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SUMMARY

We describe a method for aligning multiple unlabelled configurations simultaneously. Specifically, we
extend the two-configuration matching approach of Green and Mardia (2006) to the multiple configuration
setting. Our approach is based on the introduction of a set of hidden locations underlying the observed
configuration points. A Poisson process prior is assigned to these locations, resulting in a simplified for-
mulation of the model. We make use of a structure containing the relevant information on the matches,
numerous types of which must be taken into account. Markov chain Monte Carlo-based inference can be
made simultaneously on the matching and the relative transformations between the configurations. We focus
on the particular case of rigid-body transformations and Gaussian observation errors. We apply our method

to a problem taken from chemoinformatics: the alignment of steroid molecules.
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1 Introduction

In many scientific disciplines one is confronted with the problem of comparing objects. Typically, the
scientist locates a number of characteristic points, called landmarks, which correspond on the objects of a
given population. For example, a landmark might be a recognisable location on a given organism, such as
the corner of an eye, the tip of a finger, or the meeting of two sutures on a skull. Numerous techniques
have been studied over the years for the geometrical comparison of objects when the landmarks are labelled,
i.e. when the point correspondences between the objects under study have been established. Now if the
landmark configurations are unlabelled, so that the correspondences between the points of each configuration
are unknown, then our problem also becomes one of matching: identifying and labelling corresponding
landmarks.

A number of methods have been developed for the alignment of unlabelled point configurations, in various
contexts. In image analysis, for instance, Cross and Hancock (1998) use graph theory techniques for the
matching of point sets representing two-dimensional images, while Chui and Rangarajan (2000) consider the
use of non-rigid body transformations. The alignment problem has also attracted a lot of interest from the
chemoinformatics community (Lemmen and Lengauer 2005). In drug design, for example, a subject of prime
interest is the local interaction between a small molecule (the ligand) and a given protein receptor. If the
geometrical structure of the receptor is known, then established methods such as docking can be applied so
as to specify the protein-ligand interaction. However, in most cases this structure is unknown, meaning the
drug designer must rely on a study of the similarity (or diversity) in available ligands. The alignment of the
molecules is a first important step towards such a study.

We focus specifically on the work of Green and Mardia (2006), which describes a Bayesian methodology
for aligning two point configurations. We wish to extend this methodology so as to deal with an arbitrary
number of configurations. Independent pairwise comparison of the configurations could be an option, but
would be very costly in terms of computation should the number of configurations be large. Furthermore,
unless all of the configurations are treated simultaneously in a single model, there is loss of information, for
example about the ‘noise-free’ locations of the matched points. In Section 3.4 we see some evidence of the
empirical impact of this. The elegance of the pairwise model makes this extension natural and relatively
straightforward. The problem of matching multiple configurations has also been addressed by Dryden et al.
(2007), see the Discussion section of our paper for further details.

This paper is organised as follows. In Section 2 we treat the simultaneous alignment of multiple point



configurations. We describe a hierarchical Bayesian model for this task, and propose a Markov chain Monte
Carlo algorithm for making inference on the model in the case of rigid-body transformations between the
configurations. In Section 3 we consider an application of our approach to the matching of three steroid
molecules. Finally in Section 4 we make an assessment of our methods and suggest directions for future

work.

2 Hierarchical modelling of multi-configuration alignment

In this section we consider a hierarchical model for matching multiple configurations simultaneously. We
closely follow the two-configuration method of Green and Mardia (2006), though we must now allow for the

possibility of many types of matches.

2.1 The alignment problem

(@), whose points are recorded in d-dimensional real

space: for ¢ = 1,2,...,C, write z(¢) = {xg-c),j =1,2,... 7nc}, where x;c) € R? and n, is the number of

Suppose we are given C configurations (M, 23 ...z

points in configuration z(¢). The labelling is assumed to be arbitrary, thus providing no initial information on
the correspondences between points. We wish to align the C' configurations simultaneously by establishing
these correspondences and filtering out the relative transformations between the configurations.

We introduce a set of hidden locations p = {p;} C R%. These can be seen as the ‘true’ locations of the
configuration points, so that the latter are noisy observations of the former. Specifically, define the labelling
arrays £ €@ €(©) which link the index of an observation to that of its corresponding hidden point. In
particular §§c) is the index of the u—point underlying the observation xg-c). Assume that a hidden location is
observed at most once in each configuration, and that it may remain unobserved. Thus the elements within
each £(©) are distinct, and a p-—point may generate anywhere between zero and C' configuration points.

Now suppose each configuration goes through some transformation before being observed. For ¢ =
1,2,...,C, let A be the transformation bringing the points of the 2(¢) configuration back to the reference

frame defined by the py—points. Our C-configuration alignment model can be expressed as:

A<C>x§°>:u§§_c>+a§°>, for j=1,2,...,ne, c=1,2,...,C. (1)

(e)

The random error vector £, is assumed to have density £ and to be independent of the p—points and of



all the other errors.

Our primary objective with this model is to match observations of the same p—point. Formally we

wish to find maximal sets of configurations {z("),2(2) .. 2} and indices {ji,jo,...,jx} such that
§J(.jl) = f;iz) =...= §§ik). There is an abuse of language here in that a match may involve points taken from

more than two configurations.
Below we will assume that each A(®) is an affine transformation, made up of a linear transformation
matrix A(© and a translation vector 7(¢) so that A(C)xg-c) = A(c)xg-c) +7@forj=1,....,ncandc=1,...,C.

We will require constraints on the A(©) to ensure identifiability of the model; we discuss this in Section 2.5.

2.2 Hierarchical modelling: preliminaries

We define a generic set I C {1,2,...,C} of configuration indices, with I # (). The set I corresponds to a
‘type’ of match. For example if C' = 3, then I = {2,3} refers to a match involving a point from the z(?
configuration and a point from the 2(®) configuration but none from the z(*) configuration. We call I-match
a match involving exactly the configurations whose index is included in I. If I = {iy,142,...,ix }, an I-match
can be represented by an index array (ji, jo, - - ., ji ) such that 53(‘?) = J(-?) =...= fj(-if) and such that ¢ ¢ T
implies fl(c) #* fj(-i’“) foralll=1,2,...,n.and all k = 1,2,..., K. We write |I| as the number of configuration
indices in I. If |[I| = 1 our [-match is in fact an unmatched point; this will also be treated as a type of
match.

The totality of the matches is stored in a structure which we call M. How these matches are represented
is irrelevant for the moment; one might wish to use binary matrices, as do Dryden et al. (2007) and Green
and Mardia (2006), or write each match as an index array containing the labels of the matched points and
those of the configurations involved. This structure M is the main parameter of interest in our hierarchical
model; we stress the fact that it contains no direct information on the p—points themselves or on the actual
values in the labelling vectors £(¢). Note that for M to be consistent with the model described in Section
2.1, we must ensure that a given point is never involved in more than one (maximal) match. The directed

acyclic graph (DAG) of our hierarchical model, including this new parameter M, is displayed in Figure 1.

FIGURE 1 ABOUT HERE



2.3 Poisson process assumption and prior distribution for the matches

We make the prior assumption that the p—points follow a multivariate Poisson process with constant rate
X over a region V. C R? of volume v. Recall that each ppoint generates a number of observations or
remains unobserved. For I as defined in the previous section, let ¢; be the probability that a given hidden
location generates an I-match. For instance, if C' = 3 then gy 3 is the probability that a particular p—
point is observed in the () and ) configurations but not in the z(®) configuration. Thus the probability
of a hidden location remaining unobserved is 1 — > ;97 Assume also that the matches are generated
independently from p—point to p—point, based on the same probabilities q;. A very useful consequence of
these assumptions is that our global Poisson process can be partitioned into 2¢ thinned Poisson processes:
for fixed I, the set of pu—points which have generated an I—match is itself a Poisson process with rate Aqr;
furthermore this process will be independent of the other processes of the partition.

We define the parametrisation

a = pr-[Jae (2)

cel

where py = 1 if |I| = 1. This type of parameterisation has been treated in other contexts, such as that
of regression with binary response (Ekholm et al. 1995) and genetic map functions (Speed 2005). The
parameter p; is sometimes called the dependence ratio or coincidence coefficient. Here it can be seen as a
relative measure of how likely an I-match is to occur a priori.

Now we wish to assign a prior distribution to the match structure M, based on the Poisson process as-
sumptions described above. Let L be the number of I-matches contained in M. Given {n.,c=1,2,...,C},

we must have

Ly = ne— Z L;, for ¢=1,2,...,C. (3)
(I:|1]>2,15¢}

The prior distribution for M can be decomposed as

pM) = pMI[{L1})-p({L1}). (4)

From the Poisson process assumption on the y—points, the counts L; are independent Poisson variables with



means A\vgy. Using (2) and (3), we find that the prior distribution for the match counts has the form
{L[} X H /\’l}qI /HL['
1

x H{ Av) e 1}L1/1;[L1! ’ )

so the q; parameters conveniently disappear.
Now make the prior assumption that, conditional on the match counts {L;}, the distribution for M is
uniform. In other words, consider as equally likely each match arrangement which is consistent with the

counts. The number of such arrangements is

ﬁnC!/HLI! ,

c=1

as can be seen using a recursion argument. Using (4) and (5), it follows that the prior distribution for M

has the form

Ly

x H{ Mm 1} : (6)

This distribution depends only on the number of matches of each type contained in M, and is parametrised

by the ratios py/(Av)!I=1.

2.4 Joint model

Now we seek to compute the joint likelihood of M and A = {A(l), AP .A(C)} given the set of configu-
rations X = {x(l), @ ,x(c)}.
Fix I = {i1,42,...,ix} and let {xg-il),xg-?), .. ,xg”()} be the points of a given [-match in M, where of

course K = |I|. From (1), we find that

K
p (0,22 ) | A €06, e @) = T a6 e <A<zk>x§_zk>_ug(_il))’

k=1 J1
where |A| denotes the absolute value of the determinant of the matrix A. Now consider the set of u—points
which have generated an I-match — we mentioned that this set follows a Poisson process. Given M,

and therefore given Ly, the points of this set are uniformly distributed over the region V. As a result the



contribution of the matched points defined above to our likelihood is

p( (1) (12) (1K) | .A,./\/l = ! H ‘A(Zk)

J1’J2’ ’JK
V=1

70 (ARG — ) .

The above integration will be carried out over R%. We are thus ignoring the edge effects from the boundary
of V: this is valid if V is taken large enough relative to the support of the error densities f(¢)

Suppose I = {i1,ia,...,i|7} and let St be the set of I-matches contained in M. The elements of Sy are
written as index arrays of the form (j1,jz,...,Jj7), with the convention that { (lll), 5122), . gT‘I"‘)} is the

corresponding set of matched points. The contribution of the I-matches to the likelihood is

v Lt H / H ’A i)

(Gtsedin)) €S 7 B k=1

£ (A ( (30) i) _ ﬂ) dps.

Multiplying over all match types, the full likelihood of A and M can be seen to be

c ne LI ‘ ,
p(X | AM) = <U > Lr H ’A(C) ) X H H / H f(lk) (A(Zk)xxk) _ M) dp.
c=1 d

I (jiyeodir))€S VR k=1

(7)

We introduce prior distributions p (A(¢)) and p (7()) for the transformation parameters, forc = 1,2,...,C.
These priors are left undefined for the time being. The parameters A\, v, and p; are treated as fixed. From

(6) and (7), the joint posterior distribution has the form

p(AM]X) ﬁ { () ‘A<c>

c=1

1]
XH H NE 1/ H (“) Az (Zk) “) dp. (8)

I (j§1,---d1))€EST

Here and elsewhere, the ‘e’ symbol indicates proportionality with respect to the variables to the left of the
conditioning sign. Thus the p—points and labelling arrays have been effectively integrated out; the relevant
information contained in these parameters is captured by the structure M. Note also that the volume v
plays no role in our posterior distribution.
Now assume the error densities f(©) are centred Gaussian densities with covariance matrices all equal to
(i1) .(i2) (im)}’

021,. In this case the integrals in (8) can be written in closed form: for a given set of points {le PTG T



define
i) (i (i) - i) (i 2
va (el a0 ) = S Al — e[
k=1

where
|1

1 L

_ (i) (k)

c= W g ALk xjk"
k=1

(i) il ‘)) is a measure of the deviation in the transformed

and || - || is the Euclidean norm. Thus 74 (a;jl peeen T

points {A(“)xg-il), . ,A(i‘”)x;‘i‘;“)}. With this notation and the Gaussian assumption for the errors, one

finds that

1]
/ H f(ik) (A(ik)x;ik) _ M) dp = |I|fd/2(2ﬂ_0_2)7d(|1|71)/2
RY 21

1 i) (i (ir))
xexp{—T‘QPyA (xgll),xﬁj),...,xj‘y“ )} (9)

(-il)) = 0. Now a prior distribution p (¢2) can be introduced and

This identity is valid if |I| = 1, since 7.4 (xj

the variance parameter o2 incorporated in the model (8).

2.5 Inference with Markov chain Monte Carlo

We wish to make inference on the parameters of the model (8), given the data configurations X. The
parameters of interest are the error variance o2, the translations 7(¢), the transformation matrices A(©),
and of course the matches M. The ratios p;/A!I=! will be considered as fixed hyperparameters, estimated
through some other method.

The unwieldy aspect of the joint distribution (8) makes it difficult to use classical estimation methods in
this context. An attractive possibility here is to use Markov chain Monte Carlo (MCMC) simulation. We
simulate a Markov chain by updating the parameters in sweeps, in such a way that the underlying transition
kernel of the chain verifies detailed balance, with (8) as the stationary, or limiting, distribution. The sampled
chain can be used as a basis for inference, provided it has reached equilibrium. For an accessible introduction
to MCMC methods, see for example Green (2001), while Robert and Casella (2004) give a more detailed
account.

To simplify our method, we will make the assumption that the transformation matrices A(®) are rotation
matrices. Thus we are concentrating on rigid-body transformations, and the point configurations can be

seen as elements of a size-and-shape space (Dryden and Mardia, 1998).



The C++ implementation of the algorithm (with R interface), including instructions and functions for

post-processing, can be found on the URL http://ima.epfl.ch/~ruffieuz/multalign/.

Updating the continuous parameters

For the parameters o2, 7(¢), and A, for ¢ = 1,2, ..., C, conditionally conjugate priors can be found which
result in full conditional distributions of the same form. This will make updating these parameters relatively
straightforward. The conjugacy assumptions are not particularly restrictive here: in practice we do not
expect to make use of strong prior information on the continuous parameters.

We assign an inverse gamma prior distribution to ¢2; in particular we set =2 ~ I'(a, b), where a and
b are respectively the shape and rate parameters of the gamma distribution. From (8) and (9), the full

conditional distribution of ¢~2 is

(672 | ALM, X) ~T(a,b),

where

Li(|I] = 1),

™
||

l\DI&

and
- 1 (i1) (i)
b:b+§§ S m(];,...,xﬂy“).

Thus the error variance can be updated using a Gibbs sampler step, i.e. by simulating from the full conditional
inverse gamma distribution.
Set A = {AM  Ale=D) AletD) 00 AC)) We choose to assign Gaussian priors to the translation

parameters. For ¢ = 1,2,...,C, suppose a priori that 7(¢) ~ Ny(ul®),n2I,). Using (8),

(C) + =me 1
(T(C) 62, A9, A M, X) ~ N ( o Id> ,

v 1 1
g+02wc n§+02wc

with

I:1>

¢ (ji,

Z ﬂ Z ‘A( k)xjkk o (|I| )A( ) ]k( )
]

)GSI kiip#c

and

=3 ()

I:I>c

and where the sub-index k(c) is such that 2(*%«) = z(¢). The translation parameters are thus also updated



using a Gibbs move.
We can also find conjugate priors for the rotation matrices A(®), though this is less obvious. For ¢ =
1,2,...,0, set p(A®) o exp {tr(FI A®)} for some d x d matrix F,.. The fact that we are concentrating on

rotation matrices means that [A(”)] =1 and (A(C))f1 = (A(C))T. A somewhat involved calculation yields
P(A@ | 0%, A, 7 M, X) o< exp [t { (F. + 5T A}

where tr(-) is the trace operator and S, the d x d matrix

Sem Y X gy | D A ) —an-nee 6"
: j kg e

The conditionally conjugate distribution p(A) o exp {tr(FTA)} is called the matrix Fisher distribution, and
is well-known in directional statistics (Mardia and Jupp 2003, p.289). Rather than updating the rotation
matrices themselves, we will work on the corresponding rotation angles. For example if d = 2, we define the
angle 0(°), while if d = 3 we have the three generalised Euler angles 9562), 95?, and 9%?. Green and Mardia
(2006, pp. 241-242) describe how the angles can be updated when assuming a conjugate matrix Fisher prior
for the rotation matrices, in the case where d is 2 or 3.

For simplicity, we consider here only the case where the A(®) are uniformly distributed and mutually
independent. This is achieved by assigning zero matrices to the F. above. It is then true that the relative
rotations (A(Cl))T - Ale2) are uniform and mutually independent for ¢o # ¢; and fixed ¢;. So without loss of
generality, we can impose the identifying constraint that A be fixed as the identity transformation. This

is the same as saying that the first data configuration lies in the same frame as the hidden point locations.

Updating the matches

The matches will be updated using a Metropolis—Hastings jump. We write

M= {(t],tg, .. ), (B3, t8) o (8

with K = ", L;. Each C-tuple (t},t5...,t%) represents a match, t¥ being the index of the point from the
z(©) configuration involved in the match. If a given configuration is not involved in the match, a ‘—’ flag is

inserted at the appropriate position. For instance, if C' = 3 the 3-tuple (2,4, 1) refers to a match between

10



xgl),xff) and x§3), while (—,2,1) is a match between 3352) and 3353), with no z()—point involved. We also

include unmatched points in this list: (1, —, —) indicates that asgl) is unmatched, for example.
Suppose that M is the current list of matches in the MCMC algorithm. The jump proposal proceeds as

follows:

e with probability ¢ we choose to split a C-tuple; in this case we draw an element uniformly at random

in the list M.

— If the C-tuple drawn corresponds to an unmatched point, we do nothing;

— otherwise we split it into two C-tuples; for instance (2, 3, 1) can be split into (2, —, —) and (—, 3,1).
In general there will be many potential splits: here we could have chosen to split (2,3,1) into
(—,3,—)and (2, —,1). Suppose the match to be split is an I-match. Then there are By = 2//1=1 -1

ways to split this match. We select one of these splits uniformly at random.

e With probability 1 — ¢ we choose to merge two C-tuples; in this case we select two distinct elements

uniformly at random from M.

— If the two C-tuples drawn contain a common configuration, i.e. (j1,k,—) and (j2,—, —), then we

do nothing;

— otherwise we merge the C-tuples, for example (j, k, —) and (—, —, 1) become (4, k, ), while (—, k, —)
and (—, —,!) become (—, k,1).

The split and merge operations defined above form a complementary reversible pair. Clearly, all possible
match arrangements can be explored using these two operations only.
The acceptance probability of a jump is readily worked out from (8). Suppose the proposal is to split an
I-match into an I’-match and an I”’-match, such that I = I’UI” and I'NI"” = (). Reverting to the algebraic
gt "l 1 I

representation, suppose we are splitting (a:(»il) a:(i‘”)) into <x§él), ... x(,zﬂ)) and <x§f}), ... gj(_11/1)>.

The acceptance probability for this proposal is min{1, ps}, where

e = (PmerAY 2r02|]| d/2x2(1—q)B1
1 ||| q(K +1)

1 (it) (i) 1 (ir) (o)
exp {_W%“ (xj; S exp § —5,27A xji'l v T,

exp {—#’YA(x;?), e ,xi‘zy“))}

X

11



This acceptance probability is also valid when at least one of the new matches after the split is an un-
(i1)

matched point — recall that 4 (a:J1

merge x(»fl), e ,x(ju/‘) and (2% ), e ,x(j,””‘) into (x(il), . ,x<i‘1‘)). The acceptance probability for
J1 .7“/‘ J1 .7“//‘ J1 1)

) = 0 and that p;y = 1 if |[I| = 1. Now suppose we attempt to

this jump is min{1, pas}, where

pi IR gk
P = X 5 X
I P A 2mo?|1]| 2(1—¢q)B;
exp{——Q;fyA (xg-il),...,xg-z‘y“))}

i (i/ ’ ) i’ (i”// ) ’
exp{—ﬁ’u (xg-zl),...,xj/lf >}exp{—ﬁ%4 <x;2}),...,xj,;fl >}

The simplicity of the jump proposal has a drawback: the change to M is very small relative to its parameter

X

space. To speed up the exploration of this space, we will typically make several match jump proposals within

each sweep of the MCMC algorithm.

3 Application: Aligning steroid molecules

3.1 The Data

For this example we select C' = 3 steroid molecules from the CoMFA database, which can be accessed
at http://www2.ccc.uni-erlangen.de/services/steroids. This database is frequently used as a benchmark for
testing computer-assisted drug design methods (see Coats, 1998). The three molecules are aldosterone,
cortisone, and prednisolone, which we label (1), 22 and 2 respectively. Each of these molecules contain
n1 = ng = ng = b4 arbitrarily labelled atoms in d = 3 dimensional space. We wish to align these molecules
using the methodology described in this paper.

Here we have seven types of matches to deal with, counting the unmatched types: {1}, {2}, {3}, {1, 2},
{2,3}, {1,3}, and {1,2,3}. For simplicity we will drop the brackets and commas from the I sets when
appropriate, so that for example Ly, oy and pyz 3y are written as L1z and p23, and a 13-match is a match

involving the first and third configurations but not the second.

3.2 Results

The MCMC algorithm was launched with a ‘clean sheet’: no initial matches were assigned and no information

about the atoms was considered. We set p12/\ = pa3 /A = p13/\ = 31.25, and p123/A\? = 3660. By convention

12



the values of p1, p2, and p3 are fixed at one. The error variance parameters were set to a = 1 and b = 0.1.
The transformation priors were rendered largely non-informative by setting (2 = 13 = 0 and 7, = 13 = 10
and by assigning the zero matrix to Fo and Fj3. The sampler was run for 50 000 sweeps, the first 10 000
being discarded as burn-in; 50 match proposals were made per sweep.

Figures 2 and 3 give the time series traces of the transformation parameters and match counts respectively.
The rotation matrices A® and A®) are each represented by three angles. From inspection of these traces as
well as that of the posterior likelihood (not plotted here), we conclude the chain has reached equilibrium. The
error variance and translations were estimated using the sample posterior means based on a subsample of 2000
after burn-in; we find 2 = 0.0075, 7() = (—=1.224, —0.639, —0.786)7, and 7(3) = (—0.796, —0.444, —0.640).
The rotation matrices were estimated by taking their respective sampled polar parts (see Green and Mardia

2006, p.248), giving us the estimates

0.967 0.136 —0.216 0.888  0.186 —0.420
A® =1 _0166 0977 —0.131 |, A® = _0141 0980 0.137
0.193 0.163  0.968 0438 —0.063 0.897

The posterior sample means of the match counts were (L12, Log, L13, L123) = (4.59,4.46,1.14,42.61).
FIGURES 2 AND 3 ABOUT HERE

To estimate M, we rank the matches by order of their sample posterior probability, and select the k most
frequent, say. Providing these are mutually compatible, the resulting estimator M can be considered as a
Bayesian estimator under a certain loss function (again Green and Mardia 2006, pp.243-244). By mutually
compatible matches we mean that 1) they do not imply that two different points in one configuration are
matched to a single point in another configuration, 2) they do not imply that two different points are matched
to a same point but are not matched to each other. Incompatible matches are possible, though quite rare in
practice, and cannot happen if the selected matches have posterior probability larger than 0.5.

Here we find that 47 matches have probability higher than 0.9 and 54 have probability higher than 0.5.
Of these 54 matches, 44 are 123—matches, 4 are 12—matches, 5 are 23—matches, and one is a 31-match. The
three molecules are aligned in Figure 4. Notice that in the top right corner of the latter figure, there seems
to be a non-random observation error in the matched points. This might be a result of assigning too large a
value to p1a3/ A2, as will be seen in Section 3.3. It could also be the consequence of systematic model error:

the assumption of rigid-body transformations might be invalid for instance.
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FIGURE 4 ABOUT THERE

To study the vulnerability of the sampler to local modes, the following experiment was conducted: 100
independent MCMC runs were launched, all with the hyperparameters fixed at the values given above.
After 50 000 sweeps of a run, the posterior likelihood (8) was computed and compared to a threshold value
established from earlier runs, such as the one described above. If the likelihood was lower than this threshold,
then the sampler was adjudged to have become trapped in a local mode. Of the 100 runs, 91 passed this
test and thus were deemed to have found their way to the main mode of the distribution. Of course these
favorable results might be more a consequence of the nature of the data than of the robustness of our
method. In a different context one might need to devise a more elaborate MCMC algorithm to deal with

multimodality.

3.3 Prior settings

We now briefly study the effect of the hyperparameter values on the MCMC inference. In the case where no
prior information on the transformation parameters is available, it is convenient to set a uniform prior on
the rotation matrix and on the directions of the translations, as was done in Section 3.2. Furthermore, we
typically select the variances n3 and 73 to be large enough so that the resulting translations encompass the
configurations. We study in a little more detail the effect of the hyperparameters a, b, and p;/ A=

In the above runs we set a = 1, thus assigning an exponential prior distribution to 1/02. The second
hyperparameter b determines the rate of this distribution: larger b should result in larger variance in the
observation errors, and thus more variability in the matching. Conversely, the smaller the value of b, the
closer together a set of (transformed) points will have to be in order to be considered as a candidate for
a match. Increasing b = 0.1 by a factor of ten will double the posterior mean of o2. Inference on the
matches is only slightly affected: a few two-way matches are replaced by 123-matches. Also, this increase
generates a local mode problem, as some of the runs become entangled in a minor mode for an indefinite time.
This is to be expected, since by increasing b we are allowing the sampler to explore additional alignments.
Reducing b = 0.1 to b = 0.01 has little effect on either the matching or the posterior mean of the variance.
However, reducing it further seems to create a second major mode in the posterior distribution, causing the
algorithm to switch continually between two alignments. This new alignment is very similar to the first,
except that approximately 10 of the 123—matches are replaced by 23-matches. The likely explanation for this

is that in reducing b, we have become less tolerant towards matching, and thus have split several ‘borderline’
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123-matches.

Now we study the influence of the ratios r; = p;/AI=! on the matching. Recall that each hyperparameter
r; appears in the prior distribution (6) for the matches; we expect that increasing r; will result in more
I-matches being accepted in the algorithm. These ratios may be estimated by taking advantage of prior
‘guesses’ one might have on the number of matches of each type. When such information is available, as
is often the case in practice, the argument of Green and Mardia (2006, p. 250) can be extended to the

multivariate distribution (5). Suppose we have established the guesses {I~/ 1} for the match counts: if we set

rr :-EI 'UIl/H-Z/{c}a

cel

then the resulting prior distribution for the counts will have a unique mode in {L;}. The value for the
volume v must be determined from the data, but this is not usually difficult to do. For example the ratios
chosen in Section 3.2 are based on the guesses ilg = ﬂgg = I~113 = 8 and Elgg = 30, with v fixed at 250.
The actual values given to the r; appear less important than their relative values. For instance increasing
(or decreasing) all the ratios by a factor of ten brings about very little change in the resulting MCMC
inference. Now suppose the values of the r; parameters are determined using the guesses Lis = Li5 = 5,
l~/23 = 25 and .Z/123 = 20. The resulting inference is pictured in Figure 5, where again we have selected the
54 most probable matches. Clearly the alignment is very similar to the one displayed in Figure 4, except
the ‘borderline’ 123-matches mentioned earlier have been replaced by 23-matches. The above simulations
illustrate an interesting feature of our methodology, namely that prior information on the match counts may

influence subtle aspects of the alignment inference.

FIGURE 5 ABOUT HERE

3.4 Multiple vs. pairwise matching

We briefly consider what can be gained by using our multiple matching approach rather than aligning
the configurations independently by pairs. For this purpose we add two further steroid molecules 11-
deoxycorticosterone and 17a-hydroxyprogesterone (z(* and z(%) respectively) to the three described above.

First we treat the pairwise alignment of molecule z(*) to molecules 2,23 z(*) and () respectively.
For each of these alignments we based the match prior on the ‘guess’ L1s = 30. The four MCMC means for

the number of unmatched atoms in the first molecule are between 6 and 10. If we align the five molecules
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simultaneously, based namely on the guesses i12345 = 30 and I~/2345 = 3, we find a posterior mean of L; = 21
unmatched atoms in the first molecule. Thus a fair portion of the first molecule has disengaged from the
other four (note that this was already somewhat apparent when aligning three molecules, see Section 3.3).
It is also worth mentioning that, relative to the pairwise cases, the posterior estimate for o2 decreases
roughly by a factor of eight. For reference the pairwise and multiple alignments are displayed in Figures
6 and 7 respectively. It is conceivable that the difference in the inferences is a result of the prior match
specifications. However, one would have to set L15 to be as low as 10 to obtain pairwise alignments similar
to the multiple alignment. This suggests that, in this context at least, the pairwise approach has a proclivity

for overmatching.
FIGURE 6 AND FIGURE 7 ABOUT HERE

The above example illustrates that the inclusion of two or three additional configurations may have
a strong impact on the alignment inference. One might understand this as a ‘borrowing of strength’ of
sorts: further configurations provide further information on the number and location of implied p-points,
information which can in turn be exploited in the alignment of the initial configurations. Clearly, there is

no way to take advantage of this information if the molecules are aligned by pairs.

4 Discussion

In this paper we have seen that the two-configuration Bayesian matching approach of Green and Mardia
(2006) generalises readily to the multi-configuration context. The methodology was applied to the matching
of three steroid molecules, with promising results: with this ‘easy’ dataset, the sampler seemed to have little
difficulty avoiding the anticipated local mode problem.

The problem of aligning multiple molecules has also been treated by Dryden et al. (2007); their approach
is similar to ours, in that a hierarchical model is constructed and a hidden reference molecule defined. How-
ever the hidden points are not integrated out, and the transformations are maximised out using Procrustean
registration techniques. Furthermore, only C' ‘types’ of matches are considered in their model (compared to
our 2¢ — C — 1): the alignment is made pairwise between each observed point configuration and the hidden
molecule. A result of this is that, in terms of computation speed, the methodology of Dryden et al. (2007)
would probably be much faster than the one proposed in this paper when C'is large. So the choice of method
might depend upon the number of configurations to be aligned and the extent to which one wished to retain

full statistical efficiency and control the prior match specifications.
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An important aspect of alignment which is not addressed in this paper is that of marking. In many
contexts, additional information on the observations is available. For example, Dryden et al. (2007) include
‘marks’ on each atom of the molecules to be aligned; these marks may contain information influencing the
matching, such as partial charge and van der Waals radius. In a similar vein, Green and Mardia (2006)
include the possibility of colouring the observations, in order to model the possibility that points of the
same colour are more likely to be matched a priori. Thus knowledge of amino acid types can be used
advantageously for the matching of active sites in proteins. Incorporating such information on the points
may make the inference more clear-cut, by reducing multi-modality in the posterior distribution.

It would be interesting to consider applications which assume non-rigid or even non-linear transformations
between the configurations. Our model allows for such transformations, but the implementation would have
to be suitably adapted. The same can be said regarding the use of non-Gaussian observation errors and of

different prior distributions for the parameters.
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Figure 1: Directed acyclic graph of the hierarchical model.
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Figure 2: Time series traces of the transformation parameters, taken from a thinned sample of 2000 after
burn-in.
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Figure 3: Time series traces of the match counts, taken from a thinned sample of 2000 after burn-in.
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Figure 4: Aligned molecules from Section 3.2: the full transformations are estimated from a MCMC sub-
sample of size 2000, and are filtered out from the data. The observations are then projected onto the
principal components plane. The ‘o’ symbols represent the (1) configuration (aldosterone), the ‘4’ symbols
the 2(?) configuration (cortisone), and the ‘x’ symbols the 2(3) configuration (prednisolone). The solid dots
correspond to the centres of the 123-matches (black) and jk-matches (grey).
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Figure 5: Aligned molecules from Section 3.3: the full transformations are estimated from a MCMC subsam-
ple of size 2000, and are filtered out from the data. The observations are then projected onto the principal
components plane. The solid dots correspond to the centres of the 123-matches (black) and jk—matches

(grey).
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Figure 6: Pairwise alignments of molecules from Section 3.4: the full transformations are estimated from
MCMC subsamples of size 2000, and are filtered out from the data. The points are projected onto the first
two canonical axes, and are labelled according to the number of the configuration they belong to.
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Figure 7: Multiple alignment of the five molecules from Section 3.4: the full transformations are estimated
from a MCMC subsample of size 2000, and are filtered out from the data. The points are projected onto the
first two canonical axes, and are labelled according to the number of the configuration they belong to.
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