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SUMMARY

There are now methods for organising a Markov chain Monte Carlo simulation so that it can be guaranteed
that the state of the process at a given time is exactly drawn from the target distribution. The question
of assessing convergence totally vanishes. Such methods are known as exact or perfect sampling. The
approach that has received most attention uses the protocol of coupling from the past devised by Propp
and Wilson (Random Structures and Algorithms, 1996), in which multiple dependent paths of the chain
are run from different initial states at a sequence of initial times going backwards into the past, until they
satisfy the condition of coalescence by time 0. When this is achieved the state at time 0 is distributed
according to the required target. This process must be implemented very carefully to assure its validity
(including appropriate re-use of random number streams), and also requires use of various tricks to enable
us to follow infinitely many sample paths with a finite amount of work.

With the ultimate objective of Bayesian MCMC with guaranteed convergence, the purpose of this
paper is to describe recent efforts to construct exact sampling methods for continuous-state Markov
chains. We review existing methods based on gamma-coupling and rejection sampling (Murdoch and
Green, Scandinavian Journal of Statistics, 1998), that are quite straightforward to understand, but require
aclosed form for the transition kernel and entail cumbersome algebraic manipulation. We then introduce
two new methods based on random walk Metropolis, that offer the praspect of more automatic use, not
least because the difficult, continuous, part of the transition mechanism can be coupled in a generic way,
using a proposal distribution of convenience.

One of the methods is based on a neat decomposition of any unimodal (multivariate) symmetric
density into pieces that may be re-assembled to construct any translated copy of itself: that allows
coupling of a continuum of Metropolis proposals to a finite set, at least for a compact state space. We
discuss methods for economically coupling the subsequent accept/reject decisions.

Our second new method deals with unbounded state spaces, using a trick due to W. S. Kendall of
running a coupled dominating process in parallel with the sample paths of interest. The random subset
of the state space below the dominating path is compact, allowing efficient coupling and coalescence.

‘We look towards the possibility that application of such methods could become sufficiently conve-
nient that they could become the basis for routine Bayesian computation in the foreseeable future.

Keywords:  BISECTION COUPLER; COUPLING FROM THE PAST; EXACT SAMPLING; GAMMA
COUPLING; PERFECT SAMPLING; REJECTION COUPLER.

1. INTRODUCTION

Markov chain Monte Carlo has made something of an impact on Bayesian analysis. Many
computations that we need to do but which were essentially impossible using available numerical
methods can now be done. In consequence, Bayesian statistics has become mainstream, not only
for routine analysis, but a method of choice for challenging inferential problems with large-scale
datasets arising in modern science and technology. In the process of this development, sample-
based computation, by Markov chain simulation or otherwise, has become respectable: we are
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gradually realising the vast opportunities for subtle extraction of information from posterior
distributions that are now available. Sample-based computation having become acceptable as
a routine approach to Bayesian computation, two aspects of Markov chain sampling remain
problematical: the issues of convergence — when can I assume that my Markov chain is
sampling in equilibrium? — and dependence — how precise are estimates of probabilities and
expectations obtained from the simulation? Arguably, the second of these is relatively easily
handled, by one or other estimator of Monte Carlo variance, once convergence is assured. There
are now methods for organising a MCMC simulation so that it can be guaranteed that the state
of the process at a given time is exactly drawn from the target distribution. The question of
assessing convergence totally vanishes. Such methods are known as exact or perfect sampling.

The purpose of this paper is to describe recent efforts to construct exact sampling methods
for continuous-state Markov chains, and to look towards the possibility that application of such
methods could become sufficiently convenient that they could become the basis for routine
Bayesian computation in the foreseeable future. We remain open-minded about this possibility,
and certainly cannot yet demonstrate its probability, but we are optimistic.

1.1. Coupling

Exact sampling is a recent discovery. Two papers first circulated in 1995, by Propp and Wilson
and by Fill, set out two different schemes, both based on ideas of coupling, for adapting MCMC
simulation to the task of producing a guaranteed target draw. Propp and Wilson’s proposal of
coupling from the past is easier to implement and has received more attention, and we shall
concentrate on it here.

Coupling has been a valuable tool in probability theory for some time, but its use in sta-
tistical simulation has been minimal. Coupling refers to the idea of constructing the random
variables of interest on a common probability space, so that questions can be answered by prob-
abilistic rather than analytic methods. There are, for example, particularly elegant proofs of
Poisson approximation theorems, or of the ergodic theorem for Markov chains, based on cou-
pling arguments (see Lindvall, 1992, for an enthusiastic course on this subject). In simulation,
the ‘common probability space’ becomes concrete as the multiple use of sequences of random
numbers in order to introduce dependence between sample paths. In making this correspon-
dence, all we are doing is being literal about what random variables and stochastic processes
are, and thinking of our simulation programs as defining appropriately measurable functions:
it is a natural perspective for a probabilist, but perhaps novet for the practising statistician.

In Markov chain simulation, coupling allows us to create sample paths from many —
perhaps infinitely many — initial states simultaneously. By reusing the same random numbers,
these paths are made dependent, and by appropriate design can be made to satisfy desired
conditions, such as having high probability that their paths merge, or coalesce. Of course, this
constructed dependence does not infringe the Markov property, which only requires that we use
different random numbers at different times within one path, and is silent about the same times
on different paths.

The essence of the game will already be evident — coupling seems to offer the prospects of
constructing multiple paths that ultimately coalesce, and hence ‘forget’ their initial conditions.
Forgetting initial conditions is exactly what we want “our MCMC simulations to do. Various
lines of enquiry prior to Propp and Wilson were concerned with using these ideas to diagnose
convergence (for example, Johnson, 1996, Asmussen ef al. , 1992).

1.2. Coupling from the Past

The leap made by Propp and Wilson was to note that coupling could be used more explicitly still,
to guarantee rather than assess convergence. Informally, the idea is to conduct the simulation
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from all possible states at a random (but finite) time in the past, in such a way that all paths
have coalesced into a single track by time 0, and the state occupied at time 0 is a draw from the
target.

The structure of algorithms based on this idea is as follows. We consider runs of length
M ending at time 0, for some arbitrary value of M > 0, starting at every possible state of the
chain at time t = —M. Using a sequence of random numbers, we follow the paths from each
of these states forward in time; occasionally paths will coalesce, and eventually all of the paths
will have coalesced into one. If this has happened when we reach time 0, then we are done. If
there are still multiple possible states, we choose a larger value of M and start again, using the
same realisation of the sequence of random numbers.

To formalise this process, to see why it works, and to describe algorithms compactly, we
introduce the stochastic recursive sequence representation of a Markov chain. Any Markov

chain {X,t = ...,—1,0,1,2,...} with state space x can be represented in the way it is
simulated:

X1 = (X1, Utr) (3.4)
where {U;,t =...,—1,0,1,2,...} is a sequence of independent random quantities from some

fixed distribution, and ¢ is an appropriate deterministic structure fiunction. For example, the
simultaneous-update random walk Metropolis algorithm for an arbitrary target density 7 can be
expressed via ¢(X,U) = X + U@ i UW < 7(X +U®)/m(X) or X otherwise, where Um
is a U(0, 1) random variable and U (?) is a random increment of the same dimension as X with
a distribution symmetric about 0.

In terms of the structure function, coupling from the past (CFTP) can be expressed in
pseudo-code as follows:

CFTP(M):
te——M
By —x
while t<0
te—t+1
B; — ¢{(By-1,Ut)
if #Bp=1 then
return (By)
else
CFTP (2M)

and is initiated by starting with an arbitrary positive integer M, often 1. We use By to denote
the set of states occupied at time £ by the paths under consideration. Coupling from the past
is based on the observation that if the chain was (conceptually) run from all initial states in x
at time —00 (B_oso = X), and these paths coalesced to a singleton by time 0 (Bg = {Xo}),
then X, would be drawn from the stationary distribution . This is Theorem 2 of Propp and
Wilson (1996). For certain structure functions, if this occurred, then there would be a last time
—T before 0 such that the paths from B_7 =  coalesced to a singleton. The CFTP algorithm
listed above is a search for T. We do not need to find it exactly: since By = x forallt < —T,
it is sufficient to check whether T' < M, for M = 1,2,4,.. ..

The CFTP algorithm is only guaranteed to terminate when using such structure functions.
Foss and Tweedie (1998) showed that this requires uniform ergodicity of the Markov chain.
However, variations on CFTP such as those described in Section 4 allow it to be applied in
greater generality.
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1.3. Current Implementations of Exact Sampling

As in the early days of ordinary MCMC, most current applications of CFTP have been to exact
sampling of large discrete physical systems and spatial processes. Many of these exploit a
monotonicity property, or its opposite, anti-monotonicity. A monotonic MCMC sampler is one
implemented by a structure function ¢ that is order-preserving with respect to some partial
order < on the state space: z < y = ¢(z,u) < &(y, u) for all u, where < has the propetrty
that there are unique minimal and maximal elements 0 and 1. In the case of anti-monotonicity
the ranking is reversed: ¢(z,u) > ¢(y,u). In either case, the progress forward of paths from
B_p = x tot = 0 can be followed by tracing only the paths from 0 and 1.

Papers exploiting CFTP implemented in this way include Propp and Wilson’s original
(1996) paper, with applications to random dimer and cluster models. Haggstrom et al. (1999),
and Higgstrom and Nelander (1997a,b) treat area-interaction point processes, Ising models with
negative interaction, the random cluster model, and random g-colourings.

Kendall (1998) and Héggstrom et al. (1999) go beyond straight CFTP to perform exact
sampling for a chain that is not uniformly ergodic; they use a coupled dominating process,
and implement the method for various spatial processes. The idea of the dominating chain is
borrowed for the methods we introduce in Section 4 of this paper.

Propp and Wilson (1998) derive ‘generic’ methods for exact sampling on Markov chains,
that do not exploit any special features such as monotonicity to facilitate coalescence. Imple-
mentations are to random spanning trees and other graphical algorithms.

Bayesian uses for exact sampling have been so far rare. Fismen (1997), in a Master’s
thesis supervised by Havard Rue, applies both monotone CFTP and Fill’s algorithm to idealised
binary image analysis problems based on Ising model priors, and simple forms of degradation
for which the likelihood does not destroy the monotonicity property. Murdoch and Green
(1998) apply their methods (that do not use monotonicity, and are reviewed briefly in the next
section) to a hierarchical gamma model and the well-known pump-reliability’ data, and Fismen
discusses how to adapt their methods to a hierarchical model for binomial data, Mgller (1999)
also addresses the pump data, using his approach to conditionally-specified models exploiting
(anti-) monotonicity, that gives exact sampling up to an arbitrarily small numerical tolerance.

New work in the area of exact sampling is appearing almost weekly: the interested reader
is directed to David Wilson’s online annotated bibliography

http://dimacs.rutgers.edu/~dbwilson/exact
for the latest news.

2. EXACT SAMPLING IN CONTINUOUS STATE SPACES

When we started working on exact sampling, we were unsure that exact CFTP would ever be
possible in continuous state spaces, and thought that some approximation to tolerance e would
be the best that could be achieved. Then we discovered several prototypical constructions that
did allow it exactly, at the price generally of some tedious and cumbersome algebra; these
were introduced and discussed in full in Murdoch and Green (1998). In Sections 2.1 and 2.2
below we briefly describe the multigamma and rejection couplers. In practice, in implementing
CFTP, we have found it useful often to carry forward a larger but more tractable set of states
than ¢(By..y, U;) — this will in general delay coalescence, but save computer time and storage.
So we usually code the update as B, — ®(B,_1, Uz), where &(B,U) is any set containing
{¢(z,U),z € B}. For example, we might simply take (B, U) = x if B is infinite, or exactly
{é(z,U),z € B} otherwise.
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2.1. Multigamma Coupling

Our first method applies when we know explicitly the update kernel density f (-]z) of the
Markov chain, the density of X;,; given that X; = z. Furthermore, we suppose that f is
bounded below uniformly in z: f(y|z) > r(y)Vz,y € X for some nonnegative function 7(-),
for which p = [ r(y)dy > 0. Then we can express every f(-|z) as a fixed-weight mixture of
two distributions, one of which does not depend on z. In the one dimensional case, for example,
we can write

(X1 Syl Xe =) = pR(y) + (1 - p)Q(y | z)

where

y Y
R =" [ o wnd Qula) = -9 [ (Fle) (ol
—00 —00
Assuming the inverses of R and Q(-|z) are available, the update function to be used by the
algorithm is
R U®)y UM <p

¢(z,U) = {Q—I(U(Z) |z) otherwise,

using a pair U = (U @, U(z)) of Uniform random numbers. Then it is easy to see that in the
CFTP algorithm we can use

R-Y(U®) it U <
O(By-1,Up) = QN U@ | X—y) ifUY > pand By = {Xe-1}
X otherwise ,

and the algorithm evidently terminates. In fact, T has a geometric distribution with mean 1 /p-
While it is often difficult or impossible to find a uniform non-zero lower bound on the update
densities, quite commonly the state space can be partitioned into a finite collection of disjoint
cells A = {A4;,% = 1,...,m}, and separate lower bounds can be placed on the densities within
each cell. That is,
flylz) >ri(y) Vze A,y Vyex.

We further assume that f ri(y)dy = p > 0 is constant over all cells; this assumption can be
relaxed. Then a partitioned version of the muitigamma coupler is available. It uses

Usazng, ;2o B (UP)) iUl < p
&(Be-1,U) = § U@ (U@ |2) 1w € 4N By} if UL > pand #Biq < o0
X otherwise .

2.2. Rejection Coupling
This is an alternative basic recipe for coupling from the past, with the attraction that it can
apply where the updating densities are known only up to a multiplicative constant, as is usual
in Bayesian MCMC.

We suppose that the conditional update kernel is f(y|z) = k(z)g(y|z) where the un-
normalised density g(y|z) is known, but k(z) is unknown, and that there exists an envelope
function h(y) such that g(y|z) < h(y) for all z,y € x. We assume v = [ h(y)dy < oo,
which is quite a demanding condition in an unbounded state space. Finally, we assume that we
have a way of sampling from the density h(y)/v.
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The idea is a simple adaptation of reJect10n sampling: we sample repeatedly under the
graph of h(y), yielding i.i.d. points (Y#) V)R Y(JF) with V) ~ U(0,1) independent of
YW ~ h()/v. Let Aj = {z € By_; : g(Y(J) [z) > VWOR(YD)}: these are the values of z
such that X; = Y9 is a valid update from X;_; = z. Continue to the smallest J such that
j=1A‘7 D B¢ y. Thenuse (B, U;) = {Y )i=1,2... J}. (Note that each U; is a
sequence of pairs (Y(j), V(j)),j =1,2,...)
In practice, rather than accumulate the union of the A;, we check the coverage of x using
a lower squeezing function. And again, partitioning of x is possible, and is useful in speeding
up coalescence.

3. TOWARDS AUTOMATIC METHODS

The algorithms of the previous section demonstrate the possibility of exact sampling in continu-
ous state spaces, and the examples in Murdoch and Green (1998) show that it works in practice,
on toy examples, and for a Gibbs sampler applied to the ‘pump reliability’ data. However, they
are expensive to use in terms of algebraic and programming effort. In this section we turn to
methods that seem to us to offer a real prospect of useful algorithms for general purposes.

3.1. Random walk Metropolis

Random walk Metropolis is a ‘vanilla’ MCMC method for Bayesian computation, being very
easy to code, and usually offering reasonable performance at the expense of a few pilot runs to
choose proposal spread parameters.

It is promising for adaptation to CFTP since we can separately couple the proposals and
the acceptance decisions; the difficult continuous part can be done once and for all, in a model-
independent way, for a proposal distribution chosen at our convenience.

Thus the general objective for a given symmetric proposal density g is to first find a random
walk update function v such that )(z, U) ~ ¢(- — =) and such that ¢(B, U) is finite with high
probability, and then use

$B,U)= |J (= UP)u(B\A©0)

z€A(U)
AU) = {z € B:UW < n(ih(z,UD))/n(x)}

is the set of states for which the proposed update is accepted. In practice we work with a
®(B, U) for which both terms of the union may be ‘rounded up’ for convenience.

In the next subsection, we discuss a method for coupling the proposals, and in Subsection
3.3 show how the acceptance/rejection decisions might be automated.

3.2. The Bisection Coupler

The bisection coupler is a general purpose random walk coupler for a state space that is a
reéctangle in any number of dimensions. Suppose first that x = [0, 1], and that g(-) is unimodal

and symmetric. Let )
roy() = min{q(- — =), q(- —v)}

denote the intersection between two shifted copies of ¢ centered at z and y. Then
L. Txy() = minzeéa:,y] q(- = 2)
2. rgy() =1r0gy—e( — )3
3.roy(r) /q()asy \, 0;
4. Tay(+) is symmetric about (z + ) /2.
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These properties allow a very nice specialisation of the partitioned multigamma coupler.
It turns out that we can dissect the area under g(-) into pieces according to the overlaps with
q(- —27N), N = 0,.. ., and then represent q(- — x), for any z € [0, 1], by rearranging these
pieces. The piece created by the N* intersection, N = 0, 1,2, ..., occurs in exactly 2N places
over all these decompositions. This is illustrated in Figure 1.

o o
> @ @
z g z 3
f=4 o
-7 @
© o
< <
o o
o o |
(=] T T T T T T T (=] T T T T T T
1.0 0.0 1.0 20 1.0 0.0 1.0 2.0

Figure 1. [lustrating the bisection coupler: the decompositions ofythe N(0,0.3%) and N(2/3,0.3%)
densities exploited by the algorithm.

The update (B, U) then consists of sampling one point under the graph of ¢ using U,
finding the abscissa in the corresponding piece under ¢(- — z) for all z € B by reflections and
translations, and setting 1(B, U) to be the resulting set of abscissae. There will be at most 27V
values in this set (maybe fewer as we do not need to store values outside x, or moves from
outside B), where N indexes the piece into which the random point fell.

We can write all of this as ¢(x, U) = 2k/2¥ — Y for z € [(2k — 1)/2",2k/2") and
P(z,U) = 2k/2N +Y forz € [2k/2V, (2k+1)/2") . Here U = (V,Y), where V ~ U(0, 1)
andY ~ ¢(-), independently, N is the smallest integer such that Vg(Y') < ¢(Y —27"), and k is
an integer in the range 0, . .., 2 ~1, While NV is almost surely finite, and has finite expectation,
we find that, when g(+) is continuous at the origin, for large n we have P(N > n) = 27 "¢(0)
so that E(2"V) = co: the set ¢(B, U) is always finite but can be large. We adopt our usual trick
of storing only an interval superset if the list is too long.

If we allow N and & to be any integer values, the bisection coupler may be used on the whole
real line. Provided B is bounded, (B, U) will be finite. To allow positive and negative values
of z to coalesce, we give a random uniform shift to the coordinate system before partitioning
takes place.

Bisection coupling easily generalizes to finite dimensional x, provided ¢(-) is unimodal and
symmetric about 0 in each of its coordinates: we replace the sequence 27N N=...,0,1,...
by a sequence of vector displacements in which each coordinate is bisected in turn.

3.3. Automatic Cell Bounds
For a real impact on the practice of Bayesian computation, it will be necessary for exact simu-
lation to be much more routinely implemented. What are the prospects for automated coupling
of the accept/reject decisions?

A minimal general class of models of interest would be the Bayesian hierarchical models
based on ‘standard’ distributions, and built on directed acyclic graphs, such as those implemented
in BUGS (Gilks, et al. , 1994). Such graphs represent conditional independence statements:
given the values z,,(,) of its parents, each variable z, is conditionally independent of all non-
descendants, giving the factorisation:

w(z) = H 7(To | Zpa(v))-

veV
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In turn, this implies a ‘near-separability’ property that we can exploit. Taking logarithms, we
can bound the log-density in arbitrary cells of the parameter space:

sup logw(z) < Z sup log w(zy | Tpe(u))
€A eV z€A

inf logm(x) 2 ) inf 10g 7(2u| Zpa(e)),
velV
and these bounds should not be too slack: in typical models, each variable z,, appears in only a
few terms.

For rectangular cells A, and ‘standard’ distributions, both supge 4 log 7 (%4 | Zpa()) and
nf e 4 log (| -Tpa(u)> are explicitly available, typically requiring some tedious one-off cal-
culus on2 or 3 variables. The bounds apply equally to posterior distributions: observed variables
are fixed, and we can ignore the fact that the whole joint density should be re-normalised.

The bounds provide the raw ingredients for partitioned random walk Metropolis coupling,
permitting economical checking of whether a proposed update is to be accepted. For example,
suppose A N By is proposed to be updated to {Y; : j = 1,2,...,J} = ¥(A N By, Utw)‘
Then if

Ut(l) < - m(Y5)
111f;1:€44ﬂBt,1 71—(7')
we include Y; in By, and if
. Ve
Ut(l) > 7T( j)
SUP, ¢ 4nB, | (%)

forany j, we include all of AN By_1 in By, The set B; assembled in this way certainly includes
o(x. Up) forall z € By_;.

3.4, Example: Dirichlet Priors and Multinomial Data

To avoid problems with unbounded state spaces, we will illustrate the working of the bisection
coupler on various target distributions with state space [0, 1]‘1. We use exact bounds on the target
density in each cell.

1.0

06 08

state

0.2

0.0

time

Figure 2. A single run of the random walk Metropolis bisection coupler with a Beta(25.75) target.
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Figure 3. Histogram and PP-plot of 1000 replicates of the random walk Metropolis bisection coupler
with a Beta(25,75) target.

1 2

Figure 4. Barycentric scatter plot of 1000 replicates of the random walk Metropolis bisection coupler
Jor the posterior in the small ABO dataset.

We begin with a one-dimensional example, with target Beta(25,75). Figure 2 shows a
single run of the random walk Metropolis bisection coupler, using 16 equal-sized cells, and a
N(0.0.32) proposal distribution. Coalescence to a single state (the value 0.2589) was achieved
with A7 = 16. The figure should be self-explanatory: grey rectangles show where a proposal
was rejected for at least one state in a cell, triangles where such a proposal was accepted, and
lines denote simple state-to-state updates after the ‘live’ states in a cell have been reduced to
a finite list; solid lines are used for the successful pass with A/ = 16. In Figure 3, we show a
histogram and PP-plot for the final states from 1000 independent replicates of this coupler. The
P-value for a Kolmogorov-Smirnov goodness of fit test to the specified target is 0.359. The
frequency distribution for A7 over the 1000 replicates was (49, 74, 166, 280, 273, 140, 18) for
the values (4,8, 16. 32, 64, 128, 256).

Now we turn to a small Bayesian example. In the ABO blood group system, the alleles A
and B are co-dominant to O, so under Hardy Weinberg equilibrium, the phenotypes (A,B,AB,O)
occur with probabilities (p® + 2pr, % + 2¢r, 2pg, 72} when the gene frequencies for (A,B,0)
are (p.q.r) (p + g+ = 1). Given observed phenotype frequencies (9,3,1,10) respectively,
we compute the posterior for (p, ¢, ) under a Dirichlet(1, 1,1) prior. Note that although we
assume multinomial sampling, this is not a conjugate set-up. Figure 4 shows a barycentric
plot for the final states from 1000 replicates of a random walk Metropolis bisection coupler for
this target. We used 64 equal-sized cells in the (p, ¢) plane, and the proposal distribution was
bivariate circular normal, with standard deviation 0.2.
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Figure 5. Magnified view of part of barycentric scatter plot of 1000 replicates of the random walk

Metropolis bisection coupler for the posterior in the large ABO dataset, with an elliptical 90% credible
region.
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Figure 6. Superimposed PP-plots of each margin of the output of a random walk Metropolis bisection
coupler for a Dirichlet(4, 4,4, 4) target, based on 100 replicates.

Figure 5 shows results from a similar analysis, butbased on the larger data set (179,35,6,202).

Finally, in Figure 6, we show PP-plots of the results of 100 replicates of the coupler for a
Dirichlet(4, 4,4, 4) target: this was implemented using 64 cells in the 3-dimensional parameter
space, with N (0, 0.5%) proposals.
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4. DOMINATED CFTP
4.1. Random bounds on couplers

Kendall (1998) described a trick which allows CFTP to be used on Markov chains which are not
uniformly ergodic. Theidea is based on the fact that a stationary realization of the chain will tend
to stay in regions of high density. We quantify this by constructing a coupled dominating chain
which has a stationary distribution with heavier tails than the target, and bound the possible
values of the target by the (more easily simulated) values of the dominating chain, thereby
reducing the state space to a manageable size.

To make this concrete, consider a one dimensional real-valued chain X; taking positive
values. We construct a dominating chain C; with the following properties:

Coupling: Both chains are updated together, using the same random inputs. The updating
rule can be written as (X¢y1, Ciy1) = [01(Xe, Upt1), 02(Ct, Ug1)).

Dominance: If z < cthen ¢y (z,u) < ¢ofc, u) for all w.

Convenience: C; has a known limiting distribution from which we can sample directly.

Practical reversibility: We know how to run the bounding chain in reverse, i.e. when the
dominating chain is in equilibrium, we know the conditional distribution of (Ci—1, Us) given
C} and can sample from it.

In addition to these conditions, we need to ensure that the chain X; eventually falls below C;
regardless of its starting value. For the cases of interest to us, coupled X; chains will eventually
coalesce, so this is automatic.

We then proceed as follows. To obtain the set B_ps of possible values of X; at time
t = —M, we sample Cy from its stationary distribution, and then generate pairs (Cy—1, Uy),
t=0,...,—M + 1. Since we know that any X, path, if run from far enough back in time,
would be caught below C; by time —M, we set B_j; equal to [0, C_ps]. Using ¢; and the
just-generated U; values, we carry it forward to time 0 for the usual CFTP test of coalescence.

The beauty of this dominated CFTP algorithm is that it does not require uniform ergodicity
of the Markov chain on the whole state space. We only need to coalesce values on the random
sets below C;. Most chains that would arise in practice are uniformly ergodic on bounded sets,
so coalescence may be achievable in practice.

4.2. Applying Dominated CFTP to Random Walk Metropolis

Random walk Metropolis chains on unbounded state spaces are not uniformly ergodic, so stan-
dard CFTP will not work for them. Here we describe some details of implementing dominated
CFTP for these chains.

Suppose that our target distribution has density proportional to 7(+), and that 7 has positive
support. Furthermore, 7 has a right tail that is stochastically dominated by a known distribution;
for illustration we’ll assume an exponential tail. Specifically, there exist constants C' > 0 and
D >0suchthatfor0<d< D,C+ D <zy,and C < z < 21,

m(z+d) _ welx1 +d)
@) S m@)

where 7.(z) = exp(—z) for ¢ > C + D is proportional to the density of an Exponential(1)
random variable shifted C' + D units to the right.

What this condition is designed to achieve is the following. We replace Uy in the previous
section with the pair ( Dy, U;), where Dy ~ U(—D, D)and U; ~ U(0, 1) are independent. Then
random walk Metropolis for the target process may be written as Xy41 = $1{X¢, Dea1, Uri1)
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where ¢1(z,d,u) =  + dif n(z + d)/7(z) > u and x otherwise. Similarly, we implement
the coupled dominating process as Ciy1 = ¢2(Ct, Diy1, Urt1), where we accept a move if
7e(Cy + Dig1) /7e(Cy) > Uppa.

With these definitions, the required ordering of X; and C; holds. Provided X; < C, if
X accepts a move upwards, so will C; (unless X; is so far below C that the paths could not
cross), and similarly moves of C; downwards imply corresponding moves of (close enough)
X; values. The other requirements of dominated CFTP are also met. In particular, to simulate
the dominating chain backwards, we sample U ~ U(0,1) and D ~ U(~D, D); then if
U > exp(D) or Cy41 — D < C+ D, weset C; = Cty1, Dy = —D and U; = U, and otherwise
set Oy = Che1 — D, Dy = D and Uy = U/ exp(D).

One problem with this formulation is that it couples chains by proposing the same D; value
for every state. But this coupler does not coalesce, so the dominated CFTP algorithm would
never terminate. We need to incorporate a coalescing update rule, such as the bisection coupler,
but the bisection coupler generally will not respect the ordering: it uses different steps D; from
different states, and often leads to crossing paths.

A solution to this problem is to use a method like that of Corcoran and Tweedie (1998):
construct an update formula which coalesces for some states but not all. They used amultigamma
coupler for central states and achieved global monotonicity, and we could do the same. However,
global monotonicity is not needed: provided X; < Cand D; € [—D, D}, we do not care whether
@1(X¢, Diy1, Ury1) 1s monotonic. We only need to preserve the condition X; ;1 < Ciy, and
it is automatically preserved by the bound on D;. Thus we can use.the bisection coupler on the
states below C, and use common Dy proposals on other states.

4.3, Extensions to Morve General Targets

The extension of dominated CFTP to two-tailed distributions is straightforward. We can put
bounding processes on both the upper and lower tails, i.e. define coupled processes C’? , Xt
and C} by (C2,1, Xe+1, Chy1) = (#0(CP, Uss1), ¢1(Xs, Upg1), $2(CF, Upsr)) such that if cg <
z < ¢1 then ¢pco, u) < d1(z,u) < ¢1(c1,w) for all u. The only new twist is that we need
to sample from the joint limiting distribution of the pair of bounds at time 0, and update both
backwards.

However, if we can use the same bounds on each tail then this is very easy. Provided we
choose our random walk coupler to make jump proposals —D; for states less than —C' when
it makes proposals D, for states greater than C, we will have an equilibrium distribution with
CY = —~C} and only C} need be simulated.

The extension to p~-dimensional processes is not so easy. If we could put separate bounds on
each coordinate and these bounds applied uniformly across the values of the other coordinates,
then we could bound each coordinate independently and we would not need anything new
to sample at time O or to evolve the bounds backwards in time. However, most interesting p-
dimensional distributions do not allow for uniform bounds. For instance, among the multivariate
normatls, uniform bounds imply zero correlation between the coordinates: not a very interesting
case! It may turn out that we can transform the space to allow for uniform bounds as we can
in the multivariate normal case, but it remains to be seen whether these transformations will be
widely available.

4.4. Example: Dominated CFTP for a Univariate Case

To illustrate the dominated CFTP algorithm, we use it to simulate a value from a standard
Gaussian distribution. Ratios of the tails of the target density are bounded by ratios of ™
for z > C = 1; we chose to use Dy ~ U(—2,2) random step proposals. This gave an



Exact sampling 313

Exponential(1), shifted 3 units to the right, as the upper bound, and its negative as the lower
bound. We used the modified bisection coupler on the range [—1, 1] to induce coalescence in
the target paths.

We made one other modification to the algorithm. Instead of testing whether the whole
interval [—C_ s, C_ps] coalesces, we do a first pass test of just the two points —C'_ s and
C_ps. If those two do not coalesce, it is unnecessary to test any others. Simulating just two
paths makes the calculations much faster than simulating all paths.

A single run of this coupler is illustrated in Figure 7. It may be seen that in this run, the
bounding points first coalesced when M = 8. However, when the full interval was run, there
were still 4 possible values of the target process at time 0, so M = 16 was attempted. All
values from that run coalesced at time ¢t = —12; this path was carried forward to time 0, where
it yielded the simulated N(0, 1) value —0.755.

X 0

-15 -10 -5 0
Time

Figure 7. A single run of the dominated CFTP algorithin with a N (0, 1) target.

5. CONCLUSIONS

At the start of this paper we expressed optimism about the eventual routine adoption of exact,
sampling methods in Bayesian computation, and we hope we have communicated some of this
to the reader. In this section we will outline some of the remaining work to be done.

To date, exact sampling has been most spectacularly successful in its applications to models
of very particular structure in many dimensions, where convergence diagnostics for MCMC
methods are unavailable or unreliable. On the other hand, the methods for rather general models
described in this paper work best in few dimensions: even the three dimensional Dirichlet
example described in Section 3.4 was a stretch, taking much longer to run than a standard
simulation from a Dirichlet distribution. To merit routine use, methods are needed that work in
the middle case, from a few to a few dozen dimensions.

Efficiency of use of the calculations is an important issue. A great deal of effort goes
into producing just one sample from the target distribution. In some of the statistical physics
and spatial process applications of exact sampling, one sample is already highly informative
due to spatial ergodicity, but that perspective is of no use in Bayesian statistics. We have to
decide how to use the opportunity to draw an exact sample in the MCMC context: do we
make one (expensive) exact draw as a starting point for one long MCMC run, accepting that
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our ultimate sample will be dependent but is guaranteed to have the correct distribution? Or
do we repeatedly draw exact samples, avoid ordinary MCMC and escape dependence as well
as convergence detection? Presumably, the optimal choice will lie somewhere in the middle,
and will depend on the mixing time of the chain, the theoretical coupling time of the structure
function ¢, any inefficiency in computer time in replacing ¢ by a convenient ®, and the cost of
evaluating the functionals of interest from the generated states.

If the time spent on exact draws is an appreciable fraction of the total simulation time, then
surely better use of the information gleaned during the search for coalescence could be made
than to throw it all away; it must be of some value, at least in tuning the CFTP implementation,
and possibly more directly. If such information can be exploited, then it will certainly make the
effort of exact sampling more attractive.

There is a certain aesthetic appeal to truly exact sampling, but when these methods are not
feasible, simulations could still be improved by using ideas from CFTP. For example, Johnson’s
(1996) idea of coupling a finite set of paths forward in time to identify burn-in times might
be improved if it were used to specify the initial set B_ps in a CFTP algorithm: then the bias
induced by stopping based on a coalescence time would be removed.
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DISCUSSION

PAUL DAMIEN (University of Michigan Business School, USA)

Based on the scheme of coupling from the past (CFTP) the notion that convergence should
no longer be an issue in routine MCMC applications appears remarkably seductive. This may
sound overly radical, but, at the very least, the strategic alliance of coupling and regeneration
schemes can help identify burn-in times while using MCMC methods; i.e., it can serve as a
powerful convergence diagnostic tool: this is a substantial advance; Valen Johnson discusses
and exemplifies this alliance in his recent JASA paper.

If exact sampling methods (interchangeable with the phrase backward sampling) are to be
successful in practice, then they should work in continuous state spaces. And this is what the
authors have done in this paper, as well as a companion paper that is to appear in the Scandinavian
Journal. In the continuous setting, the trick is to induce discreteness, which the authors address
in detail.

In the Gibbs sampling context, the CFTP scheme can be used to construct rejection or
Metropolis-Hastings couplers to simulate conditional densities; a nice feature of these couplers
is that the density has to be known only up to proportionality, unlike the multigamma coupler.

In the Scandinanvian Journal paper, the authors reanalyse the well-known (Gelfand &
Smith, 1990) pump model/data by constructing and contrasting different couplers. For this 11
parameters model, a two-component Gibbs sampler comprises full conditional distributions that
are both gamma distributions, where one component, of course, is a 10 dimensional vector. Two
conclusions are striking from the authors’ analysis. First, the percentage of times that different
sample paths coalesce and the acceptance rates of the different couplers critically depend on the
magnitude of the inverse scale parameter; this type of a constraint is somewhat unattractive if
exact sampling methods are to be labelled “general purpose algorithms.” Secondly, the pump
model is well-behaved. I suspect that the type of couplers entertained by the authors would lead
to much slower acceptance rates (leading to lower coupling percentages) in more complicated
models. Thus the question “has the MCMC chain converged?” is replaced by “how far back
should one go to ensure that the chains coalesce by time zero?”

In (conventional) forward sampling, we confront many problems in implementing rejection
methods and/or Metropolis-Hastings type algorithms: as examples, the need to find dominating
densities and/or perform awkard supremum calculations. It appears that these problems may
be difficult to obviate within the context of backward sampling as well.

All diagnostic protocols fail to satisfactorily assess convergence in the analysis of finite
mixture models with varying number of components. Consider an n-component mixture model.
Typically, convergence for the parameters in the model are tested after m has reached stationarity
for fixed m-values. However, it is well-known that even after a long run some values of m will
not be visited often; convergence diagnostics are of little comfort in these cases.

Since this has been a principal area of research ‘of one of the authors, Professor Green,
do the authors have any insights as to whether the CFTP idea can be extended or modified to
provide a satisfactory answer to the finite mixture modelling problem?

The authors are to be: thanked for unveiling and describing new ideas from inter-disciplinary
literature; congratulated for developing and illustrating these ideas in a lucid manner to the
statistical world. Understandably, they have adopted a cautiously optimistic tone regarding the
future of exact sampling on statistical practice. But the fundamental concept underlying exact
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sampling is as compelling as the Gibbs sampler. Learning from that experience, then, it is
tempting to jettison the authors’ caution into the Mediterranean.

LUKE TIERNEY (University of Minnesota, USA)

Coupling from the past is a fascinating and valuable idea, and I congratulate the authors on
their important work to apply this idea in continuous state spaces. ;

The basic CFTP idea is still quite new and may be worth extending and modifying in a
number of directions. The structure of the partitioned multi-gamma coupler suggests one pos-
sible direction that might allow more flexibility in the generation of the paths. In the partitioned
multi-gamma coupler the chains contain an embedded renewal sequence corresponding to the
times when the R; distributions are used. These times can be simulated directly as cumulative
sums of geometric-p variables. The tours of a chain between these times are conditionally inde-
pendent given the times and the partition cells containing the chain at these times. The tours can
be generated by generating initial states from the R; for each partition set and then generating
new states from the appropriate @; transition kernels until the next renewal time. Chains that
find themselves in the same partition set at the next renewal time are coalesced. It is possible,
but no longer necessary, to use identical random variables to generate tours for all chains. Using
identical renewal times and proper marginal behavior of the tours is sufficient for the coupling
argument to apply. Using identical variates may allow additional coalescing to occur between
renewals. On the other hand, generating the tours independently may allow more flexibility in
generation strategies. Independent generation may also make it easier to compute tours started
from different partition sets in parallel since the need for synchronization on common variates
is eliminated. Similar arguments may apply to other couplers.

Another observation that applies to the partitioned multi-gamma sampler is that the tours
from the first backward renewal time to zero provide candidates for the value of a draw from
the target distribution; the remaining tours serve to eliminate candidates until only one is left.
In some settings it may be sufficient to produce these candidates as starting values for chains
run forward from time zero. A mixture of this finite set of chains is known to have equilibrium
distribution 7r; considering all possible mixtures may produce bounds that are useful in practice.
Again this observation may apply to other samplers as well.

A drawback of coupling methods available to date is that they all seem to require rather
detailed analysis of the target distribution. To keep things in proper perspective, it is important
to examine what other strategies are available at a comparable price in analytic effort. It would
appear that in all the examples given by Green and Murdoch similar calculations to those needed
to set up a coupler can also be used to set up a rejection sampler for the target distribution,
Coupling is in principle a more general strategy, but to make the case that it also more general in
practice it would be useful to have some examples of Bayesian inference settings where coupling
ideas can clearly produce a method for drawing from the target distribution more easily than
rejection sampling.

A possible drawback of exact sampling methods based on CFTP is that, like importance
sampling, rejection sampling, and regenerative analysis methods, they are global in the sense that
they need to be applied to an entire target distribution—they are not really useful when applied
to conditional distributions in a larger MCMC framework. Sampling methods, in particular
importance sampling, were used quite extensively for Bayesian inference in the 1980’s with
some success, but sampling methods did not become widely used until the introduction of
MCMC methods. There are many reasons for this, but one of the most important factors, in
my view, is that the idea of conditioning is a divide and conquer strategy: Larger problems
can be decomposed into simpler ones by conditioning, and solutions for sampling the simpler
conditional problems can be combined into solutions for the original problem using the Markov
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chain framework. New sampling methods need to be examined in this light. A method that
can be applied usefully to conditional distributions is more likely to be useful in a wide range
of problems than one that only applies to the entiré target distribution. It would of course be
possible to sample conditional distributions by CFTP, but the analysis effort would need to be
reduced significantly. Even then, the advantage of exact sampling as part of an MCMC over a
single or fixed number of steps from a Markov chain sampler of the conditional distribution is
questionable.

Another point to keep in mind, as Green and Murdoch point out, is that the value of being
able to draw from the exact target distribution has to be considered in the context of the cost
of doing so. In many problems strategies for exact sampling, such as rejection sampling, have
been available for a long time but are usually considered not worth the effort. The cost can
be reduced by using a possibly expensive exact draw from the target as a starting point for a
cheaper Markov chain. But a peculiarity of this approach as an approach to practical Bayesian
inference is that it only makes sense from a frequentist perspective: if you condition on your
starting value, you are back with a non-stationary chain.

Despite these minor concerns, this work represents a very significant contribution and 1
again congratulate the authors on their excellent efforts.

PHILIP J. EVERSON (Swarthmore College, USA)

It is worth noting that the stochastic recursive sequencerepresentation Xep1 = ¢( Xy, Upr1),
referred to by Green and Murdoch in (3.4), is more general than it may appear at first glance.
Take for example the simple problem of generating bivariate draws from a Uniform triangle:
flz,y) =2, for0 < z <y < 1. A Gibbs sampler for this problem updates {X, Y} pairs by
sampling X¢41 ~ Unif (0, y¢), Ye41 ~ Unif (2441, 1). This appears to violate the requirement
that Uy be a sequence from some fixed distribution, as the bounds on X and Y change at each
step. However, we can always think of U; as representing the sequence of seeds driving the
underlying random number generator. If, after M steps, random sequences started with the
same seed from all initial conditions have coalesced, then certainly the initial conditions are
irrelevant from that point on.

An alternative to running each sequence for M steps before checking coalescence, is to
instead update every sequence one step at a time. Consider a discrete analog to the above
problem, where X and Y take on values 0.0,0.1,...,1.0. The following Splus code will
update any one sequence, using the “same” random numbers:

old.seed <- .Random.seed
1f (y==0) {x<- 0}; else

x <- sample(seg(0,y,.1),1)
1f (x==1) {y<- 1}; else

y <- sample(seqg(x,1,.1),1)
new.seed <- .Random.seed
.Random.seed <- old.seed

After advancing every sequence by one step, the next update is begun using new.seed, and the
algorithm continues until all sequences have coalesced. With a starting seed of 1, sequences
begun at any of the 66 allowable {X,Y} pairs will take on the value {0.1,0.7} after only
two steps. They of course remain coupled from that point on, indicating that the sampler has
achieved equilibrium.
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CHRISTIAN P. ROBERT (CREST, Insee, Paris, and Université de Rouen, France) and
D.M. TITTERINGTON (University of Glasgow, UK)

This paper greatly widens the scope of perfect simulation in continuous settings in that
it does not require renewal techniques as in Murdoch and Green (1998). The authors must
therefore be congratulated for opening new and broader entrances to this field. As in every
partitioning method, there is still a difficulty with higher dimensions in that the number of terms
involved in the bisection coupler is likely to grow quite rapidly with the dimension.

Following Propp and Wilson (1996), the authors adopt a geometric increase in the backward
steps. Is there any theoretical ground for this choice, as opposed to the naive linear increase
(1,2,3,..)?
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Figure 1. Comparison of an exhaustive (left) and of a monotone (right) CFTP on the chain (pD)Y in the
case of a two component mixture of normals with 495 observations. (The number of backward steps is
69 in the exhaustive case and 32 in the monotone case.)

Although the authors do not consider the possibility of monotone CFTP in continuous setups,
there are settings where monotonicity can speed up implementation and reduce computing time.
For instance, consider a two-component mixture

pfi(z) + (1 - p)fa(z) , (1

where both f; and f; are known and p ~ U(0, 1). As shown by Hobert et al. (1998), CFTP can
be implemented in this setting by considering only n + 1 coupled parallel chains (instead of a
continuum on p), if n is the number of observations. However, when n grows, the number of
backward steps also increases. Since a Gibbs move from p to o' involves generating n uniforms
u;, then computing

=3 Wuispfy e/ o (@) +1-P) o(oi)}
(2

(which can only take n+ 1 values, thereby determining the number of p chains to be considered),
and deriving p’ = E?lile/E" Tw;, where w; ~ Exp(1), it is easy to see that starting from
n1 = 0and n; = n provides an envelope for all possible chains, since p1 < p2 implies Py < ph.
Figure 1 provides a comparison of both implementations (with different coupling structures).

Extensions to the 3 component case are much more delicate, as revealed in Hobert ez al. (1998).
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REPLY TO THE DISCUSSION

We are grateful to each of the discussants for their thorough reading of both the present paper
and our Scandinavian Journal article, for their generous comments, and for their insightful and
stimulating discussions. They are evidently as excited as we are by the apparent opportunities
provided by coupling from the past, and share our mixed feelings about whether some tremen-
dous benefits for Bayesian computation are waiting to be uncovered, or whether this will all
turn out to be just an intriguing sideline.

Four years gestation should be enough for real applications to emerge, so one measure of
how it turns out will be the number of papers at the next Valencia that exploit exact sampling.
Whether this is zeto or a lot, we are pleased that we took the somewhat risky decision to present
these ideas at the conference.

Most of the discussants allude to the cumbersome algebra and anatysis needed to set up
coupling from the past in all but the simplest of models. This is a central issue. There is
a very real danger that in pursuing the benefits of “guaranteed convergence”, implementors
will be throwing away the very freedoms that MCMC bought for them in the first place. Any
substantive data analysis that is limited by what can be done exactly turns the clock back to
when tractability was a dominant issue in Bayesian analysis.

For these reasons, we see partial automation of CFTP implementation as absolutely crucial
to the practical application of these ideas. The methods introduced in the Scandinavian Jour-
nal article—the multigamma and rejection couplers, and their partitioned versions—are very
special. Their existence does little more than demonstrate their existence!

However, the methods introduced in Sections 3 and 4 of the present paper—bisection
coupling and dominated coupling—claim to be much more generic. They are constructed
from an analysis of the target distribution, which in Bayesian computation is usually explicit if
complicated, rather than the transition mechanism of the chosen Markov chain, which is usually
extremely awkward. One price to be paid for their generic character is probable increased
coalescence time, as in several places in the derivation of these methods, exact expressions are
replaced by bounds, and sets of update states enlarged for convenience of representation. Such
conservatism does not affect the exactness of the ultimate draw from the target, but may delay
coalescence—perhaps, fatally, to time infinity—and complicate analysis of performance.

Perhaps one value of the earlier methods is to shed some light on the roles ofregeneration and
renewal in coupling. Professor Tierney exploits this in proposing some very nice modifications
of the multigamma method. It is potentially useful to be able to relax from the requirement
to organise housekeeping of the random number streams to ensure that X1 = (X, Upsa)-
However, we repeat that we do not see multigamma coupling as a general method, although it
may play a role as a building block.

We thank Professor Everson for emphasising that the update function/stochastic recursive
sequence representation Xy41 = ¢(Xy, Uz+1) allows much flexibility. We exploited somewhat
similar formulations in our implementations of rejection couplers, which are set out in the
Scandinavian Journal paper. Such flexibility can be taken much further. Taking a finite state

space example for clarity, suppose that x = {1,2,..., S}, and that the Uy = (Ut(l), s Ut(S))
are S-dimensional. Then it is legitimate to take Xef1 = ¢(Xy, Upy1) = é&(s, Ut(fr)l) when
X; = s, for an appropriate &5, so that we actually use a different random number for each current
state X;! We have nevertheless ensured what we must, namely that the update from X; at time
t is the same on every occasion that this update is considered.

For us, the most substantial reason to doubt the eventual widespread use of CFTP for truly
exact sampling in Bayesian analysis is the non-modular nature of all existing CFTP prescriptions.
Ordinary MCMC methods are all inherently modular, graphical modelling representations of



320 P.J. Green and D. J. Murdoch

statistical models are modular, and the practice of model-building for data analysis is modular.
We completely agree with Professor Tierney in his analysis of this issue, based on a “divide-
and-conquer” interpretation of the usual MCMC recipes. The only place in our methods where
we can work in a modular fashion is in constructing the approximate cell bounds described in
Section 3.3. We do have some prototype code that can create tables of cell bounds automatically
from a BUGS specification of the model, but this is untested in real problems, and the whole
strategy of partition by rectangular cells is of course limited by the curse of dimensionality.

The role played by monotonicity in CFTP deserves further study. We have stressed the
non-monotone nature of our methods, meaning that we need to use structure functions ¢(z, u)
that are not monotonic in z. (Of course, other aspects of monotonicity are being used in
establishing the bounds we need; for example, acceptance probability is monotonic in the target
density value for the current state, an essential ingredient in Section 3.) Professors Robert and
Titterington give a nice example, demonstrating that we were wrong to rule out the possibility
of monotonicity with respect to state in continuous-parameter problems, but we are not sure
how often such tricks will be available.

In this connection, we should correct an impression given in Section 1.3. Héggstrom and
Nelander (1997b) do consider non-monotonic couplers for Markov random fields. They include
an example where use of a monotonic coupler is vastly superior to a non-monotonic one in terms
of coalescence time, and further research on such comparisons would be interesting. But, as
with Robert and Titterington’s example, it is not clear how much of the gain can be attributed to
monotonicity (allowing the tracing of fewer paths, 2 instead of n + 1 in the mixture example),
as the coupling methods are entirely different (one giving intrinsically faster coalescence).

Professor Damien is right to note that the key to creating coalescing paths in a continuous
parameter problem is to look for ways of inducing discreteness; this was indeed our motivation,
This idea has appeared previously in Nummelin’s splitting technique, translated into practical
MCMC methodology by Mykland, Tierney and Yu (1995).

We have already begun thinking about exact sampling for variable dimension problems
such as mixture analysis, as suggested by Professor Damien. (In fact, we do not necessarily
buy his motivation for doing this; we feel that the breakdown of existing diagnostic methods
comes not in going from finite to infinite or variable dimensions, but in going from small to
moderate dimensionality. In all cases, you will apply diagnostics to some carefully-chosen
scalar functionals; all that changes with dimension is the capacity of a few such functionals
to capture the behaviour of the entire chain.) It is not too far-fetched to surmise that it might
be possible to couple MCMC methods for mixtures. These problems do have some of the
character of point-process models—here the points would be marked-—and several such models
have already been addressed by CFTP. Robert and Titterington’s implementation of CFTP for
a particular one-parameter mixture problem is a start, although we are not sure how far this
example can be extended.

On the question of how to increase the trial values of M in coupling from the past, raised
by Professors Robert and Titterington: of course, any increasing sequence is valid, and the
matter is simply a question of computing time. Propp and Wilson give an argument to support
a geometric increase. Besides that argument, there is the heuristic reasoning that computing a
failure is usually much more expensive than computing a success, because many more paths
need to be followed, so you want to reduce the number of failures. Since the distribution of T
often has a heavy tail, you need a rapidly increasing sequence of trial values.

For the small Beta problem discussed in Section 3.4, we have given the histogram of the
successful M values in 1000 independent replications of the random walk Metropolis method.
This says something about the distribution of T, since T € (M /2, M. Clearly a linear increase
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in M would tie T' down to be a little smaller, but at the cost of many more failed attempts to
achieve coalescence. The approximately symmetric shape of the distribution of log T also seems
to support the geometric schedule. Empirically, for this example, the schedules (16, 32,64, .. .),
(8,32,128,...) and (32,128,512, ...) all take about the same time on average, (4,8,16,...)
takes 30% longer, but (8, 16, 24, . . .) takes twice as long, and (8, 10, 12, . ..} seven times longer.

. Some further analysis of the running time implications of various details of CFTP imple-
mentation and use will be found in Murdoch and Rosenthal (1998).

~ Theseremarks perhaps also answer Professor Damien’s question about “how far back should
we go to get coalescence by time 0”. The point is, of course, that we do not know, initially, but
that the CFTP protocol provides a self-tuning mechanism for finding out. Incidentally, if CFTP
is independently replicated, it is legitimate to change the M schedule for later runs in the light
of experience about when coalescence typically occurs, gained from the early runs.

We now turn to questions about use of CFTP in an approximate mode. It may well be that in
moderate- to high-dimensional Bayesian problems, “exact exact sampling” is too hard, and that
some less aesthetically pleasing but still useful role for CFTP ideas will be the best we can do, as
mentioned at the end of our conclusions. Thus we agree with Professor Damien that combining
our methods with other strategies, like Johnson’s, is a good idea. Even if exact sampling is
impractical the couplers we present in this paper are fairly easy to implement and could be
used as diagnostics instead. Non-exact uses of couplers are also discussed in Murdoch and
Rosenthal (1998). Regarding Professor Tierney’s ideas for a use for non-coalesced endpoints:
unfortunately, we do not have a coupler that is both general purpose and easy to apply, where
it is straightforward to come up with a finite list of candidates from an easily identifiable time.
The rejection and multigamma couplers are too hard to apply, and the random walk couplers
can have infinite sets of states that take a long time to move.

Finally, we know this is a Bayesian conference and a Bayesian volume, but we still think it
is entirely appropriate to take a frequentist perspective in judging the quality of a Monte Carlo
sample!
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