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1 IntrodutionA graphial model (see, for instane, Lauritzen, 1996), is a family of probability distrib-utions inorporating the onditional independene assumptions represented by a graph.It is onstruted by speifying loal dependenies of eah node of the graph in terms ofits immediate neighbours. It is then possible to work loally, obtaining better results interms of statistial inferene and omputational eÆieny.Our motivation here is to develop eÆient proedures for Bayesian model determina-tion in disrete graphial models, employed for the analysis of ontingeny tables. Forhigh-dimensional ontingeny tables the set of plausible models is large, and a full om-parison of all the posterior probabilities assoiated to the ompeting models beomesinfeasible. In fat the number of graphial strutures to examine inreases more thanexponentially with the number of verties.Various solutions to this problem have been proposed, the one we suggest is basedon the appliation of MCMC tehniques. This possibility has already been exploited.Madigan and York (1995), for example, introdue an MCMC sampler, alled Markovhain Monte Carlo omposition (MC3 hereafter), for the analysis of deomposable models.They onstrut a Metropolis Hastings sampler that permits to explore the spae of alldeomposable models. Alternatively, Dellaportas and Foster (1999) have developed aMCMC sampler for model hoie in loglinear models whih inlude disrete graphialmodels.In this paper we shall present two di�erent MCMC samplers for the analysis of de-omposable disrete graphial models, whih are fully based on loal omputations and,therefore, eÆient. The �rst one is a revised version of the MC3 algorithm by Madiganand York (1995). It di�ers from the original version mainly beause it inorporates aloal ondition for heking deomposability. Furthermore, we shall propose an extensionwhih allows for a hierarhial prior on the ell ounts. This methodology is suitable onlyfor quantitative learning.The seond sampler is based on the Reversible jump RJMCMC by Green (1995) and2



an be used both for quantitative and qualitative learning. Our methodology parallelsthat presented in Giudii and Green (1999) for the analysis of deomposable gaussianmodels. As in the gaussian ase, at eah step of the algorithm we update not only thegraphial struture (as in MC3), but also the assoiated parameter vetor. Essentially,in the gaussian ase, pairwise onditional independene is ditated by the absene of asingle parameter, whereas in the disrete ase this orresponds in general to non linearonstraints on the ell probabilities. Furthermore, in the ontinuous ase the parameterspae is polynomial in the number of variables whereas in the disrete ase is exponential.This leads to substantial di�erenes in the data struture.Setion 2 ontains some preliminary bakground on the Bayesian analysis of disretegraphial models. Setion 3 ontains our proposed MCMC model determination methods.Finally, Setion 4 ontains a omparison of the performanes, with referene to two data-sets: the well-known "Woman and mathematis" dataset and a dataset presented inFahrmeir and Hamerle (1994) for the analysis of the redit soring problem.2 Bayesian analysis of disrete graphial models2.1 Disrete graphial modelsIn this setion we briey review the literature on disrete graphial models relevant for ourwork, making use extensively of the terminology and notation from Dawid & Lauritzen(1993) (DL hereafter), and Lauritzen (1996).A graph is a mathematial objet onsisting of two sets, a �nite set of verties, V ,and a set of edges, E, of pairs of elements taken from V , g = (V;E). We will onsideronly undireted graphs, suh that if (a; b) 2 E then (b; a) 2 E. A graph is omplete if allverties are joined by an edge. A subset of verties is omplete if it indues a ompletesubgraph. A omplete subset that is not ontained within another omplete subset isalled a lique. An ordering of the liques of an undireted graph, C = (C1; : : : ; Cn),is said to be perfet if the verties of eah lique Ci also ontained in previous liques3



C1; : : : ; Ci�1 are all members of one previous lique. The set S = fS2; : : : ; Sng identi�esthe separators. If an undireted graph admits a perfet ordering is said to be deomposable.In the following we refer to subsets of the form A 2 A(g) = C [S where C is the olletionof liques of g and S a system of separators in a perfet ordering of suh liques.For omputational aspets it is useful to organize the liques of the onsidered graphthrough a juntion tree. A juntion tree is a graph with vertex set orresponding to the setC of liques of the graph g examined. It must satisfy the running intersetion properties,that is for any two liques Ci; Cj 2 C, and any C 0 on the unique path between them,Ci \ Cj � C 0. A olletion of disjoint juntion trees forms a juntion forest. An exampleof a graph, and its assoiated juntion tree, is given in Figure 1.Figure 1 about hereA graphial model is a family of probability distributions Markov with respet to agraph g; for brevity P 2 M(g). That is, the probability distributions onsidered mustsatisfy the onditional independene restritions inherent in g, but are otherwise arbitrary.Disrete graphial models desribe the relation between a set of k = jV j disreterandom variables XV = (Xv)v2V , eah of whih takes values in Iv, with I = �v2V Iv theomplete table of ounts.A graphial model is then haraterised by the onstraints imposed on the ell probabil-ities � 2 � by the onditional independenes embodied in a graph g. In order to underlinethis dependene the parameter spae will be indiated as �g, where �g = f� : � 2M(g)g.When the graph is deomposable an arbitrary distribution �g 2 �g is determined bythe marginal probability tables �A = (�A(iA))iA2IA, with elements �A(iA) = prfXA = iAgas in the following: �g(i) = QA2C �A(iA)QA2S �A(iA) : (1)We remark that the symbol iA indiates a ell of the marginal ontingeny tableorresponding to the variables in A, a subset of V orresponding to a lique or to aseparator. 4



In this ase, if we indiate with x (n)V an observed realisation of a random sampleof n observations X(n)V = (X1V ; : : : ;XnV ) from the distribution �g 2 �g, the likelihoodL(�g) = prfX(nV = x(n)V j�; gg an be written as follows:L(�g) = QA2C(G) prfX(n)A = x(n)A j�AgQA2S(G) prfX(n)A = x(n)A j�Ag = QA2C(G)QiA2IA(�A(iA))nA(iA)QA2S(G)QiA2IA(�A(iA))nA(iA) ; (2)were nA(iA) = Pj:jA=iA n(j) is the observed ount in the ell iA of the marginal table ofXA.When g is not deomposable, the fatorisation in (1) is no longer valid and, onse-quently, the likelihood annot be fatorised into loal piees.In this paper we onsider the ase in whih the variables examined are dihotomous.Eah element of the vetor XV = (Xv)v2V is a random variable taking values in the setf0; 1g and the vetor XV takes values in the Cartesian produt f0; 1gjV j of the set f0; 1gwith itself.2.2 Hyper dirihlet prior distributions for Bayesian learningIn the literature on graphial models we an distinguish two main aspets of inferene,quantitative and qualitative learning. Quantitative learning means that the informationavailable is used to estimate the unknown parameters �g. On the other hand, struturallearning has the objetive of establishing whih graphs, and thus whih graphial modelsare best supported by the data and the prior information available. In this paper weonsider both problems.As a prior distribution on �g we onsider the Hyper-Markov laws introdued by DL forthe analysis of deomposable models. In partiular, we onsider the hyper Dirihlet laws,that an be used for the Bayesian analysis of disrete graphial models, see for instaneMadigan and York (1995) and Giudii and Tarantola (1996).Before proeeding, we reall some important properties of the Dirihlet distribution.Let � = (�(i); i 2 I) be a vetor of positive onstants, and let A � V and B = V nA bea partition of V . If L(�) = D(�) then: 5



(i) L(�A) = D(�A);(ii) �BjA(�jiA) are all independent and distributed as D(�BjA(�jiA));(iii) �A??�BjA,where �A(iA) = Pj:jA=iA �(j) and �BjA(iBjiA) = �(i).In order to onstrut a hyper Dirihlet distribution, we must satisfy the ondition ofonsisteny of the matries of ell probabilities, that is, for any two liques C and D:�C\D(iC\D) = XjC :jC\D=iC\D �C(jC) = XjD:jC\D=iC\D �D(jD): (3)A hyper Dirihlet prior distribution on � 2 M(g) is then onstruted by assigning tothe probabilities �C of eah lique a Dirihlet distribution D(�C ) with density:�(�Cj�C) / YiC2IC �C(iC)�C(iC)�1on the set where PiC �C(iC) = 1 and �C(iC) > 0.Furthermore, the hyperparameters �C are onstrained in order to satisfy the hyper-onsisteny ondition of the orresponding distribution D(�C ), that is:�C\D(iC\D) = XjC :jC\D=iC\D �C(jC) = XjD :jC\D=iC\D �D(jD): (4)The onstraints in (4) are automatially satis�ed by assigning a Dirihlet distributionon the parameter � orresponding to the omplete graph, and obtaining the laws on theliques by marginalisation. Alternatively, as suggested by DL one an take:�(i) = QC2C(G) �C(iC)QS2S(G) �S(iS) :For a omparison between the two approahes, with referene to smoothing e�ets onthe ell ounts, see Giudii (1998).Dl show that, given any suh hyperonsistent olletion �C = (�C)C2C there exists aunique law for � alled hyper Dirihlet, denoted by HDg(�) whih is hyper Markov overM(g) and has L(�C) = D(�C) has its lique marginals. Furthermore, this distribution is6



strong hyper Markov. This implies that, if we on�ne our attention to �C with prior lawD(�C ), and the data nC from the marginal table orresponding to lique C, the posteriorlaw for �C given nC will be D(�C + nC). If the prior law is HDg(�) the posterior law willbe HDg(� + n).Regarding model omparison, DL give a losed form expression for the marginal like-lihood of g, p(x(n)V jg): p(x(n)V jg) = QC2C(G) p(x(n)C )QS2S(G) p(x(n)S ) ; (5)where, given a omplete subset of verties A 2 A(g), it turns out that:pA(x(n)A ) = �(�)�(� + n) YiA2IA  �(�A(iA) + nA(iA))�(�A(iA)) ! :Note that we have not yet spei�ed the density of the Hyper Dirihlet distribution. Infat, the previous result show that it is not needed for strutural learning, at least whenthe hyperparameters are not random. However, in more general problems, suh a densitymay be neessary. We shall thus present its expression, as derived by Madigan and York(1997).Let C = (C1; : : : ; Ck) be a perfet ordering of the liques of the examined graph.Consider a lique C1 and assign on �C1 a Dirihlet distribution with parameter �C1 , whosedensity is (with respet to the Lebesgue measure):f(�C1) = �(PiC12IC1 �C1(iC1))QiC12IC1 �(�C1(iC1)) YiC12IC1 �C1(iC1)�C1(iC1 )�1The distribution of a generi lique Cj is obtained onditioning on �C1 ; : : : ; �Cj�1 forj > 1. We note that onditions (4) and (3) need to be satis�ed. Sine � is strong hyperMarkov the distribution �Cj , given all previous liques depends only upon �Sj . It resultsthat the density of suh onditional distribution (with respet to the Lebesgue measure)is: 7



f(�Cj j�Sj) = QiSj2ISj �(�Sj (iSj ))QiCj2ICj �Cj(iCj)�Cj(iCj )�1QiCj2ICj �(�Cj (iCj))QiSj2ISj �Sj(iSj )�Sj(iSj)�1 ;for �Ci satisfying (3).Finally, putting together the previous two expressions we obtain:f(�) = f(�C1) kYi=2 f(�Cij�C1; : : : ; �Ci�1)= Qkj=1QiCj2ICj �Cj(iCj)�Cj(iCj )�1	(�)Qkj=2QiSj2ISj �Sj(iSj )�Sj(iSj )�1 ; (6)where: 	(�) = Qkj=1QiCj2ICj �(�Cj (i))�(PiC12IC1 �C1(iC1))Qkj=2QiSj2ISj �(�Sj (i)):Remark. From the previous onstrution, it follows that, even for a �xed graph, avery large number of hyperparameters is to be spei�ed. Reall that �C(i) indiates aolletion of positive onstants related to the a priori expeted ounts in eah ell of themarginal ontingeny table of the variables in C. Furthermore, it is neessary for themto be hyperonsistent. Finally, as argued by DL among others, it is highly desirable thatthe priors be ompatible aross models, thus further ompliating prior spei�ation.In the following we shall assume that the Dirihlet distributions on eah single liqueare obtained by marginalisation from a unique distribution on the omplete graph. Sinethe hyperparameters an be interpreted as hypothetial marginal data ounts, this notionof ompatibility, whih is the same as that in DL, is equivalent to requiring that eahmodel has the same amount of hypothetial data.More preisely in the following we shall indiate with �0 = Pi2I �(i) the prior preisionof the omplete graph. Notie that, sine the prior distributions on eah single liques areobtained by marginalisation from the prior distribution on the omplete graph, �0 an beequivalently obtained as PiC2IC �C(iC), for any generi lique C.Regarding the value of the hyperparameters, one possibility is to assign �(i) = 1=2,following the Je�reys prior for multinomial sampling, or �(i) = 1, following a uniform8



distribution. For a disussion on the hoie of the hyperparameters see, for instane,Dellaportas and Foster (1999).Another possible formulation is to onsider a more exible, and easier to speify,hierarhial prior, for instane letting �0 to be a random variable, to be assigned a priordistribution.3 MCMC disrete graphial model determinationIn this setion we shall present two di�erent methodologies for Bayesian model determi-nation for deomposable disrete graphial models. Both methodologies are based on theappliation of MCMC methods.The �rst methodology presented extends the MC3 algorithm by Madigan and York(1995) by allowing for a hierarhial hyper Dirihlet on the ell probabilities. We alsoimprove omputational eÆieny of MC3, replaing the deomposability test of Madiganand York (1995) with the reent proposal by Giudii and Green (1998) (GG for brevity).The seond methodology is based on the RJMCMC algorithm by Green (1995): at eahstep of the proedure we update the model and the orresponding vetor of parameters.This methodology is quite general, and an deal with any type of priors on the parameters,suh as hierarhial. Furthermore, it allows to draw posterior inferenes on any quantityof interest, whereas this is not generally possible for MC3.For omparison purposes, we shall onsider the same two lasses of prior distributionsfor both ases, namely, a hyper Dirihlet prior on the vetor of ell parameters. Conerningthe model spae, for simpliity, and without loss of generality, we onsider a disreteuniform prior distribution over the set of all deomposable graphial models.3.1 Identi�ation of legal movesAs stated by Frydenberg and Lauritzen (1989), (FL hereafter), the spae of all deom-posable graphs an be traversed by adding and deleting single edges at a time. Suh9



hanges are onvenient for MCMC implementation (in terms of algebrai tratability andstatistial eÆieny) and will be used as basi steps for our sampling algorithms.Given a graph g we propose to onsider a new graphial struture g0, obtained byadding/deleting one single edge. Naturally, we an deide not to hange the urrentgraph.At eah step, we an then hoose between three di�erent move types:1) remain with the urrent model;2) reate a new model g0 via the addition of one more edge;3) reate a new model g0 via the removal of an existing edge.Note that not all moves will be available at eah step, for example we annot add anedge to the omplete graph (graph with all edges present), nor remove one from the nullgraph (graph with no edges present).We shall only onsider moves, alled legal, that lead to a deomposable graph. Theproblem is how to haraterise suh moves.For legal deletion we an use a result in FL that states that an edge an be removed i�it is ontained in only one lique. On the other hand, for legal additions, we now introduean eÆient ondition, reently proposed by GG, that permits identifying legal movementsin advane, that is before doing the move.We �rst remark that by adding/deleting an edge we modify only a loal part of thejuntion tree, as in Figure (2). Figure 2 about hereFor this reason, GG propose to identify legal addings by a ondition that permitsheking deomposability onsidering only the setion of the juntion forest representedin Figure (2).Theorem (GG). Let g = (V;E) be an undireted deomposable graph in whihverties a and b are not adjaent, and let g 0 denote the graph modi�ed by the addition ofedge (a; b). The new graph g0 is deomposable if and only if either:10



(i) [a℄ 6= [b℄, or(ii) [a℄ = [b℄ and there exist R;T � V suh that a [ R and b [ T are liques, andS = R \ T is a separator on the path between a [ R and b [ T in a juntion forestrepresentation of the graph gWhere with [v℄ we indiate the set of all verties that are onneted to v.The above Theorem provides a simple and loal ondition for rejeting illegal additionin advane. Often, a and b are adjaent so that the searh will be very fast. Furthermore,the proedure proposed by GG onstruts the new juntion forest so that the liques areready for use in probability alulations.An alternative possibility is to rejet illegal moves a posteriori by running an appro-priate algorithm (suh as the Maximum Cardinality Searh, MCS) after eah graphialupdate, to hek if the proposed graph g 0 is deomposable. This is the solution imple-mented in the MC3 algorithm by Madigan and York (1995). However rejeting moves aposteriori an be ineÆient when the graphial struture is omplex. GG provide empir-ial evidene to support this laim.We now present the GG proedure in algorithmi form.Adding1) Starting from a lique ontaining a, searh through the urrent juntion tree on-taining a for the �rst lique ontaining b (say b [ T ). If none exists, the graph isdisonneted: go to 4).2) Starting from b [ T , go bakwards through the juntion tree along the path foundin 1), until the �rst lique ontaining a is found (all it a [R). Chek if R \ T 6= ;and R \ T is a separator on the path. If not, rejet the move (the proposed g0 isnot deomposable): return.3) If a [R, b [ T are not adjaent, permute the juntion tree until they are.4) Deide whether to aept the proposed move.5) If the move is aepted, update the graph and the juntion forest.11



6) Return.Deleting1) Starting from a lique ontaining a searh through the urrent juntion tree whilethe liques ontain a until all liques ontaining b are found.2) If none is found, there is an error, a and b are not adjaent. If only one is found goto 3). Otherwise, if more than one are found, rejet the move (the proposed g0 isnot deomposable): return.3) Deide whether to aept the proposed move.4) If the move is aepted, update the graph and the juntion forest.5) Return.We �nally remark that, aording to Figure 2, in our algorithm we treat separatelyfour partiular ases: a) R = T = R \ T ; b) R = R \ T 6= T ; ) R 6= R \ T = T ; d)R \ T = ;.3.2 A new version of MC3We shall �rst reall the original version of the MC3 algorithm. It permits onstruting aMarkov Chain having p(gjx) as its target distribution.Given a graph g, indiate with nbd(g) its neighbourhood onsisting of g itself and theset of graphs with either one more or one fewer edge than g. Suppose that from g theonly possible move is to a graph g0 belonging to its neighbourhood. Eah g0 an be hosenwith the same probability.The transition probability q(g; g0) is then equal to 0 for all g0 62 nbd(g) and onstantfor all g0 2 nbd(g).Suppose that from a graph g we propose to move to graph g0 obtained by adding onemore edge between verties a and b.The proposed move is aepted with probability equal to:12



� = minf1; Rag (7)where: Ra = #(nbd(g))p(g 0jx)#(nbd(g0))p(gjx) (8)Sine p(gjx) / p(xjg)p(g), (7) involves the data only through the Bayes fator p(xjg0)=p(xjg).We an then apply the results presented in setion 2 and alulate the previous ratio byloal omputations, that is:Ra = p(xjg0)p(xjg) = pS(x(n)S )pabS(x(n)abS)paS(x(n)ab )pbS(x(n)bS ) : (9)Notie that alulations involve only the loal part of the juntion tree represented inFigure (2).We propose to modify the algorithm desribed above in two diretions leading to anonhierarhial and to a hierarhial version.A nonhierarhial modelThe main di�erene with respet to the original formulation is that, in order to heklegal addings, we use the ondition proposed by GG instead of MCS.Furthermore, in the new version the proposal ratio is determined di�erently, that isontrasting the probability of adding and deleting an edge from the onsidered graph.This leads to a di�erent probability of hoosing between adding or deleting an edge.However, onditionally on this deision, any andidate edge has the same probability ofbeing hanged in both ases.More preisely, given a graph with n verties, the probability of adding an edge, Ag,an be obtained as the produt of the probability of adding times the probability ofhoosing a partiular edge between the ones eligible for addition, that is:Ag = 0��n2�� Eg�n2� 1A� 1�n2�� Eg =  n2!�1; (10)13



where Eg is the number of edges present in the urrent graph g.In a similar way we obtain the probability, Dg , of deleting an edge from the urrentgraph. Sine Ag = Dg the proposal ratio is equal to 1.The move is then aepted with probability equal to:� = minf1; Ragwhere: Ra = p(g 0jx)p(gjx) ;whih an be alulated as in equation (9).A hierarhial modelThe essential di�erene with the previous ase is that we now allow for a further level ofhierarhy. For instane, we an let �0 (the total prior preision) beome a random quantity,to be assigned a suitable prior distribution. As previously disussed, a hierarhial prioris, even when not stritly neessary, easier to speify a priori.It seems reasonable to assume that �0 and g are independent. As a prior for �0 weassign a Gamma distribution, with mean f and variane fs, namely:�(�0) / �(f=s)�10 e��0=swhere f > 0 and s > 0 are positive onstants appropriately hosen.Another important advantage of this new setting ours when we have inompletedata. An important example of this ourrene is given in Madigan and York (1997):one or more ell ounts may not be available. Let n0 = (n(i); i 2 I 0z � I) indiate themissing ell ounts. In this ase we an let n0 be a random vetor, to be assigned anappropriate prior distribution, possibly aording to the sampling sheme of the data.Strutural learning an then proeed, onditionally on the sampled values of n0.In general, let � denote the extra random omponent onsidered. We propose analgorithm onsisting of two stages:1) We hange the graphial struture adding/deleting only one edge at a time.14



2) We update the random parameter �Conerning the �rst step, the proposed move is aepted with probability equal to:� = minf1; Rag (11)where Ra = �(g0; � jx)�(g; � jx) :As in the nonhierarhial model the proposal ratio is equal to 1. Sine �(g; � jx) /�(xjg; � )�(g; � ), Ra simpli�es to: Ra = p(xjg0; � )p(xjg; � ) :Conerning the seond step, the new value � 0 is sampled from a normal distribution,entered around the urrent value. More preisely the proposal is: q(� 0j� ) = N(�; �2� ),where �2� is a spread parameter, to be appropriately hosen.The move is then aepted with probability:� = minf1; Rag :where: Ra = p(xjg; � 0)p(� 0)p(xjg; � )p(� )as the proposal ratio is equal to 1, being the proposal symmetri.One omplete pass over these two moves will be alled a sweep and is the basi stepof our algorithm.Clearly, when an edge is proposed for deletion the move is aepted with probability� = minf1; Rdg, where Rd = 1=Ra:In the examples below we onsider the ase in whih we update the total prior preision�0 following the proedure desribed above. The single �(i)0 is then obtained as �(i)0 =�0=jIj.A more omplex proedure ould be adopted. For example one possibility is to updateeah single �(i) separately. However, the advantages of this do not seem to ompensate15



for the inreased omplexity of the sampler and the predited extra omputational e�ort,whih disourage their implementation.3.3 Reversible jump MCMC for disrete graphial modelsA problem with the previous approahes is that they are designed for strutural, butnot for quantitative learning. For instane one ould be interested in deriving posteriorestimates, typially not available exatly (suh as posterior odds ratios) .Hene the neessity to develop a di�erent methodology. The solution we propose isbased on the appliation of the Reversible jump MCMC sampler (Green, 1995). At eahstep we move inside the spae of models and of the orresponding parameters, that is wepropose to move from (g; �g) to (g0 ; �g0 ); in the following we shall indiate with y the pair(g; �g).More preisely following GG we propose an algorithm onsisting of two steps. At the�rst step we propose to modify the graphial struture adding or deleting only one edge.This move will be done in order to keep invariant the distribution on the liques that arenot involved in the hange, and to assign a distribution on the new lique onsistent withthem. At the seond step we update the matrix of ell probabilities given a graphialstruture. Our proedure does not hange the set of liques and separators, but modi�esthe set of probabilities assoiated with them in a suitable way. We reate a di�erentdistribution belonging however to the same Markov family; the new distribution and theold one inorporate the same set of onditional independenes. If the model is hierarhialwe had a further step in whih we update the total prior preision.In the following we shall desribe in more details the proedure used.Update g move. Let g0 be a graph obtained from g adding one more edge betweenverties a and b. By adding the edge (a; b) we reate a new lique abS, in addition orsubstitution to the preexisting liques as shown in Figure (2).In order to obtain a Markov distribution with respet to the newly reated graph g0 ,the distribution orresponding to lique abS, �abS, must be onsistent with the distribu-16



tions on all the other liques of the graph. This an be obtained imposing the onsistenyof the new matrix on the subsets aS and bS.In order to obtain a Markov distribution with respet to the newly reated graph G 0,the distribution orresponding to lique abS, �abS, must be onsistent with the distribu-tions on all the other liques of the graph. This an be obtained imposing the onsistenyof the new matrix on the subsets aS and bS. In fat all the other liques of the graphare by onstrution onsistent on these subsets. Sine we are working with dihotomousvariables the number of free parameters is equal to 2jSj.The results an be easily extendedto the ase in whih the onsidered variables are no more dihotomous.We shall �x a on�guration of the separator and work in terms of the onditionaldistribution of abjS = s, �abjS=s with assigned marginals �ajS and �bjS. For eah tablewe an �x only one value, say �, that must be sampled from a suitable distribution.The orresponding value of �abS is then obtained multiplying the sampled valued by themarginal distribution of the separator.We propose to sample the new value from a normal distribution entred on (pi+ qi)=2and to rejet the new value if it does not belong to the interval (max(0; pi + qi � 1);min(pi; qi)).The proposed move, adding and edge (a; b), is aepted with probability equal to� = minf1; Rag, where: Ra = �(y0)�(y) � rm(y0)rm(y)q(z) � jJ j (12)= Rpost �Rprop � jJ j;where jJ j indiates the Jaobian of the transformation.Sine �(g; �jx) / p(xjg; �)�(�jg)p(g) the posterior ratio �(y0)=�(y) simpli�es as:Rpost = p(xjg0; �)�(�jg0)p(xjg; �)�(�jg) :Applying equation (6) we notie that alulations an be made loally onsideringonly the four omplete subsets represented in Figure (2). That is:17



�(�jg0)�(�jg) = f(�abS j�aS)f(�bT j�bS)f(�bT j�S) :Consider now the proposal ratio:Rpost = rm(y0)rm(y)q(z):It an be deomposed in two di�erent terms: Rr = rm(y0)=rm(y), obtained ontrastingthe probability of adding and deleting one edge from the onsidered graph, and q(z)�1,the probability distribution of the auxiliary variable onsidered in order to satisfy thedimension mathing problem.From (10) it follows that Rr = 1. Conerning q(z) it is obtained by the produt of 2jSjindependent normal distributions. Finally the Jaobian of the onsidered transformationis equal to Qis2Is �S(iS).When (a; b) is proposed for deletion we leave �abS unspei�ed and the aeptane ratioof the proposed move is obtained as Rd = 1=Ra:Update �.This move does not involve a hange in dimensionality, and the aeptane ratio willbe alulated applying the standard Metropolis Hastings algorithm. At eah step weupdate only one single lique; we hoose it randomly and we perturb eah elements of itsvetor of ell probabilities in a suitable way.Let �C = (�1; : : : ; �k) be the vetor of ell probabilities orresponding to liqueC. Eahelement of the previous vetor will be perturbed with a realisation from a uniform randomvariable. More preisely, the �0i are obtained as �0i = �i + yi, with yi � Uniform(��i,�i).Subsequently, we orret the newly reated matrix in order to maintain invariant themarginal distributions on the urrent separators.The proedure used will now be desribed here in algorithmi form.1. Selet randomly one lique C with matrix of ell probabilities �C = (�1; : : : ; �k) andindiate with S 0 = fS1; : : : ; SJg the set of separators having a non empty intersetionwith C. 18



2. Sample yi from a Uniform(��;+�) and set �0i = �i + yi, i = 1; : : : ; k .3. Corret the vetor of ell probabilities �0 in order to leave invariant the marginaldistributions of eah separator, Si say, in S 0. To do this, �rst alulate, for eahseparator in S 0, its marginal probability table. �0 is then orreted by a fator equalto the di�erene between the new marginal of separator Si and the old marginals.Finally, divide the obtained results by 2jCnSij.4. Choose a di�erent separator and go bak to step 3.It an be shown that the �nal result is invariant to the order in whih the separatorsare onsidered for the orretions.We remark that the proposed hange in � is aepted with probability � = minf1; Rag,where: Ra = �(y0)�(y) � q(y0)q(y) (13)= Rpost �RpropSine we are modifying only the distribution orresponding to lique C, the posteriorratio results equal to: Rpost = p(xjg; �0C)�(�0Cjg)p(xjg; �C)�(�Cjg)The proposal ratio is equal to 1 sine the proposal distribution is symmetri.We �nally remark that the algorithm presented an easily beome hierarhial, intro-duing an extra random variable � , as done in the previous subsetion.In partiular, a hange in � , will be aepted with probability equal to:� = minf1; Rag ;where Ra = p(�jg; � 0)p(� 0)p(�jg; � )p(� ) :19



4 Performane of the proposed methodsIn order to evaluate the performane of the proposed methods, we shall �rst onsidera omplete data-set, already analysed in the Literature: the Women and Mathematisdata set, whih will be used to ompare standard Oam's razor methods (as in Madiganand Raftery, 1994) to our proposed MC3 methods (nonhierarhial and hierarhial), andshow the advantages of a hierarhial prior, in terms of higher robustness of the posteriorinferene. We also ompare the results with those obtained with our reversible jumpMCMC methodology.We then onsider a more hallenging sparse table, onerning a redit soring data-set,where we ompare, using a hierarhial prior, our extendedMC3 and the reversible jumpMCMC algorithm.We remark that all of our algorithms have been previously tested with simulations fromthe prior distribution. In this way it has been possible to test the orret implementationof the algorithm. Furthermore, after having obtained the �nal results from the posterior,we have run the usual onvergene diagnostis, and found satisfatory performane of thealgorithm.4.1 Woman and mathematis data-setThis set of data onerns the attitude of New Jersey high-shool students towards math-ematis, the soure is Fowlkes et al (1988). For a desription of the problem and thedata-set we also refer to Madigan and Raftery (1994) who analysed this data-set usingBayesian disrete graphial models.The random variables of interest are:(X1) WAM Leture Attendane: attended or did not attend;(X2) Sex: female, male;(X3) Shool type: suburban or urban; 20



(X4) "I'll need mathematis in my future": agree or disagree;(X5) Subjet Preferene: math/siene or liberal arts;(X6) Future Plans: ollege or job.The aim of the researh was to investigate whether the attendane of sienti� letureswith female teahers had some inuene on the interest of females towards mathematis.There are 32768 possible models, of whih about the 20% are non deomposable. Notethat there is no lose expression that permits alulating the number of deomposablegraphs; we an empirially obtain this perentage running our algorithm to sample froma uniform prior on the model spae and onsidering the graphs never visited.We have analysed this data set both with the nonhierarhial and the hierarhialmodel, using our extended MC3 algorithm. With the nonhierarhial model the pos-terior distribution is highly sensitive to the value of the hyperparameter �0; it is moreonentrated for low values of �0 than for higher values.With �0 = 1 the best two models take into aount more than 80% of the posteriorprobability. On the other hand, with a more preise prior, with �0 = 64 we must onsider10 models to take into aount 60% of the posterior probability. Furthermore, modelranking in terms of probability depends highly on the value of the hyperparameters.We shall now present in detail results of the MCMC simulation, in the hierarhialase, taking f = 1 and s = 0:1. We have used di�erent values of the hyperparameters, butthe results do not di�er markedly from those presented below, thus showing robustnessof the hierarhial prior.We �rst hek performane issues of the algorithm. Mixing over g has been monitoredlooking at an appropriate measure of g, the number of edges present in the graph, whihdesribes the graph omplexity. In Figure (3) we have some diagnosti graphs on thenumber of edges. More preisely we represent, for a run of 100000 iterations, thinnedevery 100, the number of edges present at eah iteration and the orresponding umulativemean, autoorrelation and umulative oupany frations.Figure 3 about here21



Note that the hain explores more frequently graphs with 6 or 7 edges; the umulativemean of edges is quite stable, apart from few initial values due to the e�et of the burn-in;for all lags greater than 1 the values of the autoorrelation funtion are not signi�antlydi�erent from zero. We an thus onlude there is indiation of good stability of theMCMC output.Figure 4 reprodues the most plausible graphs, aording to the posterior distributionof g. We notie that the posterior distribution is less onentrated than in the nonhier-arhial ase: the best graph reeives about 23% of the posterior probability, and this issubstantially on�rmed hanging the values of the hyperparameters. In order to obtain70% of the posterior probability we must onsider at least 9 graphial strutures. Notealso that there is strong evidene for the marginal independene of variable X1.Figure 4 about hereThe results an be ompared with those obtained by Madigan and Raftery (1994),who selet, with a nonhierarhial model and using Oam's razor on this same data-set,two di�erent graphial strutures. We remark that their best model is the same as ours,the seond one orrespond to the third one in our seletion. However, their results aremore sensible to the prior.We shall now present briey the results obtained by the analysis of the same set usingour reversible jump MCMC methodology, using the same values for the hyperparameters.At �rst note that with the nonhierarhial model the onvergene is slower than withthe orresponding version of the MC3 algorithm. In fat in order to reah a reasonablediagnosis of onvergene, similar to that in Figure 3, we must onsider at least 200000iterations with a burn-in of 20000.This results on�rm what expeted, remember that now we generate a new realisationboth for the graphial struture and for the matrix of ell probability. Furthermore,some proposed values of the onsidered probabilities may be rejeted beause out of theboundaries.With the hierarhial model the distribution is more onentrated. In fat after 20000022



iterations and a burn in of 20000 the best model takes into more than 50% of the posteriorprobability. See �gure 5 for the posterior probability of the graphs.Figure 5 about hereAll alulations have been made on a p with a Pentium II miroproessor with 266Mhz and 128.0 MB of Ram and do take at most 30 minutes of elaboration (for thereversible Jump hierarhial models).4.2 Credit soring data-setCredit soring is a lass of statistial methods employed to lassify reditors in two riskategories: "good" and "bad" payers. By redit risk we mean the probability of a delayin the repayment of the redit granted.Statistial redit soring is a proedure to determine the probability that an appliantfor redit will repay on time the amount of redit he is granted. We shall say thatthe appliant is redit reliable. Suh a proedure is built on a database of informationonerning the redit behaviour of individuals; for instane, in a bank suh informationmay be taken from the operations registered on the individual's aount.For a review on redit soring, see e.g. Hand and Henley (1997). Here we follow thegraphial modelling approah suggested in Hand et al. (1998), who selet, from a frequen-tist viewpoint, the graphial model that best desribes the relationships between reditreliability and other variables, desribing the "banking status" of eah individual. Theythen draw inferenes onditionally on the seleted model. Here we follow our proposedBayesian approah, so that, when drawing inferenes, we take more orretly into aountinferene due to model unertainty (see e.g. Madigan and Raftery, 1994).The dataset we onsider onsists of 1000 observations on lients of a southern Ger-man bank, who were given redit, for whih 21 variables are available. The data anbe downloaded from the web page of the University of Munih: http://www.stat.uni-muenhen.de/data-sets/redit. 23



Given the extremely high sparseness of the data, we have performed a preliminarysreening of the variables, following Fahrmeir and Hamerle (1994). Therefore, the binaryrandom variables we shall onsider are:(X1) Gender(X2) Marital status: single, non single(X3) Banking aount ?(X4) Good history of banking aount ?(X5) Good repayment of past redits ?(X6) Large amount of the given redit ?(X7) Use of the redit: private, professional(X8) Credit deadline: short or long term(X9) Credit reliabilityAn important point is that the sample is strati�ed: in the sample, 700 individuals areredit reliable and 300 are not redit reliable.A lassial bakward proedure, with a signi�ane level of 5% leads to the followingresults:a) Credit reliability is onditionally independent on gender.b) Credit reliability is onditionally independent on the amount of the given redit.) Credit reliability is onditionally independent on having an aount, but not onhaving a good aount.d) Credit deadline seems to be the variable whih is mostly related to the others.24



Consider now the appliation of our proposed Bayesian methodology, with the MC3algorithm. We have taken f = 1:0 and s = 0:1.Figure 6 desribes diagnosti output on the simulation, for a run of n = 200000iterations plus n = 10000 of burn-in.Figure 6 about hereNote that the Markov hain explores most frequently graphs with 9, 10 or 11 edges(out of the possible 36); the umulative average number of edges seems to indiate a goodstability of the results.Table 1 reports the overall estimated probability of an edge being present.Table 1 about hereDi�erently from what done in the WAM ase, the high number of possible graphsmakes diÆult to disriminate between them on the basis of their posterior probabilities.Instead we suggest to build a representative graph, whih ontains all edges with a prob-ability of being present, as evaluated in Table 1, greater than a ertain threshold, suh as90%.Comparing the result with the lassial results note that the Bayesian model is moreparsimonious. Credit reliability is onditionally independent on the variables whih werealso previously suh, however there is one further independene, with marital status.However, it is important, espeially for edges whose presene is unertain, to look atthe posterior marginal odds ratios, averaged aross all models. For instane onsider edge(5,7). However, reall that, to do quantitative learning, we need to onsider the reversiblejump MCMC methodology.We remark that, as in the WAM ase, we need a longer run in order to ahieve stability,omparable to that obtained for the MCS.Figure 7 presents onvergene diagnostis for the reversible jump MCMC approah,with a burn-in of 50000 and n = 500000 subsequent iterations.Figure 7 about here25



The hain reahes stability in orrespondene to a simpler struture. In this ase themean number of edges orresponds to 9. Furthermore, we remark that edge (5; 7) is nowalmost always present in the graph and the expeted posterior odds ratio is estimated tobe equal to 2:15.5 Conluding remarksIn this paper we have onentrated on the problem of Bayesian model determination fordisrete graphial models, showing that Markov Chain Monte Carlo tehniques an be auseful tool in this �eld.Our main ontribution is the development of new MCMC tehniques to model de-termination in disrete graphial models. On one hand we have improved an existingmethodology, the MC3 algorithm by Madigan and York (1995). On the other hand wehave introdued an original methodology based on the use of the RJMCMC sampler byGreen (1995).Our results suggest employing hierarhial prior distributions, as they have two mainadvantages with respet to nonhierarhial priors: on one hand, they are easier to speify,and an thus onstitute an \automati" default hoie, espeially for highly omplexproblems; on the other hand, they seem to lead to inferenes less sensitive to the prior, asthey allow \borrowing strength" of sample information between di�erent lique domains.Although more diÆult to implement and test than the MC3, the Reversible Jumpalgorithm allows the extration of posterior inferene on any quantity of interest, in boththe hierarhial and the nonhierarhial model. For instane, posterior estimates of theodds ratios, giving the strengths of the assoiations, an be easily obtained.Both our algorithms are fully based on loal omputations, leading to eÆient om-putations. On the other hand, a possible disadvantage is that we are restrited to de-omposable graphial models. However, as shown in GG, quantitative learning in non-deomposable models an be reasonably well approximated by learning from mixtures ofdeomposable models. Alternatively, one an use the approah suggested in Dellaportas26



and Foster (1999), whih does RJMCMC model determination for both deomposableand non-deomposable graphs. However, their approah is not based on loal alulationson liques and separators, and is less suitable for the use of Hyper Markov priors.Another important weakness of the methodology is that it beomes slow for very largedomains, as the dimension of the model spae inreases more than exponentially with thenumber of verties. Researh is needed in the design of proposal moves whih an improvethe speed of onvergene as well as on the related issue of monitoring the onvergene ofthe algorithm.We �nally remark that our proposed methodology is quite general, and an be extendedto other families of graphial models. In partiular, some aspets for future researh whihwe have not onsidered are :(i) Merging the results obtained in the gaussian and in the disrete ase in order toonstrut a sampler for the analysis of mixed models.(ii) Extension of the number of fator levels for eah variables allowed, from two toarbitrary �nite values. This an be done quite easily with few modi�ations in theode.(iii) Appliation of the methodology to direted graphs. In this ase the graph an beupdated both by adding/deleting one single edge, or by hanging the diretion ofan arrow.AknowledgementThis work has been supported by EU TMR network ERB-FMRX-CT96-0095 on "Compu-tational and Statistial methods for the analysis of spatial data".The authors aknowledgePhil Dawid for helpful omments provided during the HSSS onferene on "GraphialModels" held in Tirano in September 1998; David Madigan for sending the MC3 ode;Ludwig Fahrmeir for providing the redit soring data, and Stefano Farro for the resultsof the lassial analysis of the redit soring data. The third author aknowledges support27
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Table 1: Estimated probability of an edge being presentEdge 1/100 Edge 1/100 Edge 1/100[2,1℄ 1.000000 [6,3℄ 0.000270 [8,4℄ 0.004520[3,1℄ 0.000910 [6,4℄ 0.000155 [8,5℄ 0.651470[3,2℄ 0.000000 [6,5℄ 0.014205 [8,6℄ 1.000000[4,1℄ 0.000305 [7,1℄ 0.022965 [8,7℄ 0.005060[4,2℄ 0.000380 [7,2℄ 0.004690 [9,1℄ 0.093475[4,3℄ 1.000000 [7,3℄ 0.009405 [9,2℄ 0.037830[5,1℄ 0.018675 [7,4℄ 0.034695 [9,3℄ 0.892105[5,2℄ 0.002710 [7,5℄ 0.288675 [9,4℄ 0.999835[5,3℄ 0.010265 [7,6℄ 0.005105 [9,5℄ 1.000000[5,4℄ 0.229645 [8,1℄ 0.917005 [9,6℄ 0.010960[6,1℄ 0.121920 [8,2℄ 0.049140 [9,7℄ 0.766750[6,2℄ 0.003020 [8,3℄ 0.005115 [9,8℄ 0.999805Figure 1: Example of a juntion tree
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Figure 2: Change in the Juntion tree after adding an edge between verties aand b
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aS abS bTFigure 3: Woman and mathematis: diagnosti on the number of edges presentin the graph, with the hierarhial MC3 method
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Figure 4: Woman and mathematis: most probable graphs, with the hierarhi-al MC3 method
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Figure 5: Woman and mathematis: most probable graphs, with the hierarhi-al reversible jump MCMC method
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Figure 6: Credit soring : diagnostis on the number of edges, with the hierar-hial MC3 method
Sweep

T
ra

ce

0 200 400 600 800 1000

8
9

10
11

12
13

Trace of edges

o

o

o

o

o
o

oo
o

o
oooo

o
oo
ooooo
ooooooooo
oooooooooooo
ooooooooooo
ooooooooooooo
oooooooo
ooooooo
oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooo


Sweep

C
um

av
ee

dg
es

0 200 400 600 800 1000

9.
0

9.
4

9.
8

10
.2

Cumulative mean n. of edges 
 (Mean = 10.22 )

Lag

A
C

F

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : edges

Sweeps

P
ro

ba
bi

lit
y

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative occ. fractions of edges

34



Figure 7: Credit soring : diagnostis on the number of edges, with the hierar-hial Reversible Jump MCMC method
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