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Abstract

We present a novel methodology for bayesian model determination in discrete
decomposable graphical models. We assign, for each given graph, a Hyper Dirich-
let distribution on the matrix of cell probabilities. To ensure compatibility across
models such prior distributions are obtained by marginalisation from the prior con-
ditional on the complete graph. This leads to a prior distribution automatically
satisfying the hyperconsistency criterion. Our contribution is twofold. On one hand
we improve an existing methodology, the MC? algorithm by Madigan and York
(1995). On the other hand we introduce an original methodology based on the use
of the Reversible jump sampler by Green (1995) and Giudici and Green (1999).
lL.egal movement, that is leading to a decomposable graph, are identified making use

of the junction tree representation of the considered graph.
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1 Introduction

A graphical model (see, for instance, Lauritzen, 1996), is a family of probability distrib-
utions incorporating the conditional independence assumptions represented by a graph.
It is constructed by specifying local dependencies of each node of the graph in terms of
its immediate neighbours. It is then possible to work locally, obtaining better results in
terms of statistical inference and computational efficiency.

Our motivation here is to develop efficient procedures for Bayesian model determina-
tion in discrete graphical models, employed for the analysis of contingency tables. For
high-dimensional contingency tables the set of plausible models is large, and a full com-
parison of all the posterior probabilities associated to the competing models becomes
infeasible. In fact the number of graphical structures to examine increases more than
exponentially with the number of vertices.

Various solutions to this problem have been proposed, the one we suggest is based
on the application of MCMC techniques. This possibility has already been exploited.
Madigan and York (1995), for example, introduce an MCMC sampler, called Markov
chain Monte Carlo composition (M C? hereafter), for the analysis of decomposable models.
They construct a Metropolis Hastings sampler that permits to explore the space of all
decomposable models.  Alternatively, Dellaportas and Foster (1999) have developed a
MCMC sampler for model choice in loglinear models which include discrete graphical
models.

In this paper we shall present two different MCMC samplers for the analysis of de-
composable discrete graphical models, which are fully based on local computations and,
therefore, efficient. The first one is a revised version of the M(C? algorithm by Madigan
and York (1995). Tt differs from the original version mainly because it incorporates a
local condition for checking decomposability. Furthermore, we shall propose an extension
which allows for a hierarchical prior on the cell counts. This methodology is suitable only

for quantitative learning.

The second sampler is based on the Reversible jump RIMCMC by Green (1995) and



can be used both for quantitative and qualitative learning. Our methodology parallels
that presented in Giudici and Green (1999) for the analysis of decomposable gaussian
models. As in the gaussian case, at each step of the algorithm we update not only the
graphical structure (as in MC?), but also the associated parameter vector. Essentially,
in the gaussian case, pairwise conditional independence is dictated by the absence of a
single parameter, whereas in the discrete case this corresponds in general to non linear
constraints on the cell probabilities. Furthermore, in the continuous case the parameter
space is polynomial in the number of variables whereas in the discrete case is exponential.
This leads to substantial differences in the data structure.

Section 2 contains some preliminary background on the Bayesian analysis of discrete
graphical models. Section 3 contains our proposed MCMC model determination methods.
Finally, Section 4 contains a comparison of the performances, with reference to two data-
sets: the well-known "Woman and mathematics” dataset and a dataset presented in

Fahrmeir and Hamerle (1994) for the analysis of the credit scoring problem.

2 Bayesian analysis of discrete graphical models

2.1 Discrete graphical models

In this section we briefly review the literature on discrete graphical models relevant for our
work, making use extensively of the terminology and notation from Dawid & Lauritzen
(1993) (DI, hereafter), and Lauritzen (1996).

A graph is a mathematical object consisting of two sets, a finite set of wvertices, V,
and a set of edges, F, of pairs of elements taken from V., g = (V, F). We will consider
only undirected graphs, such that if (a,b) € F then (b,a) € F. A graph is complete if all
vertices are joined by an edge. A subset of vertices is complete if it induces a complete
subgraph. A complete subset that is not contained within another complete subset is
called a cligue. An ordering of the cliques of an undirected graph, C = (C4,...,C,),

is said to be perfect if the vertices of each clique (; also contained in previous cliques



Cy,...,C;_ are all members of one previous clique. The set & = {S,,...,5,} identifies
the separators. If an undirected graph admits a perfect ordering is said to be decomposable.
In the following we refer to subsets of the form A € A(g) = CUS where C is the collection
of cliques of g and § a system of separators in a perfect ordering of such cliques.

For computational aspects it is useful to organize the cliques of the considered graph
through a junction tree. A junction tree is a graph with vertex set corresponding to the set
C of cliques of the graph ¢ examined. Tt must satisfy the running intersection properties,
that is for any two cliques C;,C; € C, and any C’ on the unique path hetween them,
C;NC; C C'. A collection of disjoint junction trees forms a junction forest. An example

of a graph, and its associated junction tree, is given in Figure 1.
Figure 1 about here

A graphical model is a family of probability distributions Markov with respect to a
graph ¢; for brevity P € M(g). That is, the probability distributions considered must
satisfy the conditional independence restrictions inherent in ¢, but are otherwise arbitrary.

Discrete graphical models describe the relation between a set of & = |V discrete
random variables Xy = (X, ),ev, each of which takes values in Z,,, with Z = x,cvZ, the
complete table of counts.

A graphical model is then characterised by the constraints imposed on the cell probabil-
ities § € O by the conditional independences embodied in a graph ¢g. In order to underline
this dependence the parameter space will be indicated as ©,, where ©, = {0 : § € M(qg)}.

When the graph is decomposable an arbitrary distribution 4, € 0, is determined by
the marginal probability tables 84 = (04(74))i ,e7,, with elements 04(ia) = pr{ X1 =14}

as in the following:

- HAGC 'QA(iA)
 Tlaes 0a(ia) ()

We remark that the symbol 74 indicates a cell of the marginal contingency table

0, (1)

corresponding to the variables in A, a subset of V' corresponding to a clique or to a

separator.



(n)

In this case, if we indicate with 2’ an observed realisation of a random sample
of n observations X‘(/n) = (X}, ..., X3) from the distribution 8, € ©,, the likelihood

L9, = pr{X‘(/n = mi}l)wjg} can be written as follows:

— [Thec(o) pr{Xﬁ‘n) = '"’7(An)|9A} _ [Taec(g) [T er (0a(ia)) )
HAGS(G) pr{Xﬁ\n) = '"’7(An)|9A} HAeS(g) HiAeIA('gA(iA))”’A(“)

1.(6,) 7 (2)

were n4(14) = Y. .—, n(J) is the observed count in the cell 74 of the marginal table of
Xy.

When ¢ is not decomposable, the factorisation in (1) is no longer valid and, conse-
quently, the likelihood cannot be factorised into local pieces.

In this paper we consider the case in which the variables examined are dichotomous.
Fach element of the vector Xy = (X,,),ev is a random variable taking values in the set
{0,1} and the vector Xy takes values in the Cartesian product {0, 1HI of the set {0, 1}
with itself.

2.2 Hyper dirichlet prior distributions for Bayesian learning

In the literature on graphical models we can distinguish two main aspects of inference,
quantitative and qualitative learning. Quantitative learning means that the information
available is used to estimate the unknown parameters 4. On the other hand, structural
learning has the objective of establishing which graphs, and thus which graphical models
are best supported by the data and the prior information available. In this paper we
consider both problems.

As a prior distribution on O, we consider the Hyper-Markov laws introduced by DI for
the analysis of decomposable models. In particular, we consider the hyper Dirichlet laws,
that can be used for the Bayesian analysis of discrete graphical models, see for instance
Madigan and York (1995) and Giudici and Tarantola (1996).

Before proceeding, we recall some important properties of the Dirichlet distribution.
Let A = (A(2),7 € ) be a vector of positive constants, and let A CV and B =V \ A be
a partition of V. If L(0) = D(N) then:



(i) £(04) =D(Aa);
(i1) OB)a(-]74) are all independent and distributed as D(Agja(-|14));
(iii) HAJ_LHBV“

Wher’e )\A(7A> = Z,f:jA:iA )\(]) a,nd )\B|A(7B|7A) = )\(7)
In order to construct a hyper Dirichlet distribution, we must satisfy the condition of

consistency of the matrices of cell probabilities, that is, for any two cliques C' and D:

HOODUCOD) = Z 90(.j0) = Z 'L)D(.jD)- (3)

Jjouicap=icap Jipticnp=icnn
A hyper Dirichlet prior distribution on 6§ € M(g) is then constructed by assigning to
the probabilities ¢ of each clique a Dirichlet distribution D(Aq) with density:
9(v|)\(v H 9(v . /\h (ic)—
ic€lc
on the set where 3=, 0c(ic) =1 and ¢ (i) > 0.
Furthermore, the hyperparameters Ao are constrained in order to satisfy the hyper-

consistency condition of the corresponding distribution D(Aq), that is:

)\COD(iCﬂD) = Z )\O(.jO) = Z )‘D(jD)- (4)

Jjciicanp=tcan intican=ican

The constraints in (4) are automatically satisfied by assigning a Dirichlet distribution
on the parameter # corresponding to the complete graph, and obtaining the laws on the

cliques by marginalisation. Alternatively, as suggested by DI, one can take:

H(Vec )‘(V(“V)
H@es (W)

i) =

For a comparison between the two approaches, with reference to smoothing effects on
the cell counts, see Giudici (1998).

DI show that, given any such hyperconsistent collection Ac = (A¢)cec there exists a
unique law for 0 called hyper Dirichlet, denoted by HD,(A) which is hyper Markov over
M(g) and has L(0c) = D(A¢) has its clique marginals. Furthermore, this distribution is



strong hyper Markov. This implies that, if we confine our attention to 6o with prior law
D(A¢), and the data ne from the marginal table corresponding to clique O, the posterior
law for O given ne will be D(A¢ + ne). If the prior law is HD, () the posterior law will
be HD,(A + n).

Regarding model comparison, DI give a closed form expression for the marginal like-
lihood of g, p(mi}l”g):

p(2\"]g)

[Tses(q) p(?)

where, given a complete subset of vertices A € A(g), it turns out that:

NN ACY I'(Aa(ia) +14(ia))
o= I (M)

Note that we have not yet specified the density of the Hyper Dirichlet distribution. In

1 AET A

fact, the previous result show that it is not needed for structural learning, at least when
the hyperparameters are not random. However, in more general problems, such a density
may be necessary. We shall thus present its expression, as derived by Madigan and York
(1997).

Let C = (C1,...,C%) be a perfect ordering of the cliques of the examined graph.
Consider a clique (' and assign on 8¢, a Dirichlet distribution with parameter A, , whose

density is (with respect to the Lebesgue measure):

F(Zic1 €1c, )‘01 (7:01 )) - A (e )T
; H 901 (7/01) “
Hic1 €Tc, r()‘01 (7/01 )) ic, €1,

The distribution of a generic clique C; is obtained conditioning on ¢, ,...,0q,_, for

f(be,) =

J > 1. We note that conditions (4) and (3) need to be satisfied. Since 8 is strong hyper
Markov the distribution ¢, , given all previous cliques depends only upon fg,. Tt results
that the density of such conditional distribution (with respect to the Lebesgue measure)

1s:



His] GIS] r()\q7 (78‘7 )) Hic] GIC‘] 90.7 (7:0,7 ) ey

A‘q (i —1

[T ez, I'(Ac, (i, ) ITi; ez, 05, (is,) "

f(0c,10s,) =

b

for O, satisfying (3).

Finally, putting together the previous two expressions we obtain:

k
foy = f(bc) H FOc 0o,y .. 00, )
=2
. Ao i )—1
H,];:1 Hic]GIg7 907(7/07) 5lic;
= - . Ag (g ),1 9 (6)

U(A) H?:z His]eIg] 937(7137) 5lis,

where:

H?:] Hm]efcj r()‘(?](i))
F(Zic1 €Tc, )‘01 (7:01 )) H,I;ZQ His] GIS'] r()\g*7 (7)) .

Remark. From the previous construction, it follows that, even for a fixed graph, a

T(N) =

very large number of hyperparameters is to be specified. Recall that Ac(7) indicates a
collection of positive constants related to the a priori expected counts in each cell of the
marginal contingency table of the variables in (. Furthermore, it is necessary for them
to be hyperconsistent. Finally, as argued by DI, among others, it is highly desirable that
the priors be compatible across models, thus further complicating prior specification.

In the following we shall assume that the Dirichlet distributions on each single clique
are obtained by marginalisation from a unique distribution on the complete graph. Since
the hyperparameters can be interpreted as hypothetical marginal data counts, this notion
of compatibility, which is the same as that in DI, is equivalent to requiring that each
model has the same amount of hypothetical data.

More precisely in the following we shall indicate with Ag = ;27 A(7) the prior precision
of the complete graph. Notice that, since the prior distributions on each single cliques are
obtained by marginalisation from the prior distribution on the complete graph, Ag can be
equivalently obtained as 3=, _c7. Ac(ic), for any generic clique (.

Regarding the value of the hyperparameters, one possibility is to assign A7) = 1/2,

following the Jeffreys prior for multinomial sampling, or A(i) = 1, following a uniform



distribution. For a discussion on the choice of the hyperparameters see, for instance,
Dellaportas and Foster (1999).

Another possible formulation is to consider a more flexible, and easier to specify,
hierarchical prior, for instance letting Ag to be a random variable, to be assigned a prior

distribution.

3 MCMC discrete graphical model determination

In this section we shall present two different methodologies for Bayesian model determi-
nation for decomposable discrete graphical models. Both methodologies are based on the
application of MOCMC methods.

The first methodology presented extends the MC? algorithm by Madigan and York
(1995) by allowing for a hierarchical hyper Dirichlet on the cell probabilities. We also
improve computational efficiency of MC?, replacing the decomposability test of Madigan
and York (1995) with the recent proposal by Giudici and Green (1998) (GG for brevity).

The second methodology is based on the RIMCMC algorithm by Green (1995): at each
step of the procedure we update the model and the corresponding vector of parameters.
This methodology is quite general, and can deal with any type of priors on the parameters,
such as hierarchical. Furthermore, it allows to draw posterior inferences on any quantity
of interest, whereas this is not generally possible for M (2.

For comparison purposes, we shall consider the same two classes of prior distributions
for both cases, namely, a hyper Dirichlet prior on the vector of cell parameters. Concerning
the model space, for simplicity, and without loss of generality, we consider a discrete

uniform prior distribution over the set of all decomposable graphical models.

3.1 Identification of legal moves

As stated by Frydenberg and Lauritzen (1989), (FIL hereafter), the space of all decom-

posable graphs can be traversed by adding and deleting single edges at a time. Such



changes are convenient for MCMC implementation (in terms of algebraic tractability and
statistical efficiency) and will be used as basic steps for our sampling algorithms.

Given a graph ¢ we propose to consider a new graphical structure ¢, obtained by
adding/deleting one single edge. Naturally, we can decide not to change the current
graph.

At each step, we can then choose between three different move types:
1) remain with the current model;

2) create a new model ¢ via the addition of one more edge;

3) create a new model ¢’ via the removal of an existing edge.

Note that not all moves will be available at each step, for example we cannot add an
edge to the complete graph (graph with all edges present), nor remove one from the null
graph (graph with no edges present).

We shall only consider moves, called legal, that lead to a decomposable graph. The
problem is how to characterise such moves.

For legal deletion we can use a result in FI, that states that an edge can be removed iff
it is contained in only one clique. On the other hand, for legal additions, we now introduce
an efficient condition, recently proposed by GG, that permits identifying legal movements
in advance, that is before doing the move.

We first remark that by adding/deleting an edge we modify only a local part of the

junction tree, as in Figure (2).
Figure 2 about here

For this reason, GG propose to identify legal addings by a condition that permits
checking decomposability considering only the section of the junction forest represented
in Figure (2).

Theorem (GG). Let ¢ = (V,F) be an undirected decomposable graph in which
vertices a and b are not adjacent, and let ¢’ denote the graph modified by the addition of

edge (a,b). The new graph ¢ is decomposable if and only if either:

10



(i) [a] # [B], or

(i1) [a] = [b] and there exist R, T C V such that a U R and bU T are cliques, and
S = RN T is a separator on the path between « U R and bU T in a junction forest
representation of the graph ¢

Where with [v] we indicate the set of all vertices that are connected to v.

The above Theorem provides a simple and local condition for rejecting illegal addition
in advance. Often, a and b are adjacent so that the search will be very fast. Furthermore,
the procedure proposed by GG constructs the new junction forest so that the cliques are
ready for use in probability calculations.

An alternative possibility is to reject illegal moves a posteriori by running an appro-
priate algorithm (such as the Maximum Cardinality Search, MCS) after each graphical
update, to check if the proposed graph ¢ is decomposable. This is the solution imple-
mented in the MC? algorithm by Madigan and York (1995). However rejecting moves a
posteriori can be inefficient when the graphical structure is complex. GG provide empir-
ical evidence to support this claim.

We now present the GG procedure in algorithmic form.

Adding

1) Starting from a clique containing a, search through the current junction tree con-
taining a for the first clique containing b (say b U T'). If none exists, the graph is

disconnected: go to 4).

2) Starting from bU T, go backwards through the junction tree along the path found
in 1), until the first clique containing a is found (call it a U R). Check if RNT # ()
and RN T is a separator on the path. If not, reject the move (the proposed g is

not decomposable): return.
3) faUR, bUT are not adjacent, permute the junction tree until they are.
4) Decide whether to accept the proposed move.

5) If the move is accepted, update the graph and the junction forest.

11



6) Return.
Deleting

1) Starting from a clique containing a search through the current junction tree while

the cliques contain a until all cliques containing b are found.

2) If none is found, there is an error, @ and b are not adjacent. If only one is found go
to 3). Otherwise, if more than one are found, reject the move (the proposed g is

not decomposable): return.
3) Decide whether to accept the proposed move.
4) Tf the move is accepted, update the graph and the junction forest.

5) Return.

We finally remark that, according to Figure 2, in our algorithm we treat separately
four particular cases: a) R=T =RNT;b) R=RNT +T;¢c) R+ RNT =1T;d)
RNT =10.

3.2 A new version of M(C?

We shall first recall the original version of the M C? algorithm. Tt permits constructing a
Markov Chain having p(g|z) as its target distribution.

Given a graph g, indicate with nbd(g) its neighbourhood consisting of ¢ itself and the
set of graphs with either one more or one fewer edge than g. Suppose that from g the
only possible move is to a graph ¢ belonging to its neighbourhood. Fach ¢ can be chosen
with the same probability.

The transition probability ¢(g,¢) is then equal to 0 for all ¢ & nbd(g) and constant
for all ¢ € nbd(g).

Suppose that from a graph ¢ we propose to move to graph ¢  obtained by adding one
more edge between vertices a and b.

The proposed move is accepted with probability equal to:

12



a=min{l,R,} (7)

where:

#(nbd(.ﬂ]))P(QIW) (8)
#(nbd(g"))p(glx)

Since p(g|z) o p(x|g)p(g), (7) involves the data only through the Bayes factor p(z|g')/p(z|g).

R, =

We can then apply the results presented in section 2 and calculate the previous ratio by
local computations, that is:

’ () ()
R — p(rlg) _ ps(Ts )Pa,bs(%:j)e)_ (9)
S"

"opele) s s (2l

Notice that calculations involve only the local part of the junction tree represented in

Figure (2).

We propose to modify the algorithm described above in two directions leading to a
nonhierarchical and to a hierarchical version.

A nonhierarchical model

The main difference with respect to the original formulation is that, in order to check
legal addings, we use the condition proposed by GG instead of MCS.

Furthermore, in the new version the proposal ratio is determined differently, that is
contrasting the probability of adding and deleting an edge from the considered graph.
This leads to a different probability of choosing between adding or deleting an edge.
However, conditionally on this decision, any candidate edge has the same probability of
being changed in both cases.

More precisely, given a graph with n vertices, the probability of adding an edge, Ag,
can be obtained as the product of the probability of adding times the probability of

choosing a particular edge between the ones eligible for addition, that is:

v () g 6) "

13




where Fg4 is the number of edges present in the current graph g.
In a similar way we obtain the probability, Dg, of deleting an edge from the current
graph. Since Ag = Dg the proposal ratio is equal to 1.

The move is then accepted with probability equal to:

a=min{l,R,}

where:

which can be calculated as in equation (9).

A hierarchical model

The essential difference with the previous case is that we now allow for a further level of
hierarchy. For instance, we can let Aq (the total prior precision) become a random quantity,
to be assigned a suitable prior distribution. As previously discussed, a hierarchical prior
is, even when not strictly necessary, easier to specify a priori.

It seems reasonable to assume that Ay and ¢ are independent. As a prior for Ag we

assign a (Gamma distribution, with mean f and variance fs, namely:
7_[_()\0) o )\(()f/s)*1€f/\0/s

where f > 0 and s > (0 are positive constants appropriately chosen.

Another important advantage of this new setting occurs when we have incomplete
data. An important example of this occurrence is given in Madigan and York (1997):
one or more cell counts may not be available. Let n’ = (n(1),7 € Z'. C T) indicate the
missing cell counts. In this case we can let n’ be a random vector, to be assigned an
appropriate prior distribution, possibly according to the sampling scheme of the data.
Structural learning can then proceed, conditionally on the sampled values of n’.

In general, let 7 denote the extra random component considered. We propose an

algorithm consisting of two stages:

1) We change the graphical structure adding/deleting only one edge at a time.

14



2) We update the random parameter 7

Concerning the first step, the proposed move is accepted with probability equal to:

a=min{l,R,} (11)
where
Ra — Tr(.ql77—|m).
(g, 7|7)

As in the nonhierarchical model the proposal ratio is equal to 1. Since w(g, 7|2) o
m(x|g, 7)m(g,7), R, simplifies to:
p o PEld7)
© plelg.T)
Concerning the second step, the new value 7 is sampled from a normal distribution,

centered around the current value. More precisely the proposal is: ¢(7'|7) = N(r,02),

2

2 is a spread parameter, to be appropriately chosen.

where &

The move is then accepted with probability:

a=min{l, R,}.

where:
_ plzlg.p(r)
o = el el)

as the proposal ratio is equal to 1, being the proposal symmetric.

One complete pass over these two moves will be called a sweep and is the basic step
of our algorithm.

Clearly, when an edge is proposed for deletion the move is accepted with probability
a=min{l, Ry}, where R; = 1/R,,.

In the examples below we consider the case in which we update the total prior precision
Ao following the procedure described above. The single A(7)  is then obtained as (i) =
Xo/|Z|.

A more complex procedure could be adopted. For example one possibility is to update

each single A(7) separately. However, the advantages of this do not seem to compensate

15



for the increased complexity of the sampler and the predicted extra computational effort,

which discourage their implementation.

3.3 Reversible jump MCMC for discrete graphical models

A problem with the previous approaches is that they are designed for structural, but
not for quantitative learning. For instance one could be interested in deriving posterior
estimates, typically not available exactly (such as posterior odds ratios) .

Hence the necessity to develop a different methodology. The solution we propose is
based on the application of the Reversible jump MCMC sampler (Green, 1995). At each
step we move inside the space of models and of the corresponding parameters, that is we
propose to move from (g,0q) to (g, 9.(]/); in the following we shall indicate with y the pair
(9,0¢)-

More precisely following GG we propose an algorithm consisting of two steps. At the
first step we propose to modify the graphical structure adding or deleting only one edge.
This move will be done in order to keep invariant the distribution on the cliques that are
not involved in the change, and to assign a distribution on the new clique consistent with
them. At the second step we update the matrix of cell probabilities given a graphical
structure. Our procedure does not change the set of cliques and separators, but modifies
the set of probabilities associated with them in a suitable way. We create a different
distribution belonging however to the same Markov family; the new distribution and the
old one incorporate the same set of conditional independences. Tf the model is hierarchical

we had a further step in which we update the total prior precision.
In the following we shall describe in more details the procedure used.

Update ¢ move. Tet ¢ be a graph obtained from ¢ adding one more edge hetween
vertices @ and b. By adding the edge (a,b) we create a new clique abS, in addition or
substitution to the preexisting cliques as shown in Figure (2).

In order to obtain a Markov distribution with respect to the newly created graph ¢,

the distribution corresponding to clique abS, ,,5, must be consistent with the distribu-

16



tions on all the other cliques of the graph. This can be obtained imposing the consistency
of the new matrix on the subsets a.5 and bS5.

In order to obtain a Markov distribution with respect to the newly created graph G,
the distribution corresponding to clique abS, ,,5, must be consistent with the distribu-
tions on all the other cliques of the graph. This can be obtained imposing the consistency
of the new matrix on the subsets a5 and 6S. In fact all the other cliques of the graph
are by construction consistent on these subsets. Since we are working with dichotomous
variables the number of free parameters is equal to 2/51. The results can be easily extended
to the case in which the considered variables are no more dichotomous.

We shall fix a configuration of the separator and work in terms of the conditional

distribution of ab

S =5, O,5=s with assigned marginals 0,5 and ;5. For each table
we can fix only one value, say ¢, that must be sampled from a suitable distribution.
The corresponding value of 8,5 is then obtained multiplying the sampled valued by the
marginal distribution of the separator.
We propose to sample the new value from a normal distribution centred on (p; + ¢;)/2
and to reject the new value if it does not helong to the interval (max(0,p; + ¢; — 1), min(p;, ¢;))-
The proposed move, adding and edge (a,b), is accepted with probability equal to

a=min{l, R,}, where:

(1)
= Rpost X RPTOP X |']|7

where |J] indicates the Jacobian of the transformation.

Since m(g,0|x)  p(x]g, )7 (0|g)p(g) the posterior ratio m(y')/m(y) simplifies as:

~plelg 0)m(0lg)
Hyont = p(xlg,0)m(Olg)

Applying equation (6) we notice that calculations can be made locally considering

only the four complete subsets represented in Figure (2). That is:
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m(01g)  f(Ous|0as)f(Our|0ns)

m(0lg) f(Oyr]0s)

Consider now the proposal ratio:

o (Y')

Hpont = rm(y)g(2)

It can be decomposed in two different terms: R, = r,,(y")/rm(y), obtained contrasting
the probability of adding and deleting one edge from the considered graph, and ¢(z) ',
the probability distribution of the auxiliary variable considered in order to satisfy the
dimension matching problem.

From (10) it follows that R, = 1. Concerning ¢(z) it is obtained by the product of 2!
independent normal distributions. Finally the Jacobian of the considered transformation
is equal to []; c7. 0s(is).

When (a,b) is proposed for deletion we leave 8,5 unspecified and the acceptance ratio

of the proposed move is obtained as R, = 1/R,.

Update 4.

This move does not involve a change in dimensionality, and the acceptance ratio will
be calculated applying the standard Metropolis Hastings algorithm. At each step we
update only one single clique; we choose it randomly and we perturb each elements of its
vector of cell probabilities in a suitable way.

Let 8 = (b1, ..., 0;) be the vector of cell probabilities corresponding to clique C. Fach
element of the previous vector will be perturbed with a realisation from a uniform random
variable. More precisely, the #! are obtained as 0! = 0, + y;, with y; ~ Uniform(—e¢;.¢;).
Subsequently, we correct the newly created matrix in order to maintain invariant the
marginal distributions on the current separators.

The procedure used will now be described here in algorithmic form.

1. Select randomly one clique C' with matrix of cell probabilities 8 = (64,...,0;) and

indicate with S = {5,..., 5} the set of separators having a non empty intersection

with C.
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2. Sample y; from a Uniform(—e¢,+¢) and set 0. =0, + y;, 1 =1,... k.

3. Correct the vector of cell probabilities " in order to leave invariant the marginal
distributions of each separator, S; say, in S’. To do this, first calculate, for each
separator in S, its marginal probability table. # is then corrected by a factor equal
to the difference between the new marginal of separator 5; and the old marginals.

Finally, divide the obtained results by 21¢\%!.
4. Choose a different separator and go back to step 3.

It can be shown that the final result is invariant to the order in which the separators
are considered for the corrections.
We remark that the proposed change in # is accepted with probability a = min {1, R, },

where:

"), o) .

m(y)  qly)
- Rpost X Rprop

Since we are modifying only the distribution corresponding to clique (U, the posterior

ratio results equal to:

r o _ Plg, 06)m(06lg)
‘post T
p(zlg, 0c)m(0clg)

The proposal ratio is equal to 1 since the proposal distribution is symmetric.

We finally remark that the algorithm presented can easily become hierarchical, intro-
ducing an extra random variable 7, as done in the previous subsection.

In particular, a change in 7, will be accepted with probability equal to:

a=min{l, R,},

where

1

~ p(0lg, 7 )p(r)
B = Olgmp(r)
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4 Performance of the proposed methods

In order to evaluate the performance of the proposed methods, we shall first consider
a complete data-set, already analysed in the Literature: the Women and Mathematics
data set, which will be used to compare standard Occam’s razor methods (as in Madigan
and Raftery, 1994) to our proposed MC? methods (nonhierarchical and hierarchical), and
show the advantages of a hierarchical prior, in terms of higher robustness of the posterior
inference. We also compare the results with those obtained with our reversible jump
MCMC methodology.

We then consider a more challenging sparse table, concerning a credit scoring data-set,
where we compare, using a hierarchical prior, our extended MC? and the reversible jump
MCMC algorithm.

We remark that all of our algorithms have been previously tested with simulations from
the prior distribution. In this way it has been possible to test the correct implementation
of the algorithm. Furthermore, after having obtained the final results from the posterior,
we have run the usual convergence diagnostics, and found satisfactory performance of the

algorithm.

4.1 Woman and mathematics data-set

This set of data concerns the attitude of New Jersey high-school students towards math-
ematics, the source is Fowlkes et al (1988). For a description of the problem and the
data-set we also refer to Madigan and Raftery (1994) who analysed this data-set using
Bayesian discrete graphical models.

The random variables of interest are:
(X1) WAM Lecture Attendance: attended or did not attend:;
(X3) Sex: female, male;

(X3) School type: suburban or urban;
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(X4) 7Tl need mathematics in my future”: agree or disagree;
(X5) Subject Preference: math/science or liberal arts;

(X6) Future Plans: college or job.

The aim of the research was to investigate whether the attendance of scientific lectures
with female teachers had some influence on the interest of females towards mathematics.

There are 32768 possible models, of which about the 20% are non decomposable. Note
that there is no close expression that permits calculating the number of decomposable
graphs; we can empirically obtain this percentage running our algorithm to sample from
a uniform prior on the model space and considering the graphs never visited.

We have analysed this data set both with the nonhierarchical and the hierarchical
model, using our extended MC? algorithm. With the nonhierarchical model the pos-
terior distribution is highly sensitive to the value of the hyperparameter Ag; it is more
concentrated for low values of Ag than for higher values.

With Ag = 1 the best two models take into account more than 80% of the posterior
probability. On the other hand, with a more precise prior, with Ag = 64 we must consider
10 models to take into account 60% of the posterior probability. Furthermore, model
ranking in terms of probability depends highly on the value of the hyperparameters.

We shall now present in detail results of the MCMC simulation, in the hierarchical
case, taking f = 1 and s = 0.1. We have used different values of the hyperparameters, but
the results do not differ markedly from those presented below, thus showing robustness
of the hierarchical prior.

We first check performance issues of the algorithm. Mixing over ¢ has been monitored
looking at an appropriate measure of g, the number of edges present in the graph, which
describes the graph complexity. In Figure (3) we have some diagnostic graphs on the
number of edges. More precisely we represent, for a run of 100000 iterations, thinned
every 100, the number of edges present at each iteration and the corresponding cumulative

mean, autocorrelation and cumulative occupancy fractions.

Figure 3 about here
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Note that the chain explores more frequently graphs with 6 or 7 edges; the cumulative
mean of edges is quite stable, apart from few initial values due to the effect of the burn-in;
for all lags greater than 1 the values of the autocorrelation function are not significantly
different from zero. We can thus conclude there is indication of good stability of the
MCMC output.

Figure 4 reproduces the most plausible graphs, according to the posterior distribution
of g. We notice that the posterior distribution is less concentrated than in the nonhier-
archical case: the best graph receives about 23% of the posterior probability, and this is
substantially confirmed changing the values of the hyperparameters. In order to obtain
70% of the posterior probability we must consider at least 9 graphical structures. Note

also that there is strong evidence for the marginal independence of variable X;.
Figure 4 about here

The results can be compared with those obtained by Madigan and Raftery (1994),
who select, with a nonhierarchical model and using Occam’s razor on this same data-set,
two different graphical structures. We remark that their best model is the same as ours,
the second one correspond to the third one in our selection. However, their results are
more sensible to the prior.

We shall now present briefly the results obtained by the analysis of the same set using
our reversible jump MCMC methodology, using the same values for the hyperparameters.
At first note that with the nonhierarchical model the convergence is slower than with
the corresponding version of the MC? algorithm. Tn fact in order to reach a reasonable
diagnosis of convergence, similar to that in Figure 3, we must consider at least 200000
iterations with a burn-in of 20000.

This results confirm what expected, remember that now we generate a new realisation
both for the graphical structure and for the matrix of cell probability. Furthermore,
some proposed values of the considered probabilities may be rejected because out of the
boundaries.

With the hierarchical model the distribution is more concentrated. In fact after 200000
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iterations and a burn in of 20000 the best model takes into more than 50% of the posterior

probability. See figure 5 for the posterior probability of the graphs.
Figure &5 about here

All calculations have been made on a pc with a Pentium IT microprocessor with 266
Mhz and 128.0 MB of Ram and do take at most 30 minutes of elaboration (for the

reversible Jump hierarchical models).

4.2 Credit scoring data-set

Credit scoring is a class of statistical methods employed to classify creditors in two risk
categories: "good” and "bad” payers. By credit risk we mean the probability of a delay
in the repayment of the credit granted.

Statistical credit scoring is a procedure to determine the probability that an applicant
for credit will repay on time the amount of credit he is granted. We shall say that
the applicant is credit reliable. Such a procedure is built on a database of information
concerning the credit behaviour of individuals; for instance, in a bank such information
may be taken from the operations registered on the individual’s account.

For a review on credit scoring, see e.g. Hand and Henley (1997). Here we follow the
graphical modelling approach suggested in Hand et al. (1998), who select, from a frequen-
tist viewpoint, the graphical model that best describes the relationships between credit
reliability and other variables, describing the "banking status” of each individual. They
then draw inferences conditionally on the selected model. Here we follow our proposed
Bayesian approach, so that, when drawing inferences, we take more correctly into account
inference due to model uncertainty (see e.g. Madigan and Raftery, 1994).

The dataset we consider consists of 1000 observations on clients of a southern Ger-
man bank, who were given credit, for which 21 variables are available. The data can
be downloaded from the web page of the University of Munich: http://www.stat.uni-

muenchen.de/data-sets/credit.
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Given the extremely high sparseness of the data, we have performed a preliminary
screening of the variables, following Fahrmeir and Hamerle (1994). Therefore, the binary

random variables we shall consider are:

(X1) Gender

) Marital status: single, non single
X,) Marital stat ingle, ingl
(X3) Banking account ?

4) Good history of banking account ?
X4) Good history of banking t 7

5) Good repayment of past credits 7
X5) Good repay t of past credits ?

¢) Large amount of the given credit ?
Xg) Larg t of the gi dit ?
(X7) Use of the credit: private, professional

(Xs) Credit deadline: short or long term

(Xg) Credit reliability

An important point is that the sample is stratified: in the sample, 700 individuals are
credit reliable and 300 are not credit reliable.
A classical backward procedure, with a significance level of 5% leads to the following

results:

a) Credit reliability is conditionally independent on gender.
b) Credit reliability is conditionally independent on the amount of the given credit.

¢) Credit reliability is conditionally independent on having an account, but not on

having a good account.

d) Credit deadline seems to be the variable which is mostly related to the others.
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Consider now the application of our proposed Bayesian methodology, with the M(C?
algorithm. We have taken f = 1.0 and s = 0.1.
Figure 6 describes diagnostic output on the simulation, for a run of n = 200000

iterations plus n = 10000 of burn-in.
Figure 6 about here

Note that the Markov chain explores most frequently graphs with 9, 10 or 11 edges
(out of the possible 36); the cumulative average number of edges seems to indicate a good
stability of the results.

Table 1 reports the overall estimated probability of an edge being present.
Table 1 about here

Differently from what done in the WAM case, the high number of possible graphs
makes difficult to discriminate between them on the basis of their posterior probabilities.
Instead we suggest to build a representative graph, which contains all edges with a prob-
ability of being present, as evaluated in Table 1, greater than a certain threshold, such as
90%.

Comparing the result with the classical results note that the Bayesian model is more
parsimonious. Credit reliability is conditionally independent on the variables which were
also previously such, however there is one further independence, with marital status.

However, it is important, especially for edges whose presence is uncertain, to look at
the posterior marginal odds ratios, averaged across all models. For instance consider edge
(5,7). However, recall that, to do quantitative learning, we need to consider the reversible
jump MOCMC methodology.

We remark that, as in the WAM case, we need a longer run in order to achieve stability,
comparable to that obtained for the MCS.

Figure 7 presents convergence diagnostics for the reversible jump MCMC approach,

with a burn-in of 50000 and n = 500000 subsequent iterations.

Figure 7 about here
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The chain reaches stability in correspondence to a simpler structure. In this case the
mean number of edges corresponds to 9. Furthermore, we remark that edge (5,7) is now
almost always present in the graph and the expected posterior odds ratio is estimated to

be equal to 2.15.

5 Concluding remarks

In this paper we have concentrated on the problem of Bayesian model determination for
discrete graphical models, showing that Markov Chain Monte Carlo techniques can be a
useful tool in this field.

Our main contribution is the development of new MCMC techniques to model de-
termination in discrete graphical models. On one hand we have improved an existing
methodology, the M(C? algorithm by Madigan and York (1995). On the other hand we
have introduced an original methodology based on the use of the RIMCMC sampler by
Green (1995).

Our results suggest employing hierarchical prior distributions, as they have two main
advantages with respect to nonhierarchical priors: on one hand, they are easier to specify,
and can thus constitute an “automatic” default choice, especially for highly complex
problems; on the other hand, they seem to lead to inferences less sensitive to the prior, as
they allow “borrowing strength” of sample information between different clique domains.

Although more difficult to implement and test than the M(C?, the Reversible Jump
algorithm allows the extraction of posterior inference on any quantity of interest, in both
the hierarchical and the nonhierarchical model. For instance, posterior estimates of the
odds ratios, giving the strengths of the associations, can be easily obtained.

Both our algorithms are fully based on local computations, leading to efficient com-
putations. On the other hand, a possible disadvantage is that we are restricted to de-
composable graphical models. However, as shown in GG, quantitative learning in non-
decomposable models can be reasonably well approximated by learning from mixtures of

decomposable models. Alternatively, one can use the approach suggested in Dellaportas

26



and Foster (1999), which does RIMCMC model determination for hoth decomposable
and non-decomposable graphs. However, their approach is not based on local calculations
on cliques and separators, and is less suitable for the use of Hyper Markov priors.

Another important weakness of the methodology is that it becomes slow for very large
domains, as the dimension of the model space increases more than exponentially with the
number of vertices. Research is needed in the design of proposal moves which can improve
the speed of convergence as well as on the related issue of monitoring the convergence of
the algorithm.

We finally remark that our proposed methodology is quite general, and can be extended
to other families of graphical models. In particular, some aspects for future research which

we have not considered are :

(i) Merging the results obtained in the gaussian and in the discrete case in order to

construct a sampler for the analysis of mixed models.

(i1) Extension of the number of factor levels for each variables allowed, from two to
arbitrary finite values. This can be done quite easily with few modifications in the

code.

(iii) Application of the methodology to directed graphs. In this case the graph can be
updated both by adding/deleting one single edge, or by changing the direction of

an arrow.

Acknowledgement

This work has been supported by EU TMR network ERB-FMRX-CT96-0095 on ”"Compu-
tational and Statistical methods for the analysis of spatial data”.The authors acknowledge
Phil Dawid for helpful comments provided during the HSSS conference on ”Graphical
Models” held in Tirano in September 1998: David Madigan for sending the MC? code;
LLudwig Fahrmeir for providing the credit scoring data, and Stefano Farro for the results

of the classical analysis of the credit scoring data. The third author acknowledges support

27



from University of Trento for Ph.D. grant, University of Bristol and Athens University

for computing facilities

References

Agresti, A. (1990). Categorical Data Analysis, Wiley, New York.

Dawid, A.P. and Lauritzen, S.I1..(1993). Hyper Markov Laws in the statistical analysis
of decomposable graphical models. Ann. Statist., 21, 1272-317.

Dellaportas, P. and Forster, J.J. (1999). Markov Chain Monte Carlo model determi-
nation for hierarchical and graphical log-linear models. To appear in Biometrika

Fahrmeir and Hamerle (1994) Multivariate statistical modelling based on generalized
linear models. Springer, New York, 1994

Fowlkes, E.B., Freeny, A.E. and Landwehr, J.M. (1988). Evaluating logistic models
for large contingency tables. J. Americ. Statist. Assoc., 83, 611-622.

Frydenberg, M. and Lauritzen, S.1..(1993). Hyper Markov Laws in the statistical
analysis of decomposable graphical models. Ann. Statist.

Giudici, P. (1998). Smoothing sparse contingency tables: a graphical Bayesian ap-
proach. Metron , vol. IVI, pp. 171-188.

Giudici, P. e Green, P.J. (1999). Decomposable graphical gaussian model determina-
tion. To appear in Biometrika.

Giudici, P. and Tarantola, C. Global prior distribution for discrete graphical models.
JISS | 5, 129-147.

Green, P. J. (1998). Reversible jump Markov chain Monte Carlo computation and
Bayesian model determination. Biometrika, 82, 711-32.

Hand, D.J. and Henley, W.E. (1997). Statistical classification methods in consumer
credit scoring: a review. J.R.Stat. Sci. A, 160, 523-541.

Hand, D.J., McConway, K.J. and Stanghellini, E. (1997). Graphical Models of Ap-
plicants for Credit. IMA Journal of Mathematics Applied in Business and Industry, 8,
143-155.

28



Lauritzen, S.1..(1996). Graphical Models. Oxford, Oxford University Press.
Madigan, D. and Raftery, A.E. (1994). Model Selection and accounting for model

uncertainty in graphical models using Occam’s window. .J. Americ. Statist. Assoc., 89,

1535-46.

Madigan, D. and York, J. (1995). Bayesian graphical models for discrete data. Inter-
national statistical Review, 63,215-232.

Madigan, D. and York, J. (1997). Bayesian methods for the estimation of the size of
a closed population. Biometrika, 84,19-31.

Spiegelhalter, D. J., Dawid, A. P., Lauritzen, S. I.., and Cowell, R. G. (1993). Bayesian

analysis in expert systems (with discussion). Statistical Science, 8, 219-247 and 204-283.

29



Table 1: Estimated probability of an edge being present

Edge 1/100 Edge 1/100 Edge 1/100
[2,1]  1.000000  [6,3]  0.000270  [8,4]  0.004520
3.1]  0.000910  [6.4]  0.000155  [8,5]  0.651470
3.2]  0.000000  [6,5]  0.014205  [8,6]  1.000000
4] 0.000305  [70]  0.022965  [8,7]  0.005060
[4.2]  0.000380  [7.2]  0.004690  [9,1]  0.093475
[4,3]  1.000000  [7,3]  0.009405  [9.2]  0.037830
51]  0.018675  [7.4]  0.034695  [9.3]  0.892105
5.2]  0.002710  [7,5]  0.288%675  [9,4]  0.999835
53] 0.010265  [7.6]  0.005105  [9,5]  1.000000
5.4]  0.229645  [8,1]  0.917005  [9,6]  0.010960
6] 0.21920  [8.2]  0.049140  [9.7]  0.766750
6,2 0.003020  [8,3]  0.005115  [9,8]  0.999805

Figure 1: Example of a junction tree
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Figure 2: Change in the Junction tree after adding an edge between vertices «a

and b

Figure 3: Woman and mathematics: diagnostic on the number of edges present

in the graph, with the hierarchical M(C? method
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Figure 4: Woman and mathematics: most probable graphs, with the hierarchi-

cal M(C? method
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Figure 5: Woman and mathematics: most probable graphs, with the hierarchi-

cal reversible jump MCMC method
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Figure 6: Credit scoring : diagnostics on the number of edges, with the hierar-

chical M(C? method
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Figure 7: Credit scoring : diagnostics on the number of edges, with the hierar-

chical Reversible Jump MCMC method
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