + h)$ represents the relative weight of each pair of neighbouring locations in model (3.1). We have also examined sensitivity to departures from the values $\alpha = 1$ and $\beta = 0.69$ in model (4.3). We present results for three such departures: taking β random with a gamma hyperprior with mean 1 and variance 10, taking $\beta = 1$ and taking $\alpha = \beta = 2$. We quantify the changes in the posterior distribution of the relative risks via the metric $\sum_i \sup_u |p_0(r_i \leq u|y) - p_1(r_i \leq u|y)|/n$, where r_i denotes the relative risk of region i , $p_0(\cdot|y)$ corresponds to the posterior distribution under our basic setting described at the beginning of this paragraph and $p_1(\cdot|y)$ is the posterior distribution under one of the alternative

Table 2. Sensitivity of the posterior distribution of relative risks for the larynx cancer data set†

Model	Results for the following settings:				
	$h_{\max} = 100$	$p(h) = (1 + h)^{-2}$	$\beta \sim \text{gamma}(0.1, 0.1)$	$\beta = 1$	$\alpha = \beta = 2$
LN	0.053	0.044	0.007	0.015	0.064
GC	0.016	0.010	0.006	0.010	0.041

†The heading indicates the departures from the basic setting, which is $h_{\max} = 10$, $\alpha = 1$ and $\beta = 0.69$. Entries are $\sum_i \sup_u |p_0(r_i \leq u|y) - p_1(r_i \leq u|y)|/n$, where $p_0(\cdot|y)$ and $p_1(\cdot|y)$ respectively denote the posterior distributions under the basic and alternative settings.

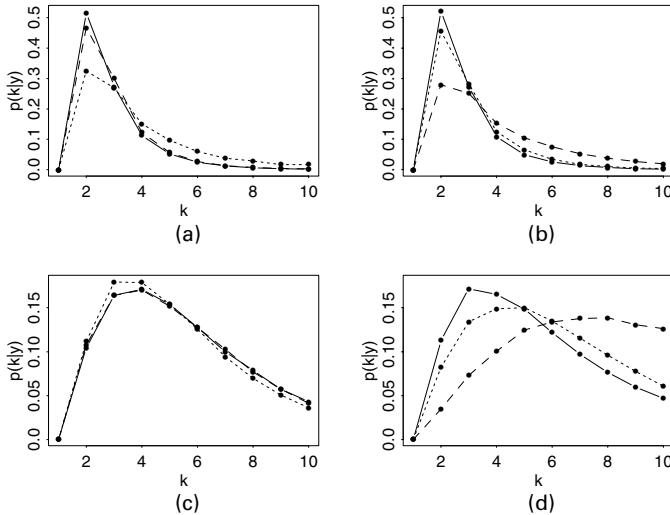


Fig. 9. Sensitivity of the posterior distribution of the number of components k for the larynx cancer data set: (a) LN model, $\alpha = 1$ and $\beta = 0.69$ throughout, $h_{\max} = 10$ (solid), $h_{\max} = 100$ (dotted), $p(h) = (1 + h)^{-2}$ (dashed); (b) LN model, $h_{\max} = 10$ throughout, $\alpha = 1$ and $\beta \sim \text{gamma}(0.1, 0.1)$ (solid), $\alpha = \beta = 1$ (dotted), $\alpha = \beta = 2$ (dash-dot); (c) GC model, $\alpha = 1$ and $\beta = 0.69$ throughout, $h_{\max} = 10$ (solid), $h_{\max} = 100$ (dotted), $p(h) = (1 + h)^{-2}$ (dashed); (d) GC model, $h_{\max} = 10$ throughout, $\alpha = 1$ and $\beta \sim \text{gamma}(0.1, 0.1)$ (solid), $\alpha = \beta = 1$ (dotted), $\alpha = \beta = 2$ (dash-dot)

priors indicated in this paragraph. The top row of Table 2 presents the results for the LN model. The bottom row corresponds to the same departures in terms of h , α and β from the basic setting $h_{\max} = 10$, $\tau_{\max} = 0.5$, $\alpha = 1$ and $\beta = 0.69$ in the GC model. All entries in Table 2 are smaller than 0.1, so we conclude that robustness holds for the posterior distribution of the relative risks.

Some sensitivity of the posterior distribution of k , the number of mixture components, to the choice of α and β is to be expected (it is not surprising that assumptions about location and spread of the components affect the number of components fitted by the model). This appears to be more the case in the GC than in the LN model, as Figs 9(b) and 9(d) illustrate. Figs 9(a) and 9(c) point towards robustness with respect to the prior distribution of the spatial parameter h .

7. Conclusion and possible extensions

We believe that the spatial mixture models that have been introduced and discussed in this paper provide interesting new tools for those modelling heterogeneity in spatial data. As might have been expected, they seem to offer an improved performance in the task of estimating the true risk pattern compared with a model based on a continuously distributed Markov random field, when that true pattern has step-like discontinuities. What is more intriguing is that not much performance is lost in the opposite case of a smooth trend. It is also remarkable that the LN version of the model uncovers such a simple ‘explanation’ for the larynx data set, as a mixture of just two components.

Further work is needed to draw wider comparisons, which should include other mixture- and partition-based models such as those of Knorr-Held and Rasser (2000) and Green and Richardson (2002), and also variants of the random field models in which the Gaussian assumption is replaced by the use of a non-quadratic pairwise potential function in expression (6.2), such as the absolute value or log-cosh function. Finally, it would be interesting to explore the formulation and performance of related correlated mixture models in other spatial contexts, and also in temporal problems such as signal analysis.

Acknowledgements

We are most grateful for numerous stimulating discussions with Sylvia Richardson during the course of this work, and also for the advice of Håvard Rue concerning simulation of Gaussian fields. We also thank two referees for their constructive comments. The project was partially supported by the Engineering and Physical Sciences Research Council. Most of the work was conducted while Carmen Fernández was, first, at the University of Bristol and, afterwards, at the University of St Andrews.

Appendix A: Details of the sampler

A.1. Implementation for the logistic normal model

Denoting by $(k, \lambda, x, h, \phi, z_1, \dots, z_n)$ the current state of the chain, we follow steps (a)–(f). Note that the allocation variables have been integrated out in steps (a)–(d), whereas they are included in steps (e)–(f). One time step for the chain comprises a complete sweep through the six steps, at the end of which the state is recorded.

(a) *Update k, λ and x :* updating k implies a change in dimensionality for $\lambda = (\lambda_1, \dots, \lambda_k)$ and $x = (x_1, \dots, x_k)$, so new values also need to be proposed for them. We use a reversible jump to update (k, λ, x) according to $p(k, \lambda, x|y, h, \phi)$. We propose to update k to k' , where $k' = k + 1$ (add one component) with probability $b_k \in [0, 1]$ and $k' = k - 1$ (remove one component) with the remaining probability. If $k' = k + 1$, we propose to update λ and x in the following way. Draw a value λ_* from the prior $\text{gamma}(\alpha, \beta)$ distribution and an n -dimensional vector x_* from the prior distribution (3.1). Form $\lambda' = (\lambda'_1, \dots, \lambda'_{k+1})$ by inserting λ_* in the appropriate position within the ordered vector λ , and x' by inserting x_* in the same place in x . Compute weights w'_{ij} , as in equation (3.3), using x' in place of x (note that all the weights change). If $k' = k - 1$, we randomly choose a component ‘*’ by using a uniform distribution on the set $\{1, \dots, k\}$. Form λ' and x' by removing the value λ_* from λ and the n -dimensional vector x_* from x . Recompute weights w'_{ij} using equation (3.3) and x' (again all weights change). According to the reversible jump framework, the acceptance probability for the move that adds one component is

$$\min \left\{ 1, \frac{1 - b_{k+1}}{b_k} \frac{\prod_{i=1}^k \sum_{j=1}^{k+1} w'_{ij} \text{Pois}(y_i|e_i \lambda'_j)}{\prod_{i=1}^k \sum_{j=1}^k w_{ij} \text{Pois}(y_i|e_i \lambda_j)} \right\}, \quad (\text{A.1})$$

whereas the acceptance probability for the move that removes one component only requires obvious changes. If the proposal is not accepted the chain keeps the current state. This step can potentially be slow owing to the generation of the n -dimensional vector x_* when $k' = k + 1$. This problem is more acute when h is unknown, because then the precision matrix in model (3.1) changes at every sweep of the chain and computing a new Choleski decomposition is then required. Thus, instead of a standard algorithm for multivariate normal random generation, we used the algorithm developed by Rue (2001) for fast sampling of Gaussian Markov random fields.

(b) *Update x :* we update the n regions sequentially. For region i , the posterior full conditional distribution of (x_{i1}, \dots, x_{ik}) (with allocations integrated out) has PDF proportional to

$$\left\{ \sum_{j=1}^k w_{ij} \text{Pois}(y_i | e_i \lambda_j) \right\} \prod_{j=1}^k f_N \left(x_{ij} \left| \frac{h \sum_{i' \in \delta i} x_{i'j}}{1 + h \nu_i}, \frac{1}{1 + h \nu_i} \right. \right), \quad (\text{A.2})$$

where $f_N(\cdot | m, v)$ denotes the PDF of a univariate normal distribution with mean m and variance v , and ν_i is the number of neighbours of region i . The set of neighbours of region i is denoted by δi . We use a standard Metropolis–Hastings updating scheme, drawing a candidate value $(x'_{i1}, \dots, x'_{ik})$ from the k independent normal distributions in expression (A.2).

(c) *Update h :* the posterior full conditional distribution for h has PDF proportional to

$$c(h)^k \exp \left\{ -\frac{h}{2} \sum_{j=1}^k \sum_{i \sim i'} (x_{ij} - x'_{ij})^2 \right\} I(0 < h < h_{\max}), \quad (\text{A.3})$$

and we use the Metropolis–Hastings updating scheme with a candidate generated from the prior. Clearly, the ability to evaluate $c(h)$ easily is important in this step.

(d) *Update ϕ :* the conditional posterior distribution of ϕ (with allocations integrated out) has PDF proportional to

$$\prod_{i=1}^n \left\{ \sum_{j=1}^k w_{ij} \text{Pois}(y_i | e_i \lambda_j) \right\} I(0 < \phi < \phi_{\max}). \quad (\text{A.4})$$

We update ϕ by using the Metropolis–Hastings updating scheme with a candidate generated from the prior.

(e) *Update allocations:* in the posterior full conditional, the n allocation variables are mutually independent with

$$p(z_i = j | y, k, \lambda, x, h, \phi) \propto w_{ij} \text{Pois}(y_i | e_i \lambda_j) I(j \in \{1, \dots, k\}), \quad (\text{A.5})$$

from which we can draw directly. Thus, this is just a Gibbs step.

(f) *Update λ :* the PDF of the posterior full conditional distribution of λ is proportional to

$$\prod_{j=1}^k f_G \left(\lambda_j | \alpha + \sum_{i: z_i=j} y_i, \beta + \sum_{i: z_i=j} e_i \right) I(\lambda_1 < \dots < \lambda_k), \quad (\text{A.6})$$

from which we draw directly (by Gibbs sampling).

A.2. Implementation for the grouped continuous model

Updating in the GC model will follow seven steps, with the allocation variables integrated out in the first five. These steps can be summarized as updating

- (a) (k, λ, δ) ,
- (b) x ,
- (c) h ,
- (d) δ ,
- (e) τ ,
- (f) z and
- (g) λ .

Most of the steps are quite simple and can be dealt with quite similarly to those in the LN model. Thus, we shall only briefly describe the move that we used in step (a).

First, we propose $k' = k + 1$ with probability b_k and $k' = k - 1$ with the remaining probability.

If $k' = k + 1$, we draw δ_* from a uniform distribution on (x_{\min}, x_{\max}) and form δ' by inserting δ_* in the corresponding position in the ordered vector δ . Say that δ_* occupies position j_* in δ' . Next, we form λ' by substituting λ_{j_*} in λ by the pair $\lambda'_{j_*} < \lambda'_{j_*+1}$, which are generated according to the PDF

$$2 \prod_{l=0}^1 f_N(\lambda'_{j_*+l} | \lambda_{j_*}, v_s) I(\lambda'_{j_*} < \lambda'_{j_*+1})$$

for some positive variance v_s . Compute new weights using expression (3.4) with δ' in place of δ .

If $k' = k - 1$, we propose to remove one of the elements δ_{j_*} of δ , randomly and uniformly. Next, we substitute the pair $\lambda_{j_*} < \lambda_{j_*+1}$ by λ'_{j_*} , which is generated from a normal distribution with mean $(\lambda_{j_*} + \lambda_{j_*+1})/2$ and variance denoted by v_m . In this way, we form δ' and λ' . Further, we compute the new weights by using expression (3.4).

According to the reversible jump framework, the acceptance probability of the move that adds one component is 0 if the proposed values λ'_{j_*} and λ'_{j_*+1} do not fall in the appropriate range, i.e. do not lead to a vector λ' with ordered elements; otherwise, it is $\min(1, Q)$, where

$$Q = \frac{1 - b_{k+1}}{b_k} \left\{ \frac{\prod_{i=1}^n \sum_{j=1}^{k+1} w'_{ij} \text{Pois}(y_i | e_i \lambda'_j)}{\prod_{i=1}^n \sum_{j=1}^k w_{ij} \text{Pois}(y_i | e_i \lambda_j)} \right\} \frac{(ks + s - 1)!}{(ks - 1)!(s - 1)!} \frac{k + 1}{k} \left\{ \frac{(\delta'_{j_*} - \delta_{j*-1})(\delta_{j*} - \delta'_{j*})}{(\delta_{j*} - \delta_{j*-1})(x_{\max} - x_{\min})} \right\}^{s-1} \times \left\{ \prod_{l=0}^1 f_G(\lambda'_{j_*+l} | \alpha, \beta) \right\} f_G(\lambda_{j_*} | \alpha, \beta)^{-1} f_N\left(\lambda_{j_*} \left| \frac{\lambda'_{j_*} + \lambda'_{j_*+1}}{2}, v_m \right. \right) \left\{ 2 \prod_{l=0}^1 f_N(\lambda'_{j_*+l} | \lambda_{j_*}, v_s) \right\}^{-1}.$$

The acceptance probability for the reverse move is obtained similarly.

References

Besag, J., Green, P. J., Higdon, D. and Mengersen, K. (1995) Bayesian computation and stochastic systems (with discussion). *Statist. Sci.*, **10**, 3–66.

Besag, J., York, J. and Mollié, A. (1991) Bayesian image restoration with two applications in spatial statistics (with discussion). *Ann. Inst. Statist. Math.*, **43**, 1–59.

Best, N. G., Arnold, R. A., Thomas, A., Waller, L. A. and Conlon, E. M. (1999) Bayesian models for spatially correlated disease and exposure data. In *Bayesian Statistics 6* (eds J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith). Oxford: Clarendon.

Clayton, D. G. and Bernardinelli, L. (1992) Bayesian methods for mapping disease risk. In *Geographical and Environmental Epidemiology: Methods for Small-area Studies* (eds P. Elliot, J. Cuzick, D. English and R. Stern). Oxford: Oxford University Press.

Clayton, D. G. and Kaldor, J. (1987) Empirical Bayes estimates of age-standardized relative risks for use in disease mapping. *Biometrics*, **43**, 671–681.

Diebolt, J. and Robert, C. P. (1994) Estimation of finite mixture distributions through Bayesian sampling. *J. R. Statist. Soc. B*, **56**, 363–375.

Fernández, C. and Green, P. (1999) Discussion on ‘Bayesian analysis of agricultural field experiments’ (by J. Besag and D. Higdon). *J. R. Statist. Soc. B*, **61**, 722–724.

Frühwirth-Schnatter, S. (2001) Markov chain Monte Carlo estimation of classical and dynamic switching and mixture models. *J. Am. Statist. Ass.*, **96**, 194–209.

Green, P. J. (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. *Biometrika*, **82**, 711–732.

Green, P. J. and Richardson, S. (2002) Hidden Markov models and disease mapping. *J. Am. Statist. Ass.*, **97**, in the press.

Knorr-Held, L. and Rasser, G. (2000) Bayesian detection of clusters and discontinuities in disease maps. *Biometrics*, **56**, 13–21.

Leblond, L., Richardson, S. and Green, P. J. (2000) Mixture models in measurement error problems, with reference to epidemiological studies. Institut National de la Santé et de la Recherche Médicale, Villejuif.

Leroux, B. G., Lei, X. and Breslow, N. (2000) Estimation of disease rates in small areas: a new mixed model for spatial dependence. In *Statistical Models in Epidemiology, the Environment, and Clinical Trials* (eds M. E. Halloran and D. Berry), pp. 179–191. New York: Springer.

Lindsay, B. G. (1995) *Mixture Models: Theory, Geometry, and Applications*. Hayward: Institute of Mathematical Statistics.

McCullagh, P. and Nelder, J. A. (1989) *Generalized Linear Models*, 2nd edn. London: Chapman and Hall.

Mollié, A. (1996) Bayesian mapping of disease. In *Markov Chain Monte Carlo in Practice* (eds W. R. Gilks, S. Richardson and D. J. Spiegelhalter). London: Chapman and Hall.

Müller, P. and Roeder, K. (1997) A Bayesian semiparametric model for case-control studies with errors in variables. *Biometrika*, **84**, 523–537.

Nobile, A. (1994) Bayesian analysis of finite mixture distributions. *PhD Thesis*. Carnegie Mellon University, Pittsburgh.

Nobile, A. and Green, P. J. (2000) Bayesian analysis of factorial experiments by mixture modelling. *Biometrika*, **87**, 15–35.

Rezvani, A., Mollié, A., Doyon, F. and Sancho-Garnier, H. (1997) *Atlas de la Mortalité par Cancer en France, Période 1986–1993*. Villejuif: Institut National de la Santé et de la Recherche Médicale.

Richardson, S. and Green, P. J. (1997) On Bayesian analysis of mixtures with an unknown number of components (with discussion). *J. R. Statist. Soc. B*, **59**, 731–792.

Robert, C. P. (1996) Mixtures of distributions: inference and estimation. In *Markov Chain Monte Carlo in Practice* (eds W. R. Gilks, S. Richardson and D. J. Spiegelhalter), ch. 24, pp. 441–464. London: Chapman and Hall.

Robert, C. P., Rydén, T. and Titterington, D. M. (2000) Bayesian inference in hidden Markov models through the reversible jump Markov chain Monte Carlo method. *J. R. Statist. Soc. B*, **62**, 57–75.

Rue, H. (2001) Fast sampling of Gaussian Markov random fields. *J. R. Statist. Soc. B*, **63**, 325–338.

Tierney, L. (1994) Markov chains for exploring posterior distributions (with discussion). *Ann. Statist.*, **22**, 1701–1762.

Titterington, D. M., Smith, A. F. M. and Makov, U. E. (1985) *Statistical Analysis of Finite Mixture Distributions*. Chichester: Wiley.

Waller, L. A., Carlin, B. P., Xia, H. and Gelfand, A. E. (1997) Hierarchical spatio-temporal mapping of disease rates. *J. Am. Statist. Ass.*, **92**, 607–617.

Watier, L., Richardson, S. and Green, P. J. (1999) Using Gaussian mixtures with unknown number of components for mixed model estimation. In *Proc. 14th Int. Wrkshp Statistical Modelling, Graz* (eds H. Friedl, A. Berghold and G. Kauermann), pp. 394–401.

West, M., Müller, P. and Escobar, M. D. (1994) Hierarchical priors and mixture models, with application in regression and density estimation. In *Aspects of Uncertainty: a Tribute to D. V. Lindley* (eds A. F. M. Smith and P. Freeman). New York: Wiley.