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 Linear models for field trials, smoothing and
 cross-validation

 BY PETER J. GREEN

 Department of Mathematical Sciences, University of Durham, Durham DH1 3LE, U.K.

 SUMMARY

 Spatial methods for the analysis of agricultural field experiments are represented here
 as smoothing methods applied simultaneously with the estimation of treatment effects.

 Selection of both the form of the smoother and the degree of smoothing required may be

 based on cross-validation. Particular emphasis is placed in this paper on generalized least

 squares estimation in linear models, but the principle applies quite generally.

 Some key words: Agricultural field experiment; Generalized least squares; Incomplete block design; Neigh-
 bour method; Papadakis method; Recovery of interblock information; Smoothing; Spatial model.

 1. INTRODUCTION

 The aim of many agricultural field experiments is to estimate treatment contrasts
 efficiently whilst avoiding bias due to trends in fertility and other environmental factors.
 Blocking methods are customarily used, even when blocks have no physical meaning in

 the experiment, but there has recently been increasing interest in adjusting for trends in
 a more continuous way leading to so-called 'spatial' or 'neighbour' methods that

 deliberately exploit the spatial context.
 An early example is the method of adjustment using residuals from neighbouring plots

 due to Papadakis (1937); see also Bartlett (1978). Succeeding developments have been
 fostered by increased general interest in spatial methods and by enhanced computing
 power. Various recent proposals appear in the innovative paper by Wilkinson et al.

 (1983) and its accompanying stimulating discussion.
 The intention of the present paper is to increase understanding of the proposed

 methods, and to aid their comparison, by representing them all as smoothing methods,
 whether they were originally conceived as such, for example Green, Jennison & Seheult
 (1983, 1985), or derived from explicit spatial stochastic models, for example Besag

 (1977), assumed covariance structure, for example Williams (1986) or other principles,
 for example Papadakis (1937) and Wilkinson et al. (1983).

 We first demonstrate that the generalized least squares analysis of any linear model is
 a smoothing method. While this embraces only some of the spatial methods mentioned,
 it provides an important link with classical block-based analysis. Indeed, for incomplete

 block designs, Yates's analysis with recovery of interblock information (Yates, 1939,
 1940) may be regarded as a prototype example for this discussion. The smoothing
 interpretation extends to analyses not based on least squares. Later we discuss the choice

 or estimation of the tuning constant or variance ratio controlling each method,
 advocating the criterion of cross-validation for this choice; this criterion also provides a

 means of selecting and assessing the method itself.
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 528 PETER J. GREEN

 Design will not be considered here; no attempt is made at justification or robustifica-

 tion via randomization theory, so design plays no explicit role in analysis. It will, of
 course, affect efficiency (Martin, 1982; Williams, 1985).

 2. GENERALIZED LEAST SQUARES

 Consider the linear model

 E(y) = DT +Rp, var(y) = u2 V(0) (2.1)

 for the vector of yields y from an experiment on n plots to compare a single set of t
 treatments. Here D is the design matrix for treatment effects T and R that for any other

 fixed effects p to be fitted; we assume that the complete design matrix X = [D R] has

 full rank. The spatial context is represented by appropriate choice of the variance matrix

 a2 V(+) which is nonsingular and assumed known apart from the multiplier a2 and the
 parameter 4, usually scalar.

 The presence of 4 complicates an otherwise trivial estimation problem. If 4 and hence
 V are known, generalized least squares leads to the estimating equations

 XT = 0,

 from which p may be eliminated to yield the reduced equations for T alone:

 DT(I-S) (y-Dr) = 0, (2 2)

 where it can be shown that (Pukelsheim, 1976)

 S = I- V-1 + V-1 R(RT V-1 R)- RT V-1 = I-{(I-PR) V(I-PR)}. (2 3)

 Here I is the n x n identity matrix, and, for any matrix A, A - denotes any generalized
 inverse, A + the Moore-Penrose inverse, and PA the projector A (AT A) - AT, which is
 invariant to the choice of generalized inverse. The second form for S emphasizes that not

 all of V need be specified, only the result after sweeping out the fixed effects in R; see
 Example 2 below.

 Since V depends on 0, so do S and the generalized least squares estimate r; these will
 be denoted S(4), 1(k) for emphasis where necessary. If the model is correct and 4 known,
 this is an efficient analysis, and a2 may be estimated to quantify the precision of T:
 however, the least squares principle does not of itself lead to an estimate of 4.

 Example 1: Incomplete block designs. In the analysis of incomplete block designs, with
 recovery of interblock information (Cochran & Cox, 1957, Ch. 9-11), the assumed

 variance matrix is U2 V(0) = U2(I + OPz); here Z is the design matrix for blocks, so for
 constant block size k, Pz = k-' ZZT. This gives an error structure with two uncorrelated
 components: plot error with variance a2, and random block effects with variance
 a2 4k- 1. If the design is resolvable, R is taken to be the design matrix for fixed replicate
 effects; otherwise, R is a single column of ones to fit an overall mean only. Note that some
 authors, for example Nelder (1968), assume instead that replicate effects are random.

 Example 2: Least squares s8moothing. Green et al. (1983, 1985) describe a method of
 analysis for field experiments derived from smoothing based on a quadratic penalty

 function. The version providing one-dimensional adjustment is equivalent to a gen-
 eralized least squares regression of Ay on AD with a2(I. 1 + AAT) as assumed variance
 matrix for Ay, where A is a rectangular matrix taking second differences along lines of
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 Linear models for field trials 529

 adjacent plots, and A is a tuning constant. The analysis is invariant to linear trends

 within lines of adjacent plots; thus we take R to be a design matrix for separate linear

 regressions in each such line, D fits all treatment contrasts, and V is any matrix such that

 A VAT = 1 I + AAT. The tuning constant A, or A -1, plays the role of 4. This model was
 also proposed, independently, by Nelder (1983).

 Other forms of least squares smoothing are discussed by Green et al. (1985). One is

 equivalent to the linear variance analysis of Patterson (1983) and Williams (1986),

 which uses V as above, but where A takes first differences between adjacent plots in the
 same replicate.

 3. THE CONNECTION WITH SMOOTHING

 Green et al. (1983) start from an explicit smoothing formulation, and later show its

 equivalence with generalized least squares. The connection holds quite generally, and is

 worth exploiting. It helps to stress that model (2 1) is only assumed in order to generate
 an analysis; it provides a different interpretation and possible improved algorithms, and

 it enables us to tie in other methods not equivalent to least squares for some linear

 model.

 Since V(+) is positive-definite, we may assume, after possibly rescaling a2 and V, that
 V- I is nonnegative-definite. Rewrite model (2 1) as

 y = D-c+4+iq, (3.1)

 where cov(4, q) = 0, E(4) = Rp, var(4) = a2(V-I), E(N) = 0, var(i) = U21. Now con-
 sider the equations

 = S(y-Dr), (3 2)

 -r = (DT D) 1 DT(y). (3 3)

 Their simultaneous solution gives the generalized least squares estimate c; see (2 2). But
 if we alternate between (3 2) and (3 3), from any initial estimates, we converge to a

 minimum of

 Q(,c) = (y-Dc)T(I-S) (y-DDc)

 and hence to T. For if (3 2) followed by (3 3) updates X to *, then

 Q(T*) = f2(T) _ZT(I + S) z,

 where z = PD(I-S) (y-DDc); convergence is obtained if (I-S) is nonnegative-definite
 and (I + S) is positive-definite, and these are true for S of (2 3). Further, replacing S by

 aS + (1 - a) I does not affect the solution to (2 2), so that adjusting a may increase the
 speed of convergence: it is fastest when a 2.

 Generalized least squares estimates may thus be obtained by alternately performing
 an ordinary least squares regression (3 3) of (y - 4) and smoothing the residuals from
 fitted treatment effects (3 2). We term S a 'smoother' because its eigenvalues lie in [0,1],

 with not all of them equal to 0 or 1.
 For the example of incomplete block designs,

 V = I+ OPZ, V- 1 = I- _(I +)- 1 PZ, PZR = R,

 so S = (1 + 0)) '(PR + oPz). Thus the relevant 'smoother' involves a weighted average of
 the block means and the overall mean, or replicate means in the resolvable case. In

 neighbour methods, S corresponds more closely to the intuitive notion of smoothing.
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 530 PETER J. GREEN

 We should clarify the status of 4. In the model (31) this represents a 'trend' term
 incorporating both fixed and random effects. Under the additional assumption of joint

 normality for 4 and q, the conditional expectation of 4 given y is

 (I- V-1) (y-DT)+ V-1 Rp,

 whose generalized least squares estimate S(y-D D?) is produced by the alternating
 iteration described above. This generalizes ridge regression (Hoerl & Kennard, 1970): if r

 and p are absent, and 4 has prior variance C21-71 WWT, then = W/, where / is

 estimated by (WT W + AI) - 1 WT y.
 When the variance matrix is U2 V = a2(I+ 4i, Wi WT), where {4i} and {Wi} are

 known, i.e. one or more variance components besides white noise, an alternative

 representation as a smoothing problem is possible. Taking {WiL} to be of full rank, we
 have implicitly

 y = DT+Rp+Y Wifli+11, (3*4)

 where T and p are fixed effects, and {13i4 and il are uncorrelated zero-expectation random
 effects with var (/3i) = 4i u2I and var (1l) = U2I. The identity matrices may be of
 different orders. Minimization of the penalty function,

 C = y 1 f T fli+ T1, (3*5)
 subject to the additive model (3-4) leads again to the estimate ?. Yet another equivalent

 formulation is to minimize the ordinary error sum-of-squares 17T11 subject to (3 4) and
 upper bounds on {pi pi}

 A very similar approach to smoothing is often followed in nonparametric regression

 problems (Wahba & Wold, 1975; Wahba, 1977). Here the model would be yi = d(ti) +Ili
 and one possible penalty function is J {it(t)}2 dt + E1.

 Natural points of departure for generalizing the least squares smoother are the
 simultaneous equations (3 2) and (3 3) or the penalty function (3 5). There is no need for
 S to be symmetric for (3 2) and (3 3) to solve (2 2), so that asymmetric linear estimating

 equations such as those of Wilkinson et al. (1983) may be included. Papadakis's method,
 whether iterated or not, also fits this formulation naturally. As suggested by Green et al.
 (1985), alternative robust/resistant analyses may be obtained by use of a nonlinear

 smoother or treatment estimator in (3-2) and (3-3), or by amending the quadratic loss
 function (3 5).

 4. CHOOSING q

 Since 4 cannot be estimated by least squares principles, a wide variety of methods for
 choosing its value have been proposed. Yates's original proposal for incomplete block
 designs (1939, 1940) entailed equating two suitably chosen sums of squares to expecta-
 tion, an approach also adopted by Williams (1986). Alternative estimators for block

 designs, based on normal-theory likelihood methods were given by Nelder (1968) and
 Patterson & Thompson (1971). We return to these criteria in ?5. For Bayesian

 viewpoints, see Lindley & Smith (1972) and Box & Tiao (1973, Ch. 7).
 An attractive, less model-dependent, alternative is to use the criterion of cross-

 validation, as described by Stone (1974). The idea is to treat each observation in turn as
 'missing' and to 'predict' it from the model as fitted to the remaining observations for
 each given value of 4. The parameter A is then chosen to minimize the mean squared

 error of prediction. Considerable use has been made of cross-validation and related
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 Linear models for field trials 531

 techniques in recent work on smoothing; see, for example, Wahba & Wold (1975), Craven

 & Wahba (1979) and Silverman (1985). In Stone's terminology, the term 'model' is

 abandoned as conveying a richer meaning than intended, and replaced by that of a

 'prescription' or class of predictors.

 Our prescription involves minimizing the weighted sum-of-squares

 (y- Th-Rp)T V(4)-'(y-Dc-Rp),

 or, equivalently,

 (y-DDr)T{I-S(4)} (y-D c),
 over choice of c, p, thereby estimating these, and choice of the 'missing' component(s) of
 y. This is equivalent to fitting a dummy covariate for each missing observation, gives

 generalized least squares estimates based on the available data, and provides the
 conventional 'missing value formula' in the case of uncorrelated data.

 Introducing the dummy design matrix - for missing observations gives the aug-

 mented model

 E(y) = Dc + Rp + 'y, var (y) = a 2 V(+).

 The reduced estimating equations for the cross-validation errors y are gT M(y - 6y) = 0,
 where

 M = M(+) = VV1 _ Vl1 X(XT V-1 X)-XT V-1

 = (I-S)-(I-S)D{DT(I-S) D} - DT(I-S) (4 1)

 = {(I-PD,R) V(I-PD,R)}

 Here, PD,R is the projector for the partitioned matrix [D. R]. In particular, if a single
 observation, yi say, is deemed to be missing, g consists of a single column of zeros with a
 one in row i, and the prediction error y = y(i), say, is

 V(i) = (gTglgTM = MijyjMii

 The cross-validation mean squared error is therefore

 C(+) = n'-1 2= MLJYJ)/Mt (4-2)

 Thus, by analogy with Wahba (1977) and Craven & Wahba (1979), there is an
 algebraic form for C(0) that can be computed without performing n separate regression
 calculations. However, there is still usually a much greater burden in evaluating M(+)
 than in finding (4). Some short-cuts are possible, see ??5 and 6, and also Craven &
 Wahba (1979), but to alleviate the problem, and to acquire a form of rotation-
 invariance, Wahba (1977) proposed an alternative criterion of generalized cross-

 validation, derived by replacing Mij in (4 2) by its average, n1 tr (M), to give

 G(4) = n{tr (M)} - 2 yT M2 y. (4*3)

 Under certain conditions of balance or symmetry in designed experiments, the MiI are
 equal. Choice of 0, whether scalar or vector-valued, can be made in practice by
 numerical minimization of (4A2) or (4A3): for scalar q, we have found that both golden-

 section and quadratic interpolation on log 4i work well.

This content downloaded from 137.222.80.149 on Fri, 17 Nov 2017 10:11:03 UTC
All use subject to http://about.jstor.org/terms



 532 PETER J. GREEN

 In the context of nonparametric regression, Silverman (1984) uses results of Utreras
 (1980, 1981) to amend the criterion further, by calculating the trace from eigenvalue
 approximations.

 When using a smoother S not of the form (2 3), these algebraic simplifications are not
 available, but the principle of cross-validation may still be used. The prescription must
 define how to smooth across the gap caused by a missing observation.

 A logical extension to cross-validation for selecting the parameter 4 is to allow it to
 choose the form of the variance structure V(+), presumably in practice from a small
 number of alternatives. Coupled with cross-validatory assessment of that choice (Stone,
 1974), this may be the only reasonable way to choose between methods on the basis of an
 individual data set, rather than, for example, from uniformity data believed to have
 similar covariance structure.

 Mr Robin Thompson has pointed out to me an interesting parallel between the present
 approach and that of restricted maximum likelihood, which may be stated in some
 generality as follows. Differentiating (4 3) with respect to 4 and noting that MX = 0 and
 M VM = M reveals that generalized cross-validation is equivalent to equating to their
 expectation under (2 1) certain sums of squares, namely yT MI y and its derivative, or for
 vector 4 all partial derivatives. The restricted maximum likelihood approach of
 Patterson & Thompson (1971), generalized to arbitrary V, does the same but with M2
 replaced by M. Some numerical comparisons will be made in ?? 5 and 6.

 5. A SPECTRAL DECOMPOSITION

 We now restrict attention to variance structures of the form V = I + 4 W WT for some
 known matrix W, representing plot error with one other variance component: 4 is the
 ratio of variances. This includes the incomplete blocks model, and least squares
 smoothing based on first or second differences.

 From (4 1) we have

 M = (I-PX) V(I-Px) = (I-Px)+4)(I-Px) WWT(I_PX).

 Since the two terms are symmetric and commute, they may be simultaneously
 diagonalized (Wilkinson, 1965, p. 52) and then, if we use the idempotence of I - Px, it is
 straightforward to prove the existence of an orthogonal matrix U partitioned as
 [U1. U2 U3], where Ui has ri columns, and a diagonal matrix A of positive eigenvalues

 {ij}, such that

 PX = U1 UT, (I_PX) WWT(I_Px) = U2AUT, IPX,W = U3 UT.
 Then

 M(+) = U2(I+4A)Al UT+ U3 UT7 (5.1)
 so that M has eigenvalues 0 and 1 with multiplicities r1 and r3, and also

 {(1 + Aj)-'; j = 1, 2, . .., r2}. Note that this explicitly demonstrates how M varies from
 (I-Px) to (I-Px w) as 4 increases from 0 to oo; for example, in the incomplete blocks
 model, these limits corresponding to ignoring block effects, and to fitting them as fixed,
 respectively. The decomposition used here is essentially that used by Patterson &
 Thompson (1971) for block models.

 It follows from (5O 1) that dM/d4) = 4)' (M2 -M), so that by the remarks at the end of
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 Linear models for field trials 533

 ? 4, generalized cross-validation is equivalent to equating to expectation yTMry for r = 2

 and 3, and restricted maximum likelihood similarly for r = 1 and 2.

 When the {Aj} are equal, all positive powers of M are convex combinations of I-Px
 and I-Px, w so that both criteria are algebraically equivalent to Yates's estimate of 4
 for incomplete block designs (Yates, 1939, 1940); in our notation, with W =Pz,
 this entails equating to expectation the intrablock residual sum-of-squares,

 yT(I - Px, W) y = Sxw, and the blocks sum-of-squares, within replicates if relevant,
 adjusted for treatments, YT(Px w - Px) y = Sx-Sx w.

 The requirement of equality of the nonzero eigenvalues {Aj} is strong. It demands

 considerable implicit symmetry in the design; for example, it does not apply to all

 balanced incomplete block designs. If WWT is proportional to a projector for some
 factor, the requirement is of first-order balance for this factor with respect to X, in the

 sense of James & Wilkinson (1971).

 Some numerical examples are given in Table 1 for the same collection of balanced
 incomplete block designs considered by Jensen & Stone (1976) in their application of

 cross-validation to these designs. Note the exact or close agreement between cross-

 validation and the criteria of Yates (1940), Nelder (1968) and Patterson & Thompson

 (1971). When the eigenvalues {Aj} differ, the exact connection is broken; however if they

 do not differ too markedly, the argument above suggests approximate equivalence of the
 two criteria.

 It will be noted from Table 1 that Jensen & Stone (1976) obtained different weights

 from a cross-validation argument based on a different prescription. They obtain separate

 predictors for the intrablock and interblock extremes of 4, that is x0 and -1, regarding
 an entire block as missing in deriving the interblock predictor. The Stein estimates differ

 considerably from the rest, apparently because they utilize interblock information only

 through the treatment component: Stein's estimator (Stein, 1966) uses only ?(-1), T(oo)

 and Sx w

 Table 1. Balanced incomplete block designs: estimates of 4 for four data sets, according
 to five different criteria

 Data set
 John (1971)

 Davies Davies Quenouille John fitting
 (1954, p.207) (1954, p.216) (1953, p. 177) (1971, p.226) replicates

 n,t,k

 Estimate 12,4,3 20,5,4 30,6,3 36,9,3 36,9,3

 Jensen & Stone (1976)* 13-08 -0-6357 2-938 -04444
 Yates (1940) 21-40 -05033 3-320 0-1348 -041685
 Cross-validation of ? 4 21-40 -0 5033 3-446 0-1975 -0-1685
 Nelder (1968) 21-40 -05033 3-355 0-2102 -0-1685
 Stein (1966)* 68-32 0-2640 9-123 04303

 Where ? is estimated as negative, it would be customary to use = 0, that is to use no block
 adjustment.

 Rows marked * were given for these data sets by Jensen & Stone (1976).
 Nelder's estimates are identical with those of Patterson & Thompson (1971) since the blocks are of

 equal size.

 To derive an analogue of Yates's estimate for 4, valid for general known W in
 V = I+4)WWT, note that in consequence of (541) Sx and Sx are the limits, as 4)- 0
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 534 PETER J. GREEN

 and oo respectively, of the weighted error sum-of-squares

 F(0) = yT My = min,, {(y-DT-Rp)T V '(y-DT-Rp)}

 that would be the focus of attention if 4 were known. Equating F(O) and lim F(O) as
 4 -+ oo to expectation under model (2-1) therefore seems the natural analogue, although
 this procedure is not as cheap and convenient as in the incomplete blocks case, because

 the expectations in general involve nontrivial trace terms. Further, if D, R and W

 together span R', for example, least squares smoothing with first or second differences,

 7(4)) - 0 as 4 -+ oo. In this situation, Williams (1986) tacitly uses lim )1'(4) as
 4)-+ so as the second sum of squares: from (5 1) we see that this equals YT Ny, where
 N = {(IPX) WWT(IPx)}+. Provided that (I-PPv) (I-PR) = 0, the result of Pukel-
 sheim (1976), stated in (2 4), remains true when V is singular, if V- 1 is replaced by V +.

 Thus, replacing V by WWT and R by X, we see that, if (I-Pw) (I-Px) = 0, we have

 N = A TA-A AX(XTAT AX) XT AT A = AT(I_P ax) A,

 if A is chosen so that (W WT) + = AT A; for example A = (WT W) - 1 WT, if W has full rank.

 Thus YT Ny is the residual sum-of-squares from ordinary regression of Ay on AX.

 6. APPLICATION TO LEAST SQUARES SMOOTHING

 The spectral decomposition of M given in (5- 1) reduces the computation in least

 squares smoothing methods, whether in the form based on second differences as

 discussed in detail by Green et al. (1985) or in the generalizations described here.
 All of the methods for choosing the tuning constant )-1 proposed by Green et al.

 (1985) involve computing the decomposition y = D? + t + i for several values of 4 -.
 The spectral decomposition (5-1), while incurring a set-up cost, permits the decom-

 position and various derived statistics to be computed very cheaply for subsequent

 values of -1.

 When V(+) = I+ )WWT, note that

 V 1 = I _ W()- I + WT W) 1 WT _+ I-PW

 as 4 00. The fixed effects c, p in model (2 1) are estimated by Ty where

 T = T(4) = (XT V 1 X)-1 XT V-1.

 Note that M = V'(I-XT). Now,

 T(oo) {I-M(+)} = {XT(I-Pw) X} - I XT(I Pw) [I V(4)) - {IXT())}]. = T(0),
 since (I-Pw) (I-V') = 0. Thus if we write f1 = ,4(0) = M(4))y, the decomposition of
 y-fl(4) as D?(4) + (4) is obtained by linear transformations not depending on 4: only
 M(0) need be recomputed for each 0, and that from the spectral decomposition (5-1).

 Numerical examples of choices of 4 are given in Table 2: the data sets are those used
 by Green et al. (1985).

 7. A SIMULATION STUDY

 To compare the use of cross-validation in choosing 4 with other criteria, we performed

 a simulation experiment, making use of the algebraic results in ?? 4, 5 and 6. The form of
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 Table 2. Choice of 4 in second-difference least squares smoothing:
 data sets as described and analysed by Green et al. (1985)

 Data set
 Mildew SB77 ES 5 SB77 ES 6

 Estimate n,t = 38,4 n,t = 51,17 n,t = 48,16

 Yates 0 11 0-0162 0-0603

 Tukey 1-86 0 0-0613
 Restricted maximum likelihood 2-79 0-0041 0-0591
 Generalized cross-validation 3-06 0-0051 0-0809
 Cross-validation 3 40 0-0022 0-1113
 Maximum likelihood 5-27 0-0238 0.1915

 V(+) assumed was that corresponding to ordinary least squares smoothing; see Example

 2 in ? 2. Three factors were varied in the experiment:

 (i) the true variance structure for y: three alternatives, in each case white noise 11 plus
 correlated 4, all jointly normally distributed with: (a) first differences, or (b)

 second differences of 4 independent and identically distributed, or (c) 4 as a 7-

 point equally weighted moving average;

 (ii) the true roughness, measured by )true= (nT AT A)/{ (n -2) IT II}: two alterna-
 tives, 0 02 and 0 2;

 (iii) the design and number of treatments: two alternatives, both with n = 48 plots:

 one adapted from a serially balanced design on 4 treatments, the other a triple
 lattice with 3 replicates of 16 treatments, block size 4.

 For each of the resulting 12 = 3 x 2 x 2 cases, 100 replicates were performed: 4 and 11 were
 drawn independently from (i) and scaled according to (ii), then the sum y = 4 + 1i
 analysed by least squares smoothing assuming design (iii). Thus true treatment effects

 were set to zero.

 Table 3. Simulation for least squares smoothing: 10th and 50th percentiles of percentage
 efficiency for 5 criteria for choice of variance parameter, 4; variance structures, (a), (b)

 and (c)

 10th percentile 50th percentile

 Criterion Criterion

 Otrue t cv Gcv Tukey REML ML cv Gcv Tukey REML ML

 (a) 0-02 4 45 47 45 45 45 93 94 94 96 96
 16 79 77 78 80 78 97 97 96 97 97

 0-2 4 38 37 36 35 36 88 84 87 89 89
 16 73 73 76 78 76 95 94 93 93 93

 (b) 0-02 4 40 39 36 37 39 87 85 84 88 86
 16 71 65 75 78 74 95 95 95 96 96

 0-2 4 18 17 19 17 19 79 81 79 78 77
 16 70 71 74 71 67 92 92 94 93 93

 (c) 0-02 4 42 42 42 42 42 94 93 96 96 96
 16 77 80 82 85 82 97 97 98 98 97

 0-2 4 25 27 28 26 26 83 84 89 84 87
 16 71 71 71 75 70 88 90 90 93 90

 Designs, each 48 plots in one line.
 For t = 4: 4 2 3 2 1 4 3 4 1 2 1 3 4 2 1 2 3 4 3 2 4 1 4 1 3 2 3 1 2 4 2 4 3 1 3 1 4 2 3 2 1 4 3 4 1 2 1 3.
 For t = 16: 8 4 16 12 7 11 3 15 1 13 5 9 6 2 10 14 5 12 15 2 3 14 8 9 11 16 6 1 7 10 4 13 11 2 13 8 6 4 15 9 16
 5 3 10 7 12 14 1.
 cv, cross-validation; Gcv, generalized cross-validation; REML, restricted maximum likelihood.
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 536 PETER J. GREEN

 Five criteria were compared: ordinary and generalized cross-validation, and three

 methods suggested by Green et al. (1985): 'Tukey's rule', in which YTMy/ttr(M)}2 is
 minimized, and full and restricted maximum likelihood. The resulting choices of 0 were
 extremely highly correlated. It was therefore sufficient to examine the criteria margin-

 ally: an appropriate measure of the efficiency of a particular choice /* is

 t t

 min {T(I)-Tj}2 E Tj

 where {zj} are the true values, here zero. Note that 100% efficiency cannot be attained.
 For each criterion, the empirical distribution of efficiency, from the 100 replicates, was

 constructed. Some of the results are presented in Table 3. They demonstrate rather close

 agreement between the criteria, and suggest no clear preferences. The superiority of

 generalized cross-validation over the ordinary version found by Craven & Wahba (1979)
 is not apparent here, presumably because of the well-conditioned nature of these

 designed experiments.

 Since the other criteria are less readily adapted to a variety of smoothing methods,
 especially those not derived from least squares, these results support the use of cross-

 validation for choice of 0.
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