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ABSTRACT

We investigate various aspects of a class of dynamic Monte Carlo methods, that
generalises the Metropolis algorithm and includes the Gibbs sampler as a special case.
These can be used to estimate expectations of marginal distributions in stochastic Sys-
tems. A distinction is drawn between speed of weak convergence and precision of
estimation. For continuously distributed processes, a particular gaussian proposal distri-
bution is suggested: this incorporates a parameter that may be varied to improve the
performance of the sampling method, by adjusting the magnitade of an "antithetic” ele-
ment introduced into the sampling. The suggestion is examined in detail in some
experiments based on an image analysis problem.

Keywords: autocorrelation time, convergence rate, dynamic Monte Carlo, Gibbs
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1. Infroduction

Complex stochastic systems, large collections of random variables with non-trivial
dependence structure, arise in probability modelling in many contexts, Examples
include statistical mechanics, geographical epidemiology, pedigrees in genetics, statisti-
cal image analysis, and general multi-parameter Bayesian inference. In practice, distri-
butions of variables in such systems are usually not amenable either to exact numerical
calculation or to direct simulation. The dynamic Monte Carlo approach to the compu-
tation of probabilities and expectations in these systems is receiving much attention.
The basic idea in such methods is to turn the given static problem into a dynamic one
by constructing what is usually an artificial temporal stochastic process, that is known
to converge weakly to the distribution of the original system, yet is easy to simulate.
This temporal process is generally taken to be a time-homogeneous Markov chain, so
that apart from the matter of checking the aperiodicity and irreducibility of the con-
structed process (and some additional regularity conditions when the state space is
uncountable), analysis of the original problem is reduced to the construction of a Mar-
kov chain with a specified equilibrium distribution.

There will always be very many such chains, and the art of dynamic Monte Carlo
is to choose one that uses computational resources effectively by striking the right bal-
ance between simplicity and speed. This paper is a contribution to the discussion of
how to strike this balance. It is stimulated by our interest in a class of problems aris-
ing in a Bayesian approach to low-level image analysis, but in fact our observations
and conclusions will be quite generally applicable.



After a brief survey of the statistical literature on dynamic Monte Carlo, the
remainder of the paper is divided into three sections. In Section 2, we discuss how to
define speed of convergence appropriately when estimating properties of the equili-
brium distribution, and how to monitor and quantify convergence from a sample reali-
sation. Section 3 contains a new proposal for a class of Markov chains with a given
equilibrium, and an analysis of some properties of this class in certain simple situa-
tions. In Section 4, we present the results of some experiments making use of this
class of chains in an idealised Bayesian image analysis context,

Dynamic Monte Carlo methods originated in computational physics research; the
paper by Metropolis er al. (1953) is usually taken as starting the subject. An enormous
literature has developed: the current state of the subject, with particular reference to
applications in statistical mechanics and quantum field theory, is summarised in the
excellent lecture notes of Sokal (1989). The monograph of Hammersley and
Handscomb (1964) introduced the ideas to the statistical community, but only with the
development of stochastic models for image analysis, and Geman and Geman’s propo-
sal (1984) to use the Gibbs sampler in image reconstruction, did interest really
develop. The Metropolis algorithm and Gibbs sampler are described in Ripley (1987,
p.113), and will be further discussed in Section 3. Many other applications have now
been addressed by such approaches, including Monte Carlo testing, for example in the
Rasch model, (Besag and Clifford, 1989), marginal distributions in Bayesian inference
(Gelfand and Smith, 1990), and geographical epidemiology (Besag, York and Mollié,
1991).

There are connections with the development of simulated annealing as an
approach to combinatorial optimisation, proposed by Kirkpatrick er al. (1983) as an
analogue of annealing in physical systems, and also utilised by Geman and Geman
(1984) in image reconstruction. Here a time-inhomogeneous Markov chain is con-
structed; instantaneously the transition mechanism has an equilibrium distribution that
is a renormalised power of the distribution of interest. As the process evolves, this
power is gradually increased: in the limit the distribution is concentrated on the
value(s) of maximum probability, and if the power is increased sufficiently slowly, the
process can be shown to converge to this maximum. We do not consider annealing in
this paper.

2. Speed of convergence

We are concerned with a random vector x with components x; indexed by i€ S, a
finite set of sites or pixels. The set of possible values for x will be denoted by 2
which usually has the form C¥ where C might be finite, countable, or an interval in R
or RY depending on context. For the most part, in this paper we will use notation
appropriate to the countable case. In addition, in most applications there is a vector of
observables y. The object of interest is the distribution of x given y: we denote its
density with respect to an appropriate measure as p(x|y). In the context of image
analysis, y represents an observed pixellated degraded digital image, and x an unob-
servable true image representing the "state of nature": study of the posterior distribu-
tion p(x|y) is our route to drawing inference about this truth. Note that in this and
other examples, x and y are vectors of high dimensionality.



Our discussion 1is also applicable to the case where there are no observables: just
regard y as null. We will use the symbol n(x) to denote whichever of p(x) or p(x|y)
is of interest. The same computational ideas apply to both cases: thus Grenander’s per-
ceptive observation (1983, p.83) that "pattern analysis equals pattern synthesis".

Attention usually focusses on one or more functionals of the distribution m(x):
suppose that we wish to estimate the expectation E (f) =Y. f(x)n(x). This is very
general, for example f(x) might be 3 x; (total truth in a region ACS) or I, g (to

ie A
estimate the probability of a zero; /Iyj is the indicator function). If V(x) is a sufficient
statistic for a parameter 3 in the model n(x), then f(x) might be V(x) or Iivoss in
order to construct procedures for inference about P.

Let P be a Markov transition function on the state space €2, that is irreducible and
aperiodic, and has x as equilibrium distribution, so that
Y n(x)P(x,x") = w(x")
xe )
for all x’e Q. Suppose we have a partial realisation {x":r=0,1,2,...,N} from this
Markov chain. Then our estimator of E, (f) will be the empirical average
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Motivated by the observation in Gelfand and Smith (1990) that Rao-Blackwellisation
can be used to reduce mean squared error, in the case of replicated independent Monte
Carlo runs, we are investigating the performance of modified estimators exploiting
conditioning. For example, if f(x) is actually fi(xy), a function of a single component
of x, then g(x)=E (f1(x{)|xg ;) may sometimes be cheaply computed. It has the
same expectation Ep(f) = E.(g), but gy will have smaller mean squared error than fy.
Since these have the same general form, the ensuing treatment continues to apply; we
will not discuss this modification specifically here, but further details will be reported
elsewhere.

How good are such estimators? This seems to depend on how fast the Markov
chain {x{*} converges weakly to m. Under the irreducibility condition, P has only the
single eigenvalue 1 on the unit circle, with the constant vectors as the corresponding
right eigenvectors, so that the rate of convergence is given by R, the spectral radius of
P acting on the orthogonal complement of the constant vectors, and we find

sup [P'(x,x")y —nt{x")| ~ cR". o))
X, x'e Q

Then for any bounded, continuous function f,

IE(FEUMN—EL ()] < c(f)R'. 2)

Using R, we can define the exponential autocorrelation time (—1/logR): the number of
steps of the Markov chain needed to reduce the "errors” |P!(x,x’) — n(x")| by a factor
of ¢ asymptotically, Small R (small autocorrelation time) indicates rapid convergence,
but will actually be a pessimistic measure for any particular f, for which the chain
may achieve faster convergence of E(f (xUM).



But this discussion does not address performance of the estimator fy, obtained
from the sample path of the process by integration over time, not over realisation.
This estimator has bias and variance, whose asymptotic forms are:
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where p,(f) is the autocorrelation function of the process { f(x(’))}, calculated under
the equilibrium distribution m, and 6% is the equilibrium variance of f(x). The asymp-
totic variance is a factor

W= 2 Pl
l=—oo
times what would be obtained if independent random sampling of x from 7(x) could
be achieved: we call t©(f) the integrated autocorrelation time (differing from Sokal’s
definition (1989) by a factor of 2). From (2), (3) and (4), it is evident that the asymp-
totic mean squared etror of fy as an estimator of E,(f) is determined by the variance,
which is of order N~1 while that of the squared bias is N~2.

For clarification of the distinction between rapid convergence (small R in (1) and
(2)) and good estimation performance (small t(f)), it is helpful to study the finite
reversible case, where explicit expressions can be given.

Suppose the Markov chain P is finite, reversible, irreducible and aperiodic, and
that B is the diagonal matrix with entries (n(x),xe ), the equilibrium probabilities for
P. Reversibility means that T(x)P (x,x") = n(xYP(x",x) for all x,x’e Q, so that BP is
a symmetric matrix. We then have the spectral representation

P = EAETB

where A =diag(Ah;,A,,...) is a diagonal matrix of eigenvalues of P, which are real,
and E is the matrix whose columns are the corresponding right eigenvectors, normal-
ised to be orthogonal with respect to B, so that ETBE=1. We take A; to be the
unique  unit  eigenvalue, so that E, =1 for all xeQ. Then
P*=EA"ETRSE diag(1,0,...,0)ETB = 1z T as expected.

If f is the vector with components (f(x),xe Q ) and a the vector of initial proba-
bilities for the chain, then

E(f(x")) = a™P'f
= YA(ETa) (ETBD), .
k



So
E(fN—EL(f) = E(f ) =Fn(x)f(x)

= Y A(ETa) (ETBI),.
k=2

If A, is an eigenvalue second largest in absolute value, then {A,|=R and

[E(F &) =En(f)] = ORY, (5)

where the multiplier depends on the initial distribution, the particular functional of
interest, and on the transition matrix P.

Turning to the empirical average fy, we have
" 1 N
EUw) = X SA(ETa) (ETBN,,
t=1 &
whence the bias is

) 1 & t T T
E(fn)-Ex(f) = E{WZM}(E a),(E" Bf),

k22 Y= 1
T T
E““xw(E a),(E’Bf),. (6)
k>2
As for the variance, the equilibrium autocovariance is

*pi(f) = ZEF S IRE(P (x,x")~R(x ")

= fTBP—fTanTt
= fB(P'-1x")f.
Now (P!-1zT) = (P-1xTY for 121 so
Y (P'-1xT) = (I-P+1xTy ' —1nT.
=0
But from (4)

Nvar(fiy) ~ o*2(f)
= o? Z pf) = 267 Em(f) o?

I=—oca
= fT{2B(I—P+11tT)‘ ~2B1xT-B(PY-1xT)if
= fTBE diag{2(1mxk+8k1 Y128, ~1+8,, YETBf

(ETBN} 7
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The matrix expression is noted by Peskun (1973), and the spectral expansion by Sokal
(1989) and Frigessi, Hwang and Younes (1990).

Contrasting (5) with (7), we see that rapid weak convergence to equilibrium is
obtained by having all eigenvalues A, other than A; = 1 small in absolute value, whilst



good asymptotic mean squared error of estimation is suggested by having
(I+A,)/(1-2,) small: "negative eigenvalues help”. The rdle played by the eigenvec-
tors in (7) should not be neglected, however, as two alternative transition matrices P
will in general differ not only in their eigenvalues.

In practice, with a finite Monte Carlo sample size N, both of these aspects of con-
vergence are relevant. The very complexity of the distribution ® which suggested con-
sideration of Monte Carlo simulation in the first place inhibits explicit calculation of
eigen-decompositions, of course, and we need diagnostics for studying the rate of weak
convergence and methods for estimating the integrated autocorrelation time. Such
tools will be used both in studies aimed at making general recommendations, such as
the present one, and routinely in the actual use of dynamic Monte Carlo methods (not
least in order to attach standard errors to estimates of E (f)). Blind application of
Gibbs or Metropolis samplers, with no examination of these issues, can produce com-
pletely meaningless results.

The conflicting demands of small 2ug[kkf and small (1+A,)/(1-A;) suggest a
=

revised strategy of switching between different transition mechanisms as the simulation
proceeds, producing a time-inhomogeneous Markov chain, In its simplest form, which
seems to be commonly used in the physics literature, the idea would be to use an ini-
tial process P, for the first Ny iterations, then to switch to P for another N updates.
Py would be chosen to give rapid convergence to equilibrium and P for a small t(f).
The switch would take place when diagnostics suggested that the process was
effectively in equilibrium, and the first Ny iterations discarded for estimation purposes,
so that the estimator is

1 N0+N
v X Fe.
t=Ny+1

More complicated variants of this, perhaps involving continuous alteration of the tran-
sition mechanism, and/or weighted averages of {f(x{*))} may be worth exploring;
another factor that can influence this discussion arises when the cost of computing f is
high relative to that of the Markov transition, which will support sub-sampling the
chain at equally spaced times at which f(x")) is computed, with a corresponding
modification to the definition of autocorrelation time.

Rather than sample repeatedly from a single run of the process, some authors, for
example Gelfand and Smith (1990), propose evaluating f(x*)) only once (so that
N =1, although N, is large), but then repeatedly restarting the whole process, so as to
be able to average completely independent values of f(x). But this seems to us to be
inefficient, at least in the situations of our experience, where T(f) is much less than
(=1ogR) and var,(f) is sufficiently large that say 100 or 1000 effectively indepen-
dent observations will be needed to estimate E_ (f) to adequate precision. In this
situation, more computing effort would be used to achieve the same precision if the
chain were restarted.

We have only tentative recommendations to make regarding the diagnostic moni-
toring of convergence. Practical considerations limit attention to a few scalar-valued
functionals f1(x)),f5(x*),..., although there may be merit in also measuring aspects
of several x\) jointly, such as a summary of the magnitude of the difference between



x(~1 and x(), Each functional f; will have a characteristic spectral radius R; govern-
ing the rate of convergence of its distribution to equilibrium: none of these can exceed
R (see equation(2)). The hope in selecting a range of such functionals for study is that
at least one R; is close to R, so that we are not misled into an over-optimistic impres-
sion of the rate of convergence of the process as a whole. Qur approach is then sim-
ply to plot the values of these functionals against iteration number: the clarity of the
visual impression given about convergence depends on the equilibrium variance of the
functional. See the examples in Section 4.

Estimating the integrated autocorrelation time t(f), for any particular functional f,
is a standard problem from the analysis of stationary time series. (We suppose that we
only address this question after discarding the initial N, iterations according to the cri-
teria just described, so that we can regard the process as in equilibrium). The
integrated autocorrelation time is simply 2z times the normalised power spectral den-
sity function of the process evaluated at frequency 0 (Priestley, 1981, p.225), so we are
dealing with a special case of spectral density estimation. The difficulties are well-
known, the naive estimator 37 6,(f) using the sample autocorrelations of the
observed process being inconsistent as the length of the observed series increases (Pri-
estley, p.429). The conventional solution is to apply a spectral window, that is to use
a weighted estimator Y w,(,(f), where the lag window function w, decreases to 0 as
t—too. In particular, Sokal (1989) recommends the truncated periodogram estimator
2 ieemPi(f), with the window width M chosen adaptively as the minimum integer
with M=3%(f). In our implementation of this we estimate the autocorrelations from
the Fourier transform of the process, thus wrapping the time axis onto a circle; this
approximation is acceptable if T(f) is small relative to the length of the series.

An alternative non-parametric estimator of t(f) which is also appealing turns out
to be related to the spectral density estimator using the Bartlett window (Priestley,
p.439), and is recommended by Hastings (1970). If N =bk and the series is broken
into b non-overlapping blocks of & consecutive observations, then the between-blocks
mean square
jk 2
Y fEN=Ty ®

bl 1
= t=(j—1)k+1

k
= 2 |1

is an approximately unbiased estimator of 62T(f) as b and k—»eo.

3. Gaussian proposals in the Metropolis method

Motivated by our interest in image analysis problems, we consider here a new
class of samplers appropriate to the continuous case, where Q =RS, with particular
emphasis on designing Markov chain methods with small integrated autocorrelation
time.

The best known dynamic Monte Carlo method is the Metropolis algorithm
(Metropolis, et al., 1953). Here we describe it in the interesting variant due to Hast-
ings (1970). Recall that we wish to construct a Markov chain with a prescribed equili-
brium distribution n(x). Let g{x,x’) be an arbitrary irreducible aperiodic transition
function on Qx€: how can this be modified to achieve the required equilibrium?
Given x) =x, a proposal x” is drawn from q(x,x"), but not immediately taken as the



new state of the chain. Rather, it is only accepted, and x“*V) set equal to x’, with pro-
bability o(x,x"); otherwise it is rejected, and no move is made, so that x*1) =x. The
acceptance probability can always be chosen so that detailed balance is obtained:

TP (x,x") = n(x" )P (x’,x) %)
for all x,x"e Q. One possibility for o is
, : 'ft(x’)q(X’,X)}
ox,x") = miny1, LI 200 0, (10)
{ E(X)q(x,X")
for which (9) is easily verified, the corresponding transition function being
Px,x")

g(x,x"yox,x)  x'#x

1= 3 g(x,x"Hox,x") x'=x

X ®x

i

Among all possible o achieving detailed balance for a given g, the particular choice in
(10) is shown by Peskun (1973) to give minimum integrated autocorrelation time.

This prescription is very general, and can be used to generate a wide variety of
Markov chain simulation methods for different problems. The process x*) is usually
highly multivariate, and in practice we usually concentrate on algorithms which only
change one component of x at a time. (There are notable exceptions in special cases,
for example the algorithm of Swendsen and Wang (1987)). This does not affect the
validity of (10), but merely facilitates its computation. There are various valid ways to
choose which component, i, of x*) is to be updated in the transition to x“*?: the com-
mon ones being a systematic choice, cycling through ie S in some fixed order, or a
random choice, drawing i at random each time. The choice is reflected in g.

In the original application of this idea, Metropolis et al. (1953) considered a
finite set of "colours": Qz{O,l,...,L—I}S , and the proposal that takes a uniformly
distributed choice from among the L—1 colours different from the current one. In this
case, and whenever there is symmetry of the proposal distribution, g(x,x") = ¢(x’,x),
the expression for a(x,x”) simplifies to min{1,7n(x")/n(x)}. But we shall see there is
something to be gained by the slightly greater generality.

Two other points might be made about this prescription. One is the
"distribution-free” nature of the simulation step: the transition function ¢ is quite arbi-
trary (provided that g(x,x") and g(x’,x) are either both zero or both positive). So use
of the method is not restricted to those n(x) which are convenient for simulation: the
model 7 only enters the algorithm through the calculation of w(x")/n(x) in the
definition of .. The second point is that although the whole procedure has the flavour
of the conventional rejection methods for static Monte Carlo simulation, there is no
requirement, as there, for the density that is used for simulation to envelope (a sub-
multiple of) the density of interest.

One particular algorithm in this class has received a good deal of attention in the
recent statistical literature: the Gibbs sampler. The proposal distribution ¢ is defined
as follows: a pixel i is chosen from S uniformly at random, the current value x{*)
deleted, and the proposed new value drawn from the conditional distribution, under =,
of x; given the values of all other pixels: thus
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miggn(x lle\t)
{(Systematic scanning over the pixels is also commonly used). It is trivial to see that
for x#x’e Q, ¢(x,x”) and g(x’,x) are each positive if and only if x and x’ differ in at
most one coordinate, and that in that case

g(x,x") _ n(x’)

qg(x",x)  w(x)
so that the corresponding acceptance probability a(x,x’) is identically 1. From this
point of view, the Gibbs sampler, or heat-bath method as it 1s known in the physical
literature, 1s but an extreme form of the Metropolis method, with a highly model-
dependent choice of proposal and zero probability of rejection.

g(x,x’) =

Although informal heuristics suggest that eliminating rejection should reduce the
integrated autocorrelation time, the computational price paid may be high. For the
Gibbs sampler requires simulation from m(x’;|xs;), which may be quite unwieldy.
Except when C consists of a small number of discrete colours, or when 7(x) is Gaus-
sian, even normalisation of m(x";|xg\;) may be expensive. On the other hand, if some
model-independent choice of proposal is made, we only need to be able to compute
the ratio m(x’;|xe; R(x;|x5\;) of the posterior probabilities of the proposed and current
values.

Thus if we know that the Gibbs sampler does yield good convergence properties,
it may nevertheless be preferable in terms of computational cost to choose a proposal
distribution that is merely reasonably close to m(x’;|xq;) from which it is easy to
simulate, and to tolerate the consequent small probability of rejection.

The Gibbs sampler is not the only Metropolis method that gives zero rejection
probability, In their study of stochastic relaxation in gaussian processes, Barone and
Frigessi (1989) derived a class of samplers that include the Gibbs sampler as a special
case. Suppose that |; and o7 are the expectation and variance of the conditional dis-
tribution w(x’;|xs\;). The Gibbs sampler proceeds by drawing the new value x’; from
N(u;,6?). Barone and Frigessi’s -stochastic relaxation (®-SR) approach draws
instead from N{(1+0)u;—0x;,(1 —92)0?). (We use 0 in place of their @w—1). Validity
of this method is most easily checked in the present context by noting that
g(x,x")/q(x’,x) does not depend on 0. Barone and Frigessi prove that in the case of
entirely positive association between the variables (all non-diagonal entries in the
inverse of the variance matrix non-positive), the spectral radius R of the corresponding
Markov chain is a decreasing function of 8 at 9 =0. An intuitive explanation for this
advantage of using 0>0 in the case of positive association comes from noting that then
the current value x; is positively correlated with the values of its neighbours. If x; is,
say, in the lower tail of its marginal distribution under =, then the whole local condi-
tional distribution w(x’;{xg,;) will be biased towards this lower tail: hence the advan-
tage in modifying the Gibbs sampler to improve convergence by "over-correcting” this
bias.

A simpler yet stronger result holds for the asymptotic variance: for any linear
function of x, the asymptotic variance when using Barone and Frigessi’s modified
sampler, with systematic scanning of pixels, is proportional to (1-8)/(1+8). Without



loss of generality, we assume that the process has zero expectation and is in equili-
brium.

Theorem.

Suppose that 7t(x) is the gaussian distribution N(0,V) where V is non-singular, and that
the pixels are indexed by i€ §={1,2,...,n}. Let a stationary process {x\"),re Z} with
marginal distribution n(x) be defined by updating x; cyclically for i=1,2,...,n,1,2,...
by resampling x; from

N((1+8)u;~6x;,(1-6%)07) (11)

where |; and G? are the mean and variance of the distribution n(x;{xx;). Then for
any vector of constants c,
1 ¥ 1-9 .
Nvar(eT _ 3 x*) - __~ cTvdiag(v-1Hve.
( N;E ) e gV™")

Proof. We first consider the stationary first-order matrix autoregression defined by
xUHD = Ax(D 420+ where {z(9:1e Z} are independent and identically distributed
gaussian random vectors with zero mean. (Since the process is stationary, and is to
have marginal distribution 7, it follows that we must have var(z) = V-AVAT), Now
for any 120, ExWxOTy= E(AxO+ 3 A2 OTy= AT ExOxOTy L0 = Ay,
Thus

3 EGOxOT) = TAVLY (AV)T-V

{00 =0 =0

J-AY V+v(I-AY 1=V
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Now
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t=1 s=11=1
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We now have to write Barone and Frigessi’s sampler in the matrix autoregressive
form. But

E(x;|xg\;) = —gii’* 2.8i%

J#i

il

K

2 _
of = var(xlxa) = gi',

where G = (g;) = V™!, Thus the sampler (11) can be written

i1 n
xi(wl) - Zbljxj(tﬂ) + Ebijxj(f) + zi(t+1)’
j:l _]:l
where B = (b;) =I-(1+0)I'G and var(z{*V) = (1-0%)I"; where T = (diag(G))"!. Let
L denote the lower triangle of B. Then in matrix form we have

XD o px(HD gD 4 g+ D)



or
XD = (LY HB-L)x) 4 (J-L) 120D,
This is a matrix autoregression with A = (/ ——L)”I (B—L). Thus
(=AY YI+AYV = (I-BY 1 (J+B-2L)V

= (140 1G I 27 - (1 +O G+ 21 +8)H }V
where H is the lower triangle of G

= (1+8)"'V{2I '~ (1+0)G+2(1+0)H } V

= (1+0)" 1V{(1-0 1+ (1+8)(H-HT)}V

since G is symmetric. On pre- and post-multiplying by the same vector ¢, the anti-
symmetric term vanishes, and we obtain the required result.

The implication of this result is that, for linear functionals in the gaussian case,
and considering only the asymptotic variance, best performance in this class of pro-
cedures is obtained by letting 8 —>+1. This is a dynamic analogue of the conventional
idea of using antithetic variables to reduce Monte Carlo variance. It is interesting to
note that this effect is anticipated, without explanation, in a simple example in Hast-
ings (1970, p.101).

All of this applies only to gaussian distributions ®(x), and our real interest is in
other cases with continuously distributed x. Only in rather special cases could we
expect to find a family of samplers analogous to that of Barone and Frigessi, indexed
by an "antithetic parameter” 6 and including the Gibbs sampler, yet convenient for
simulation. As a general procedure, however, we suggest using a gaussian proposal of
the form

x;" ~ N((1+0)u—6x;,(1-6%)62) (12)
in the Metropolis/Hastings algorithm, with appropriately chosen |, 6% and 6 (these can
depend on all variables in the model except x;). The acceptance probability is

N T(x" )g(x’,x) .
oux,x’) = mm{l,W}

which simplifies to

= exp[min{0,g(x; ) —g(x)}H,

where
4 ’ 1 ,
8(x;") = log m(x;"[xg\;) + F(xi ~w?. (13)

Note that o does not depend on the antithetic parameter 8. We can now choose L and
o, depending on xg\;, to ensure that g(x;”) is approximately constant over a range of
arguments including x; and the most probable values from the proposal distribution, so
that a(x,x") is close to 1 with high probability. Such a choice of i and ¢ can be
made by expanding g(x;") to second order about an appropriate approximate centre:
for example, we have used the mean of neighbouring x; when simulating from Gibbs
distributions.



The nub of the idea is to use a gaussian approximation to the Gibbs sampler, but

» this need only be a good approximation in the centre of the conditional distri-
bution,

» exact detailed balance is restored by the acceptance/rejection decisions, and
*+ we still have the parameter 0 free to help improve asymptotic variance.

A full analysis of the spectrum of such a Markov chain seems to be a challenging
problem, but intuitively one might be concerned that as 8 increases towards 1, the
spectral radius may approach or even attain the value 1. There may therefore be less
freedom of choice in general than in Barone and Frigessi’s gaussian case. This under-
lines the need to monitor convergence carefully as the simulation proceeds.

We are not aware of any classes of distributions for use in generating proposals,
other than the gaussian family (12), into which it is possible to introduce an antithetic
parameter © that cancels on forming the ratio q(x,x’)/g(x",x). Thus if our procedure
were modified to use a non-gaussian proposal distribution, the details would be a little
more complicated. The simplest way to extend the idea to state spaces other than
Q=RS would be by transformation, for example, by replacing x throughout by log(x)
if x takes only non-negative values.

Further insight into these sampling methods can be gained by considering a toy
example. Suppose we have just two sites, and three possible values {1,2,3} at each.
There are then only nine possible states of the system, {11,12,...,33}, and spectral
decompositions are easily computed numerically. Updating is by uniform random
choice of site, and when visiting site 1, the probabilities of some possible transitions
are

12 - 12 o
12 =522 1-w
12— 32 ¥
11 — 21 )
11 - 11 1-26

All other probabilities are determined from these by symmetry over permutations of
sites and values. It is easily verified that the unique equilibrium distribution of the
chain has w(11) = x/(6+3x) =n(22) = 7(33), and 7(12) = 1/(6+3x) =n(13) =...etc,,
where K= (1-a~y)/8. This is a symmetric Potts model on 3 colours (Potts (1952)).
For any fixed value of x> 1, the simple Metropolis method, in which the proposal is
an equally likely choice among the colours different from the current one, is the case
o=0,y=0.5. The Gibbs sampler is the case o =y=2J, where the new value is (con-
ditionally) independent of the old. A crude analogue of the sampler (12) for 6>0 is
obtained by reducing o and v, and increasing & accordingly to preserve the equili-
brium, thus increasing the (equilibrium) probability of change at a transition, which is
proportional to (1-o—y/2).

Table 1 displays some values of T(f) and R for selected parameter values, includ-
ing the simple Metropolis method, the Gibbs sampler, those achieving minimum t(f)
or R, and for contrast, an extreme case with very poor performance. The values for
T(f) apply to any function f of x; alone: the invariance follows from the symmetry in
this example. These figures confirm that minimum T(f) and R are not the same thing,



that Gibbs sampling achieves neither, and that Metropolis methods can be very poor.

Table 1. T(f) and R in the toy example.

k=1.5

o Y o) R
min 1(f) O 0.25 1.7701  0.7500
min R 0 04 1.9762  0.4000
simple 0 0.5 2.2063  0.5000
Gibbs 0.2857 0.2857 3.1667 0.5714
poor 0.99 0 265.67 0.9943
K=3

o, Y (f) R
min ©(f) 0O 0 3.0667 0.6667
min R 0 0.0659 3.1111  0.6052
simple 0 0.5 45111 0.7101
Gibbs 0.2 0.2 4.5238 0.7000
poor 0.99 0 405.67 0.9961

There is an analysis of the spectral radius R for various samplers in the finite
state space case in Frigessi, Hwang, Sheu, and di Stefano (1990), including some
numerical comparisons for the Ising model.

4. Experiments with the new sampler

In this last section, we present a few of the results from some fairly extensive
experimentation with the Metropolis algorithm with the gaussian proposal distribution
suggested in the previous section. Kirkland (1989) performed a thorough study of a
number of samplers for the case of binary Markov random fields; here, of course, we
are considering only the continuous case.

The context is of an idealised image analysis problem based on artificial data. In
all of the experiments to be described, both the true and observed images, x and y
respectively, consist of 64x64 pixels. The model to be assumed in the analysis for x
is gaussian:

px)e<exp{~B ¥ (x;~x)*} (14)
{ij]

where the sum is over orthogonal neighbours only. Each pixel has four neighbours,
except for those on the boundary of the array which have three or two. The true x
images from which our artificial data are generated are drawn from the same model
except that (a) a possibly different parameter value By is used, and (b) the overall
average x value 18 adjusted to the level 25 by adding a constant to all x; (under (14),
the average has an improper distribution).

Two different models for p(y|x) will be used, in each case both for simulating
and analysing the data. Under each of the models, the {y;} are conditionally



independent, given x, and we have respectively:
y; ~ N(x;,25) (gaussian)
¥; ~ Poisson(25exp(x;/25-1)) (Poisson)

Note that these models have been devised so that they are comparable in terms of
mean and variance; the second allows us to study Monte Carlo methods in the pres-
ence of Poisson variation with mean of similar order to that found in much of the
medical imagery we see.

For the gaussian model, we use Barone and Frigessi’s sampler; this is straightfor-
ward. A little work is needed to set up the corresponding Metropolis algorithm for the
Poisson case, however. The function g defined in (13) is given by

g(x;") = logp(y;|x;")+log p(x;” s\t = (x;"—p)*+constant
— yilog(mex, im— 1)_mex,- fm—1 “"Bvi(xi’""fi)z
+ %Q_(xi'wu)2+constant

rd
YiX;
m

—mexirjm_l_'ﬂvt'(.xi‘,"ff)z (15)

4 1 (x; —W)? +constant
20

e Yi Xiim—1 i 551 — u
= X; {-;{~me (E“W)“*”zﬁvixi“_é—f}

m—1
’2{_— mex -

o ~Bv; +_:2m2_}
+ O((x;"~%;)*)+constant

where m =25 is the overall level assumed in the model, and v; and X; are the number
of neighbouring x values and their mean respectively. Thus if we choose

2

— O ¥ —
u = xi+_’_?7(yi—mex‘/m 1)

and

Xl

[4 —
02 {2[3\/;4‘-—-—;5“%} !

Il

the first and second order terms vanish, and there is a prospect that g will be nearly
constant in the range of interest. These are the values used in the experiments we
report. There may be merit in examining alternative quadratic approximations to the
exponential function in (15) in the hope of obtaining values for p and o? that give
higher average acceptance probability by making g closer to constant over a wider
range, but we do not pursue that here.



Our experiments consider three different functionals f, chosen to reflect different
aspects of the distribution =, but in no sense claimed to be thoroughly exploring the
eigenspace of P. The functionals are

»  Mean: the overall mean

+  8-Co: the lag-(8,0) spatial autocorrelation

+  PL: the statstic that would give the maximum pseudo-likelihood estimate of
B for directly observed x from the model (14), namely N/(2¥ v;(x; -5)%).

We first present, in Table 2, estimates of the integrated autocorrelation time, for
all three functionals, for three values of B, for both the gaussian and Poisson cases,
and for three independent replicates of each. Four different samplers are compared:
three of these are the 8=0.5,0=0 and 0=-0.5 versions of our proposed method.
The other is a simple Metropolis method using a proposal drawn from a gaussian dis-
tribution centred at the current value, and with standard deviation 3: thus
x;" ~N(x;,3%). This corresponds formally to (12), in the limit as 6 — —1 and 62 — oo
while (1 —90%)06% — 9. We use Sokal’s estimator 2( [) (see section 2). Each estimate
is based on the last 4096 sweeps of a run of 5000, starting from x =y. Our experience
has been that Sokal’s estimator is somewhat more stable than the between-blocks mean
square (8) with N = bk = 4000 and k = 50 or 100; most of the exceptions to this pattern
being with the simple Metropolis sampler.

Table 2. Estimates of integrated autocorrelation time,

(a) Gaussian

Mean 8-Co PL

B = 0.001 0=0.5 0.09 0.15 0.10 0.14 0.15 0.16 0.14 0.16 0.15
9=0.0 1.15 1.21 1.12 1.12 1.16 1,18 0.92 098 098
8=-0.5 3.42 331 3.25 429 3.28 3.24 2.50 2.36 2.62
simple 1496 17.14 14.87 2247 11.34 1439 12.14 11.09 10.66

B= 0.01 0=0.5 0.97 097 096 0.94 090 0.88 1.48 1.38 147
6=0.0 2.72 3.25 2.89 2.39 2.51 3.03 0.98 0.98 1.04
6=-0.5 9.39 6.53 6.63 7.41 6.66 6.85 179 1.73 1.65
simple 19.75 17.60 20.05 19.88 16.61 19.64 5.33 6.08 6.15

B= 0.1 0=0.5 6.55 6.65 8.52 5.39 4,58 6.13 2.21 1.94 2.09
6=0.0 21.24 1491 18.53 14.11 1047 16.03 1.02 1.08 1.20
0=-0.5 5559 56.84 108.8 28.03 26.65 27.51 1.59 1.37 1.59
simple 93,77 104.0 68.84 58.62 62.36 70.64 441 3.85 3.77




(b) Poisson

Mean 8-Co PL.
B = 0.001 0=0.5 1.29 1.22 1.12 1.10 1.03 1.11 3.52 3.31 316
By =0.1) 6=0.0 2.16 1.84 1.84 1.75 1.49 1.40 2.58 3.61 2.64
6=—0.5 548 5.25 4.73 348 3.52 3.36 529 5.65 5.55
simple 22.00 20.37 13,17 12.66 14.51 1143 9.83 13.80 12.62
B= 001 8=0.5 1.18 1.25 1.34 .14 1.17 1.18 1.44 1.45 1.53
6=0.0 3.41 3.50 3.34 3.23 298 3.05 1.13 1.13 1.13
6=-0.5 9.14 10.87 10.23 8.58 10.15 8.10 2,08 2.27 226
simple 18.28 27.69 2128 11.72 2275 19.88 373 5.63 4.86
B=01 0=0.5 8.33 6.55 7.85 441 575 5.75 2.45 2.13 2.15
6=0.0 1975 2161 1964 12,28 12.61 1498 1.24 1.15 1.27
6=—0.5 43.63 81.21 80.97 49.27 34.53 70.60 1.58 1.52 1.62
simple 5099 56.13 40.62 46.57 46.55 81.15 3.95 443 363

In earlier experiments, we found that in the case of low interaction parameter,
f=0.001, the consequent wide range in values in the generated true x led to very
unstable results. Such wide variation in x does not occur in most real image analysis
problems, and so our studies in this case have used simulations using By = 0.1 instead.

It is clear from Table 2 that the different samplers have very different behaviour
as measured by autocorrelation time. For two of the functionals, the 6 = 0.5 sampler
is always the best, often giving asymptotic variance as small as would arise from
independent random sampling. This is remarkably good performance, and very
encouraging. It confirms the heuristic interpretation given earlier of the antithetic pro-
perties of the sampler when 6 > 0. In contrast, the simple Metropolis method performs
very badly, suggesting in some cases that a run 100 times as long as for independent
sampling is needed to give the same asymptotic variance. The pattern for the third
functional, namely the pseudo-likelihood statistic, is somewhat different: in most of
the cases considered, the best performance is obtained with 6 =0, corresponding
exactly or approximately to the Gibbs sampler. Of the three, this functional depends
most directly on local conditional distributions, so it is intuitively reasonable that
resampling directly from these distributions should be close to optimal.

Other features of the Table are that there is apparently little difference in perfor-
mance in the gaussian and Poisson cases, and that, as would be expected, the auto-
correlation time increases with f3.

It is of interest to compare these numerical estimates with the conclusions of the
Theorem in the previous section. The only case to which the Theorem applies exactly
is that of the mean functional in the gaussian case, for which it is apparent from Table
2 that the estimated autocorrelation times are indeed approximately proportional to
(1 -0)(1+08). The Table also suggests that the conclusions of the Theorem hold
more widely, to a rough approximation.

In Table 3, we present another property of the same four samplers: the empirical

acceptance rates, expressed as percentages, and computed only after equilibrium is
reached. For the Barone-Frigessi samplers in the gaussian case, of course there is



100% acceptance, but we see that the rate is about 90% or better even in the Poisson
case with B =.001 (the situation among those considered where the quadratic approxi-
mation to the exponential function is (15) is least adequate).

Table 3. Empirical Metropolis acceptance rates in equilibrium.

(a) Gaussian
B=0001 pB=001 PB=0.1

0=0.5 100% 100% 100%
=0.0 100% 100% 100%
8=-0.5 100% 100% 100%

simple 79.82% 69.64%  40.38%

(b) Poisson
B=0001By=01) P=001 Pp=01

0=0.5 89.73% 98.18%  99.93%
9=0.0 91.27% 98.45%  99.94%
8=-0.5 93.58% 98.83%  99.95%
stmple 79.89% 69.50%  40.35%

Before coming to a general conclusion that these Metropolis methods all perform
well in the circumstances of this example, we should seek some reassurance that the
Markov chains we are simulating do actually converge in a reasonable number of
steps.

In Figure 1, we display the values of our three functionals, for a single realisation
of the chain, plotted against "time" measured in units of complete sweeps through the
image; this Figure is for the gaussian model, with B =0.01. In order to make the ini-
tial transient more visible, we have deliberately chosen a poor starting value for the
run, namely x; ~ U(0,10). Each panel of the Figure displays four trajectories, one for
each of the four sampling procedures represented in Tables 2 and 3. It is evident that
in this case, the three Barone-Frigessi methods all converge quickly (as judged by
these functionals): equilibrium is effectively reached by time 25. The simple Metropo-
lis method takes somewhat longer, until approximately time 70. Of course, there are
visible differences in character between the three sets of trajectories, reflecting the
differing equilibrium variances of the three functionals.

Figure 2 reveals a dramatically different picture for the Poisson model: all other
details are the same as for Figure 1. With a poor starting value, the 6 =+0.5 sampler
converges extremely slowly, and has not reached equilibrium even by time 1000. For
the PL functional, this is also true for 0 =0.0. However, the remaining two samplers
apparently converge by time 80. The unacceptably slow convergence when 6 2 0.0 is
apparently due to a very low average acceptance probability when the process is far
from equilibrium: recall that the values presented in Table 3 applied to equilibrium
only.

Recommendation of choice of sampler using the criteria of convergence speed is
therefore in stark contrast to that suggested by our discussion of the autocorrelation



times in Table 2. We feel these observations strongly support the strategy, mentioned
in Section 2, of switching from one type of sampler to another, as convergence is
achieved. Indeed, one might envisage working entirely with our gaussian proposals,
and adaptively varying the value of 8 according to the behaviour of the sample trajec-
tories of functionals such as those in Figure 2. We have not investigated this sugges-
tion, but it seems a promising line for future enquiry.

In Figure 3, we display similar information for the Poisson case, with the prior
interaction parameter 3 increased to 0.1. As we observed earlier, increased B means
increased 1(f), but we see that the performance in terms of converge speed is
improved, presumably because the quadratic approximation to (15) is better for larger

Finally, we turn in Figure 4 to the case of low prior interaction, § = 0.001, in the
Poisson case. As with Tables 2 and 3, we simulated the true x using By =0.1. The
results are consistent with the pattern observed in the other examples, but perhaps con-
vey a suggestion that the poor performance in Figure 2 is partly due to the wide inten-
sity range in X in consequence of simulating from (14) with §=0.01.

In conclusion, we underline the points made in Section 2. Successful use of
dynamic Monte Carlo methods demands attention to two different aspects of the con-
structed Markov chains: speed of weak convergence and integrated autocorrelation
time, Both are determined by the spectral structure of the transition mechanism of the
chain, but are computationally inaccessible except in trivial examples. However, care-
ful monitoring of sample paths of the process can give useful information. Without
such monitoring, conclusions of Monte Carlo calculations on stochastic systems can be
very misleading.

The performance of Metropolis methods using the gaussian proposal (12) can be
very good, providing that care is taken in selecting the antithetic parameter 0.
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