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 SUMMARY

 We propose a methodology for Bayesian model determination in decomposable graphi-
 cal Gaussian models. To achieve this aim we consider a hyper inverse Wishart prior

 distribution on the concentration matrix for each given graph. To ensure compatibility
 across models, such prior distributions are obtained by marginalisation from the prior
 conditional on the complete graph. We explore alternative structures for the hyperparamet-
 ers of the latter, and their consequences for the model. Model determination is carried

 out by implementing a reversible jump Markov chain Monte Carlo sampler. In particular,

 the dimension-changing move we propose involves adding or dropping an edge from the
 graph. We characterise the set of moves which preserve the decomposability of the graph,

 giving a fast algorithm for maintaining the junction tree representation of the graph at

 each sweep. As state variable, we use the incomplete variance-covariance matrix, contain-
 ing only the elements for which the corresponding element of the inverse is nonzero. This

 allows all computations to be performed locally, at the clique level, which is a clear

 advantage for the analysis of large and complex datasets. Finally, the statistical and
 computational performance of the procedure is illustrated by mean of both artificial and
 real datasets.

 Some key words: Bayesian model selection; Hyper-Markov distribution; Inverse Wishart distribution; Junction
 tree; Reversible jump Markov chain Monte Carlo.

 1. BAYESIAN GRAPHICAL MODELS

 1Pl. Introduction

 This paper is concerned with model determination for a random vector X, and in

 particular with inference about its conditional independence graph g. We focus on the

 case where g is decomposable and X is multivariate Gaussian, although some of our

 formulation and analysis applies much more generally.
 Our research is related to work on Bayesian model determination for directed graphical

 models and probabilistic expert systems; see for instance Geiger & Heckerman (1994) and

 Spiegelhalter et al. (1993). For undirected graphical Gaussian models the main reference
 is Dawid & Lauritzen (1993), who introduced hyper-Markov priors allowing local compu-
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 786 PAULO GIUDICI AND PETER J. GREEN

 tations in Bayesian model determination. Applications of such priors include those of

 Madigan & Raftery (1994) and Madigan & York (1995), who analyse discrete graphical

 models according to Occam's razor and using Markov chain Monte Carlo over the graph

 space. Finally, Dellaportas & Forster (1999) use reversible jump Markov chain Monte

 Carlo for model determination over undirected discrete graphical models.
 All the above papers consider only non-hierarchical and, typically, conjugate priors,

 with the advantage of allowing the derivation of closed-form expressions of the posterior
 probabilities. Quantitative learning is, however, limited to quantities having an explicit

 posterior distribution. Our motivation is that richer information is often to be extracted

 from the data and, furthermore, that more flexible priors may be better suited for this

 purpose. Our main contributions are therefore the introduction of a hierarchical Bayesian
 graphical Gaussian model and the design of a reversible jump Markov chain Monte Carlo

 algorithm to perform both structural and quantitative learning in a graphical Gaussian
 model by means of local computations.

 After some preliminaries on graphical models we present our proposed Bayesian graphi-

 cal models in ? 2. In ? 3 we provide a complete characterisation of the one-edge-at-a-time

 incremental changes to a graph that preserve its decomposability, and then use this to

 define our reversible jump Markov chain Monte Carlo scheme for performing Bayesian
 model determination in graphical models. In ? 4 we examine the statistical performance

 of the proposed methodology, as well as the performance of the Markov chain Monte

 Carlo sampler.

 1 2. Background on graphical Gaussian models

 Here we briefly review the theory of graphical models relevant for our work following

 the exposition in Dawid & Lauritzen (1993), to which we refer readers for further details
 and explanations. For an introduction to graphical models, see Lauritzen (1996).

 Let g = (V, E) be an undirected graph, where the vertex set V has p elements. A graph

 or subgraph is complete if all its vertices are joined by an edge. A complete subgraph that

 is not contained within another complete subgraph is called a clique. An ordering of the

 cliques of an undirected graph, (C1, ... ., Cn), is said to be perfect if the vertices of each
 clique Ci also contained in any previous clique Cl, ... , Ci-1 are all members of one
 previous clique; that is, for i = 2, 3, . . , n,

 i-l

 Si=Cin U C. c Ch
 j=1

 for some h = h(i) E {1, 2,. .., i - 1}. The sets Si are called separators. If an undirected
 graph admits a perfect ordering it is said to be decomposable. A pair (A, B) of subsets

 of the vertex set V of an undirected graph g is said to form a decomposition of g if

 (i) V=AUB, (ii) AnB is complete, and (iii) AnB separates A from B.

 With each vertex v E V associate a random variable X, taking values in a sample space

 X,. For A c V we let XA = (Xc), yA indicate the collection of random variables {Xv: v E A}
 with values of XA = X VAXV. To ease the notation, let X = Xv. By a probability distri-
 bution over A c V we mean a joint distribution for XA over XA. If P is the distribution

 over U c V and A, B c U, then PA will denote the marginal distribution of XA and PBIA
 the conditional distribution of XB given XA = XA. A distribution P over V is Markov with

 respect to g if, for any decomposition (A, B) of g, XA IL XB IXA,B, where 11 means 'is
 independent of', using the notation introduced by Dawid (1979). A graphical model is a

 family of probability distributions which are Markov with respect to a graph. Henceforth

This content downloaded from 
������������137.222.114.233 on Fri, 05 Feb 2021 15:08:20 UTC������������ 

All use subject to https://about.jstor.org/terms



 Decomposable graphical Gaussian model determination 787

 P is a graphical model with respect to some graph g, which is not fixed, and will be

 implicit in the notation. We assume that g is decomposable.

 A graphical Gaussian model, also known as a covariance selection model (Dempster,

 1972), is defined by a p-dimensional multivariate Gaussian distribution, with expected

 value ,u and covariance matrix E:

 P = Np(/y, E).

 In a graphical Gaussian model, the mean parameter ,u is typically set to zero; we shall
 assume so, and therefore the data we analyse will be expressed as deviations from the
 sample mean. The matrix E is positive definite and such that P is Markov over g. In a
 graphical Gaussian model, the global, local and pairwise Markov properties are identical

 (Lauritzen, 1996, pp. 36, 129). The last property is particularly useful for interpretability.

 Define K = -` to be the precision matrix of X. The pairwise Markov property specifies
 that

 Xi I XjIXv\{i,j} kij = . (1)
 Thus, g constrains E by imposing a pattern of zeros on to K. The effect of this constraint

 on E can be better specified using the notation of matrix completion with respect to a
 graph; see for instance Roverato & Whittaker (1998). Let F be a p x p matrix such that

 yij = Eij if and only if (i, j) E E, and is otherwise unspecified. A completion of F with respect
 to g is a positive definite matrix obtained from F by fixing its unspecified elements so that

 its inverse D satisfies dij = 0, for all (i, j) $ E; see Dempster (1972) and Grone et al. (1984)
 for a proof of the uniqueness and existence of such a matrix. It turns out that E is the
 completion of F with respect to g.

 Conditionally on a graph, g, say, consider a sample x of size n from P. Let S = xx'
 denote the observed sum-of-products matrix. For a subset of vertices A c V let LA denote
 the variance-covariance matrix of the variables in XA, and define SA similarly. When the
 graph is decomposable the likelihood of the graphical Gaussian model specified by P is

 AX 1Y-5g)I7HCcec16 P(XC~ EC)
 HS E Y P(xsp SS)

 where W and b respectively denote the sets of cliques and separators,

 p(xc I c) (2)-nIc2det() - n/2 exp[- tr{Sc(Yc)'}], (2)

 and similarly for p(xs I Es), with 1 denoting cardinality.

 1P3. Prior distributions for graphical Gaussian models

 Two kinds of uncertainty may affect a graphical model: (a) uncertainty about the prob-
 ability distributions P on X or about the quantities, 0, say, which parameterise such
 distributions; (b) uncertainty about the graphical structure g, describing the conditional
 independence relationships among the random variables considered. Our objective is to
 deal with (a) and (b) simultaneously in a Bayesian fashion. To this end, we must formulate
 a prior distribution on 0 and g. Concerning the latter, we shall assume throughout, for
 simplicity, a uniform prior,

 p(g) =d-1,

 on the class of d decomposable graphs with vertex set V. Note that d is actually hard to
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 788 PAULO GIUDICI AND PETER J. GREEN

 compute. We can indeed estimate its value, using the algorithm outlined in ? 3, but d is
 not needed in our approach. Note also that the above prior distribution is simple, but

 not neutral, being concentrated around models that are 'medium-sized' in terms of their

 numbers of edges. Importance sampling ideas allow us in principle to reweight results to

 accommodate any other desired prior on g.

 For the parameters, a very general class of priors are the hyper-Markov laws introduced

 in Dawid & Lauritzen (1993). Let 0 be a quantity parameterising a graphical model P,

 for a given undirected decomposable graph g = (V, E). Similarly, for A, B a V let OA param-

 eterise the marginal distribution PA, Markov with respect to the subgraph gA, and let OBIA
 parameterise the conditional distribution PBIA, with PAUB Markov with respect to gAUB*
 A hyper-Markov law is then defined by a property which mimics the global Markov

 property, at the parameter level: a law Y on 0 is hyper-Markov over g if, for any decompo-

 sition (A, B) of g, OA H OB I OAfB In order to construct such laws, Dawid & Lauritzen (1993)
 define two distributions X over OA and if over 0B as hyperconsistent if they induce the
 same prior law over 0A,B. Given the family of sets W and b, and a collection of pairwise
 hyperconsistent distributions (Yc, C E I), they show that there exists a unique hyper-
 Markov law Y over g, with the assigned marginals, concentrated on the set of parameters
 such that P is Markov with respect to g.

 A hyper-Markov prior for a graphical Gaussian model is a prior on S. We can take,

 as dominating measure, the product of Lebesgue measures on the elements of the incom-
 plete variance-covariance matrix F. Such elements are subject only to symmetry and

 positive definiteness of the submatrices {Fc = Zc, C E f}, as consistency restrictions over
 the corresponding marginal distributions are automatically satisfied. Let lc and Is be the
 densities of a generic clique and separator, with respect to the corresponding product of
 Lebesgue measures. A hyper-Markov law on E can then be obtained from the clique-

 specific marginal densities as

 FJs le c(EC)
 HS e- Y Is (ES),

 A natural choice for a prior distribution over each clique-specific covariance matrix, and,

 therefore, for each separator, is to take a prior conjugate to the likelihood in (2), assum-

 ing Ec to be distributed as inverse Wishart with parameters oc and JDc. We employ the
 parameterisation in Dawid & Lauritzen (1993) which implies that, for oc > 2, E(XC) =
 (o- 2)-1'DC. The resulting distribution for E has been named the hyper inverse Wishart
 by Dawid & Lauritzen (1993), denoted by HIWg(l, D).

 This construction involves many hyperparameters, namely the precision parameter os,

 common to all cliques, and one prior matrix, JDc, for each clique; the separator specific
 priors can be obtained by marginalisation. Furthermore, in order to satisfy hyperconsist-
 ency of the clique-specific priors, it is necessary and sufficient that, for each pair of cliques,
 A, B, say, with intersection S = A n B, the submatrices of 4(A and 4vB corresponding to the
 elements in S coincide. This requirement is rather stringent, particularly when large graphs
 are considered.

 A further complication in the practical specification of a hyper-Markov law, which is

 indeed common to all Bayesian model comparison problems, is that of compatibility. The

 simplest case involves comparison between two graphs, g and g', say. Let E and L' be the

 corresponding precision matrices and let Y and Y' be two hyper-Markov laws on them.
 It is quite natural to require that _(XA)= f2(XA) for any clique A common to both g

 and g'. This notation of compatibility is the same as in Dawid & Lauritzen (1993) and
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 Decomposable graphical Gaussian model determination 789

 corresponds to requiring the two prior distributions to be consistent on the common

 marginals. Given the difficulty of the above specification tasks, especially in large graphs,

 it becomes desirable to have a 'semi-automatic' method for assigning compatible hyper-

 Markov distributions. One possibility, suggested in Dawid & Lauritzen (1993), is to
 consider an 'embedding' graph, g*, and derive the required marginal distributions, for

 each g c- g*, by marginalisation from those of g*. Note that this use of an embedding
 graph is not without critics; see Cowell (1996) for an alternative approach.

 In the remainder of this work we shall take g* as the complete graph, for which E is

 not constrained, and assign an iw(x, JD) distribution to S. Marginalisation from this law
 will then imply that, for each C E @, Yc(c) = Iw(x, 1C), with 'Dc = Dc, the submatrix of
 d) corresponding to the variables indexed by C. The graph g thus determines which

 collection of submatrices of 1d are to be taken to form a hyper-Markov law on E with
 respect to g. Although the specification task is now reduced, there remains the issue of

 specifying the matrix (d. One possibility is to consider an assignment that is a default or
 uninformative, yet leads to a proper prior on S. However, it is difficult to understand

 what a default setting really means in the present context. A different strategy is to add
 one further layer of uncertainty, and consider os and (d as random quantities, regulated by

 a few hyperparameters. This leads us to consider a hierarchical hyper-Markov law.

 2. THE PROPOSED MODELS

 21. A non-hierarchical model

 Consider first the case of fixed hyperparameters. The model we assume specifies that

 XIY-,g-Np(O,Y), Yjg-H1Wg(Y.5() 5 p(g) =d-1,

 where os is a fixed positive quantity, (d is a fixed p x p symmetric positive definite matrix,

 whose elements satisfy Dc = qDc, for all C E I, and d is the number of decomposable graphs
 on the vertex set V.

 The complete prior specification of the dispersion matrix (d involves setting p(p + 1)/2
 prior quantities and satisfying the positive definiteness condition, a clearly difficult task,
 so that one would typically try to simplify the structure of (d. A reasonable default speci-
 fication for (d is to consider an intraclass correlation structure:

 (D = -c{pJ + (1 - p)I }, (3)

 where J is the p x p matrix of l's and I the identity matrix of order p. Note that (d is
 positive definite if and only if -u > 0 and p e (- 1/(p - 1), 1).

 However, the above parameterisation exhibits some drawbacks: for instance, it may not
 be reasonable to assume a priori a common correlation between each pair of random

 variables. An assumption of common covariance is inevitably asymmetric about zero
 correlation, since the prior correlation is constrained below by - 1/(p - 1), and this may
 lead, particularly in large graphs, to an asymmetric evolution of the association signs.

 Concerning -, the assumption of a common prior scale is clearly reasonable if the random
 variables are standardised or on a similar scale.

 22. A hierarchical model

 Given the above difficulties of prior specification, it is desirable to devise a more auto-

 matic, yet flexible, method of assigning a prior distribution. A natural choice is to let
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 790 PAULO GIUDICI AND PETER J. GREEN

 os and 1d become random quantities, to be assigned a prior distribution. A reasonable

 assumption is that os, d) and g are mutually independent.

 First consider (X. Note that os expresses the relative weight of the prior. A reasonable
 prior for os is a gamma distribution, with mean f, variance fs, and density

 n(oc) (c of( /s) - 1 e -a/s

 where f > 0 and s > 0 are to be fixed, A rationale for choosing them is that 71(o) be as
 uninformative as possible; sensitivity to the choice will be discussed in ? 4.

 Now consider (d. The representation adopted for (d determines the set of random quan-

 tities to which are to be assigned a prior distribution. We shall consider the two situations

 of (d unstructured and (d with an intra-class correlation structure.

 Unstructured (D. Here we assign a prior on p( p + 1)/2 elements, consisting of p variances
 and p(p - 1)/2 covariances. To ease the calculations, one can take a conjugate prior

 distribution. Note that the prior on E can be interpreted as a likelihood for (d, suggesting
 that a conjugate prior for (d is a Wishart distribution with fixed hyperparameters d > 0
 and T positive definite. Note that, although still difficult, this prior specification is consider-
 ably easier than the specification of a hyper inverse Wishart law in the non-hierarchical

 case. For instance, since (d is already a prior opinion, a reasonable requirement on the
 second-stage prior on (d is that it be not very informative, taking d = 1 and embodying a

 belief of a very simple structure, such as T= diag(cl11, ... ., -pp), possibly with -ii. =-c.

 Intraclass (D. In the intraclass case, as remarked in ? 2-1, all partial correlation
 coefficients are assumed to be equal a priori. A prior on the random elements (z, p) which
 characterise the intraclass correlation structure can be obtained by restriction from the
 W(d, T) prior on the unstructured (d, as follows:

 l(z, p) OC 7t 4z{pJ + (1 -P)I

 oC E[P( _p)P 1 { 1 + p(p-_1)1](d-)/2 exp {2T(Eti+pEtj)* (4)

 Note that the above kernel does not factorise as 7r(c) x 7r(p). However, if ij tij = 0, for
 example, if tij = 0, for i $ j, - and p become independent, as in the following proposition.

 PROPOSITION. Let (D be a random symmetric matrix ofform (3) with -C and p distributed

 as (4), with EiZj tij = 0. Suppose that d > 2-2/p and let to = Lp 1 ti . Then -c and p are
 independent random variables;

 -c- ap(d -2) +2 to] z ~Ga{P~ f:o}1

 1 p

 p-i p-i7'

 where

 Be {d ( p- )(d-2) + 2}

 Thus, the prior on - depends on two hyperparameters; the mean and variance are

 increasing in d and decreasing in to. On the other hand, the prior on p depends only on
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 Decomposable graphical Gaussian model determination 791

 d, and E(p) is non-increasing in d. Note also that E(p) > 0, for all p, and that, as p -o 00,
 E(p) --*. It follows that d should be fixed to regulate the prior on p, with to adjusting its
 effect on the prior on -c.

 3. MODIFYING GRAPHS TO PRESERVE DECOMPOSABILITY, AND MARKOV CHAIN
 MONTE CARLO ALGORITHMS

 3-1. Incremental changes to decomposable graphs

 A key aspect of our work concerns proposing a change in the current graphical structure
 g, say, to a new structure, g'. Since we are considering only decomposable graphs, the
 proposed moves should consider only members of the latter class as candidate graphical

 structures.

 It is well known, see for instance Frydenberg & Lauritzen (1989), that the space of all

 decomposable graphs can be traversed by adding and deleting single edges at a time. Such
 changes will form the basis for the sampling algorithm we introduce in ? 3-2. Here we
 characterise in graph-theoretic terms those incremental changes to a graph's edge set that
 preserve decomposability, making particular use of a junction forest representation of the
 graph. While 'legal' deletion moves can be characterised using the standard result in
 Theorem 1, a new result, Theorem 2, is required to characterise 'legal' addition moves.

 THEOREM 1 (Frydenberg & Lauritzen, 1989). Let g and g' be two undirected decomposable
 graphs, with the same vertex set V and with E'_- E, with g having exactly one more edge
 than g'. Such an edge must then be contained in exactly one clique of g.

 A junction tree 9Y representation of a connected undirected graph g is a graph whose
 vertex set is the set of cliques of g, and whose edge set is such that & is a tree and satisfies

 the junction property: for any two cliques Ci, Cj E ' and any clique C' on the unique path
 between them in Y, Cinfc c- C'. The junction property is evidently necessary and sufficient
 for the existence of a perfect ordering, and hence for the decomposability of g. A junction
 forest representation of an undirected graph g is a collection of junction trees {? 9}, each

 3? corresponding to a collection etr of cliques with le = U l,r and etr nes = 0, for r t s.
 Finally, for each v E V let [v] indicate the connectivity component of V, that is the set of
 all vertices which are connected to v.

 THEOREM 2. Let g = (V, E) be an undirected decomposable graph in which vertices a and
 b are not adjacent, and let g' denote the graph modified by the addition of edge (a, b). Then
 g' is decomposable if and only if either

 (i) [a] * [b],
 or

 (ii) [a] = [b] and there exist R, T c V such that a U R and b U T are cliques, and S =
 Rn T is a separator on the path between a U R and b U T in a junction forest represen-
 tation of the graph g.

 The proof of Theorem 2 is given in the Appendix.
 As a simple example consider the graph in Fig. 1, which is characterised by the cliques

 (a, b, f), (b, c, f), (c, d, f) and (d, e, f). The separators are (b, f), (c, f) and (d, f). By
 Theorem 1, the edges (b, f), (c, f) and (d, f) cannot be deleted. On the other hand, the
 pairs (a, e), (a, d) and (b, e) cannot be joined in g', because, for all such pairs, Rf T= {f}
 but {f } is not a separator.

 Remark. Theorems 1 and 2 can be employed to characterise completely the legitimate
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 Fig. 1. Graph illustrating the reversibility condition.

 incremental changes to the edge set of a decomposable graph. An alternative possibility
 is to reject illegitimate moves by running maximum cardinality search, see for instance

 Spiegelhalter et al. (1993), after each graphical update proposal, to check if the proposed
 graph g' is decomposable. However, while maximum cardinality search tests for decompos-

 ability by means of a global search through the whole of the junction forest, without
 building the new clique organisation, our method only requires searching through a section
 of the junction forest, corresponding to the shortest path between cliques containing a

 and b. Furthermore, it constructs the new junction forest so that the cliques are already
 constructed ready for use in probability calculations. Sometimes a and b will be adjacent
 so that the search will be very fast. In ? 4 we present an empirical comparison between
 the two algorithms.

 3 2. Reversible jump Markov chain Monte Carlo design

 We now briefly summarise the main features of reversible jump Markov chain Monte

 Carlo methodology, which is particularly suited to problems where the dimension of the
 parameter space changes; see Green (1995) for further details. Let y denote a state variable.
 For instance, in our hierarchical Bayesian graphical Gaussian model, y is the complete

 set of unknowns (g, X, a5, J). Let nt(dy) be the target probability measure of interest, here
 the posterior distribution. When the current state is y we propose a move of type m that

 would take the chain to the destination y', with probability qm(y, dy'). It is then accepted
 with probability given by

 Lxm(y, y') = min 1, (r(dy')qm(y', dy) (5)
 7t(dy)qm(y, dy')f5

 which ensures that detailed balance is achieved within each move type.
 For an 'ordinary' move type, that is, a move which does not change the dimension of

 the parameter vector, expression (5) reduces to the usual Metropolis-Hastings acceptance
 probability, using an ordinary ratio of densities with respect to a measure on the underlying
 fixed parameter subspace. For dimension-changing moves, Green (1995) shows that
 expression (5) can be interpreted as a ratio of Radon-Nikodym derivatives with respect
 to a suitably chosen common dominating measure. Suppose that a move from y to y'
 is proposed, with y' lying in a higher dimensional space. Then the method can be
 implemented by drawing a vector of continuous random variables u, independent of y,

 and setting y' = y'(y, u), with y'(., .) an invertible deterministic function. Correspondingly,
 the reverse move can be achieved by the inverse transformation, in a deterministic fashion.
 Then expression (5) simplifies to
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 Decomposable graphical Gaussian model determination 793

 where rm(y) is the probability of a move of type m, evaluated at y, and q(u) is the density

 function of u.

 We now detail the reversible jump Markov chain Monte Carlo sampler we propose for
 the models specified in ? 2. In the exposition we refer to the more general hierarchical

 model. An important issue in the design of the algorithm is the choice of the state variable.

 In our context, an important choice to be made is how to represent S. It would be too

 computationally expensive to consider the collection (Ec, C E c6); for instance, a change
 in g would require changing most of the possibly overlapping clique-specific variances Ec.
 On the other hand, it seems that using the precision matrix K is a good choice; because
 of (1), adding (deleting) an edge requires one simply to draw (set to zero) an element of

 K previously set to zero (unconstrained). However, note that the hyper inverse Wishart
 model considered means that several time-consuming operations hiave to be performed:

 first K has to be inverted, to obtain E; secondly, the collection of submatrices Ec is to be
 extracted from E; finally, both the likelihood and the prior contribution to the Metropolis-

 Hastings acceptance ratio for g' require inversion of each Ec. Note also that the inversion
 from K to E prevents local computation of the ratio.

 A more efficient representation for E is to consider as state variable the incomplete

 version of X, F. This has the advantage of avoiding the inversion of K into X, thus leading
 to local Metropolis-Hastings computations. Note that, since it will be important to draw

 inferences on functions of K or X, such as the partial correlation coefficients, we may want

 occasionally to complete F to obtain K and E. A related important result is contained in
 Dawid & Lauritzen (1993); it turns out that E = K', with

 K = , (Jc 1)[O] - (-s1)[O]

 where [0] means that the corresponding matrix is filled with zeros to match dimensions.
 Thus, for our hierarchical Bayesian graphical model we shall consider a systematic scan

 over the following move types.
 Move (a). Add or delete one edge from the graph g ensuring that the proposed graph

 g' is decomposable. Note that this move also involves making changes to F.

 Move (b). Update the incomplete covariance matrix F and, correspondingly, E.
 Move (c). Update the hyperparameter oc.
 Move (d). Update the hyperparameter D.
 The only randomness in the above scan is the choice between adding and deleting an

 edge in Move (a). An update of (g, , oc, (D) is complete when all of the above move types
 are completed.

 Updating g. Consider first Move (a), which is the only one involving a change in the

 dimensionality of the parameter space. To accomplish this move we draw randomly a pair

 of distinct vertices. If such pair, (i, j), say, is in E we propose deleting the edge (i, j);
 otherwise, if (i, j) 0 E, we propose adding (i, j) to the graph.

 If (i, j) is proposed for insertion, the dimensionality of the parameter space increases by

 one; this is expressed by an extra free element of E. This requires specifying a new element

 of F, yi, and this is done by drawing a random variable u from a N(0, u') distribution,
 with 0G a scale parameter to be properly chosen, and then letting 7j = u. This is a blind
 proposal, which does not take into account the previous, constrained state of Eij. As an
 alternative, with the extra computational cost of completing F, the proposal can be centred
 at the previous state, for example yv' = zI. + u. We prefer local computations and, therefore,
 we employ the former proposal.
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 794 PAULO GIUDICI AND PETER J. GREEN

 Let Ra indicate the Metropolis-Hastings ratio when the proposed move consists of

 adding (i, j) to g, leading to g'. Such a ratio can be calculated as in (6). First note that
 the Jacobian of the transformation is equal to 1. This is not surprising, since we are

 making proposals on the natural scale. The proposed move can be seen as a change in
 the appropriate section of the junction tree, possibly after some permutations, as illustrated

 in the proof of Theorem 2. According to the proposed model, and if we adopt the proposal
 just described, based on the F representation, it turns out that the posterior ratio involves

 only the four subsets S, SUi, SUj and SUiU;, abbreviated below as S, Si, Sj and Si :

 R _ _Ey_ h(s)h(Z..)
 Rpoy) - P 1(y) h(Zsi)h(_sj)

 where each of the above four terms is obtained as the product of the prior and the
 likelihood of the appropriate submatrix of E. For instance, for S,

 h(s) = iw(s; OC, OS) x N(xs; Es)

 When S = 0, h(Es) = 1. Note that the requirement of positive definiteness of E constrains

 yEj: if E'_ is not positive definite then h(Z..) = 0, so jpost = 0 and the move is rejected.
 Consider now the proposal ratio rm( y')/{rm( y)q(u)}. Since the graphs specified by y and

 y' differ in exactly one edge, r1..(y) and r1"(y') are simply the probabilities of choosing that
 edge for addition or deletion. Since all edges are chosen with equal probability,

 na
 rm(y) = rm(y') = 1 2 (2)

 Finally, when (i, j) is added, 7'j is drawn from a Gaussian distribution, with zero mean
 and standard deviation UG, so that

 q(u) = >/2 exp - (

 Thus the proposal ratio is l/q(u). Putting together the different terms, we obtain that

 Ra =Rpost x q(u)-< .

 Note that the calculation of Ra involves at most four cliques.

 So far we have considered a move which involves adding an edge to g. When (i, j) is
 proposed for deletion, we leave yij unspecified; it is indeed of no use in the new model.
 We follow the reverse of the analysis above, and the acceptance ratio Rd is finally obtained
 as Rd= 1/Ra.

 Updating E. Our strategy consists of perturbing each element of the corresponding
 incomplete matrix F with an independent Gaussian random walk proposal, centred around
 the current value. More formally, for all (i, j) such that i = j or i and j are adjacent in the
 current graph g,

 y N(yip,Sij

 where the oij's are spread parameters, to be chosen.
 We remark that a more complicated strategy could have been taken, for example updat-

 ing only one clique-specific block of E at a time and exploiting the junction tree represen-
 tation to construct Gibbs steps. However, the advantages of this do not seem to

 compensate for the increased complexity of the sampler and the extra computational effort.
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 Decomposable graphical Gaussian model determination 795

 We now calculate the acceptance probability for our proposed updating of E to a new
 covariance matrix, i', say, by perturbing its specified elements in F. As in the ordinary

 Metropolis-Hastings algorithm, such a probability is equal to min(1, RY), where R, indi-
 cates the acceptance ratio of the move and is the product of two terms, the posterior ratio
 Rpost and the proposal ratio Rprop. The former can be calculated locally, through the

 junction forest of the graph:

 p(Y-'l 7,cD, 4g) p(xEl I g)

 Rpost= p(Y-I .,cD, Og) p(x Y, g)

 that is, the ratio of two hyper inverse Wishart kernels. Note that, if any of the Ec, for
 C E C6, is not positive definite, the move is rejected, as otherwise we would obtain a L'
 that is not positive definite. Finally, since the proposal distribution is symmetric, Rprop is
 equal to 1.

 Updating oc. We perturb ci with a Gaussian random walk proposal, centred around

 the current value, that is q(c'l ci) = N(Lc,a o), where a, is to be appropriately chosen.
 Consequently, the proposal ratio is equal to 1. On the other hand, the posterior ratio is

 P05t p(El Oi Dg) P(Y.)

 RPos P( Yly. (Dg) p (Y.)

 Updating (D. When D is unstructured, it will be updated similarly to E. That is, a
 proposal for D will be obtained by perturbing each element of D with a random walk

 proposal, that is q' = (qij, vij), where the vij's are to be suitably chosen. The acceptance
 probability of the move is min( 1, RD), with RD, = RpostRprop, as usual. Given the symmetry
 of the adopted proposals, Rprop= 1. On the other hand

 p(E X (c, D, g) pQ(V)
 post p(j ci , D5g) p(QD)

 If (V is not positive definite, the proposed move is rejected. Note the generality of the
 above expression, which holds for all of the structures considered for (, because of the

 conditional derivation of the priors. Clearly, more complicated proposals for ci and (D can
 be considered but, in our experience, such changes do not materially affect the performance
 of the method.

 4. STATISTICAL PERFORMANCE OF THE METHODOLOGY

 Note first that the data x can be sufficiently summarised by the sample size n and the
 sample variance-covariance matrix S = xx'. We have considered three datasets, in order
 of increasing difficulty.

 Example 1: Fret's heads dataset (Whittaker, 1990, p. 225). Here p = 4 and there are 64
 possible graphs, of which 3 are not decomposable. This is a small but challenging dataset,

 since all variables appear highly correlated marginally, and there is no evident pattern in
 the sample precision matrix, resulting in a highly multimodal posterior distribution on
 the graphical structures.

 Example 2: Fowl bones dataset (Whittaker, 1990, p. 266). Here p = 6 and there are
 32 768 possible graphs, of which 80% are decomposable. This is a more complex problem,

 but less multimodal than the previous one.
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 796 PAULO GIUDICI AND PETER J. GREEN

 Example 3: An artificial dataset. Here p = 16 and there are 216 possible models, of which

 45% are decomposable. Data are actually simulated from a non-decomposable model,
 namely a first-order Gaussian Markov process on a regular 4 x 4 spatial lattice. We have

 set equal to 02 all the partial correlations not constrained to zero by the graph. This

 dataset will illustrate, besides the process of learning the true simulated data, how a
 mixture of decomposable models can approximate the true non-decomposable model.

 The analysis of the examples will be presented simultaneously, in terms of four aspects:

 prior settings; posterior distributions of main quantities of interest; sensitivity to prior

 specification; and performance of the Markov chain Monte Carlo sampler.

 Prior setting. For all datasets we have considered both hierarchical and non-hierarchical

 models, with several hyperparameter specifications. In the paper we shall report results

 for only one such prior assessment, namely a hierarchical prior with an intraclass corre-

 lation structure for D, with f = p + 1, s = 0 1, T= I and d = 2. Concerning the parameter
 X, it is important to understand what such a prior specification corresponds to in terms
 of the prior expected partial correlation coefficients. This can be done by simulation from

 the assumed mixture of hyper inverse Wisharts prior. For instance, the empirical average

 of the output obtained from n = 100 000 reversible jump sweeps after 10 000 burn-in, with

 p = 4, gives essentially an identity matrix.

 Posterior distributions. Figure 2 reproduces the most plausible graphs, according to the

 posterior distribution of g, for Fret's data, obtained with a run of n = 100 000 sweeps and
 n = 10 000 of burn-in.

 0 121 0 111 0 109 0 095 0 080 0 078

 4 1 4 1 4 1 4 1 4 1 4 1

 3 2 3 2 3 2 3 2 3 2 3 2

 0 059 0 059 0 041 0 034 0 032 0 032

 4 1 4 1 4 1 4 1 4 1 4 - 1

 3 2 3 2 3 2 3 2 3 2 3 2

 Fig. 2. Most probable graphs for Fret's dataset, together with the associated probabilities.

 Note first that the posterior distribution of g is dispersed, as expected. For instance, the
 most probable graph receives only about 12% of the posterior probability and, in order
 to obtain 80% of the posterior probability, at least 10 structures have to be considered.
 The results are similar to those in Giudici (1996), who performed a non-informative
 Bayesian analysis on the same dataset using a non-hierarchical model.

 It is often of interest to assess not only if an edge is present, but the strength of the

 association described by the edge itself. This can be done by looking at the posterior

 distribution of the partial correlation coefficients, which cannot be derived analytically,
 but can be easily obtained from the Markov chain Monte Carlo output. Figure 3 repro-
 duces the posterior distributions of the partial correlation coefficients for Fret's data. Note

 that only the partial correlations between (1, 2) and between (3, 4) have relatively small
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 Partial correlation Partial correlation Partial correlation

 Fig. 3. Posterior distributions of the partial correlation coefficients for Fret's dataset. (a) For
 variables (1, 2), (b) for (1, 3), (c) for (1, 4), (d) for (2, 3), (e) for (2, 4), (f) for (3, 4).

 posterior probabilities around zero, which supports strongly the presence of such two
 edges.

 Consider now analysis of the Fowl bones dataset, obtained with a run of n = 100 000
 sweeps and n = 10 000 of burn-in. Compared to Fret's data, the posterior distribution of
 g turns out to be more concentrated, with just two graphs accounting for about 33% of
 the posterior probability, with the others less important. The results can be compared

 with the deviance-based analysis in Whittaker (1990, p. 267): while the graph selected by

 Whittaker contains 8 edges and is not decomposable, our most probable graph contains
 all edges in Whittaker's as well as two more edges, (3, 6) and (4, 5), thus breaking the
 cycle involving (1, 3, 4, 6) in Whittaker's graph.

 Results for the spatial lattice dataset were obtained with a run of 100 000 sweeps after

 10 000 burn-in. Our aim here is to show that, although the model space considered is very
 large and does not contain the true model, Markov chain Monte Carlo learning can still
 give sensible answers. Figure 4 reproduces the cumulative average of two sampled partial

 correlations. Figure 4(a) plots a partial correlation which is equal to 0 2 in the true model,

 whereas Fig. 4(b) plots a partial correlation which is zero in the true model. Note how

 well the simulation acknowledges the difference between the two correlations, although
 the simulation length is certainly short compared to the number of candidate models.
 This difference is typical; for brevity we have presented only two representative edges.

 We have also evaluated the number of edges which are misclassified by the simulation,
 using a simple binary discriminant function which signals edge presence if the proportion
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 (a) (b)
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 Fig. 4. Cumulative average for the simulated spatial lattice data. (a) Cumulative
 average of a present partial correlation, (b) cumulative average of an absent partial

 correlation.

 of times that edge is in the simulated model is greater than 0 5 and edge absence otherwise.

 The total number of misclassified edges is equal to 13, corresponding to a rate of 11%

 and similar to the number of edges required to make the graph decomposable. Our results
 seem to be maintained with analysis of an even larger 5 x 5 spatial lattice, although longer

 runs are needed to achieve the same stability of the output. For instance, the number of

 misclassifications obtained with a run of n = 1 000 000 iterations is 42, corresponding to

 a rate of 14%.

 However, Bayesian structural learning is a very difficult task for this problem and for

 large datasets in general. Our results show that this is indeed possible with Markov chain

 Monte Carlo, although slow and requiring a considerable amount of diagnostic checking
 of the validity of the results.

 Sensitivity to the prior. Fret's dataset is useful for evaluating the sensitivity of results to
 the prior distribution, because its highly correlated structure leads to a multimodal post-

 erior distribution over the graph space. Let go denote the graph with the maximum
 posterior probability; each such graph will be described by a list of binary indicators for
 edge presence, with edges ordered in lexicographic order of the two vertices. Finally, let
 'n.edges' indicate the number of edges of g.

 When a non-hierarchical prior is used, the posterior over graphs depends on both ci
 and p, particularly on the latter; see Table 1. The support for more complex graphs is
 lower for larger p. As expected, the influence of the prior grows with ci.

 Table 1. Sensitivity of structural learning, with respect to the prior,

 using Fret's data, for a non-hierarchical model

 oc =p + 1 oc=2p
 p= -03 p=0 p=09 p= -03 p=0 p=09

 go 100011 111001 100011 110001 111011 110001
 p(goIx) 0 1165 0 1267 02645 0 1415 0 1171 02142
 E(n.edges I x) 3 63 4 16 3 13 3 52 4 21 3 04

 Inference on partial correlation coefficients is quite robust, which seems to be an advan-

 tage of model averaging. Table 2 shows such robustness of the inference about the partial

This content downloaded from 
������������137.222.114.233 on Fri, 05 Feb 2021 15:08:20 UTC������������ 

All use subject to https://about.jstor.org/terms



 Decomposable graphical Gaussian model determination 799

 correlation coefficient between X1 and X2, with a non-hierarchical prior. From previous
 analyses of Fret's data, it is quite difficult to draw such a conclusion. Similar results can
 be obtained with a hierarchical prior.

 Table 2. Sensitivity of model averaged inference on a partial

 correlation coefficient with respect to the prior, for a non-
 hierarchical model, using Fret's data

 o6=p+ 1 =2p
 p=-03 p=O p=O-9 p=-03 p=O p=O-9

 E(p12 |x) 0 204 0 207 0 241 0 204 0 208 0.239

 The hierarchical prior has less impact on the posterior over graphs; compare Table 3

 with Table 1. On the other hand, the hierarchical model seems to select models with more
 edges. These results are confirmed in the analysis of the two other datasets.

 Table 3. Sensitivity of structural learning with respect to the

 prior, for a hierarchical model, using Fret's data

 f=p+ 1 f=2p
 d=2 d=p d=2p d=2 d=p d=2p

 go 110111 111011 110111 111011 111011 111011

 p(goIx) 0.1383 0 1304 0 1422 0 1317 0 1412 0 1517
 E(n.edges I x) 4 41 4 40 4 46 4.45 4.54 4.53

 Performance of the Markov chain Monte Carlo sampler. The correctness of our program

 was partially validated for all of our models by using it to simulate from the prior distri-
 bution. Our algorithms gave very good agreement between the exact and simulated prior

 marginals of certain marginal distributions that could be calculated analytically.
 The spread parameters of the proposal distribution must be chosen so as to ensure

 satisfactory mixing of the chain. After a number of pilot runs, we took UG = 05n/p,

 7ij =O l/p, u = 1 0 and vij= I O/p. Concerning the proposal on g, centring the proposal
 at lij leads to better performances than a 'blind' proposal centred at 0. However, the
 completion of F is computationally expensive. In a typical run with p = 10 and a hierarchi-
 cal model this takes about 40% of the CPU time. This percentage increases with p and
 the number of edges present in the graph.

 Table 4 reports the accept/reject rates for g, Fg, D and o for our three simulations, along
 with total computation times on a SPARC4 workstation.

 Table 4. Performance of the Markov chain

 Monte Carlo samplers: rejectionfractions and
 computation times, in minutes and secondsfor

 100 000 sweeps

 Move type Fret's Fowl bones Spatial lattice

 g 0-022 0 001 0-002

 E 00573 0-016 0-379
 (D 0 566 0.595 0-642

 a 00518 0-476 0-577

 Time 2:16 3:57 22:03
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 800 PAULO GIUDICI AND PETER J. GREEN

 We compared the computational times of our method with those for maximum cardi-

 nality search, using a small trial with the two methods in parallel, timing just the graph

 manipulation part of the procedures, i.e. testing for decomposability and constructing the

 new cliques and separators. For uniformly random decomposable graphs on 6, 10 and 20

 vertices, the times to run maximum cardinality search for these graph operations were

 respectively 0 63, 1 21 and 3 49 times those with our method. Although this evidence is
 limited, the comparisons are in one sense biased in favour of maximum cardinality search,
 since in applications with data many graph moves are rejected, and our method then

 gains an additional advantage through rejecting at an early stage.
 The most challenging aspect of the simulation is mixing over g, which can be monitored

 through a summary measure of g, such as the number of edges present, which describes

 the graph complexity. For all datasets trace and autocorrelation plots of the number of
 edges show good performance. However, the number of iterations required to achieve
 such stability increases with p; for both Fret's and the Fowl bones datasets 100 000 iter-

 ations are sufficient, whereas for the spatial lattice model a 10 times longer run is needed.

 We also assessed performance of the dimension-jumping move more formally. For each

 of the three datasets we evaluated the Gelman-Rubin convergence diagnostic for the trace
 of the number of edges in the simulated graphs, according to the iterated graphical

 approach suggested by Brooks & Gelman (1998). Our results indicate that each of the

 simulated parallel chains is close to the target distribution.

 We finally remark that the sampler's performance is affected little by the choice of
 hyperparameter values. However, mixing is sensitive to the strength of the observed iter-

 ations effects between the variables in the graph; the higher this is, the slower the

 convergence.
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 APPENDIX

 Proof of Theorem 2

 The case (i) where the vertices a and b are in different connected components is rather trivial;
 we can simply add a clique a U b to the junction forest, linked to arbitrary existing cliques a U R
 and b U T. The junction property clearly continues to hold for the modified junction forest.

 Turning to the connected case (ii), we first prove the necessity of the condition. Suppose for a

 contradiction that there are no R, T such that (ii) holds. Let a UR, b U T be the cliques containing

 a and b that have the shortest connecting path in the junction forest among all such cliques. By

 assumption R n T is not a separator; it may be empty. The connected component containing a and
 b will remain connected when any vertices in Rn T are deleted, along with all incident edges.

 Let vO=r,v1,. . . ,v,vq?I = t for some q?O0 be the shortest path in g from an element of R\T
 to one of T\R avoiding vertices in RnT. No two of the {vi} are adjacent except for (vi, vi+i),
 for i=O, 1, ... ,q, since it is a shortest path, and a and b are only adjacent to v0 and vq+1
 respectively, by definition of R and T. Thus, inserting the edge (a, b) would create a cycle
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 a -> vo .> .v. vq + 1 -->b --a of length q + 4 > 4 that is chordless. The graph g' would thus not
 be decomposable, completing the contradiction.

 Now we prove the sufficiency of the condition. Given (ii), we can suppose that the cliques aU R
 and b U T are adjacent in the junction forest, for, if not, the forest can be manipulated so that this

 is so, while remaining a valid representation of the graph. To see this, let C0 = a U R, C1, . ..., Cp,
 Cp+ 1 = b U T be the path between the cliques, with p >? 1. By assumption, cin nci+, 1 = sfor some
 i = 0, 1, ... , p. We can delete the edge (Ci, C+ 1) from the junction forest and insert (C0, Cp+1)
 instead. The only pairs of cliques {C+, C_ } for which the path connecting them has any additional
 cliques as a result of the modification are those for which the original path included both Ci and
 Ci+1; henceC+ n c- c cin ci+l = S. The additional cliques in the modified paths must be some
 of {Ci, i = 0, 1, ... , p + 1}, all of which contain S. Thus the junction property remains true for the
 junction forest as modified.

 Thus, without loss of generality, a U R and b U T are adjacent cliques. Let P = R\S and Q = T\S.

 We distinguish four cases, according to which of P and Q are empty or nonempty. If both are
 empty, then we simply amalgamate the cliques to form a new clique a U bUS, adding junction
 forest edges to those cliques adjacent to either of the original cliques. If P # 0 = Q, we replace
 clique b U T = bUS by a U bUS, leaving adjacencies unchanged, and similarly by symmetry if

 P = 0* Q. Finally, if neither is empty, we insert a new clique a U bUS in the junction forest,
 linked to a U R and b U T. In all four cases, it is easy to see that the junction property is maintained,

 so g' is decomposable.
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