
Alignment of multiple configurations using

hierarchical models

By Yann RUFFIEUX

FSB IMA STAT Station 8, EPFL - Swiss Federal Institute of Technology

1015 Ecublens, Switzerland

yann.ruffieux@epfl.ch

and Peter J. GREEN

School of Mathematics, University of Bristol, Bristol BS8 ITW, UK

P.J.Green@bristol.ac.uk

SUMMARY

We describe a method for aligning multiple unlabelled configurations simultaneously. Specifically, we

extend the two-configuration matching approach of Green and Mardia (2006) to the multiple configuration

setting. Our approach is based on the introduction of a set of hidden locations underlying the observed con-

figuration points. A Poisson process prior is assigned to these locations, resulting in a simplified formulation

of the model. We make use of a structure containing the relevant information on the matches, of which there

are different types to take into account. Bayesian inference can be made simultaneously on the matching

and the relative transformations between the configurations. We focus on the particular case of rigid-body

transformations and Gaussian observation errors. We apply our method to a problem in chemoinformatics:

the alignment of steroid molecules.

Some key words: chemoinformatics, Markov chain Monte Carlo, matching, rigid-body transformation, shape

analysis, steroids
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1 Introduction

In many scientific disciplines one is confronted with the problem of comparing objects. Typically, the

scientist locates a number of characteristic points, called landmarks, which correspond on the objects of a

given population. For example, a landmark might be a recognisable location on a given organism, such as

the corner of an eye, the tip of a finger, or the meeting of two sutures on a skull. Numerous techniques

have been studied over the years for the geometrical comparison of objects when the landmarks are labelled,

i.e. when the point correspondences between the objects under study have been established. Now if the

landmark configurations are unlabelled, so that the correspondences between the points of each configuration

are unknown, then our problem also becomes one of matching : identifying and labelling corresponding

landmarks.

A number of methods have been developed for the alignment of unlabelled point configurations, in various

contexts. In image analysis, for instance, Cross and Hancock (1998) and, more recently Lin et al. (2007)

use graph theory techniques for the matching of point sets representing two-dimensional images, while Chui

and Rangarajan (2000) consider the use of non-rigid body transformations. The alignment problem has also

attracted a lot of interest from the chemoinformatics community (Lemmen and Lengauer 2005). In this

field it is a common assumption that structurally similar molecules have similar activities. This assumption

has led to the development of Quantitative structure-activity relationship (QSAR) analysis which seeks to

quantify the link between the chemical structure and the observed properties of a molecule. In drug design,

for example, a subject of prime interest is the local interaction between a small molecule (the ligand) and

a given protein receptor. If the geometrical structure of the receptor is known, then established methods

such as docking can be applied so as to specify the protein-ligand interaction. However, in most cases this

structure is unknown, meaning the drug designer must rely on a study of the similarity (or diversity) in

available ligands. The alignment of the molecules is a first important step towards such a study.

We focus specifically on generalising the approach of Green and Mardia (2006), who describe a Bayesian

methodology for aligning two point configurations. We wish to extend this methodology so as to deal with

an arbitrary number of configurations. Independent pairwise comparison of the configurations could be an

option, but would be somewhat cumbersome and incoherent. Unless all of the configurations are treated

simultaneously in a single model, there is loss of information, for example about the ‘noise-free’ locations of

the matched points. In Section 3.4 we see some evidence of the empirical impact of this. The elegance of

the pairwise model makes this extension natural and relatively straightforward. The problem of matching
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multiple configurations has also been addressed by Dryden et al. (2007), see the Discussion section of our

paper for further details.

This paper is organised as follows. In Section 2 we treat the simultaneous alignment of multiple point

configurations. We describe a hierarchical Bayesian model for this task, and propose a Markov chain Monte

Carlo algorithm for making inference on the model in the case of rigid-body transformations between the

configurations. In Section 3 we consider an application of our approach to the matching of three steroid

molecules. Finally in Section 4 we make an assessment of our methods and suggest directions for future

work.

2 Hierarchical modelling of multi-configuration alignment

In this section we consider a hierarchical model for matching multiple configurations simultaneously. We

closely follow the approach of Green and Mardia’s (2006) two-configuration method, though we must now

allow for the possibility of many types of matches.

2.1 The alignment problem

Suppose we are given C configurations x(1), x(2), . . . , x(C), whose points are recorded in d-dimensional real

space: for c = 1, 2, . . . , C, write x(c) =
{
x

(c)
j , j = 1, 2, . . . , nc

}
, where x

(c)
j ∈ R

d and nc is the number of

points in configuration x(c). The labelling is assumed to be arbitrary, thus providing no initial information on

the correspondences between points. We wish to align the C configurations simultaneously by establishing

these correspondences and filtering out the relative transformations between the configurations.

We introduce a set of hidden locations µ = {µi} ⊂ R
d. These can be interpreted as the ‘true’ locations

of the configuration points, so that the latter are noisy observations of the former. Specifically, define

the labelling arrays ξ(1), ξ(2), . . . , ξ(C), which link the index of an observation to that of its corresponding

hidden point. In particular ξ
(c)
j is the index of the µ–point underlying the observation x

(c)
j . Assume that

a hidden location is observed at most once in each configuration, and that it may remain unobserved.

Thus the elements within each ξ(c) are distinct, and a µ–point may generate anywhere between zero and C

configuration points.

Now suppose each configuration goes through some transformation before being observed. For c =

1, 2, . . . , C, let A(c) be the transformation bringing the points of the x(c) configuration back to the reference
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frame defined by the µ–points. Our C-configuration alignment model can be written as:

A(c)x
(c)
j = µ

ξ
(c)
j

+ ε
(c)
j , for j = 1, 2, . . . , nc, c = 1, 2, . . . , C. (1)

The random error vector ε
(c)
j is assumed to have density f (c) and to be independent of the µ–points and of

all the other errors.

Our primary objective with this model is to match observations of the same µ–point. Formally we

wish to find maximal sets of configurations
{
x(i1), x(i2), . . . , x(ik)

}
and indices {j1, j2, . . . , jk} such that

ξ
(i1)
j1

= ξ
(i2)
j2

= · · · = ξ
(ik)
jk

. There is an abuse of language here in that a match may involve points taken from

more than two configurations.

Below we will assume that each A(c) is an affine transformation, made up of a linear transformation

matrix A(c) ∈ R
d×d and a translation vector τ (c) ∈ R

d so that A(c)x
(c)
j = A(c)x

(c)
j + τ (c) for j = 1, . . . , nc

and c = 1, . . . , C. We will require constraints on the A(c) to ensure identifiability of the model; we discuss

this in Section 2.5.

2.2 Hierarchical modelling: preliminaries

We will regroup the matches in a parameter M. How these matches are represented is irrelevant for the

moment; one might wish to use binary matrices, as do Dryden et al. (2007) and Green and Mardia (2006), or

write each match as an index array containing the labels of the matched points and those of the configurations

involved. For M to be consistent with the model described in Section 2.1, we must in particular ensure that

a given point is involved in exactly one (maximal) match, with the convention that an unmatched point

is itself a trivial match of size one. In this sense M can be seen as a partition on the set of all observed

configuration points, under the constraint that no two points from a given configuration be in the same

subset. We stress the fact that the elements of M refer to the indices of the matched points and give no

information about their position. The directed acyclic graph (DAG) of our hierarchical model, including

this new parameter M, is displayed in Figure 1.

FIGURE 1 ABOUT HERE

We categorise the matches contained in M according to their ‘type’. Consider a generic set I ⊂

{1, 2, . . . , C} of configuration indices, with I 6= ∅. This set corresponds to a type of match: for exam-

ple if C = 3, then I = {2, 3} refers to a match involving a point from the x(2) configuration and a point from
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the x(3) configuration but none from the x(1) configuration. We call I–match a match involving exactly the

configurations whose index is included in I . If I = {i1, i2, . . . , iK}, an I–match can be represented by an

index array (j1, j2, . . . , jK) such that ξ
(i1)
j1

= ξ
(i2)
j2

= · · · = ξ
(iK)
jK

and such that c /∈ I implies ξ
(c)
l 6= ξ

(ik)
jk

for

all l = 1, 2, . . . , nc and all k = 1, 2, . . . , K. We write |I | as the number of configuration indices in I . If |I | = 1

our I-match is in fact an unmatched point; as stated above this will also be treated as a type of match.

2.3 Poisson process assumption and prior distribution for the matches

We make the prior assumption that the µ–points follow a multivariate Poisson process with constant rate

λ over a region V ⊂ R
d of volume v. Recall that each µ–point generates a number of observations or

remains unobserved. For I as defined in the previous section, let qI be the probability that a given hidden

location generates an I–match. For instance, if C = 3 then q{1,3} is the probability that a particular µ–

point is observed in the x(1) and x(3) configurations but not in the x(2) configuration. Thus the probability

of a hidden location remaining unobserved is 1 −
∑

I qI . Assume also that the matches are generated

independently from µ–point to µ–point, based on the same probabilities qI . A very useful consequence of

these assumptions is that our global Poisson process can be partitioned into 2C thinned Poisson processes:

for fixed I , the set of µ–points which have generated an I–match is itself a Poisson process with rate λqI ;

furthermore this process will be independent of the other processes of the partition.

We define the parametrisation

qI = ρI ·
∏

c∈I

q{c}, (2)

where ρI = 1 if |I | = 1. This type of parameterisation has been treated in other contexts, such as that

of regression with binary response (Ekholm et al. 1995) and genetic map functions (Speed 2005). The

parameter ρI is sometimes called the dependence ratio or coincidence coefficient. Here it can be seen as a

relative measure of how likely an I–match is to occur a priori.

Now we wish to assign a prior distribution to the match structure M, based on the Poisson process as-

sumptions described above. Let LI be the number of I–matches contained in M. Given {nc, c = 1, 2, . . . , C},

we must have

L{c} = nc −
∑

{I:|I|≥2,I3c}

LI , for c = 1, 2, . . . , C. (3)
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The prior distribution for M can be written as

p (M) = p (M | {LI}) · p ({LI}) . (4)

From the Poisson process assumption on the µ–points, the counts LI are independent Poisson variables with

means λvqI . Using (2) and (3), we find that the prior distribution for the match counts has the form

p ({LI}) ∝
∏

I

(λvqI )
LI

/∏

I

LI !

∝
∏

I

{
ρI

(λv)|I|−1

}LI

/∏

I

LI ! , (5)

so the qI parameters conveniently cancel.

Now make the prior assumption that, conditional on the match counts {LI}, the distribution for M is

uniform. In other words, consider as equally likely each match arrangement which is consistent with the

counts. The number of such arrangements is

C∏

c=1

nc!

/∏

I

LI ! ,

as can be seen using a recursion argument. Using (4) and (5), it follows that the prior distribution for M

has the form

p(M) ∝
∏

I

{
ρI

(λv)|I|−1

}LI

. (6)

The case C = 2 matches with Green and Mardia’s (2007) expression for the prior distribution of their

‘matching matrix’.

2.4 Joint model

We now seek to compute the joint likelihood of M and A =
{
A(1),A(2), . . . ,A(C)

}
given the set of configu-

rations X =
{
x(1), x(2), . . . , x(C)

}
.

Fix I = {i1, i2, . . . , iK} and let
{
x

(i1)
j1

, x
(i2)
j2

, . . . , x
(iK )
jK

}
be the points of a given I–match in M, where of
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course K = |I |. From (1), we find that

p
(
x

(i1)
j1

, x
(i2)
j2

, . . . , x
(iK )
jK

| A, µ, ξ(1), ξ(2), . . . , ξ(C)
)

=
K∏

k=1

∣∣∣A(ik)
∣∣∣ f (ik)

(
A(ik)x

(ik)
jk

− µ
ξ
(i1)
j1

)
,

where |A| denotes the absolute value of the determinant of the matrix A. Now consider the set of µ–points

which have generated an I–match — we mentioned that this set follows a Poisson process. Given M,

and therefore given LI , the points of this set are uniformly distributed over the region V . As a result the

contribution of the matched points defined above to our likelihood is

p
(
x

(i1)
j1

, x
(i2)
j2

, . . . , x
(iK )
jK

| A,M
)

= v−1

∫

V

K∏

k=1

∣∣∣A(ik)
∣∣∣ f (ik)

(
A(ik)x

(ik)
jk

− µ
)

dµ.

The above integration will be carried out over R
d. We are thus ignoring the edge effects from the boundary

of V : this is valid if V is taken large enough relative to the support of the error densities f (c).

Suppose I =
{
i1, i2, . . . , i|I|

}
and let SI be the set of I–matches contained in M. The elements of SI are

written as index arrays of the form
(
j1, j2, . . . , j|I|

)
, with the convention that

{
x

(i1)
j1

, x
(i2)
j2

, . . . , x
(i|I|)

j|I|

}
is the

corresponding set of matched points. The contribution of the I–matches to the likelihood is

v−LI

∏

(j1,...,j|I|)∈SI

∫

Rd

|I|∏

k=1

∣∣∣A(ik)
∣∣∣ f (ik)

(
A(ik)x

(ik)
jk

− µ
)

dµ.

Multiplying over all match types, the full likelihood of A and M can be seen to be

p(X | A,M) =

(
v−

P

I
LI

C∏

c=1

∣∣∣A(c)
∣∣∣
nc

)
×
∏

I

∏

(j1,...,j|I|)∈SI

∫

Rd

|I|∏

k=1

f (ik)
(
A(ik)x

(ik)
jk

− µ
)

dµ.

(7)

We introduce prior distributions p
(
A(c)

)
and p

(
τ (c)
)

for the transformation parameters, for c = 1, 2, . . . , C.

These priors are left undefined for the time being. The parameters λ, v, and ρI are treated as fixed. From

(6) and (7), the joint posterior distribution has the form

p(A,M | X) ∝
C∏

c=1

{
p(A(c))p(τ (c))

∣∣∣A(c)
∣∣∣
nc
}

×
∏

I

∏

(j1,...,j|I|)∈SI

ρI

λ|I|−1

∫

Rd

|I|∏

k=1

f (ik)
(
A(ik)x

(ik)
jk

− µ
)

dµ. (8)
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Here and elsewhere, the ‘∝’ symbol indicates proportionality with respect to the variables to the left of the

conditioning sign. Thus the µ–points and labelling arrays have been effectively integrated out; the relevant

information contained in these parameters is captured by the structure M. Note also that the volume v

plays no role in our posterior distribution.

Now assume the error densities f (c) are centred Gaussian densities with covariance matrices all equal to

σ2Id. In this case the integrals in (8) can be written in closed form: for a given set of points
{

x
(i1)
j1

, x
(i2)
j2

, . . . , x
(i|I|)

j|I|

}
,

define

γA

(
x

(i1)
j1

, x
(i2)
j2

, . . . , x
(i|I|)

j|I|

)
=

|I|∑

k=1

∥∥∥A(ik)x
(ik)
jk

− c
∥∥∥

2

,

where

c =
1

|I |

|I|∑

k=1

A(ik)x
(ik)
jk

and ‖ · ‖ is the Euclidean norm. Thus γA

(
x

(i1)
j1

, . . . , x
(i|I|)

j|I|

)
is a measure of the deviation in the transformed

points
{
A(i1)x

(i1)
j1

, . . . ,A(i|I|)x
(i|I|)

j|I|

}
. With this notation and the Gaussian assumption for the errors, one

finds that

∫

Rd

|I|∏

k=1

f (ik)
(
A(ik)x

(ik)
jk

− µ
)

dµ = |I |−d/2(2πσ2)−d(|I|−1)/2

× exp

{
−

1

2σ2
γA

(
x

(i1)
j1

, x
(i2)
j2

, . . . , x
(i|I|)

j|I|

)}
. (9)

This identity is also valid if |I | = 1, since γA

(
x

(i1)
j1

)
= 0. Now a prior distribution p

(
σ2
)

can be introduced

and the variance parameter σ2 incorporated in the model (8).

2.5 Inference with Markov chain Monte Carlo

We wish to make inference on the parameters of the model (8), given the data configurations X . The

parameters of interest are the error variance σ2, the translations τ (c), the transformation matrices A(c), and

the set of matches M. The ratios ρI/λ|I|−1 will be considered as fixed hyperparameters, estimated through

some other method.

The unwieldy aspect of the joint distribution (8) makes it difficult to use conventional analytic or numer-

ical estimation methods in this context. An attractive possibility here is to use Markov chain Monte Carlo

(MCMC) simulation. We simulate a Markov chain by updating the parameters in sweeps, in such a way that

the underlying transition kernel of the chain verifies detailed balance, with (8) as the stationary, or limiting,
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distribution. The sampled chain can be used as a basis for inference, provided it has reached equilibrium.

For an accessible introduction to MCMC methods, see for example Green (2001), while Robert and Casella

(2004) give a more detailed account.

To simplify our method, we will make the assumption that the transformation matrices A(c) are rotation

matrices. Thus we are concentrating on rigid-body transformations, and the point configurations can be

seen as elements of a size-and-shape space (Dryden and Mardia, 1998).

We will use a Gibbs sampling scheme for updating the transformation and error variance parameters.

The matches will be updated with a Metropolis-Hastings jump. The C++ implementation of the algo-

rithm (with R interface), including instructions and functions for post-processing, can be found on the URL

http://ima.epfl.ch/∼ruffieux/multalign/.

Updating the continuous parameters

For the parameters σ2, τ (c), and A(c), for c = 1, 2, . . . , C, conditionally conjugate priors can be found which

result in full conditional distributions of the same form. This will make updating these parameters relatively

straightforward. The conjugacy assumptions are not particularly restrictive here: in practice we do not

expect to make use of strong prior information on the continuous parameters.

We assign an inverse gamma prior distribution to σ2; in particular we set σ−2 ∼ Γ(a, b), where a and

b are respectively the shape and rate parameters of the gamma distribution. From (8) and (9), the full

conditional distribution of σ−2 is
(
σ−2 | A,M, X

)
∼ Γ(ã, b̃),

where

ã = a +
d

2

∑

I

LI(|I | − 1),

and

b̃ = b +
1

2

∑

I

∑

(j1,...,j|I|)∈SI

γA

(
x

(i1)
j1

, . . . , x
(i|I|)

j|I|

)
.

Thus the error variance can be updated using a Gibbs sampler step, i.e. by simulating from the full conditional

inverse gamma distribution.

Set A(−c) = {A(1), . . . ,A(c−1),A(c+1), . . . ,A(C)}. We choose to assign Gaussian priors to the translation
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parameters. For c = 1, 2, . . . , C, suppose a priori that τ (c) ∼ Nd(µ
(c), η2

c Id). Using (8),

(
τ (c) | σ2,A(−c), A(c),M, X

)
∼ Nd

(
1
η2

c
µ(c) + 1

σ2 mc

1
η2

c
+ 1

σ2 wc

,
1

1
η2

c
+ 1

σ2 wc

Id

)
,

with

mc =
∑

I:I3c

∑

(j1,...,j|I|)∈SI

1

|I |






 ∑

k:ik 6=c

A(ik)x
(ik)
jk


− (|I | − 1)A(c)x

(c)
jk(c)





and

wc =
∑

I:I3c

(
|I | − 1

|I |

)
LI ,

and where the sub-index k(c) is such that x(ik(c)) = x(c). The translation parameters are thus also updated

using a Gibbs move.

We can also find conjugate priors for the rotation matrices A(c), though this is less obvious. For c =

1, 2, . . . , C, set p(A(c)) ∝ exp
{
tr(F T

c A(c))
}

for some d× d matrix Fc. The fact that we are concentrating on

rotation matrices means that
∣∣A(c)

∣∣ = 1 and
(
A(c)

)−1
=
(
A(c)

)T
. A somewhat involved calculation yields

p(A(c) | σ2,A(−c), τ (c),M, X) ∝ exp
[
tr
{
(Fc + Sc)

T A(c)
}]

,

where tr(·) is the trace operator and Sc the d × d matrix

Sc =
1

σ2

∑

I:I3c

∑

(j1,...,j|I|)∈SI

1

|I |






 ∑

k:ik 6=c

A(ik)x
(ik)
jk


− (|I | − 1)τ (c)




(
x

(c)
jk(c)

)T

.

The conditionally conjugate distribution p(A) ∝ exp
{
tr(F T A)

}
is called the matrix Fisher distribution, and

is well-known in directional statistics (Mardia and Jupp 2003, p.289). Rather than updating the rotation

matrices themselves, we will work on the corresponding rotation angles. For example if d = 2, we define the

angle θ(c), while if d = 3 we have the three generalised Euler angles θ
(c)
12 , θ

(c)
23 , and θ

(c)
13 . Green and Mardia

(2006, pp. 241–242) describe how the angles can be updated when assuming a conjugate matrix Fisher prior

for the rotation matrices, in the case where d is 2 or 3.

For simplicity, we consider here only the case where the A(c) are uniformly distributed and mutually

independent a priori. This is achieved by assigning zero matrices to the Fc above. It is then true that the

relative rotations
(
A(c1)

)T
·A(c2) are uniform and mutually independent for c2 6= c1 and fixed c1. So without

loss of generality, we can impose the identifying constraint that A(1) be fixed as the identity transformation.
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This is the same as saying that the first data configuration lies in the same frame as the hidden point

locations. The choice of which configuration to ‘fix’ will not have a material effect on MCMC inference

outside of sampling error: with uniform rotation and diffuse translation priors, the posterior distribution is

invariant to this choice.

Updating the matches

The matches will be updated with a Metropolis–Hastings jump. We write

M =
{(

t11, t
1
2, . . . , t

1
C

)
,
(
t21, t

2
2, . . . , t

2
C

)
, . . . ,

(
tK1 , tK2 , . . . , tKC

)}
,

with K =
∑

I LI . Each C-tuple (tk1 , tk2 . . . , tkC) represents a match, tkc being the index of the point from the

x(c) configuration involved in the match. If a given configuration is not involved in the match, a ‘−’ flag is

inserted at the appropriate position. For instance, if C = 3 the 3-tuple (2, 4, 1) refers to a match between

x
(1)
2 , x

(2)
4 and x

(3)
1 , while (−, 2, 1) is a match between x

(2)
2 and x

(3)
1 , with no x(1)–point involved. We also

include unmatched points in this list: (1,−,−) indicates that x
(1)
1 is unmatched, for example.

Suppose that M is the current list of matches in the MCMC algorithm. The jump proposal proceeds as

follows:

• with probability q we choose to split a C-tuple; in this case we draw an element uniformly at random

in the list M.

– If the C-tuple drawn corresponds to an unmatched point, we do nothing;

– otherwise we split it into two C-tuples; for instance (2, 3, 1) can be split into (2,−,−) and (−, 3, 1).

In general there will be many potential splits: here we could have chosen to split (2, 3, 1) into

(−, 3,−) and (2,−, 1). Suppose the match to be split is an I–match. Then there are BI = 2|I|−1−1

ways to split this match. We select one of these splits uniformly at random.

• With probability 1 − q we choose to merge two C-tuples; in this case we select two distinct elements

uniformly at random from M.

– If the two C-tuples drawn contain a common configuration, i.e. (j1, k,−) and (j2,−,−), then we

do nothing;

– otherwise we merge the C-tuples, for example (j, k,−) and (−,−, l) become (j, k, l), while (−, k,−)

and (−,−, l) become (−, k, l).
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The split and merge operations defined above form a complementary reversible pair. Clearly, all possible

match arrangements can be explored using these two operations only.

The acceptance probability of a jump is readily worked out from (8). Suppose the proposal is to split an

I–match into an I ′-match and an I ′′-match, such that I = I ′∪ I ′′ and I ′∩ I ′′ = ∅. Reverting to the algebraic

representation, suppose we are splitting
(
x

(i1)
j1

, . . . , x
(i|I|)

j|I|

)
into

(
x

(i′1)

j′1
, . . . , x

(i′
|I′ |

)

j′
|I′ |

)
and

(
x

(i′′1 )

j′′1
, . . . , x

(i′′
|I′′ |

)

j′′
|I′′ |

)
.

The acceptance probability for this proposal is min{1, pS}, where

pS =

(
ρI′ρI′′λ

ρI

)
×

(
2πσ2|I |

|I ′||I ′′|

)d/2

×
2(1− q)BI

q(K + 1)

×

exp

{
− 1

2σ2 γA

(
x

(i′1)

j′1
, . . . , x

(i′
|I′|

)

j′
|I′|

)}
exp

{
− 1

2σ2 γA

(
x

(i′′1 )

j′′1
, . . . , x

(i′′
|I′′ |

)

j′′
|I′′ |

)}

exp
{
− 1

2σ2 γA
(
x

(i1)
j1

, . . . , x
(i|I|)

j|I|

)} .

This acceptance probability is also valid when at least one of the new matches after the split is an un-

matched point — recall that γA

(
x

(i1)
j1

)
= 0 and that ρI = 1 if |I | = 1. Now suppose we attempt to

merge

(
x

(i′1)

j′1
, . . . , x

(i′
|I′|

)

j′
|I′|

)
and

(
x

(i′′1 )

j′′1
, . . . , x

(i′′
|I′′ |

)

j′′
|I′′ |

)
into

(
x

(i1)
j1

, . . . , x
(i|I|)

j|I|

)
. The acceptance probability for

this jump is min{1, pM}, where

pM =

(
ρI

ρI′ρI′′λ

)
×

(
|I ′||I ′′|

2πσ2|I |

)d/2

×
qK

2(1 − q)BI

×
exp

{
− 1

2σ2 γA

(
x

(i1)
j1

, . . . , x
(i|I|)

j|I|

)}

exp

{
− 1

2σ2 γA

(
x

(i′1)

j′1
, . . . , x

(i′
|I′ |

)

j′
|I′ |

)}
exp

{
− 1

2σ2 γA

(
x

(i′′1 )

j′′1
, . . . , x

(i′′
|I′′|

)

j′′
|I′′|

)} .

To speed up the exploration of the parameter space, we will typically make several match jump proposals

within each sweep of the MCMC algorithm.

3 Application: Aligning steroid molecules

3.1 The Data

For this example we select C = 3 steroid molecules from the CoMFA database, which can be accessed

at http://www2.ccc.uni-erlangen.de/services/steroids. This database has become a benchmark for testing

computer-assisted drug design methods, thanks in large part to Cramer et al.’s (1988) use of it in their

Comparative Molecular Field Analysis (CoMFA). Ever since the publication of that paper, these molecules
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have been used as a training set for various 3D Quantitative structure-activity relationship (QSAR) methods

(see Coats 1998).

The three molecules that we have chosen here are aldosterone, cortisone, and prednisolone, which we

label x(1), x(2), and x(3) respectively. Each of these molecules contain n1 = n2 = n3 = 54 arbitrarily labelled

atoms in d = 3 dimensional space. We wish to align these molecules using the methodology described in this

paper.

Here we have seven types of matches to deal with, including the unmatched types: {1}, {2}, {3}, {1, 2},

{2, 3}, {1, 3}, and {1, 2, 3}. For simplicity we will drop the brackets and commas from the I sets when

appropriate, so that for example L{1,2} and ρ{2,3} are written as L12 and ρ23, and a 13–match is a match

involving the first and third configurations but not the second.

3.2 Results

The MCMC algorithm was launched without setting any initial matches. We set ρ12/λ = ρ23/λ = ρ13/λ =

31.25, and ρ123/λ2 = 3660; see Section 3.3 for an explanation on how we determined these values. By

convention ρ1, ρ2, and ρ3 are fixed at one. The error variance parameters were set to a = 1 and b = 0.1. The

transformation priors were rendered largely non-informative by setting µ(2) = µ(3) = 0 and η2 = η3 = 10

and by assigning the zero matrix to F2 and F3. The sampler was run for 50 000 sweeps, the first 10 000

being discarded as burn-in; 50 match proposals were made per sweep and we set q = 0.5 as the probability

of choosing a merge in the Metropolis-Hastings step. This run took around 25 seconds on a Pentium 4

processor. More generally, for a fixed number of iterations, we found the computing time of the algorithm

to increase with C in a roughly linear fashion.

Figures 2 and 3 give the time series traces of the transformation parameters and match counts re-

spectively. The rotation matrices A(2) and A(3) are each represented by three angles. From inspection

of these traces as well as that of the posterior likelihood (not plotted here), we conclude the chain has

reached equilibrium. The error variance and translations were estimated using the sample posterior means

based on a subsample of 2000 after burn-in; we found σ̄2 = 0.0076, τ̄ (2) = (−1.224,−0.639,−0.786)T , and

τ̄ (3) = (−0.796,−0.444,−0.640)T . The rotation matrices were estimated by taking their respective sampled
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polar parts (see Green and Mardia 2006, p.248), giving us the estimates

Â(2) =




0.967 0.136 −0.216

−0.166 0.977 −0.131

0.193 0.163 0.968




, Â(3) =




0.888 0.186 −0.420

−0.141 0.980 0.137

0.438 −0.063 0.897




.

The posterior sample means of the match counts were (L̄12, L̄23, L̄13, L̄123) = (4.46, 5.59, 1.14, 42.70).

FIGURES 2 AND 3 ABOUT HERE

We choose to estimate M by ranking the matches by order of their sample posterior probability, and

selecting the k most frequent, say. We must of course ensure that the matches in the corresponding estimator

M̂ are compatible, i.e. that no point is involved in more than one match. Setting a lower threshold of 0.5 for

the posterior probabilities of the selected matches will ensure a coherent M̂. However we may ‘miss’ some

matches in the process. Indeed, consider a MCMC output in which the matches (l, j,−) and (−, j, k) both

appear with frequency 0.4 and (l, j, k) appears with frequency 0.2. If we set a lower probability threshold

of 0.5, none of these three matches will be selected, which appears counter-intuitive. To avoid this problem

one might wish to generalise Green and Mardia’s (2006) loss function approach to the multiple configuration

setting. There are various ways to do this, however all seem to lead to an awkward constrained optimisation

problem. Such problems can be set up as linear programs, but scale badly with problem size.

Here we find that 47 matches of size two or greater have probability higher than 0.9 and 54 have probability

higher than 0.5. Of these 54 matches, 44 are 123–matches, 4 are 12–matches, 5 are 23–matches, and one is a

31–match. The three molecules are aligned graphically in Figure 4. Notice that in the top right corner of the

figure, there appears to be a non-random observation error in the matched points. This might be a result

of assigning too large a value to ρ123/λ2, as will be seen in Section 3.3. It could also be the consequence of

systematic model error: the assumption of rigid-body transformations might be invalid for instance.

FIGURE 4 ABOUT THERE

To study the vulnerability of the sampler to local modes, the following experiment was conducted: 100

independent MCMC runs were launched, all with the hyperparameters fixed at the values given above.

After 50 000 sweeps of a run, the posterior likelihood (8) was computed and compared to a threshold value

established from earlier runs, such as the one described above. If the likelihood was lower than this threshold,

then the sampler was adjudged to have become trapped in a local mode. Of the 100 runs, 91 passed this
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test and thus were deemed to have found their way to the main mode of the distribution. Of course these

favorable results might be more a consequence of the nature of the data than of the robustness of our

method. In case of difficulty we might, for instance, locate the carbon rings of the molecules using a graph

theory-based algorithm (see Dryden et al. 2007, p. 246). Then our sampler could be initialised based on

the matched carbon rings and the appropriate shape registration. Another option would be to adapt Lin

et al.’s (2007) ‘strong seeds’ approach to initialise the matching algorithm. This involves identifying seeds

in the configurations and growing them into composite candidates for matching, via a branch-and-bound

algorithm. The result is a much-reduced parameter space for the MCMC sampler to explore. It would be

an interesting challenge to transpose this approach to our problem of aligning multiple molecules, but we

choose to leave it for future work.

3.3 Prior settings

We now briefly study the effect of the hyperparameter values on the MCMC inference. In the case where no

prior information on the transformation parameters is available, it is convenient to set a uniform prior on

the rotation matrix and on the directions of the translations, as specified in Section 3.2. Furthermore, we

typically select the variances η2
2 and η2

3 to be large enough so that the resulting translations encompass the

configurations. We study in a little more detail the effect of the hyperparameters a, b, and ρI/λ|I|−1.

In the above runs we set a = 1, thus assigning an exponential prior distribution to 1/σ2. The second

hyperparameter b determines the rate of this distribution: larger b should result in larger variance in the

observation errors, and thus more variability in the matching. Conversely, the smaller the value of b, the

closer together a set of (transformed) points will have to be in order to be considered as a candidate for

a match. Increasing b = 0.1 by a factor of ten will double the posterior mean of σ2. Inference on the

matches is only slightly affected: a few two-way matches are replaced by 123–matches. Also, this increase

generates a local mode problem, as some of the runs become entangled in a minor mode for an indefinite time.

This is to be expected, since by increasing b we are allowing the sampler to explore additional alignments.

Reducing b = 0.1 to b = 0.01 has little effect on either the matching or the posterior mean of the variance.

However, reducing it further seems to create a second major mode in the posterior distribution, causing the

algorithm to switch continually between two alignments. This new alignment is very similar to the first,

except that approximately 10 of the 123–matches are replaced by 23–matches. The likely explanation for this

is that in reducing b, we have become less tolerant towards matching, and thus have split several ‘borderline’

123–matches.
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Now we study the influence of the ratios rI = ρI/λ|I|−1 on the matching. Recall that each hyperparameter

rI appears in the prior distribution (6) for the matches; we expect that increasing rI will result in more

I-matches being accepted in the algorithm. These ratios may be estimated by taking advantage of prior

‘guesses’ one might have on the number of matches of each type. When such information is available, as

is often the case in practice, the argument of Green and Mardia (2006, p. 250) can be extended to the

multivariate distribution (5). Suppose we have established the guesses {L̃I} for the match counts: if we set

rI = L̃I · v
|I|−1

/∏

c∈I

L̃{c},

then the resulting prior distribution for the counts will have a unique mode in {L̃I}. The value for the volume

v must be determined from the data, but this is not usually difficult to do. For example the ratios chosen in

Section 3.2 are based on the guesses L̃12 = L̃23 = L̃13 = 8 and L̃123 = 30, with v fixed at 250. In Table 1 we

consider four scenarios for the guesses, including that of Section 3.2. Displayed for each case is the sample

posterior mean of the match counts and the σ2 estimate. The latter value can be seen as a rough measure of

the deviation in the matched points after transformation; it should not be used to choose between prior sets

of values however. It is interesting to note that the third set of guesses, which favours strict 23–matches,

brings about a discernable change in the inference. The ‘borderline’ 123–matches mentioned earlier have

been replaced by 23–matches, giving a more precise alignment.

TABLE 1 ABOUT HERE

3.4 Multiple vs. pairwise matching

We briefly consider the gain of using our multiple matching approach rather than aligning the configurations

independently by pairs. For this purpose we add two further steroid molecules 11-deoxycorticosterone and

17a-hydroxyprogesterone (x(4) and x(5) respectively) to the three described above; both contain 54 atoms.

First we treat the pairwise alignment of molecule x(1) to molecules x(2), x(3), x(4), and x(5) respectively.

In Table 2 we display some of the inference obtained when aligning x(1) and x(2), for different prior scenarios.

The pairwise alignments of x(3), x(4), x(5) to x(1) give mostly similar results in terms of number of inferred

matches; we choose not to display them here. In particular the mean numbers of unmatched points for

the case L̃12 = 30 are all between 6 and 10. Table 3 contains the results when aligning the five molecules

simultaneously using our multiple-configuration method. Once L̃12345 drops below 35, a fair portion of
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the first molecule becomes disengaged from the other four (this was already apparent when aligning three

molecules – see Section 3.3). From Table 2 we see that in the pairwise case one would have to set L̃12 to

be as low as 10 to obtain an alignment similar to the multiple one. This suggests that, in this context at

least, the pairwise approach has a proclivity for overmatching. For reference the five-way alignment with

L̃12345 = 30 is displayed in Figure 5.

TABLES 2 AND 3 AND FIGURE 5 ABOUT HERE

The above comparison confirms that the inclusion of two or three additional configurations may have

a positive impact on the alignment inference. One might understand this as a ‘borrowing of strength’ of

sorts: further configurations provide further information on the number and location of implied µ-points,

information which can in turn be exploited in the alignment of the initial configurations. Clearly, there is

no way to take advantage of this information if the molecules are aligned by pairs.

4 Discussion

In this paper we have seen that the two-configuration matching approach of Green and Mardia (2006)

generalises readily to the multi-configuration context. We believe that our fully Bayesian approach offers

general and flexible inference, and that it can be adapted to deal with alignment problems in various contexts.

The methodology was applied to the matching of three steroid molecules, with promising results: with this

‘easy’ dataset, the sampler seemed to have little difficulty avoiding the anticipated local mode problem.

The problem of aligning multiple molecules has also been treated by Dryden et al. (2007); their approach

is similar to ours, in that a hierarchical model is constructed and a hidden reference molecule defined. How-

ever the hidden points are not integrated out, and the transformations are maximised out using Procrustean

registration techniques. Furthermore, only C ‘types’ of matches are considered in their model (compared to

our 2C −C − 1): the alignment is made pairwise between each observed point configuration and the hidden

molecule. As far as we know, ours is the only available method which models multiple matchings of different

types, in a general and mathematically rigorous manner. In terms of computation speed, the methodology of

Dryden et al. (2007) would probably be more efficient than the one proposed in this paper when C is large.

So the choice of method might depend upon the number of configurations to be aligned and the extent to

which one wished to retain full statistical efficiency and control the prior match specifications.

An important aspect of alignment which is not addressed in this paper is that of marking. In many

contexts, additional information on the observations is available. For example, Dryden et al. (2007) include
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‘marks’ on each atom of the molecules to be aligned; these marks may contain information influencing the

matching, such as partial charge and van der Waals radius. In a similar vein, Green and Mardia (2006)

include the possibility of colouring the observations, in order to model the possibility that points of the

same colour are more likely to be matched a priori. Thus knowledge of amino acid types can be used

advantageously for the matching of active sites in proteins. Incorporating such information on the points

may make the inference more clear-cut, by reducing multi-modality in the posterior distribution.

It would be interesting to consider applications which assume non-rigid or even non-linear transformations

between the configurations. Our model allows for such transformations, but the implementation would have

to be suitably adapted. The same can be said regarding the use of non-Gaussian observation errors and of

different prior distributions for the parameters.
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Figure 1: Directed acyclic graph of the hierarchical model.

prior specifications inference

L̃12 L̃23 L̃13 L̃123 L̄12 L̄23 L̄13 L̄123 σ̂2

8 8 8 30 4.46 5.59 1.14 42.70 7.55× 10−3

25 5 5 20 7.32 4.81 0.74 40.90 7.24× 10−3

5 25 5 20 5.61 14.99 1.06 32.27 4.72× 10−3

5 5 25 20 4.21 4.74 2.14 42.70 7.71× 10−3

Table 1: Sample mean of the match counts and estimate of σ2 in the case C = 3, for four different sets of
prior guesses.

prior specifications inference

L̃12 L̃1 L̄12 L̄1 σ̂2

30 24 47.48 6.52 9.01× 10−3

25 29 45.72 8.28 8.36× 10−3

20 34 42.23 11.77 6.99× 10−3

15 39 36.55 17.45 4.77× 10−3

10 44 35.07 18.93 4.33× 10−3

Table 2: Sample match count means and estimate of σ2 for five different sets of prior values, in the context
of matching x(2) to x(1).
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Figure 2: Time series traces of the transformation parameters, taken from a thinned sample of 2000 after
burn-in.
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Figure 3: Time series traces of the match counts, taken from a thinned sample of 2000 after burn-in.
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Figure 4: Aligned molecules from Section 3.2: the full transformations are estimated from a MCMC sub-
sample of size 2000, and are filtered out from the data. The observations are then projected onto the
principal components plane. The ‘◦’ symbols represent the x(1) configuration (aldosterone), the ‘+’ symbols
the x(2) configuration (cortisone), and the ‘×’ symbols the x(3) configuration (prednisolone). The solid dots
correspond to the centres of the 123–matches (black) and jk–matches (grey).

prior specifications inference

L̃12345 L̃1 L̄12345 L̄1 σ̂2

39.9 0.1 41.44 5.80 4.32× 10−3

35 1 35.36 10.20 2.98× 10−3

30 2 22.07 20.96 1.46× 10−3

25 5 21.55 21.96 1.36× 10−3

20 10 20.86 22.66 1.29× 10−3

Table 3: Sample mean of some of the match counts and estimate of σ2 in the case C = 5, for five prior sets
of values.
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Figure 5: Multiple alignment of the five molecules from Section 3.4: the full transformations are estimated
from a MCMC subsample of size 2000, and are filtered out from the data. The points are then projected
onto the principal components plane, and are labelled according to the number of the configuration they
belong to.
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