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A B S T R A C T   

In both criminal cases and civil cases there is an increasing demand for the analysis of DNA mixtures involving 
relationships. The goal might be, for example, to identify the contributors to a DNA mixture where the unknown 
donors may be related, or to infer the relationship between individuals based on a DNA mixture. This paper 
applies a new approach to modelling and computation for DNA mixtures involving contributors with arbitrarily 
complex relationships to two real cases from the Spanish Forensic Police.   

1. Introduction 

In both criminal and civil cases relying on inference about relation
ships there is an increasing demand for the analysis of DNA mixtures 
where relatives are involved. The goal might be to identify the unknown 
contributors to a mixture where the donors may or may not be related, or 
to determine relationships between typed individuals and one (or more) 
of the contributors to a mixture, also in the case that the mixture con
tributors themselves are related. Here we use a novel approach that is 
able to tackle these problems, which to our knowledge have not previ
ously been analysed rigorously in the literature. A new general software 
KinMix R package [6] which can handle complex relationships with and 
between mixture contributors has been developed to make inference in 
these cases. Inference is not limited to two-way relationships but can be 
extended to relationships among 3 (or possibly more) contributors to a 
mixture. 

We analyse two real cases from the Spanish Forensic Police. In the 
first case we wish to identify a missing person through the analysis of 
DNA mixtures found on personal belongings. In many cases, the genetic 
profile detected on the objects is not from a single source, but might be a 
DNA mixture, revealing that the object was used by 2 (or more) people. 
In addition, very often, the contributors to these mixtures are related, 

mainly in cases, such as this one, where the missing person shared the 
dwelling with relatives. Here, among other analyses, we tackle the novel 
problem of computing a likelihood ratio that the two unknown con
tributors to the mixture are related compared to unrelated, testing re
lationships such as parent-child, sibs, first cousins, etc. 

The second case concerns a murder where a man was stabbed in his 
home. A DNA sample was taken from the murder weapon and appeared 
to be a DNA mixture from the victim and possibly a close relative of the 
victim. 

Here we use probabilistic genotyping methods for DNA mixtures, 
under hypotheses about the relationships among contributors to the 
mixture and to other individuals whose genotype is available. We now 
briefly summarise these methods and refer to [10] which presents a 
review on DNA mixtures where further background can be found. 

A natural basis for any model-based continuous DNA mixture anal
ysis is a joint model for the peak heights z in the electropherogram (EPG) 
and genotypes n, p(n, z | ψ) = p(n) × p(z | n, ψ), with parameters ψ 
characterising the conditional distribution of peak heights. We base our 
analysis of DNA mixtures on the model for p(z | n, ψ) described in [2]. 
This model takes fully into account the variation in peak heights and the 
possible artefacts, like stutter and dropout, that might occur in the DNA 
amplification process. The model can coherently analyse a combination 
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of replicates, a combinations of different samples and a combinations of 
different kits. 

In the standard case, unknown contributors to the mixture are 
assumed drawn at random from the gene pool. When the contributors 
are related, there is positive association between their contributor ge
notypes. A new model aimed at making inference about complex re
lationships from DNA mixtures is presented in [8]. This generalises the 
work in [7] which allowed inference about particular close relationships 
between contributors to a DNA mixture with unknown genotype and 
other individuals of known genotype. The new model extends the 
analysis to different scenarios and allows specifying arbitrary relation
ships between a set of actors, each of which may be mixture contribu
tors, or have measured genotypes, or both. We can evaluate the 
likelihood of any such model, and compare models accordingly. A brief 
description of the key ideas underlying, specifying, modelling and 
computing relationship inference is given in the Appendix. 

The case work examples in Section 2 illustrate some scenarios, where 
we make inference about two-way relationships between two mixture 
contributors with and without information about their or their relatives’ 
genotypes. 

The software used to analyse the case work examples is the new 
KinMix R package [6] that extends the DNAmixtures R package [4] to 
allow for modelling DNA mixtures with related contributors. 

Among existing published work on relationships and mixtures, [11] 
presents an empirical study with data known to include known sibs 
among the reference samples, used to broaden the basis for evaluation of 
the information gain from using peak height data. Free software is also 
available to deal with DNA mixtures where contributors can be related 
[1], but this addresses a different problem: a specific kinship relation
ship has to be defined and one of the contributors has to be known. 

2. Results of the analysis of complex DNA mixtures involving 
relationship testing 

In this section we demonstrate the results and performance of our 
methods on the two case studies. For the first example we used the data 
gathered on 21 markers included in the GlobalFiler™ Amplification kit 
(ThermoFisher) and in the second example we also used data on 16 
markers in the PowerPlex®16 kit. In all examples we assume known 
allele frequencies and adopt a threshold of 50 rfus. 

2.1. Example 1: Identification using personal belongings of a missing 
person 

2.1.1. Background on the case 
Personal belongings such as toothbrushes or razor blades can be used 

as a source of DNA in missing person cases. On these objects, DNA from 
the missing person may be found since they may have been frequently 
used before his/her disappearance. Nevertheless, there is uncertainty 
about the actual donor of the DNA isolated from these objects, and this is 
why it is recommended to “validate” the detected profile by using a 
reference (known) sample from a relative of the missing person. Usually, 
these profiles (from objects and/or relatives) are then compared with 
DNA profiles of unidentified bodies that are stored in national databases 
(“massive comparison”). This is useful to know if the missing person has 
passed away but his body was not identified. Unfortunately, in some 
cases, the genetic profile detected on an object is not a single source 
profile but a DNA mixture, revealing that the object was used by 2 (or 
more) people. In addition, very often, the contributors to these mixtures 
are related (mainly in cases where the missing person shared the 
dwelling with relatives). 

In this example, we present a real case related to a missing male. The 
full anonymised data together with the R scripts to compute the results 

are given in the Supplementary Material webpages.1 The data are ano
nymised to avoid serious privacy and confidentiality concerns. In this 
case, only a daughter of the missing male was available to donate a DNA 
sample. This is not the ideal situation since false DNA matches can be 
found after a massive comparison of profiles in a database when only 
one relative is available as a reference sample. In order to improve the 
reference genetic data, a toothbrush and a razor-blade, presumably used 
by the missing person, were also collected. DNA from both objects was 
recovered and analysed by using the GlobalFiler kit (Thermo Fisher). 
The reference sample from the daughter of the missing male was also 
genotyped with the same kit. Two different DNA mixtures were detected 
in the two objects. An excerpt of the (anonymised) data is shown in  
Table 1, showing the alleles and peak heights in the two DNA mixtures 
found on the toothbrush T and the razor-blade RB. The DNA profile of 
the daughter, denoted by D, is also shown. The sex-related markers 
indicated that the mixture was most probably from one female and one 
male contributor. 

2.1.2. Results 
Here we analyse the two DNA mixtures found on the toothbrush T, 

and a razor-blade RB, presumably used by the missing person (ante- 
mortem data). 

Table 2 shows the estimated parameters ψ = (μ, σ, ξ, ϕ) for the 
analysis of the DNA mixtures found on T and RB. We assume there are 2 
unknown contributors, denoted U1 and U2, to each of T and RB: not 
necessarily the same individuals in the two cases. We fix on two con
tributors since the analysis performed for 3 (not shown here) yielded an 
almost vanishing proportion for the third contributor, ϕ3 = 0. Note also 
that the stutter proportion ξ for sample T is zero indicating that stutter 
peaks were most probably removed from the data. The estimated pro
portion of DNA for the two contributors to sample T is large for the major 
contributor U1, ϕU1

= 0.93, whereas, for item RB the estimated pro
portions of DNA contributed by U1 and U2 are roughly equal, ϕU1

≃

ϕU2
= 0.5, implying they contributed in almost equal proportions to the 

mixture. As we will see in the latter case the estimation of the LR and 
other inference is problematic. In these models, the likelihood can have 
a complicated shape and numerical maximisation can be unreliable. The 
values in Table 2 are the maximum likelihood estimates as calculated by 
DNAmixtures. 

Table 3 shows the LR and log10LR for testing H p: D is the child of U1 
(and similarly for U2) vs. H 0: no unknown contributors are related to D. 
For item T, log10LR = 10.97 is large pointing to U1 being a parent of D. It 
is also substantial for the hypothesis concerning U2 being a parent of D. 
Could this be due to the fact that the two contributors might be related? 
We will test this assumption later. For the RB the log10LR in Table 3 for 

Table 1 
Example 1: An excerpt of the anonymised data from the toothbrush T and the 
razorblade RB, showing the markers, alleles and relative peak heights. The DNA 
profile of the daughter D of the missing person is also shown.   

Alleles Toothbrush Razorblade  
Markers in mixture peak height peak height D 

Marker 6  17    945     
19  264  853  19   
21  3664  612  21 

Marker 7  13  1152  245     
14  126  796     
15  941  830  15 

Marker 14  13  5158  2141  13   
15  304  1512  15 

Marker 20  13  3218  334     
17  3550  1795  17   
18    1274    

1 https://petergreenweb.wordpress.com/example-1-data-code-and-output/ 
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H 1 vs. H 0 is almost the same when testing whether D is the child of U1 
or of U2. This is probably due to the fact that the proportions are almost 
identical, ϕU1

≃ ϕU2
= 0.5, which makes it extremely difficult to 

distinguish between the contributors. 
We also tested whether the daughter D was a contributor to T or not, 

similarly for RB, and in both cases the logLR was zero, excluding D from 
being a contributor to either mixture. 

In Table 4 we present comparisons with the results of another freely- 
available package that analyses DNA mixtures involving relatives, 
relMix [9]; this uses allele-presence only, not peak heights. We 
compare, marker-by-marker, with KinMix both with and without peak 
height information. The results obtained with relMix and KinMix 
when not including the peak height information (columns 2 and 3) are 
quite similar. Small differences between relMix and KinMix when not 
including peak heights are to be expected since they are based on 
different statistical models for the mixture. For the majority of markers, 
when including peak height information KinMix gave a larger log10LR 
(10.97 compared with 9.53, corresponding to a LR 27.5 times smaller). 
For two of the markers, Markers 8 and 10, relMix is unable to compute 
the likelihood, most likely because of excessive storage demands. We 
can compute “partial” log10LRs by excluding these 2 markers, and these 
are also shown in the Table. 

Table 5 shows the results for testing whether the contributors U1 or 
U2 to item T and RB are related, i.e. H p : U 2 has relationship R to U1 
versus H 0 : U 1 and U2 are unrelated. The log10LRs are all negative, 
implying that the LRs are smaller than 1. Although only a finite set of 
possible relationships has been considered, these vary widely, and it is 
overwhelmingly clear there is there is no support for any relationship 
between the two contributors. 

We now consider the toothbrush EPG in more detail, examining the 
joint relationships between the mixture contributors and the typed 
daughter D, which clarifies the role of D in validating the mixture pro
file. Table 6 shows the log10LR for item T for several hypotheses H p 

concerning different relationships R among U1, U2 and D, vs. the null 
hypothesis that these individuals are all unrelated. The values of the 
log10LR show that there is strong evidence that the two contributors to 
item T are the missing father of D and D’s mother, or at least very close 
relatives of them. Comparing the first 4 rows of Table 6 confirms that the 
most likely single possibility is that they are indeed the mother and fa
ther. All values in the Table remain unchanged if the sexes of all con
tributors are reversed; we choose to identify them in the way shown 
because inference (not shown) also including the Amelogenin locus in
dicates that is most likely that the major contributor U1 is female. 

If there is interest in comparing two of the models displayed in 
Table 6, the appropriate log10LR is simply obtained by calculating the 
difference between the values shown. For example, comparing the first 
row and the fifth, 17.935–10.974 = 6.961 gives the weight of evidence 
that U2 is the father of D, given that it is already assumed that U1 is the 
mother of D. There are too many different such comparisons that can be 
made to list them all here. 

Some of the specific relationships examined in Table 6 are specula
tive, but might be of interest in cases where a home is shared by an 
extended family. 

Finally for this example, we consider the two mixture profiles T and 
RB jointly. What is the strength of evidence that the same individuals 
have contributed to both mixtures, and if so, are they related to D? To 
answer such questions, we use KinMix to model various scenarios which 
deal with the two DNA mixture traces simultaneously, with various 
patterns among the contributors. There are too many permutations to 
show them all, so in Table 7 we just present some interesting examples. 
As parameters for these joint peak height model, we copy over the 
relevant values from Table 2. For full details of these calculations, please 
consult the codes in the online Supplementary material. 

Table 7 shows strong support for the hypothesis that the contributors 
to T and RB overlap and are mostly likely identical, strengthened further 
when a common contributor is a parent to D. As in previous analyses, the 
results are unchanged when sexes are interchanged, and in each hy
pothesis concerning a parent, the possibility that it is a close relative 

Table 2 
Example 1: Estimated parameters based on an analysis of the two mixture 
samples assuming that the toothbrush T and RB contain DNA from two unknown 
contributors.   

μ σ ξ ϕU1  
ϕU2  

Toothbrush  2381  0.0614  0  0.9262  0.0736 
Razor-blade  1602  0.0504  0.0118  0.5001  0.4999  

Table 3 
Example 1: log10LR for testing whether in T and RB, H p contributor (U1 or U2) is 
a parent of D vs. H 0 no contributor is related to D.   

log10LR   

U1 U2 

Toothbrush  10.974  4.531 
Razor-blade  8.443  8.444  

Table 4 
Example 1: Excerpt of marker-wise LR and overall log10LR for item T, using 
relMix and KinMix with and without peak height information, for testing 
whether in T, H p: U1 is a parent of D vs. H 0: U1 and U2 are random members of 
the population.  

Marker relMix KinMix KinMix   

w/o peak heights with peak heights 

Marker 6  2.55  2.58  3.34 
Marker 7  1.08  1.07  1.59 
Marker 9  1.26  1.18  1.62 
Marker 14  2.09  2.12  1.51 
partial log10LR   8.35  8.42  9.94 
overall log10LR     9.53  10.97  

Table 5 
Example 1: For items T and RB, log10LR for H p: the two contributors to the 
mixture are related, i.e. U 1 has relationship R to U2, vs. H 0: the two contributors 
are unrelated. Several different relationships R are tested.  

Relationship R between U1 to T RB 
and U2 under H p  log10LR  

Monozygotic twins − ∞ − ∞ 
Parent-child − ∞ − ∞ 
Sibs − 2.14 − 2.85 
Double first cousins − 0.510 − 0.657 
Quadruple-half-first-cousins − 0.44 − 0.630 
Half-sibs − 0.37 − 0.625 
First cousins − 0.10 − 0.148 
Half-cousins − 0.034 − 0.037  

Table 6 
Example 1: For item T, log10LR for several hypotheses H p concerning different 
relationships R among U1, U2 and D, vs. H 0: U1 and U2 and D are unrelated. The 
results in the lower half of the table can be used as baselines for comparison for 
those in the upper half. All log10LR remain unchanged if the sexes of U1 and U2 

are switched.  

H p  log10LR  

U1 mother of D and U2 father of D  17.935 
U1 maternal aunt of D and U2 father of D  14.028 
U1 mother of D and U2 paternal uncle of D  15.579 
U1 maternal aunt of D and U2 paternal uncle of D  11.763 
U1 mother of D and U2 unrelated  10.974 
U1 maternal aunt of D and U2 unrelated  7.452 
U1 unrelated and U2 father of D  4.530 
U1 unrelated and U2 paternal uncle of D  2.796  
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instead could also be examined. 

2.2. Example 2: analyses of a Spanish murder case 

2.2.1. Description of the case 
This concerns a murder case where a man was stabbed in his home. 

There was a knife with blood at the crime scene. The blood was mainly 
on the blade, but there was also some blood on the handle. The sample 
from the handle turned out to be a DNA mixture, with a major profile 
matching the victim. We also wish to test whether the minor profile in 
the mixture could be a close relative of the victim (possibly a son). The 
DNA profile of the son was not available. Two EPGs from the mixture 
were obtained by using two different kits, we denote these by EPG1 and 
EPG2. The kits have partially overlapping sets of markers, EPG1 was 
analysed on its 16 markers and EPG2 on its set of 22 markers, both 
include Amelogenin. Here we assume known allele frequencies taken 
from the Spanish allele frequency database collected on n = 284 in
dividuals [3]. 

Months after the murder, a man was arrested for a different crime, 
drug trafficking, and a reference DNA sample was collected. When his 
profile was entered in the DNA database, a partial overlap with the DNA 
mixture on the handle of the knife was noted. A subsequent investigation 
revealed that the identity of the person (name, date of birth, place of 
birth, name of the father, name of the mother) was that of the son of the 
victim. Table 8 gives an excerpt of the data showing the markers, alleles 
and relative peak heights for EPG1 and EPG2, together with the geno
types of the father (the victim) and the son (the suspect). 

2.2.2. Results 
We analysed the data from this case to illustrate the different sce

narios that can be analysed using the recently developed KinMix code. 
In particular we analyse the following different possible scenarios:  

1. Here none of the contributors are typed. The analysis is of a 2-person 
mixture model for a prosecution hypothesis H p being that the two 
unknowns were father and son versus H 0 the two unknown con
tributors are unrelated. 

2. Here only the father (the victim) is typed. The analysis is of a 2-per
son mixture model, where father has been typed and the prosecution 

hypothesis is H p : son of father and 1 unknown are contributors 
versus H 0 : no contributor is related to the typed individual (the 
victim).  

3. Both father and son are typed. Here we analyse a 2-person mixture 
model where H p: the contributors are victim (father) and son versus 
H 0 : contributors to the mixture(s) are 2 unknown individuals.  

4. Both father and son are typed. Here we analyse a 2-person mixture 
model where H p: the contributors are victim (father) and son versus 
H 0 : contributors to the mixture(s) are the victim and an unknown. 

In all scenarios, unless otherwise stated, when considering an un
known contributor to a mixture, he or she is taken to be a random 
member of the reference population, so unrelated to typed individuals. 

For EPG1 the MLEs of the parameters under both H p and H 0 are 
similar and are roughly equal to ψ = (μ = 576,σ = 0.32,ξ = 0,ϕU1

=

0.88,ϕU2
= 0.12). When the victim’s genotype is known the estimated 

proportion contributed to EPG1 is ϕυ = 0.18, and ϕU1
= 0.82. For EPG2 

the MLEs of the parameters are roughly equal to ψ = (μ = 2542, σ =

0.97, ξ = 0, ϕU1
= 0.75, ϕU2

= 0.25). When the victim’s genotype is 
known the estimated proportion contributed to EPG1 is ϕυ = 0.14, and 
ϕU1

= 0.86. In both EPG1 and EPG2 the victim is estimated to be the 
minor contributor. Note that EPG2 has a higher μ than EPG1 but this is 
also accompanied by a larger σ, so the coefficient of variation is similar 
in both EPGs. The MLEs of the mean stutter proportion ξ are zero, 
probably because preprocessing of the data has removed peaks that were 
classified in the laboratory as stutter. Our models, however, allow for 
stutter and do not require that the data be preprocessed before analysis. 

Table 9 gives the log10LR for the 4 scenarios when analysing EPG1 
and EPG2 separately and jointly. When combining EPGs made from the 
same DNA extract, as in this case, it is natural to make an assumption 

Table 7 
Example 1: log10LR for the joint analysis of several hypotheses concerning the 
identity between contributors to T and RB and whether a common contributor is 
a parent of D. In all cases, the baseline H 0 states that both contributors and D are 
unrelated. All log10LR remain unchanged if the sexes of the contributors are 
switched. In the last two rows, the contributors are mentioned in order, major 
then minor, omitted for brevity.  

H p  log10LR  

T and RB have same 2 contributors  23.56 
Tand RB have same 2 contributors, first being parent of D  34.54 
T and RB have same major contributor  16.53 
T and RB have same major contributor, being parent of D  27.50 
T has father and mother of D, RB has father and unknown  34.46 
T has mother and father of D, RB has father and unknown  25.54  

Table 8 
Example 2: An excerpt of the data showing the markers, alleles and relative peak 
heights for EPG1 and EPG2, together with the father’s and son’s genotypes.    

EPG1 EPG2 Father Son 
Marker Allele Height Height   

CSF1PO  10  305  625  10  10   
11  240  504  11  11 

D10S1248  13    6990  13     
14    2309    14   
16    7144  16  16 

D7S820  9  606  1136  9  9   
10    686  10   

TH01 9.3  863  2654 9.3 9.3   
10  570      10  

Table 9 
Example 2: log10LR for Scenarios 1–4 using EPG1 and EPG2 separately and in 
combination.  

Typed actors None Father Father & son 

EPG1  − 0.806  5.60  22.16  22.78 
EPG2  − 0.175  10.66  29.16  11.68 
EPG1 & EPG2  2.49  8.26  40.17  26.20  
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that contributors are the same. In [5] we show how results based on a 

combination of replicates, a combinations of different samples and a 
combinations of different kits improve the robustness of the analysis and 
help in fixing any complications relating to degradation. However, when 
combining profiles from different samples one needs to consider care
fully whether there is perhaps only a partial overlap. 

Table 10 shows log10LR for testing whether the two unknown con
tributors to the DNA mixture are related versus that they are unrelated. 
For EPG1 the LRs for testing H p that the U1 has a relationship R to U2, vs. 
H 0: the two contributors U1 and U2 are unrelated and are independent 
of the typed individuals, vary between 0.16 and 0.9 giving roughly equal 
weight to H 1 versus H 0. For EPG2 these vary between 0.11 and 0.86. 

Table 11 shows the deconvolution for the major contributor to the 
mixture for the two EPGs. The table only indicates genotype probabili
ties of at least 0.001, meaning that cells with a probability of less than 
0.001 have been suppressed. We have denoted by other the collection of 
alleles for which no peak has been observed in the EPG. For EPG1 the 
highest ranking genotype for the major contributor U1 on all markers has 
posterior probability greater than 0.99 and coincides with the genotype 
of the suspect (who is the son of the victim) on all markers. The 
deconvolution for EPG2 gives a much poorer performance. For example, 
on marker D7S850 the top ranking genotype for EPG2 is incorrect, the 
correct genotype (9,9) is ranked 3rd having a small probability of 0.077. 

3. Conclusions 

We have shown that a wide range of relationship inference problems 
where one or more actors appear only as contributors to a DNA mixture, 
can be handled coherently. We can make inference about relationships 
among contributors, and between contributors and typed individuals. 
We carried out diagnostic plotting (not shown here) as recommended by 
[5] and found nothing to suggest the model was failing to fit the data. 

The new KinMix package [6] used in the casework examples illus
trated here is a highly flexible modular software package capable of 
solving much more complex relationships among two or more mixture 
contributors than those presented here. It is not limited to pairwise re
lationships. In [8] we show its capabilities of dealing with multi-way 
relationships in DNA mixtures including cases where the contributors 
might be inbred.  

Appendix 

The key idea that enables the specification, modelling and computation of DNA mixtures with familial relationships among the contributors, and/ 
or between contributors and other typed individuals is the IBD pattern distribution. IBD stands for identity by descent, the phenomenon where two or 
more related individuals have a common allelic value at a marker, not by the coincidence of several draws from the gene pool giving the same value, 
but because the allele was passed from parent to child in the process of meiosis. For a given set of related individuals, or ‘family’, an IBD pattern is a 
partition of the alleles of the individuals in the family according to their identity by descent. The IBD pattern distribution is simply the probability 
distribution of this partition induced by repeated application of Mendel’s first law. 

For just two related contributors, the idea has been in use to quantify relatedness for 80 years, in the form of Cotterham’s kappas; for example, the 
relationship between two full brothers is captured by the probabilities that 0, 1 or 2 alleles are identical by descent: κ0 = 0.25, κ1 = 0.5, κ2 = 0.25. The 
IBD pattern distribution extends this notion to any number of related individuals, and also deals correctly with inbreeding. 

In KinMix, the IBD pattern distribution is used not only to specify the relationships in question, but also to model the distribution of the genotype 
profiles, and as a data structure to drive the computation. With unlinked autosomal STR markers in Hardy-Weinberg equilibrium, the joint distribution 
of the genotype profiles of the family members is completely determined by the IBD pattern distribution and the allele frequencies for each marker. As 
in much other recent work on computation for STR probabilistic genotyping methods for mixtures, joint distributions of genotype profiles are 
implemented using Bayesian networks (BNs), which allow efficient exact computation. The IBD pattern distribution is used directly in building the BN 
for the related genotypes. Full details are given in [8], and the methodology is implemented in the R package KinMix [6]. 
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