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1 Introdu
tionA graphi
al model (see, for instan
e, Lauritzen, 1996), is a family of probability distrib-utions in
orporating the 
onditional independen
e assumptions represented by a graph.It is 
onstru
ted by spe
ifying lo
al dependen
ies of ea
h node of the graph in terms ofits immediate neighbours. It is then possible to work lo
ally, obtaining better results interms of statisti
al inferen
e and 
omputational eÆ
ien
y.Our motivation here is to develop eÆ
ient pro
edures for Bayesian model determina-tion in dis
rete graphi
al models, employed for the analysis of 
ontingen
y tables. Forhigh-dimensional 
ontingen
y tables the set of plausible models is large, and a full 
om-parison of all the posterior probabilities asso
iated to the 
ompeting models be
omesinfeasible. In fa
t the number of graphi
al stru
tures to examine in
reases more thanexponentially with the number of verti
es.Various solutions to this problem have been proposed, the one we suggest is basedon the appli
ation of MCMC te
hniques. This possibility has already been exploited.Madigan and York (1995), for example, introdu
e an MCMC sampler, 
alled Markov
hain Monte Carlo 
omposition (MC3 hereafter), for the analysis of de
omposable models.They 
onstru
t a Metropolis Hastings sampler that permits to explore the spa
e of allde
omposable models. Alternatively, Dellaportas and Foster (1999) have developed aMCMC sampler for model 
hoi
e in loglinear models whi
h in
lude dis
rete graphi
almodels.In this paper we shall present two di�erent MCMC samplers for the analysis of de-
omposable dis
rete graphi
al models, whi
h are fully based on lo
al 
omputations and,therefore, eÆ
ient. The �rst one is a revised version of the MC3 algorithm by Madiganand York (1995). It di�ers from the original version mainly be
ause it in
orporates alo
al 
ondition for 
he
king de
omposability. Furthermore, we shall propose an extensionwhi
h allows for a hierar
hi
al prior on the 
ell 
ounts. This methodology is suitable onlyfor quantitative learning.The se
ond sampler is based on the Reversible jump RJMCMC by Green (1995) and2




an be used both for quantitative and qualitative learning. Our methodology parallelsthat presented in Giudi
i and Green (1999) for the analysis of de
omposable gaussianmodels. As in the gaussian 
ase, at ea
h step of the algorithm we update not only thegraphi
al stru
ture (as in MC3), but also the asso
iated parameter ve
tor. Essentially,in the gaussian 
ase, pairwise 
onditional independen
e is di
tated by the absen
e of asingle parameter, whereas in the dis
rete 
ase this 
orresponds in general to non linear
onstraints on the 
ell probabilities. Furthermore, in the 
ontinuous 
ase the parameterspa
e is polynomial in the number of variables whereas in the dis
rete 
ase is exponential.This leads to substantial di�eren
es in the data stru
ture.Se
tion 2 
ontains some preliminary ba
kground on the Bayesian analysis of dis
retegraphi
al models. Se
tion 3 
ontains our proposed MCMC model determination methods.Finally, Se
tion 4 
ontains a 
omparison of the performan
es, with referen
e to two data-sets: the well-known "Woman and mathemati
s" dataset and a dataset presented inFahrmeir and Hamerle (1994) for the analysis of the 
redit s
oring problem.2 Bayesian analysis of dis
rete graphi
al models2.1 Dis
rete graphi
al modelsIn this se
tion we brie
y review the literature on dis
rete graphi
al models relevant for ourwork, making use extensively of the terminology and notation from Dawid & Lauritzen(1993) (DL hereafter), and Lauritzen (1996).A graph is a mathemati
al obje
t 
onsisting of two sets, a �nite set of verti
es, V ,and a set of edges, E, of pairs of elements taken from V , g = (V;E). We will 
onsideronly undire
ted graphs, su
h that if (a; b) 2 E then (b; a) 2 E. A graph is 
omplete if allverti
es are joined by an edge. A subset of verti
es is 
omplete if it indu
es a 
ompletesubgraph. A 
omplete subset that is not 
ontained within another 
omplete subset is
alled a 
lique. An ordering of the 
liques of an undire
ted graph, C = (C1; : : : ; Cn),is said to be perfe
t if the verti
es of ea
h 
lique Ci also 
ontained in previous 
liques3



C1; : : : ; Ci�1 are all members of one previous 
lique. The set S = fS2; : : : ; Sng identi�esthe separators. If an undire
ted graph admits a perfe
t ordering is said to be de
omposable.In the following we refer to subsets of the form A 2 A(g) = C [S where C is the 
olle
tionof 
liques of g and S a system of separators in a perfe
t ordering of su
h 
liques.For 
omputational aspe
ts it is useful to organize the 
liques of the 
onsidered graphthrough a jun
tion tree. A jun
tion tree is a graph with vertex set 
orresponding to the setC of 
liques of the graph g examined. It must satisfy the running interse
tion properties,that is for any two 
liques Ci; Cj 2 C, and any C 0 on the unique path between them,Ci \ Cj � C 0. A 
olle
tion of disjoint jun
tion trees forms a jun
tion forest. An exampleof a graph, and its asso
iated jun
tion tree, is given in Figure 1.Figure 1 about hereA graphi
al model is a family of probability distributions Markov with respe
t to agraph g; for brevity P 2 M(g). That is, the probability distributions 
onsidered mustsatisfy the 
onditional independen
e restri
tions inherent in g, but are otherwise arbitrary.Dis
rete graphi
al models des
ribe the relation between a set of k = jV j dis
reterandom variables XV = (Xv)v2V , ea
h of whi
h takes values in Iv, with I = �v2V Iv the
omplete table of 
ounts.A graphi
al model is then 
hara
terised by the 
onstraints imposed on the 
ell probabil-ities � 2 � by the 
onditional independen
es embodied in a graph g. In order to underlinethis dependen
e the parameter spa
e will be indi
ated as �g, where �g = f� : � 2M(g)g.When the graph is de
omposable an arbitrary distribution �g 2 �g is determined bythe marginal probability tables �A = (�A(iA))iA2IA, with elements �A(iA) = prfXA = iAgas in the following: �g(i) = QA2C �A(iA)QA2S �A(iA) : (1)We remark that the symbol iA indi
ates a 
ell of the marginal 
ontingen
y table
orresponding to the variables in A, a subset of V 
orresponding to a 
lique or to aseparator. 4



In this 
ase, if we indi
ate with x (n)V an observed realisation of a random sampleof n observations X(n)V = (X1V ; : : : ;XnV ) from the distribution �g 2 �g, the likelihoodL(�g) = prfX(nV = x(n)V j�; gg 
an be written as follows:L(�g) = QA2C(G) prfX(n)A = x(n)A j�AgQA2S(G) prfX(n)A = x(n)A j�Ag = QA2C(G)QiA2IA(�A(iA))nA(iA)QA2S(G)QiA2IA(�A(iA))nA(iA) ; (2)were nA(iA) = Pj:jA=iA n(j) is the observed 
ount in the 
ell iA of the marginal table ofXA.When g is not de
omposable, the fa
torisation in (1) is no longer valid and, 
onse-quently, the likelihood 
annot be fa
torised into lo
al pie
es.In this paper we 
onsider the 
ase in whi
h the variables examined are di
hotomous.Ea
h element of the ve
tor XV = (Xv)v2V is a random variable taking values in the setf0; 1g and the ve
tor XV takes values in the Cartesian produ
t f0; 1gjV j of the set f0; 1gwith itself.2.2 Hyper diri
hlet prior distributions for Bayesian learningIn the literature on graphi
al models we 
an distinguish two main aspe
ts of inferen
e,quantitative and qualitative learning. Quantitative learning means that the informationavailable is used to estimate the unknown parameters �g. On the other hand, stru
turallearning has the obje
tive of establishing whi
h graphs, and thus whi
h graphi
al modelsare best supported by the data and the prior information available. In this paper we
onsider both problems.As a prior distribution on �g we 
onsider the Hyper-Markov laws introdu
ed by DL forthe analysis of de
omposable models. In parti
ular, we 
onsider the hyper Diri
hlet laws,that 
an be used for the Bayesian analysis of dis
rete graphi
al models, see for instan
eMadigan and York (1995) and Giudi
i and Tarantola (1996).Before pro
eeding, we re
all some important properties of the Diri
hlet distribution.Let � = (�(i); i 2 I) be a ve
tor of positive 
onstants, and let A � V and B = V nA bea partition of V . If L(�) = D(�) then: 5



(i) L(�A) = D(�A);(ii) �BjA(�jiA) are all independent and distributed as D(�BjA(�jiA));(iii) �A??�BjA,where �A(iA) = Pj:jA=iA �(j) and �BjA(iBjiA) = �(i).In order to 
onstru
t a hyper Diri
hlet distribution, we must satisfy the 
ondition of
onsisten
y of the matri
es of 
ell probabilities, that is, for any two 
liques C and D:�C\D(iC\D) = XjC :jC\D=iC\D �C(jC) = XjD:jC\D=iC\D �D(jD): (3)A hyper Diri
hlet prior distribution on � 2 M(g) is then 
onstru
ted by assigning tothe probabilities �C of ea
h 
lique a Diri
hlet distribution D(�C ) with density:�(�Cj�C) / YiC2IC �C(iC)�C(iC)�1on the set where PiC �C(iC) = 1 and �C(iC) > 0.Furthermore, the hyperparameters �C are 
onstrained in order to satisfy the hyper-
onsisten
y 
ondition of the 
orresponding distribution D(�C ), that is:�C\D(iC\D) = XjC :jC\D=iC\D �C(jC) = XjD :jC\D=iC\D �D(jD): (4)The 
onstraints in (4) are automati
ally satis�ed by assigning a Diri
hlet distributionon the parameter � 
orresponding to the 
omplete graph, and obtaining the laws on the
liques by marginalisation. Alternatively, as suggested by DL one 
an take:�(i) = QC2C(G) �C(iC)QS2S(G) �S(iS) :For a 
omparison between the two approa
hes, with referen
e to smoothing e�e
ts onthe 
ell 
ounts, see Giudi
i (1998).Dl show that, given any su
h hyper
onsistent 
olle
tion �C = (�C)C2C there exists aunique law for � 
alled hyper Diri
hlet, denoted by HDg(�) whi
h is hyper Markov overM(g) and has L(�C) = D(�C) has its 
lique marginals. Furthermore, this distribution is6



strong hyper Markov. This implies that, if we 
on�ne our attention to �C with prior lawD(�C ), and the data nC from the marginal table 
orresponding to 
lique C, the posteriorlaw for �C given nC will be D(�C + nC). If the prior law is HDg(�) the posterior law willbe HDg(� + n).Regarding model 
omparison, DL give a 
losed form expression for the marginal like-lihood of g, p(x(n)V jg): p(x(n)V jg) = QC2C(G) p(x(n)C )QS2S(G) p(x(n)S ) ; (5)where, given a 
omplete subset of verti
es A 2 A(g), it turns out that:pA(x(n)A ) = �(�)�(� + n) YiA2IA  �(�A(iA) + nA(iA))�(�A(iA)) ! :Note that we have not yet spe
i�ed the density of the Hyper Diri
hlet distribution. Infa
t, the previous result show that it is not needed for stru
tural learning, at least whenthe hyperparameters are not random. However, in more general problems, su
h a densitymay be ne
essary. We shall thus present its expression, as derived by Madigan and York(1997).Let C = (C1; : : : ; Ck) be a perfe
t ordering of the 
liques of the examined graph.Consider a 
lique C1 and assign on �C1 a Diri
hlet distribution with parameter �C1 , whosedensity is (with respe
t to the Lebesgue measure):f(�C1) = �(PiC12IC1 �C1(iC1))QiC12IC1 �(�C1(iC1)) YiC12IC1 �C1(iC1)�C1(iC1 )�1The distribution of a generi
 
lique Cj is obtained 
onditioning on �C1 ; : : : ; �Cj�1 forj > 1. We note that 
onditions (4) and (3) need to be satis�ed. Sin
e � is strong hyperMarkov the distribution �Cj , given all previous 
liques depends only upon �Sj . It resultsthat the density of su
h 
onditional distribution (with respe
t to the Lebesgue measure)is: 7



f(�Cj j�Sj) = QiSj2ISj �(�Sj (iSj ))QiCj2ICj �Cj(iCj)�Cj(iCj )�1QiCj2ICj �(�Cj (iCj))QiSj2ISj �Sj(iSj )�Sj(iSj)�1 ;for �Ci satisfying (3).Finally, putting together the previous two expressions we obtain:f(�) = f(�C1) kYi=2 f(�Cij�C1; : : : ; �Ci�1)= Qkj=1QiCj2ICj �Cj(iCj)�Cj(iCj )�1	(�)Qkj=2QiSj2ISj �Sj(iSj )�Sj(iSj )�1 ; (6)where: 	(�) = Qkj=1QiCj2ICj �(�Cj (i))�(PiC12IC1 �C1(iC1))Qkj=2QiSj2ISj �(�Sj (i)):Remark. From the previous 
onstru
tion, it follows that, even for a �xed graph, avery large number of hyperparameters is to be spe
i�ed. Re
all that �C(i) indi
ates a
olle
tion of positive 
onstants related to the a priori expe
ted 
ounts in ea
h 
ell of themarginal 
ontingen
y table of the variables in C. Furthermore, it is ne
essary for themto be hyper
onsistent. Finally, as argued by DL among others, it is highly desirable thatthe priors be 
ompatible a
ross models, thus further 
ompli
ating prior spe
i�
ation.In the following we shall assume that the Diri
hlet distributions on ea
h single 
liqueare obtained by marginalisation from a unique distribution on the 
omplete graph. Sin
ethe hyperparameters 
an be interpreted as hypotheti
al marginal data 
ounts, this notionof 
ompatibility, whi
h is the same as that in DL, is equivalent to requiring that ea
hmodel has the same amount of hypotheti
al data.More pre
isely in the following we shall indi
ate with �0 = Pi2I �(i) the prior pre
isionof the 
omplete graph. Noti
e that, sin
e the prior distributions on ea
h single 
liques areobtained by marginalisation from the prior distribution on the 
omplete graph, �0 
an beequivalently obtained as PiC2IC �C(iC), for any generi
 
lique C.Regarding the value of the hyperparameters, one possibility is to assign �(i) = 1=2,following the Je�reys prior for multinomial sampling, or �(i) = 1, following a uniform8



distribution. For a dis
ussion on the 
hoi
e of the hyperparameters see, for instan
e,Dellaportas and Foster (1999).Another possible formulation is to 
onsider a more 
exible, and easier to spe
ify,hierar
hi
al prior, for instan
e letting �0 to be a random variable, to be assigned a priordistribution.3 MCMC dis
rete graphi
al model determinationIn this se
tion we shall present two di�erent methodologies for Bayesian model determi-nation for de
omposable dis
rete graphi
al models. Both methodologies are based on theappli
ation of MCMC methods.The �rst methodology presented extends the MC3 algorithm by Madigan and York(1995) by allowing for a hierar
hi
al hyper Diri
hlet on the 
ell probabilities. We alsoimprove 
omputational eÆ
ien
y of MC3, repla
ing the de
omposability test of Madiganand York (1995) with the re
ent proposal by Giudi
i and Green (1998) (GG for brevity).The se
ond methodology is based on the RJMCMC algorithm by Green (1995): at ea
hstep of the pro
edure we update the model and the 
orresponding ve
tor of parameters.This methodology is quite general, and 
an deal with any type of priors on the parameters,su
h as hierar
hi
al. Furthermore, it allows to draw posterior inferen
es on any quantityof interest, whereas this is not generally possible for MC3.For 
omparison purposes, we shall 
onsider the same two 
lasses of prior distributionsfor both 
ases, namely, a hyper Diri
hlet prior on the ve
tor of 
ell parameters. Con
erningthe model spa
e, for simpli
ity, and without loss of generality, we 
onsider a dis
reteuniform prior distribution over the set of all de
omposable graphi
al models.3.1 Identi�
ation of legal movesAs stated by Frydenberg and Lauritzen (1989), (FL hereafter), the spa
e of all de
om-posable graphs 
an be traversed by adding and deleting single edges at a time. Su
h9




hanges are 
onvenient for MCMC implementation (in terms of algebrai
 tra
tability andstatisti
al eÆ
ien
y) and will be used as basi
 steps for our sampling algorithms.Given a graph g we propose to 
onsider a new graphi
al stru
ture g0, obtained byadding/deleting one single edge. Naturally, we 
an de
ide not to 
hange the 
urrentgraph.At ea
h step, we 
an then 
hoose between three di�erent move types:1) remain with the 
urrent model;2) 
reate a new model g0 via the addition of one more edge;3) 
reate a new model g0 via the removal of an existing edge.Note that not all moves will be available at ea
h step, for example we 
annot add anedge to the 
omplete graph (graph with all edges present), nor remove one from the nullgraph (graph with no edges present).We shall only 
onsider moves, 
alled legal, that lead to a de
omposable graph. Theproblem is how to 
hara
terise su
h moves.For legal deletion we 
an use a result in FL that states that an edge 
an be removed i�it is 
ontained in only one 
lique. On the other hand, for legal additions, we now introdu
ean eÆ
ient 
ondition, re
ently proposed by GG, that permits identifying legal movementsin advan
e, that is before doing the move.We �rst remark that by adding/deleting an edge we modify only a lo
al part of thejun
tion tree, as in Figure (2). Figure 2 about hereFor this reason, GG propose to identify legal addings by a 
ondition that permits
he
king de
omposability 
onsidering only the se
tion of the jun
tion forest representedin Figure (2).Theorem (GG). Let g = (V;E) be an undire
ted de
omposable graph in whi
hverti
es a and b are not adja
ent, and let g 0 denote the graph modi�ed by the addition ofedge (a; b). The new graph g0 is de
omposable if and only if either:10



(i) [a℄ 6= [b℄, or(ii) [a℄ = [b℄ and there exist R;T � V su
h that a [ R and b [ T are 
liques, andS = R \ T is a separator on the path between a [ R and b [ T in a jun
tion forestrepresentation of the graph gWhere with [v℄ we indi
ate the set of all verti
es that are 
onne
ted to v.The above Theorem provides a simple and lo
al 
ondition for reje
ting illegal additionin advan
e. Often, a and b are adja
ent so that the sear
h will be very fast. Furthermore,the pro
edure proposed by GG 
onstru
ts the new jun
tion forest so that the 
liques areready for use in probability 
al
ulations.An alternative possibility is to reje
t illegal moves a posteriori by running an appro-priate algorithm (su
h as the Maximum Cardinality Sear
h, MCS) after ea
h graphi
alupdate, to 
he
k if the proposed graph g 0 is de
omposable. This is the solution imple-mented in the MC3 algorithm by Madigan and York (1995). However reje
ting moves aposteriori 
an be ineÆ
ient when the graphi
al stru
ture is 
omplex. GG provide empir-i
al eviden
e to support this 
laim.We now present the GG pro
edure in algorithmi
 form.Adding1) Starting from a 
lique 
ontaining a, sear
h through the 
urrent jun
tion tree 
on-taining a for the �rst 
lique 
ontaining b (say b [ T ). If none exists, the graph isdis
onne
ted: go to 4).2) Starting from b [ T , go ba
kwards through the jun
tion tree along the path foundin 1), until the �rst 
lique 
ontaining a is found (
all it a [R). Che
k if R \ T 6= ;and R \ T is a separator on the path. If not, reje
t the move (the proposed g0 isnot de
omposable): return.3) If a [R, b [ T are not adja
ent, permute the jun
tion tree until they are.4) De
ide whether to a

ept the proposed move.5) If the move is a

epted, update the graph and the jun
tion forest.11



6) Return.Deleting1) Starting from a 
lique 
ontaining a sear
h through the 
urrent jun
tion tree whilethe 
liques 
ontain a until all 
liques 
ontaining b are found.2) If none is found, there is an error, a and b are not adja
ent. If only one is found goto 3). Otherwise, if more than one are found, reje
t the move (the proposed g0 isnot de
omposable): return.3) De
ide whether to a

ept the proposed move.4) If the move is a

epted, update the graph and the jun
tion forest.5) Return.We �nally remark that, a

ording to Figure 2, in our algorithm we treat separatelyfour parti
ular 
ases: a) R = T = R \ T ; b) R = R \ T 6= T ; 
) R 6= R \ T = T ; d)R \ T = ;.3.2 A new version of MC3We shall �rst re
all the original version of the MC3 algorithm. It permits 
onstru
ting aMarkov Chain having p(gjx) as its target distribution.Given a graph g, indi
ate with nbd(g) its neighbourhood 
onsisting of g itself and theset of graphs with either one more or one fewer edge than g. Suppose that from g theonly possible move is to a graph g0 belonging to its neighbourhood. Ea
h g0 
an be 
hosenwith the same probability.The transition probability q(g; g0) is then equal to 0 for all g0 62 nbd(g) and 
onstantfor all g0 2 nbd(g).Suppose that from a graph g we propose to move to graph g0 obtained by adding onemore edge between verti
es a and b.The proposed move is a

epted with probability equal to:12



� = minf1; Rag (7)where: Ra = #(nbd(g))p(g 0jx)#(nbd(g0))p(gjx) (8)Sin
e p(gjx) / p(xjg)p(g), (7) involves the data only through the Bayes fa
tor p(xjg0)=p(xjg).We 
an then apply the results presented in se
tion 2 and 
al
ulate the previous ratio bylo
al 
omputations, that is:Ra = p(xjg0)p(xjg) = pS(x(n)S )pabS(x(n)abS)paS(x(n)ab )pbS(x(n)bS ) : (9)Noti
e that 
al
ulations involve only the lo
al part of the jun
tion tree represented inFigure (2).We propose to modify the algorithm des
ribed above in two dire
tions leading to anonhierar
hi
al and to a hierar
hi
al version.A nonhierar
hi
al modelThe main di�eren
e with respe
t to the original formulation is that, in order to 
he
klegal addings, we use the 
ondition proposed by GG instead of MCS.Furthermore, in the new version the proposal ratio is determined di�erently, that is
ontrasting the probability of adding and deleting an edge from the 
onsidered graph.This leads to a di�erent probability of 
hoosing between adding or deleting an edge.However, 
onditionally on this de
ision, any 
andidate edge has the same probability ofbeing 
hanged in both 
ases.More pre
isely, given a graph with n verti
es, the probability of adding an edge, Ag,
an be obtained as the produ
t of the probability of adding times the probability of
hoosing a parti
ular edge between the ones eligible for addition, that is:Ag = 0��n2�� Eg�n2� 1A� 1�n2�� Eg =  n2!�1; (10)13



where Eg is the number of edges present in the 
urrent graph g.In a similar way we obtain the probability, Dg , of deleting an edge from the 
urrentgraph. Sin
e Ag = Dg the proposal ratio is equal to 1.The move is then a

epted with probability equal to:� = minf1; Ragwhere: Ra = p(g 0jx)p(gjx) ;whi
h 
an be 
al
ulated as in equation (9).A hierar
hi
al modelThe essential di�eren
e with the previous 
ase is that we now allow for a further level ofhierar
hy. For instan
e, we 
an let �0 (the total prior pre
ision) be
ome a random quantity,to be assigned a suitable prior distribution. As previously dis
ussed, a hierar
hi
al prioris, even when not stri
tly ne
essary, easier to spe
ify a priori.It seems reasonable to assume that �0 and g are independent. As a prior for �0 weassign a Gamma distribution, with mean f and varian
e fs, namely:�(�0) / �(f=s)�10 e��0=swhere f > 0 and s > 0 are positive 
onstants appropriately 
hosen.Another important advantage of this new setting o

urs when we have in
ompletedata. An important example of this o

urren
e is given in Madigan and York (1997):one or more 
ell 
ounts may not be available. Let n0 = (n(i); i 2 I 0z � I) indi
ate themissing 
ell 
ounts. In this 
ase we 
an let n0 be a random ve
tor, to be assigned anappropriate prior distribution, possibly a

ording to the sampling s
heme of the data.Stru
tural learning 
an then pro
eed, 
onditionally on the sampled values of n0.In general, let � denote the extra random 
omponent 
onsidered. We propose analgorithm 
onsisting of two stages:1) We 
hange the graphi
al stru
ture adding/deleting only one edge at a time.14



2) We update the random parameter �Con
erning the �rst step, the proposed move is a

epted with probability equal to:� = minf1; Rag (11)where Ra = �(g0; � jx)�(g; � jx) :As in the nonhierar
hi
al model the proposal ratio is equal to 1. Sin
e �(g; � jx) /�(xjg; � )�(g; � ), Ra simpli�es to: Ra = p(xjg0; � )p(xjg; � ) :Con
erning the se
ond step, the new value � 0 is sampled from a normal distribution,
entered around the 
urrent value. More pre
isely the proposal is: q(� 0j� ) = N(�; �2� ),where �2� is a spread parameter, to be appropriately 
hosen.The move is then a

epted with probability:� = minf1; Rag :where: Ra = p(xjg; � 0)p(� 0)p(xjg; � )p(� )as the proposal ratio is equal to 1, being the proposal symmetri
.One 
omplete pass over these two moves will be 
alled a sweep and is the basi
 stepof our algorithm.Clearly, when an edge is proposed for deletion the move is a

epted with probability� = minf1; Rdg, where Rd = 1=Ra:In the examples below we 
onsider the 
ase in whi
h we update the total prior pre
ision�0 following the pro
edure des
ribed above. The single �(i)0 is then obtained as �(i)0 =�0=jIj.A more 
omplex pro
edure 
ould be adopted. For example one possibility is to updateea
h single �(i) separately. However, the advantages of this do not seem to 
ompensate15



for the in
reased 
omplexity of the sampler and the predi
ted extra 
omputational e�ort,whi
h dis
ourage their implementation.3.3 Reversible jump MCMC for dis
rete graphi
al modelsA problem with the previous approa
hes is that they are designed for stru
tural, butnot for quantitative learning. For instan
e one 
ould be interested in deriving posteriorestimates, typi
ally not available exa
tly (su
h as posterior odds ratios) .Hen
e the ne
essity to develop a di�erent methodology. The solution we propose isbased on the appli
ation of the Reversible jump MCMC sampler (Green, 1995). At ea
hstep we move inside the spa
e of models and of the 
orresponding parameters, that is wepropose to move from (g; �g) to (g0 ; �g0 ); in the following we shall indi
ate with y the pair(g; �g).More pre
isely following GG we propose an algorithm 
onsisting of two steps. At the�rst step we propose to modify the graphi
al stru
ture adding or deleting only one edge.This move will be done in order to keep invariant the distribution on the 
liques that arenot involved in the 
hange, and to assign a distribution on the new 
lique 
onsistent withthem. At the se
ond step we update the matrix of 
ell probabilities given a graphi
alstru
ture. Our pro
edure does not 
hange the set of 
liques and separators, but modi�esthe set of probabilities asso
iated with them in a suitable way. We 
reate a di�erentdistribution belonging however to the same Markov family; the new distribution and theold one in
orporate the same set of 
onditional independen
es. If the model is hierar
hi
alwe had a further step in whi
h we update the total prior pre
ision.In the following we shall des
ribe in more details the pro
edure used.Update g move. Let g0 be a graph obtained from g adding one more edge betweenverti
es a and b. By adding the edge (a; b) we 
reate a new 
lique abS, in addition orsubstitution to the preexisting 
liques as shown in Figure (2).In order to obtain a Markov distribution with respe
t to the newly 
reated graph g0 ,the distribution 
orresponding to 
lique abS, �abS, must be 
onsistent with the distribu-16



tions on all the other 
liques of the graph. This 
an be obtained imposing the 
onsisten
yof the new matrix on the subsets aS and bS.In order to obtain a Markov distribution with respe
t to the newly 
reated graph G 0,the distribution 
orresponding to 
lique abS, �abS, must be 
onsistent with the distribu-tions on all the other 
liques of the graph. This 
an be obtained imposing the 
onsisten
yof the new matrix on the subsets aS and bS. In fa
t all the other 
liques of the graphare by 
onstru
tion 
onsistent on these subsets. Sin
e we are working with di
hotomousvariables the number of free parameters is equal to 2jSj.The results 
an be easily extendedto the 
ase in whi
h the 
onsidered variables are no more di
hotomous.We shall �x a 
on�guration of the separator and work in terms of the 
onditionaldistribution of abjS = s, �abjS=s with assigned marginals �ajS and �bjS. For ea
h tablewe 
an �x only one value, say �, that must be sampled from a suitable distribution.The 
orresponding value of �abS is then obtained multiplying the sampled valued by themarginal distribution of the separator.We propose to sample the new value from a normal distribution 
entred on (pi+ qi)=2and to reje
t the new value if it does not belong to the interval (max(0; pi + qi � 1);min(pi; qi)).The proposed move, adding and edge (a; b), is a

epted with probability equal to� = minf1; Rag, where: Ra = �(y0)�(y) � rm(y0)rm(y)q(z) � jJ j (12)= Rpost �Rprop � jJ j;where jJ j indi
ates the Ja
obian of the transformation.Sin
e �(g; �jx) / p(xjg; �)�(�jg)p(g) the posterior ratio �(y0)=�(y) simpli�es as:Rpost = p(xjg0; �)�(�jg0)p(xjg; �)�(�jg) :Applying equation (6) we noti
e that 
al
ulations 
an be made lo
ally 
onsideringonly the four 
omplete subsets represented in Figure (2). That is:17



�(�jg0)�(�jg) = f(�abS j�aS)f(�bT j�bS)f(�bT j�S) :Consider now the proposal ratio:Rpost = rm(y0)rm(y)q(z):It 
an be de
omposed in two di�erent terms: Rr = rm(y0)=rm(y), obtained 
ontrastingthe probability of adding and deleting one edge from the 
onsidered graph, and q(z)�1,the probability distribution of the auxiliary variable 
onsidered in order to satisfy thedimension mat
hing problem.From (10) it follows that Rr = 1. Con
erning q(z) it is obtained by the produ
t of 2jSjindependent normal distributions. Finally the Ja
obian of the 
onsidered transformationis equal to Qis2Is �S(iS).When (a; b) is proposed for deletion we leave �abS unspe
i�ed and the a

eptan
e ratioof the proposed move is obtained as Rd = 1=Ra:Update �.This move does not involve a 
hange in dimensionality, and the a

eptan
e ratio willbe 
al
ulated applying the standard Metropolis Hastings algorithm. At ea
h step weupdate only one single 
lique; we 
hoose it randomly and we perturb ea
h elements of itsve
tor of 
ell probabilities in a suitable way.Let �C = (�1; : : : ; �k) be the ve
tor of 
ell probabilities 
orresponding to 
liqueC. Ea
helement of the previous ve
tor will be perturbed with a realisation from a uniform randomvariable. More pre
isely, the �0i are obtained as �0i = �i + yi, with yi � Uniform(��i,�i).Subsequently, we 
orre
t the newly 
reated matrix in order to maintain invariant themarginal distributions on the 
urrent separators.The pro
edure used will now be des
ribed here in algorithmi
 form.1. Sele
t randomly one 
lique C with matrix of 
ell probabilities �C = (�1; : : : ; �k) andindi
ate with S 0 = fS1; : : : ; SJg the set of separators having a non empty interse
tionwith C. 18



2. Sample yi from a Uniform(��;+�) and set �0i = �i + yi, i = 1; : : : ; k .3. Corre
t the ve
tor of 
ell probabilities �0 in order to leave invariant the marginaldistributions of ea
h separator, Si say, in S 0. To do this, �rst 
al
ulate, for ea
hseparator in S 0, its marginal probability table. �0 is then 
orre
ted by a fa
tor equalto the di�eren
e between the new marginal of separator Si and the old marginals.Finally, divide the obtained results by 2jCnSij.4. Choose a di�erent separator and go ba
k to step 3.It 
an be shown that the �nal result is invariant to the order in whi
h the separatorsare 
onsidered for the 
orre
tions.We remark that the proposed 
hange in � is a

epted with probability � = minf1; Rag,where: Ra = �(y0)�(y) � q(y0)q(y) (13)= Rpost �RpropSin
e we are modifying only the distribution 
orresponding to 
lique C, the posteriorratio results equal to: Rpost = p(xjg; �0C)�(�0Cjg)p(xjg; �C)�(�Cjg)The proposal ratio is equal to 1 sin
e the proposal distribution is symmetri
.We �nally remark that the algorithm presented 
an easily be
ome hierar
hi
al, intro-du
ing an extra random variable � , as done in the previous subse
tion.In parti
ular, a 
hange in � , will be a

epted with probability equal to:� = minf1; Rag ;where Ra = p(�jg; � 0)p(� 0)p(�jg; � )p(� ) :19



4 Performan
e of the proposed methodsIn order to evaluate the performan
e of the proposed methods, we shall �rst 
onsidera 
omplete data-set, already analysed in the Literature: the Women and Mathemati
sdata set, whi
h will be used to 
ompare standard O

am's razor methods (as in Madiganand Raftery, 1994) to our proposed MC3 methods (nonhierar
hi
al and hierar
hi
al), andshow the advantages of a hierar
hi
al prior, in terms of higher robustness of the posteriorinferen
e. We also 
ompare the results with those obtained with our reversible jumpMCMC methodology.We then 
onsider a more 
hallenging sparse table, 
on
erning a 
redit s
oring data-set,where we 
ompare, using a hierar
hi
al prior, our extendedMC3 and the reversible jumpMCMC algorithm.We remark that all of our algorithms have been previously tested with simulations fromthe prior distribution. In this way it has been possible to test the 
orre
t implementationof the algorithm. Furthermore, after having obtained the �nal results from the posterior,we have run the usual 
onvergen
e diagnosti
s, and found satisfa
tory performan
e of thealgorithm.4.1 Woman and mathemati
s data-setThis set of data 
on
erns the attitude of New Jersey high-s
hool students towards math-emati
s, the sour
e is Fowlkes et al (1988). For a des
ription of the problem and thedata-set we also refer to Madigan and Raftery (1994) who analysed this data-set usingBayesian dis
rete graphi
al models.The random variables of interest are:(X1) WAM Le
ture Attendan
e: attended or did not attend;(X2) Sex: female, male;(X3) S
hool type: suburban or urban; 20



(X4) "I'll need mathemati
s in my future": agree or disagree;(X5) Subje
t Preferen
e: math/s
ien
e or liberal arts;(X6) Future Plans: 
ollege or job.The aim of the resear
h was to investigate whether the attendan
e of s
ienti�
 le
tureswith female tea
hers had some in
uen
e on the interest of females towards mathemati
s.There are 32768 possible models, of whi
h about the 20% are non de
omposable. Notethat there is no 
lose expression that permits 
al
ulating the number of de
omposablegraphs; we 
an empiri
ally obtain this per
entage running our algorithm to sample froma uniform prior on the model spa
e and 
onsidering the graphs never visited.We have analysed this data set both with the nonhierar
hi
al and the hierar
hi
almodel, using our extended MC3 algorithm. With the nonhierar
hi
al model the pos-terior distribution is highly sensitive to the value of the hyperparameter �0; it is more
on
entrated for low values of �0 than for higher values.With �0 = 1 the best two models take into a

ount more than 80% of the posteriorprobability. On the other hand, with a more pre
ise prior, with �0 = 64 we must 
onsider10 models to take into a

ount 60% of the posterior probability. Furthermore, modelranking in terms of probability depends highly on the value of the hyperparameters.We shall now present in detail results of the MCMC simulation, in the hierar
hi
al
ase, taking f = 1 and s = 0:1. We have used di�erent values of the hyperparameters, butthe results do not di�er markedly from those presented below, thus showing robustnessof the hierar
hi
al prior.We �rst 
he
k performan
e issues of the algorithm. Mixing over g has been monitoredlooking at an appropriate measure of g, the number of edges present in the graph, whi
hdes
ribes the graph 
omplexity. In Figure (3) we have some diagnosti
 graphs on thenumber of edges. More pre
isely we represent, for a run of 100000 iterations, thinnedevery 100, the number of edges present at ea
h iteration and the 
orresponding 
umulativemean, auto
orrelation and 
umulative o

upan
y fra
tions.Figure 3 about here21



Note that the 
hain explores more frequently graphs with 6 or 7 edges; the 
umulativemean of edges is quite stable, apart from few initial values due to the e�e
t of the burn-in;for all lags greater than 1 the values of the auto
orrelation fun
tion are not signi�
antlydi�erent from zero. We 
an thus 
on
lude there is indi
ation of good stability of theMCMC output.Figure 4 reprodu
es the most plausible graphs, a

ording to the posterior distributionof g. We noti
e that the posterior distribution is less 
on
entrated than in the nonhier-ar
hi
al 
ase: the best graph re
eives about 23% of the posterior probability, and this issubstantially 
on�rmed 
hanging the values of the hyperparameters. In order to obtain70% of the posterior probability we must 
onsider at least 9 graphi
al stru
tures. Notealso that there is strong eviden
e for the marginal independen
e of variable X1.Figure 4 about hereThe results 
an be 
ompared with those obtained by Madigan and Raftery (1994),who sele
t, with a nonhierar
hi
al model and using O

am's razor on this same data-set,two di�erent graphi
al stru
tures. We remark that their best model is the same as ours,the se
ond one 
orrespond to the third one in our sele
tion. However, their results aremore sensible to the prior.We shall now present brie
y the results obtained by the analysis of the same set usingour reversible jump MCMC methodology, using the same values for the hyperparameters.At �rst note that with the nonhierar
hi
al model the 
onvergen
e is slower than withthe 
orresponding version of the MC3 algorithm. In fa
t in order to rea
h a reasonablediagnosis of 
onvergen
e, similar to that in Figure 3, we must 
onsider at least 200000iterations with a burn-in of 20000.This results 
on�rm what expe
ted, remember that now we generate a new realisationboth for the graphi
al stru
ture and for the matrix of 
ell probability. Furthermore,some proposed values of the 
onsidered probabilities may be reje
ted be
ause out of theboundaries.With the hierar
hi
al model the distribution is more 
on
entrated. In fa
t after 20000022



iterations and a burn in of 20000 the best model takes into more than 50% of the posteriorprobability. See �gure 5 for the posterior probability of the graphs.Figure 5 about hereAll 
al
ulations have been made on a p
 with a Pentium II mi
ropro
essor with 266Mhz and 128.0 MB of Ram and do take at most 30 minutes of elaboration (for thereversible Jump hierar
hi
al models).4.2 Credit s
oring data-setCredit s
oring is a 
lass of statisti
al methods employed to 
lassify 
reditors in two risk
ategories: "good" and "bad" payers. By 
redit risk we mean the probability of a delayin the repayment of the 
redit granted.Statisti
al 
redit s
oring is a pro
edure to determine the probability that an appli
antfor 
redit will repay on time the amount of 
redit he is granted. We shall say thatthe appli
ant is 
redit reliable. Su
h a pro
edure is built on a database of information
on
erning the 
redit behaviour of individuals; for instan
e, in a bank su
h informationmay be taken from the operations registered on the individual's a

ount.For a review on 
redit s
oring, see e.g. Hand and Henley (1997). Here we follow thegraphi
al modelling approa
h suggested in Hand et al. (1998), who sele
t, from a frequen-tist viewpoint, the graphi
al model that best des
ribes the relationships between 
reditreliability and other variables, des
ribing the "banking status" of ea
h individual. Theythen draw inferen
es 
onditionally on the sele
ted model. Here we follow our proposedBayesian approa
h, so that, when drawing inferen
es, we take more 
orre
tly into a

ountinferen
e due to model un
ertainty (see e.g. Madigan and Raftery, 1994).The dataset we 
onsider 
onsists of 1000 observations on 
lients of a southern Ger-man bank, who were given 
redit, for whi
h 21 variables are available. The data 
anbe downloaded from the web page of the University of Muni
h: http://www.stat.uni-muen
hen.de/data-sets/
redit. 23



Given the extremely high sparseness of the data, we have performed a preliminarys
reening of the variables, following Fahrmeir and Hamerle (1994). Therefore, the binaryrandom variables we shall 
onsider are:(X1) Gender(X2) Marital status: single, non single(X3) Banking a

ount ?(X4) Good history of banking a

ount ?(X5) Good repayment of past 
redits ?(X6) Large amount of the given 
redit ?(X7) Use of the 
redit: private, professional(X8) Credit deadline: short or long term(X9) Credit reliabilityAn important point is that the sample is strati�ed: in the sample, 700 individuals are
redit reliable and 300 are not 
redit reliable.A 
lassi
al ba
kward pro
edure, with a signi�
an
e level of 5% leads to the followingresults:a) Credit reliability is 
onditionally independent on gender.b) Credit reliability is 
onditionally independent on the amount of the given 
redit.
) Credit reliability is 
onditionally independent on having an a

ount, but not onhaving a good a

ount.d) Credit deadline seems to be the variable whi
h is mostly related to the others.24



Consider now the appli
ation of our proposed Bayesian methodology, with the MC3algorithm. We have taken f = 1:0 and s = 0:1.Figure 6 des
ribes diagnosti
 output on the simulation, for a run of n = 200000iterations plus n = 10000 of burn-in.Figure 6 about hereNote that the Markov 
hain explores most frequently graphs with 9, 10 or 11 edges(out of the possible 36); the 
umulative average number of edges seems to indi
ate a goodstability of the results.Table 1 reports the overall estimated probability of an edge being present.Table 1 about hereDi�erently from what done in the WAM 
ase, the high number of possible graphsmakes diÆ
ult to dis
riminate between them on the basis of their posterior probabilities.Instead we suggest to build a representative graph, whi
h 
ontains all edges with a prob-ability of being present, as evaluated in Table 1, greater than a 
ertain threshold, su
h as90%.Comparing the result with the 
lassi
al results note that the Bayesian model is moreparsimonious. Credit reliability is 
onditionally independent on the variables whi
h werealso previously su
h, however there is one further independen
e, with marital status.However, it is important, espe
ially for edges whose presen
e is un
ertain, to look atthe posterior marginal odds ratios, averaged a
ross all models. For instan
e 
onsider edge(5,7). However, re
all that, to do quantitative learning, we need to 
onsider the reversiblejump MCMC methodology.We remark that, as in the WAM 
ase, we need a longer run in order to a
hieve stability,
omparable to that obtained for the MCS.Figure 7 presents 
onvergen
e diagnosti
s for the reversible jump MCMC approa
h,with a burn-in of 50000 and n = 500000 subsequent iterations.Figure 7 about here25



The 
hain rea
hes stability in 
orresponden
e to a simpler stru
ture. In this 
ase themean number of edges 
orresponds to 9. Furthermore, we remark that edge (5; 7) is nowalmost always present in the graph and the expe
ted posterior odds ratio is estimated tobe equal to 2:15.5 Con
luding remarksIn this paper we have 
on
entrated on the problem of Bayesian model determination fordis
rete graphi
al models, showing that Markov Chain Monte Carlo te
hniques 
an be auseful tool in this �eld.Our main 
ontribution is the development of new MCMC te
hniques to model de-termination in dis
rete graphi
al models. On one hand we have improved an existingmethodology, the MC3 algorithm by Madigan and York (1995). On the other hand wehave introdu
ed an original methodology based on the use of the RJMCMC sampler byGreen (1995).Our results suggest employing hierar
hi
al prior distributions, as they have two mainadvantages with respe
t to nonhierar
hi
al priors: on one hand, they are easier to spe
ify,and 
an thus 
onstitute an \automati
" default 
hoi
e, espe
ially for highly 
omplexproblems; on the other hand, they seem to lead to inferen
es less sensitive to the prior, asthey allow \borrowing strength" of sample information between di�erent 
lique domains.Although more diÆ
ult to implement and test than the MC3, the Reversible Jumpalgorithm allows the extra
tion of posterior inferen
e on any quantity of interest, in boththe hierar
hi
al and the nonhierar
hi
al model. For instan
e, posterior estimates of theodds ratios, giving the strengths of the asso
iations, 
an be easily obtained.Both our algorithms are fully based on lo
al 
omputations, leading to eÆ
ient 
om-putations. On the other hand, a possible disadvantage is that we are restri
ted to de-
omposable graphi
al models. However, as shown in GG, quantitative learning in non-de
omposable models 
an be reasonably well approximated by learning from mixtures ofde
omposable models. Alternatively, one 
an use the approa
h suggested in Dellaportas26



and Foster (1999), whi
h does RJMCMC model determination for both de
omposableand non-de
omposable graphs. However, their approa
h is not based on lo
al 
al
ulationson 
liques and separators, and is less suitable for the use of Hyper Markov priors.Another important weakness of the methodology is that it be
omes slow for very largedomains, as the dimension of the model spa
e in
reases more than exponentially with thenumber of verti
es. Resear
h is needed in the design of proposal moves whi
h 
an improvethe speed of 
onvergen
e as well as on the related issue of monitoring the 
onvergen
e ofthe algorithm.We �nally remark that our proposed methodology is quite general, and 
an be extendedto other families of graphi
al models. In parti
ular, some aspe
ts for future resear
h whi
hwe have not 
onsidered are :(i) Merging the results obtained in the gaussian and in the dis
rete 
ase in order to
onstru
t a sampler for the analysis of mixed models.(ii) Extension of the number of fa
tor levels for ea
h variables allowed, from two toarbitrary �nite values. This 
an be done quite easily with few modi�
ations in the
ode.(iii) Appli
ation of the methodology to dire
ted graphs. In this 
ase the graph 
an beupdated both by adding/deleting one single edge, or by 
hanging the dire
tion ofan arrow.A
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Table 1: Estimated probability of an edge being presentEdge 1/100 Edge 1/100 Edge 1/100[2,1℄ 1.000000 [6,3℄ 0.000270 [8,4℄ 0.004520[3,1℄ 0.000910 [6,4℄ 0.000155 [8,5℄ 0.651470[3,2℄ 0.000000 [6,5℄ 0.014205 [8,6℄ 1.000000[4,1℄ 0.000305 [7,1℄ 0.022965 [8,7℄ 0.005060[4,2℄ 0.000380 [7,2℄ 0.004690 [9,1℄ 0.093475[4,3℄ 1.000000 [7,3℄ 0.009405 [9,2℄ 0.037830[5,1℄ 0.018675 [7,4℄ 0.034695 [9,3℄ 0.892105[5,2℄ 0.002710 [7,5℄ 0.288675 [9,4℄ 0.999835[5,3℄ 0.010265 [7,6℄ 0.005105 [9,5℄ 1.000000[5,4℄ 0.229645 [8,1℄ 0.917005 [9,6℄ 0.010960[6,1℄ 0.121920 [8,2℄ 0.049140 [9,7℄ 0.766750[6,2℄ 0.003020 [8,3℄ 0.005115 [9,8℄ 0.999805Figure 1: Example of a jun
tion tree
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Figure 2: Change in the Jun
tion tree after adding an edge between verti
es aand b
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aS abS bTFigure 3: Woman and mathemati
s: diagnosti
 on the number of edges presentin the graph, with the hierar
hi
al MC3 method
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Figure 4: Woman and mathemati
s: most probable graphs, with the hierar
hi-
al MC3 method
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Figure 5: Woman and mathemati
s: most probable graphs, with the hierar
hi-
al reversible jump MCMC method
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Figure 6: Credit s
oring : diagnosti
s on the number of edges, with the hierar-
hi
al MC3 method
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Figure 7: Credit s
oring : diagnosti
s on the number of edges, with the hierar-
hi
al Reversible Jump MCMC method
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